JP6409436B2 - Diagnostic equipment - Google Patents

Diagnostic equipment Download PDF

Info

Publication number
JP6409436B2
JP6409436B2 JP2014189936A JP2014189936A JP6409436B2 JP 6409436 B2 JP6409436 B2 JP 6409436B2 JP 2014189936 A JP2014189936 A JP 2014189936A JP 2014189936 A JP2014189936 A JP 2014189936A JP 6409436 B2 JP6409436 B2 JP 6409436B2
Authority
JP
Japan
Prior art keywords
amount
sensor
particulate matter
sensors
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014189936A
Other languages
Japanese (ja)
Other versions
JP2016061679A (en
Inventor
正 内山
正 内山
哲史 塙
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014189936A priority Critical patent/JP6409436B2/en
Publication of JP2016061679A publication Critical patent/JP2016061679A/en
Application granted granted Critical
Publication of JP6409436B2 publication Critical patent/JP6409436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、診断装置に関し、特に、排気中に含まれる粒子状物質(以下、PMという)を検出するPMセンサの診断装置に関する。   The present invention relates to a diagnostic device, and more particularly to a diagnostic device for a PM sensor that detects particulate matter (hereinafter referred to as PM) contained in exhaust gas.

従来、内燃機関から排出される排気中のPMを検出するセンサとして、電気抵抗型PMセンサが知られている。電気抵抗型PMセンサは、絶縁性基板の表面に一対の導電性電極を対向配置し、これら電極に付着する導電性のPM(主に、スート成分)によって電気抵抗値が変化することを利用してPM量を推定している(例えば、特許文献1参照)。   Conventionally, an electrical resistance type PM sensor is known as a sensor for detecting PM in exhaust discharged from an internal combustion engine. An electrical resistance type PM sensor uses a pair of conductive electrodes facing each other on the surface of an insulating substrate, and the electrical resistance value changes depending on the conductive PM (mainly soot component) adhering to these electrodes. The PM amount is estimated (see, for example, Patent Document 1).

また、電気抵抗型PMセンサの故障診断装置として、二個のPMセンサの再生時間を互いに比較し、これらセンサの再生時間の差が所定値よりも大きい場合に故障と判定するものが提案されている(例えば、特許文献2参照)。   Further, as a failure diagnosis device for an electric resistance type PM sensor, a device that compares the regeneration times of two PM sensors with each other and determines a failure when the difference between the regeneration times of these sensors is larger than a predetermined value is proposed. (For example, refer to Patent Document 2).

特開2012−83210号公報JP2012-83210A 特開2009−144512号公報JP 2009-144512 A

ところで、上述した電気抵抗型PMセンサの故障診断装置では、診断がセンサ再生期間に限定され、電気抵抗値が変化しないセンサ再生インターバル期間は診断を行うことができない。このため、PMセンサの機能失陥や機能劣化等を早期に検知できない可能性がある。   By the way, in the failure diagnosis apparatus for the electrical resistance PM sensor described above, the diagnosis is limited to the sensor regeneration period, and the diagnosis cannot be performed during the sensor regeneration interval period in which the electrical resistance value does not change. For this reason, there is a possibility that the PM sensor malfunction or function deterioration cannot be detected at an early stage.

開示の診断装置は、PMセンサの機能失陥、機能劣化を早期且つリアルタイムに検知することを目的とする。   An object of the disclosed diagnostic device is to detect a PM sensor malfunction and functional deterioration early and in real time.

開示の診断装置は、内燃機関の排気通路に配置されて排気中の粒子状物質を捕集するセルを含むフィルタ部材に、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材を設け、前記一対の電極部材間の静電容量に基づいて排気中の粒子状物質量を推定する推定手段を備えた複数のセンサと、前記複数のセンサによって推定される粒子状物質量に基づいて、当該複数のセンサの異常を判定する異常判定手段とを備える。   The disclosed diagnostic device includes at least a pair of electrode members that are disposed in an exhaust passage of an internal combustion engine and that include a cell that collects particulate matter in exhaust gas and that is disposed opposite to the cell so as to form a capacitor. A plurality of sensors provided with estimation means for estimating the amount of particulate matter in the exhaust based on the capacitance between the pair of electrode members, and based on the amount of particulate matter estimated by the plurality of sensors And an abnormality determining means for determining abnormality of the plurality of sensors.

開示の診断装置によれば、PMセンサの機能失陥、機能劣化を早期且つリアルタイムに検知することができる。   According to the disclosed diagnostic apparatus, it is possible to detect functional failure and functional deterioration of the PM sensor early and in real time.

