JP2010078378A - Granular substance detecting sensor - Google Patents

Granular substance detecting sensor Download PDF

Info

Publication number
JP2010078378A
JP2010078378A JP2008244883A JP2008244883A JP2010078378A JP 2010078378 A JP2010078378 A JP 2010078378A JP 2008244883 A JP2008244883 A JP 2008244883A JP 2008244883 A JP2008244883 A JP 2008244883A JP 2010078378 A JP2010078378 A JP 2010078378A
Authority
JP
Japan
Prior art keywords
thermoelectromotive force
particulate matter
measuring element
generating member
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008244883A
Other languages
Japanese (ja)
Other versions
JP5101446B2 (en
Inventor
Kenji Dosaka
健児 堂坂
Masanobu Miki
雅信 三木
Norihiko Suzuki
紀彦 鈴木
Takeshi Mori
武史 森
Yasutake Teraoka
靖剛 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kyushu University NUC
Original Assignee
Honda Motor Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kyushu University NUC filed Critical Honda Motor Co Ltd
Priority