第一実施形態に係る診断装置が適用されたエンジンの排気系の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the exhaust system of the engine to which the diagnostic apparatus which concerns on 1st embodiment was applied. 第一実施形態に係る診断装置のPMセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing PM sensor of a diagnostic device concerning a first embodiment. 第一実施形態に係る診断装置の電子制御ユニットを示す機能ブロック図である。It is a functional block diagram which shows the electronic control unit of the diagnostic apparatus which concerns on 1st embodiment. (A)、(B)は各PMセンサのセンサ再生時期を説明する図、(C)は各PMセンサのPM量推定値の比較を説明する図である。(A), (B) is a figure explaining the sensor regeneration time of each PM sensor, (C) is a figure explaining the comparison of the PM amount estimated value of each PM sensor. (A)は、第二実施形態に係るPMセンサのセンサ部を示す模式的な斜視図、(B)は、第二実施形態に係るPMセンサのセンサ部を示す模式的な分解斜視図である。(A) is a typical perspective view which shows the sensor part of PM sensor which concerns on 2nd embodiment, (B) is a typical exploded perspective view which shows the sensor part of PM sensor which concerns on 2nd embodiment. . 他の実施形態に係る診断装置のPMセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing PM sensor of a diagnostic device concerning other embodiments.

以下、添付図面に基づいて、本発明の各実施形態に係る診断装置を説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, based on an accompanying drawing, a diagnostic device concerning each embodiment of the present invention is explained. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[第一実施形態]
図1は、第一実施形態に係る診断装置が適用されたディーゼルエンジン(以下、単にエンジンという)100の排気系の一例を示す概略構成図である。エンジン100の排気管110内には、排気上流側から順に酸化触媒210、パティキュレイト・フィルタ(以下、DPFという)220等が設けられている。本実施形態の診断装置は、二個のPMセンサ10(10A,B)をDPF220よりも上流側の排気管110にそれぞれ配置して構成されている。なお、PMセンサ10の個数は二個に限定されず、三個以上であってもよい。また、PMセンサ10A,Bの配置位置は、DPF220よりも下流側の排気管110であってもよい。
[First embodiment]
FIG. 1 is a schematic configuration diagram illustrating an example of an exhaust system of a diesel engine (hereinafter simply referred to as an engine) 100 to which the diagnostic device according to the first embodiment is applied. In the exhaust pipe 110 of the engine 100, an oxidation catalyst 210, a particulate filter (hereinafter referred to as DPF) 220, and the like are provided in order from the exhaust upstream side. The diagnostic device of the present embodiment is configured by disposing two PM sensors 10 (10A, B) in the exhaust pipe 110 upstream of the DPF 220, respectively. The number of PM sensors 10 is not limited to two, but may be three or more. Further, the arrangement position of the PM sensors 10 </ b> A and 10 </ b> B may be the exhaust pipe 110 on the downstream side of the DPF 220.

次に、図2に基づいて本実施形態に係るPMセンサ10A,Bの詳細構成について説明する。   Next, a detailed configuration of the PM sensors 10A and 10B according to the present embodiment will be described based on FIG.

PMセンサ10A,Bは、排気管110内に挿入されたケース部材11と、ケース部材11を排気管110に取り付ける台座部20と、ケース部材11内に収容されたセンサ部30と、電子制御ユニット(以下、ECUという)40とを備えている。   The PM sensors 10A and 10B include a case member 11 inserted into the exhaust pipe 110, a pedestal part 20 for attaching the case member 11 to the exhaust pipe 110, a sensor part 30 accommodated in the case member 11, and an electronic control unit. (Hereinafter referred to as ECU) 40.

ケース部材11は、底部側(図示例では下端側)を閉塞した有底円筒状に形成されている。ケース部材11の筒軸方向の長さLは、その底部側の筒壁部が排気管110の軸中心CL近傍まで突出するように、排気管110の半径Rと略同一の長さで形成されている。なお、以下の説明では、ケース部材11の底部側を先端側、底部側とは反対側をケース部材11の基端側とする。   The case member 11 is formed in a bottomed cylindrical shape with the bottom side (the lower end side in the illustrated example) closed. The length L in the cylinder axis direction of the case member 11 is formed to be substantially the same as the radius R of the exhaust pipe 110 so that the bottom cylindrical wall portion protrudes to the vicinity of the axial center CL of the exhaust pipe 110. ing. In the following description, the bottom side of the case member 11 is the front end side, and the side opposite to the bottom side is the base end side of the case member 11.

ケース部材11の先端側筒壁部には、周方向に間隔を隔てて配置された複数の導入口12が設けられている。また、ケース部材11の基端側筒壁部には、周方向に間隔を隔てて配置された複数の導出口13が設けられている。導入口12の総開口面積S12は、導出口13の総開口面積S13よりも小さく形成されている(S12<S13)。すなわち、導入口12付近の排気流速V12が導出口13付近の排気流速V13よりも遅くなることで(V12<V13)、導入口12側の圧力P12は導出口13側の圧力P13よりも高くなる(P12>P13)。これにより、導入口12からはケース部材11内に排気ガスが円滑に取り込まれると同時に、導出口13からはケース部材11内の排気ガスが排気管110内に円滑に導出される。 A plurality of inlets 12 arranged at intervals in the circumferential direction are provided in the cylindrical wall portion on the distal end side of the case member 11. In addition, a plurality of outlets 13 arranged at intervals in the circumferential direction are provided in the base end side cylindrical wall portion of the case member 11. The total opening area S 12 of the inlet 12 is smaller than the total opening area S 13 of the outlet 13 (S 12 <S 13) . That is, in the exhaust flow velocity V 12 of the inlet 12 near slower than the exhaust flow velocity V 13 near guide outlet 13 (V 12 <V 13), the pressure P 12 in the inlet 12 side pressure outlet 13 side It is higher than the P 13 (P 12> P 13 ). As a result, exhaust gas is smoothly taken into the case member 11 from the inlet 12, and at the same time, exhaust gas in the case member 11 is smoothly led out into the exhaust pipe 110 from the outlet 13.

台座部20は、雄ネジ部21と、ナット部22とを備えている。雄ネジ部21はケース部材11の基端部に設けられており、ケース部材11の基端側開口部を閉塞する。この雄ネジ部21は、排気管110に形成されたボス部110Aの雌ネジ部と螺合される。ナット部22は、例えば六角ナットであって、雄ネジ部21の上端部に固定されている。これら雄ネジ部21及びナット部22には、後述する導電線32A,33A等を挿通させる貫通孔(不図示)が形成されている。   The pedestal portion 20 includes a male screw portion 21 and a nut portion 22. The male screw portion 21 is provided at the base end portion of the case member 11 and closes the base end side opening of the case member 11. The male screw portion 21 is screwed with a female screw portion of a boss portion 110 </ b> A formed in the exhaust pipe 110. The nut portion 22 is, for example, a hexagonal nut, and is fixed to the upper end portion of the male screw portion 21. The male screw portion 21 and the nut portion 22 are formed with through holes (not shown) through which conductive wires 32A, 33A described later are inserted.

センサ部30は、フィルタ部材31と、複数対の電極32,33と、電気ヒータ34とを備えている。   The sensor unit 30 includes a filter member 31, a plurality of pairs of electrodes 32 and 33, and an electric heater 34.

フィルタ部材31は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路をなす複数のセルの上流側と下流側とを交互に目封止して形成されている。このフィルタ部材31は、セルの流路方向をケース部材11の軸方向(図中上下方向)と略平行にした状態で、ケース部材11の内周面にクッション部材31Aを介して保持されている。導入口12からケース部材11内に取り込まれた排気ガス中のPMは、排気ガスが下流側を目封止されたセルから上流側を目封止されたセルに流れ込むことで、隔壁表面や細孔に捕集される。なお、以下の説明では、下流側が目封止されたセルを測定用セルといい、上流側が目封止されたセルを電極用セルという。   The filter member 31 is formed, for example, by alternately plugging the upstream side and the downstream side of a plurality of cells forming a lattice-like exhaust flow path partitioned by porous ceramic partition walls. The filter member 31 is held on the inner peripheral surface of the case member 11 via a cushion member 31A in a state in which the flow path direction of the cell is substantially parallel to the axial direction of the case member 11 (vertical direction in the drawing). . The PM in the exhaust gas taken into the case member 11 from the introduction port 12 flows from the cell plugged on the downstream side into the cell plugged on the upstream side, so that the surface of the partition wall It is collected in the hole. In the following description, a cell whose downstream side is plugged is referred to as a measurement cell, and a cell whose upstream side is plugged is referred to as an electrode cell.

電極32,33は、例えば導電性の金属線であって、測定用セルを挟んで対向する電極用セルに下流側(非目封止側)から交互に挿入されてコンデンサを形成する。これら電極32,33は、コントロールユニット40に内蔵された図示しない静電容量検出回路に導電線32A,33Aを介してそれぞれ接続されている。   The electrodes 32 and 33 are, for example, conductive metal wires, and are alternately inserted from the downstream side (non-plugged side) into the electrode cells facing each other across the measurement cell to form a capacitor. These electrodes 32 and 33 are connected to a capacitance detection circuit (not shown) built in the control unit 40 via conductive lines 32A and 33A, respectively.

電気ヒータ34は、例えば電熱線であって、本発明の再生手段を構成する。電気ヒータ34は、通電により発熱して測定用セルを加熱することで、測定用セル内に堆積したPMを燃焼除去するいわゆるフィルタ再生(以下、センサ再生ともいう)を実行する。このため、電気ヒータ34は、連続S字形に屈曲して形成されており、互いに平行な直線部分を各測定用セル内に流路に沿って挿入されている。   The electric heater 34 is, for example, a heating wire and constitutes the regenerating means of the present invention. The electric heater 34 generates heat by energization and heats the measurement cell, thereby performing so-called filter regeneration (hereinafter also referred to as sensor regeneration) in which PM accumulated in the measurement cell is removed by combustion. For this reason, the electric heater 34 is formed by being bent into a continuous S-shape, and straight portions parallel to each other are inserted into each measurement cell along the flow path.

次に、図3に基づいて、本実施形態のECU40の詳細について説明する。ECU40は、PMセンサ10Aに対応するセンサ再生制御部41Aと、PMセンサ10Bに対応するセンサ再生制御部41Bと、PMセンサ10Aに対応するPM量推定演算部42Aと、PMセンサ10Bに対応するPM量推定演算部42Bと、センサ異常判定部43とを各機能要素として備えている。これら機能要素は、一体のハードウェアであるECU40に含まれるものとして説明するが、別体のハードウェアに設けることもできる。なお、センサ再生制御部41A,B及び、PM量推定演算部42A,Bはそれぞれ機能が同一であるため、以下、これらを併せて説明する。   Next, details of the ECU 40 of the present embodiment will be described with reference to FIG. The ECU 40 includes a sensor regeneration control unit 41A corresponding to the PM sensor 10A, a sensor regeneration control unit 41B corresponding to the PM sensor 10B, a PM amount estimation calculation unit 42A corresponding to the PM sensor 10A, and a PM corresponding to the PM sensor 10B. A quantity estimation calculation unit 42B and a sensor abnormality determination unit 43 are provided as functional elements. These functional elements are described as being included in the ECU 40 that is an integral piece of hardware, but may be provided in separate hardware. The sensor regeneration control units 41A and 41B and the PM amount estimation calculation units 42A and 42B have the same function, and will be described below together.

センサ再生制御部41A,Bは、本発明の再生手段の一例であって、図示しない静電容量検出回路によって検出される電極32,33間の静電容量Cpに応じて電気ヒータ34をON(通電)にするセンサ再生を実行する。電極32,33間の静電容量Cpは、電極32,33間の媒体の誘電率ε、電極32,33の面積S、電極32,33間の距離dとする以下の数式1で表される。   The sensor regeneration control units 41A and 41B are an example of the regeneration means of the present invention, and turn on the electric heater 34 according to the capacitance Cp between the electrodes 32 and 33 detected by a capacitance detection circuit (not shown). The sensor regeneration to be energized) is executed. The electrostatic capacitance Cp between the electrodes 32 and 33 is expressed by the following formula 1 where the dielectric constant ε of the medium between the electrodes 32 and 33, the area S of the electrodes 32 and 33, and the distance d between the electrodes 32 and 33 are expressed. .

Figure 0006409436
Figure 0006409436

数式1において、電極32,33の表面積Sは一定であり、フィルタ部材31にPMが捕集されると、誘電率ε及び距離dが変化して、これに伴い静電容量Cpも変化する。すなわち、電極32,33間の静電容量Cpとフィルタ部材31のPM堆積量との間には比例関係が成立する。   In Formula 1, the surface areas S of the electrodes 32 and 33 are constant, and when PM is collected by the filter member 31, the dielectric constant ε and the distance d change, and the capacitance Cp also changes accordingly. That is, a proportional relationship is established between the capacitance Cp between the electrodes 32 and 33 and the amount of PM deposited on the filter member 31.

センサ再生制御部41A,Bは、電極32,33間の静電容量Cpがフィルタ部材31のPM上限堆積量を示す所定の静電容量上限閾値CP_maxに達すると、電気ヒータ34をONにするセンサ再生を開始する(図4(A),(B)参照)。このセンサ再生は、静電容量CpがPMの完全除去を示す所定の静電容量下限閾値CP_minに低下するまで継続される。 When the electrostatic capacity Cp between the electrodes 32 and 33 reaches a predetermined electrostatic capacity upper limit threshold CP_max indicating the PM upper limit accumulation amount of the filter member 31, the sensor regeneration control units 41A and 41B turn on the electric heater 34. Sensor regeneration is started (see FIGS. 4A and 4B). This sensor regeneration is continued until the capacitance Cp falls to a predetermined capacitance lower limit threshold CP_min indicating complete removal of PM.

PM量推定演算部42A,Bは、本発明の推定手段の一例であって、再生インターバルTn間(センサ再生終了から次のセンサ再生開始)における静電容量変化量ΔCpnに基づいて、排気中の総PM量mPM_sumを推定する。 Estimating the PM amount calculation unit 42A, B is an example of a means for estimating the present invention, based on the variation amount of capacitance [Delta] Cp n between regeneration interval T n (next sensor reproduction start from the sensor reproduction end), the exhaust The total PM amount m PM_sum is estimated.

再生インターバルTn間にフィルタ部材31で捕集されるPM量mPM_nは、静電容量変化量ΔCpnに一次の係数βを乗算した以下の数式2で得られる。 PM quantity m PM_n to be trapped by the filter member 31 between regeneration interval T n is obtained by Equation 2 below obtained by multiplying the first coefficient β to the variation amount of capacitance [Delta] Cp n.

Figure 0006409436
Figure 0006409436

PM量推定演算部42A,Bは、数式2から算出される各再生インターバルTn間のPM量mPM_nを順次積算する以下の数式3に基づいて、センサ10A,Bのフィルタ部材31に流れ込む排気中の総PM量mPM_sumをリアルタイムに演算する。 The PM amount estimation calculation units 42A and 42B exhaust the air flowing into the filter members 31 of the sensors 10A and 10B based on the following equation 3 that sequentially accumulates the PM amount m PM_n between the regeneration intervals T n calculated from the equation 2. The total PM amount m PM_sum is calculated in real time.

Figure 0006409436
Figure 0006409436

センサ異常判定部43は、本発明の異常判定手段の一例であって、PM量推定演算部42Aから入力されるPMセンサ10Aの総PM量mPM_sum_Aと、PM量推定演算部42Bから入力されるPMセンサ10Bの総PM量mPM_sum_Bとを比較することで、PMセンサ10A,Bの異常を判定する。 The sensor abnormality determination unit 43 is an example of the abnormality determination unit of the present invention, and is input from the total PM amount m PM_sum_A of the PM sensor 10A input from the PM amount estimation calculation unit 42A and the PM amount estimation calculation unit 42B. By comparing the total PM amount m PM_sum_B of the PM sensor 10B, the abnormality of the PM sensors 10A and 10B is determined.

PMセンサ10A,Bの一方又は両方に機能失陥や機能劣化等の異常が発生すると、図4(C)に示すように、PMセンサ10Aの総PM量mPM_sum_BとPMセンサ10Bの総PM量mPM_sum_Bとの間に乖離が生じる。センサ異常判定部43は、これら総PM量mPM_sum_Aと総PM量mPM_sum_Bとの偏差ΔmPMをリアルタイムに演算すると共に、偏差ΔmPMが所定の閾値を超えると、PMセンサ10A,Bに異常が発生したと判定する。 When abnormality such as functional failure or functional deterioration occurs in one or both of the PM sensors 10A and 10B, as shown in FIG. 4C, the total PM amount m PM_sum_B of the PM sensor 10A and the total PM amount of the PM sensor 10B Deviation from m PM_sum_B occurs. Sensor abnormality determination unit 43, as well as calculating the deviation Delta] m PM of these total amount of PM m PM_sum_A and total PM amount m PM_sum_B in real time, the deviation Delta] m PM exceeds a predetermined threshold value, PM sensor 10A, abnormal B is It is determined that it has occurred.

次に、本実施形態に係る診断装置の作用効果を説明する。   Next, the effect of the diagnostic apparatus according to the present embodiment will be described.

二個の電気抵抗型PMセンサの出力値を互いに比較する従来技術では、電極間の電気抵抗値が変化しない再生インターバル期間は診断を行うことができず、PMセンサの機能失陥や機能劣化を早期且つリアルタイムに検知できない課題がある。   In the conventional technology that compares the output values of two electric resistance type PM sensors with each other, diagnosis cannot be performed during the regeneration interval period in which the electric resistance value between the electrodes does not change, and the PM sensor malfunctions or deteriorates. There are issues that cannot be detected early and in real time.

これに対し、本実施形態の診断装置では、各PMセンサ10A,Bが再生インターバル期間も感度の良好な電極32,33間の静電容量Cpに基づいてPM量をリアルタイムに検出すると共に、これらPMセンサ10A,Bの出力値を比較することで、PMセンサ10A,Bの異常を判定するようになっている。したがって、本実施形態の診断装置によれば、PMセンサ10A,Bの機能失陥や機能劣化を早期且つリアルタイムに検知することが可能になる。   On the other hand, in the diagnostic apparatus according to the present embodiment, each PM sensor 10A, B detects the amount of PM in real time based on the capacitance Cp between the electrodes 32, 33 having good sensitivity even during the regeneration interval period. By comparing the output values of the PM sensors 10A, B, the abnormality of the PM sensors 10A, B is determined. Therefore, according to the diagnostic device of the present embodiment, it is possible to detect the functional failure and functional deterioration of the PM sensors 10A and 10B early and in real time.

[第二実施形態]
次に、図5に基づいて、第二実施形態に係る診断装置の詳細について説明する。第二実施形態の診断装置は、第一実施形態のPMセンサ10A,Bにおいて、センサ部30を積層タイプにしたものである。他の構成要素については同一構造となるため、詳細な説明及び図示は省略する。
[Second Embodiment]
Next, based on FIG. 5, the detail of the diagnostic apparatus which concerns on 2nd embodiment is demonstrated. The diagnostic device according to the second embodiment is a PM type in which the sensor unit 30 is a stacked type in the PM sensors 10A and 10B according to the first embodiment. Since other components have the same structure, detailed description and illustration are omitted.

図5(A)は、第二実施形態のセンサ部60の斜視図、図5(B)はセンサ部60の分解斜視図をそれぞれ示している。センサ部60は、複数のフィルタ層61と、複数枚の第1及び第2電極板62,63とを備えている。   5A is a perspective view of the sensor unit 60 according to the second embodiment, and FIG. 5B is an exploded perspective view of the sensor unit 60. The sensor unit 60 includes a plurality of filter layers 61 and a plurality of first and second electrode plates 62 and 63.

フィルタ層61は、例えば、多孔質セラミックス等の隔壁で区画されて排気流路をなす複数のセルの上流側と下流側とを交互に目封止し、これらセルを一方向に並列に配置した直方体状に形成されている。排気ガス中に含まれるPMは、図5(B)中に破線矢印で示すように、排気ガスが下流側を目封止されたセルC1から上流側を目封止されたセルC2に流れ込むことで、セルC1の隔壁表面や細孔に捕集される。なお、以下の説明では、セル流路方向をセンサ部60の長さ方向(図5(A)中の矢印L)とし、セル流路方向と直交する方向をセンサ部60の幅方向(図5(A)中の矢印W)とする。   The filter layer 61 is, for example, plugged alternately upstream and downstream of a plurality of cells that are partitioned by partition walls such as porous ceramics to form an exhaust passage, and these cells are arranged in parallel in one direction. It is formed in a rectangular parallelepiped shape. The PM contained in the exhaust gas flows into the cell C2 whose upstream side is plugged from the cell C1 whose downstream side is plugged, as indicated by a broken line arrow in FIG. 5B. Thus, it is collected on the partition wall surface and pores of the cell C1. In the following description, the cell flow path direction is the length direction of the sensor section 60 (arrow L in FIG. 5A), and the direction orthogonal to the cell flow path direction is the width direction of the sensor section 60 (FIG. 5). (A) Arrow W).

第1及び第2電極板62,63は、例えば、平板状の導電性部材であって、その長さ方向L及び幅方向Wの外形寸法をフィルタ層61と略同一に形成されている。これら第1及び第2電極板62,63は、フィルタ層61を挟んで交互に積層されると共に、導電線62A,63Aを介してECU40に内蔵された図示しない静電容量検出回路にそれぞれ接続されている。   The first and second electrode plates 62 and 63 are, for example, plate-like conductive members, and are formed so that the outer dimensions in the length direction L and the width direction W are substantially the same as those of the filter layer 61. The first and second electrode plates 62 and 63 are alternately stacked with the filter layer 61 interposed therebetween, and are connected to a capacitance detection circuit (not shown) built in the ECU 40 via conductive lines 62A and 63A, respectively. ing.

すなわち、第1電極板62と第2電極板63とを対向配置し、これら電極板62,63間にフィルタ層61を挟持させたことで、セルC1全体がコンデンサを形成するようになっている。このように、第二実施形態では、平板状の電極板62,63によりセルC1全体をコンデンサにしたことで、電極表面積Sを効果的に確保することが可能となり、検出可能な静電容量絶対値を高めることが可能になる。また、電極間距離dがセルピッチとなり均一化されることで、初期静電容量のバラツキを効果的に抑制することができる。   That is, the first electrode plate 62 and the second electrode plate 63 are disposed to face each other, and the filter layer 61 is sandwiched between the electrode plates 62 and 63, so that the entire cell C1 forms a capacitor. . As described above, in the second embodiment, the entire cell C1 is made the capacitor by the flat electrode plates 62 and 63, so that the electrode surface area S can be effectively secured, and the detectable capacitance absolute It becomes possible to increase the value. Further, since the inter-electrode distance d becomes the cell pitch and is made uniform, variations in the initial capacitance can be effectively suppressed.

なお、セルC1に堆積したPMを燃焼除去する場合は、電極板62,63に電圧を直接印加するか、あるいは、フィルタ層61と電極板62,63との間に図示しないヒータ基板等を介設すればよい。   When the PM accumulated in the cell C1 is burned and removed, a voltage is directly applied to the electrode plates 62 and 63, or a heater substrate (not shown) is interposed between the filter layer 61 and the electrode plates 62 and 63. Just set up.

[その他]
本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present invention.

例えば、図6に示すように、第一実施形態のPMセンサ10A,Bにおいて、導入口12と導出口13との位置を入れ替えて、ケース部材11内に導入される排気ガスの流れを逆向きにしてもよい。この場合は、フィルタ部材31をケース部材11内に反転させて収容すればよい。   For example, as shown in FIG. 6, in the PM sensors 10 </ b> A and 10 </ b> B of the first embodiment, the positions of the inlet 12 and the outlet 13 are switched to reverse the flow of exhaust gas introduced into the case member 11. It may be. In this case, the filter member 31 may be stored in the case member 11 by being inverted.

10A,B PMセンサ
11 ケース部材
12 導入口
13 導出口
20 台座部
21 雄ネジ部
22 ナット部
30 センサ部
31 フィルタ部材
32,33 電極
34 電気ヒータ
40 ECU
41A,B センサ再生制御部
42A,B PM量推定演算部
43 センサ異常判定部
10A, B PM sensor 11 Case member 12 Inlet port 13 Outlet port 20 Base portion 21 Male screw portion 22 Nut portion 30 Sensor portion 31 Filter member 32, 33 Electrode 34 Electric heater 40 ECU
41A, B sensor regeneration control unit 42A, B PM amount estimation calculation unit 43 sensor abnormality determination unit

Claims (5)

内燃機関の排気通路に配置されて排気中の粒子状物質を捕集するセルを含むフィルタ部材に、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材を設け、前記一対の電極部材間の静電容量に基づいて排気中の粒子状物質量を推定する推定手段を備えた複数のセンサと、
前記複数のセンサによって推定される粒子状物質量に基づいて、当該複数のセンサの異常を判定する異常判定手段と、を備え
前記複数のセンサは、パティキュレイト・フィルタよりも上流側、または下流側の前記排気通路に配置され、
前記複数のセンサは、前記フィルタ部材に捕集された粒子状物質量が所定値に達すると当該捕集された粒子状物質を燃焼除去させるセンサ再生を実行する再生手段をそれぞれ備え、
前記推定手段は、センサ再生インターバル間における前記一対の電極間の静電容量変化量から当該センサ再生インターバル間に前記フィルタ部材で捕集された粒子状物質量を算出すると共に、算出した各センサ再生インターバル間の粒子状物質量を順次積算することで、排気中の粒子状物質量をリアルタイムに推定し、
前記異常判定手段は、一のセンサによって推定される粒子状物質量と他のセンサによって推定される粒子状物質量との差が所定の閾値を超えた場合に異常と判定する
診断装置。
A filter member including a cell that is disposed in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas is provided with at least a pair of electrode members that are disposed opposite to each other with the cell interposed therebetween to form a capacitor. A plurality of sensors provided with estimation means for estimating the amount of particulate matter in the exhaust based on the capacitance between the electrode members;
An abnormality determining means for determining an abnormality of the plurality of sensors based on the amount of particulate matter estimated by the plurality of sensors ,
The plurality of sensors are arranged in the exhaust passage upstream or downstream of the particulate filter,
Each of the plurality of sensors includes a regeneration unit that performs sensor regeneration for burning and removing the collected particulate matter when the amount of the particulate matter collected by the filter member reaches a predetermined value.
The estimation means calculates the amount of particulate matter collected by the filter member during the sensor regeneration interval from the amount of change in capacitance between the pair of electrodes during the sensor regeneration interval, and calculates each sensor regeneration By sequentially integrating the amount of particulate matter between intervals, the amount of particulate matter in the exhaust is estimated in real time,
The abnormality determining unit is a diagnostic device that determines that an abnormality occurs when a difference between the amount of particulate matter estimated by one sensor and the amount of particulate matter estimated by another sensor exceeds a predetermined threshold .
前記再生手段は、前記一対の電極部材間の静電容量が上限閾値に達したとき、それが下限閾値に低下するまで、センサ再生を実行し、
前記推定手段は、前記一対の電極間の静電容量が前記下限閾値から前記上限閾値に上昇するまでの静電容量変化量から、当該センサ再生インターバル間に前記フィルタ部材で捕集された粒子状物質量を算出する
請求項1に記載の診断装置。
When the capacitance between the pair of electrode members reaches an upper limit threshold, the regeneration means performs sensor regeneration until it decreases to the lower limit threshold,
The estimation means is configured such that the amount of particles collected by the filter member during the sensor regeneration interval from the amount of change in capacitance until the capacitance between the pair of electrodes rises from the lower limit threshold value to the upper limit threshold value. The diagnostic apparatus according to claim 1, wherein the substance amount is calculated .
前記複数のセンサは、筒状に形成されてその筒内に前記フィルタ部材を収容すると共に、一端開口部から筒内に導入した排気を前記フィルタ部材に通過させて他端開口部から筒外に導出するケース部材をそれぞれ備える
請求項1または2に記載の診断装置。
The plurality of sensors are formed in a cylindrical shape so that the filter member is accommodated in the cylinder, and exhaust gas introduced into the cylinder from the opening at one end is allowed to pass through the filter member to be outside the cylinder from the other end opening. diagnostic apparatus according deriving casing member to claim 1 or 2 comprising, respectively.
前記フィルタ部材が前記セルを一方向に並列に複数配置したフィルタ層であり、前記一対の電極部材が前記フィルタ層を挟んで対向する平板状の第1及び第2電極板である
請求項1からの何れか一項に記載の診断装置。
The filter member is a filter layer in which a plurality of the cells are arranged in parallel in one direction, and the pair of electrode members are flat plate-like first and second electrode plates facing each other with the filter layer interposed therebetween. 4. The diagnostic device according to any one of 3 .
前記第1電極板、前記第2電極板及び、前記フィルタ層をそれぞれ複数有すると共に、前記複数の第1及び第2電極板が前記複数のフィルタ層を一層ずつ挟んで交互に積層された
請求項に記載の診断装置。
The plurality of first electrode plates, the second electrode plates, and the filter layers, respectively, and the plurality of first and second electrode plates are alternately stacked with the plurality of filter layers sandwiched one by one. 4. The diagnostic device according to 4 .
JP2014189936A 2014-09-18 2014-09-18 Diagnostic equipment Expired - Fee Related JP6409436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189936A JP6409436B2 (en) 2014-09-18 2014-09-18 Diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189936A JP6409436B2 (en) 2014-09-18 2014-09-18 Diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2016061679A JP2016061679A (en) 2016-04-25
JP6409436B2 true JP6409436B2 (en) 2018-10-24

Family

ID=55797558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189936A Expired - Fee Related JP6409436B2 (en) 2014-09-18 2014-09-18 Diagnostic equipment

Country Status (1)

Country Link
JP (1) JP6409436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560687A (en) * 2016-09-29 2017-04-12 中国计量大学 Particle quantity and concentration purifying efficiency testing system and method for internal circulating type vehicle-mounted air purifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257422A (en) * 1993-01-06 1994-09-13 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JP2003098135A (en) * 2001-09-27 2003-04-03 Horiba Ltd Granular substance sensor and method for measuring granular substance using the same
JP2008008151A (en) * 2006-06-27 2008-01-17 Ngk Insulators Ltd Honeycomb structure for particulate sensor
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP5094702B2 (en) * 2008-12-24 2012-12-12 本田技研工業株式会社 Particulate matter detector
DE102009028239A1 (en) * 2009-08-05 2011-02-10 Robert Bosch Gmbh Method and device for self-diagnosis of a particle sensor
JP2012077668A (en) * 2010-09-30 2012-04-19 Denso Corp Sensor control device
JP5625812B2 (en) * 2010-11-29 2014-11-19 いすゞ自動車株式会社 PM sensor and PM sensor manufacturing method
JP2013024097A (en) * 2011-07-20 2013-02-04 Denso Corp Sensor control device
JP2013160617A (en) * 2012-02-03 2013-08-19 Honda Motor Co Ltd Particulate matter detection apparatus

Also Published As

Publication number Publication date
JP2016061679A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6459437B2 (en) Diagnostic device and sensor
JP6409452B2 (en) Diagnostic equipment
CN107250496B (en) Emission-control equipment
JP6507497B2 (en) Sensor
WO2016024591A1 (en) Sensor
JP6405938B2 (en) Diagnostic device and sensor
US10481061B2 (en) Sensor for detecting an emission amount of particulate matter
WO2016133140A1 (en) Sensor
JP6409436B2 (en) Diagnostic equipment
JP6361314B2 (en) Sensor
JP6379837B2 (en) Sensor
WO2016047530A1 (en) Diagnostic device
JP6451179B2 (en) Diagnostic equipment
JP6409437B2 (en) Sensor
JP2016108995A (en) Sensor
JP6705269B2 (en) Sensor
JP6784050B2 (en) Sensor
JP6417780B2 (en) Sensor
JP6705268B2 (en) Sensor
JP6717021B2 (en) PM sensor
JP2017191050A (en) Sensor
WO2016117577A1 (en) Sensor
JP2017191055A (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees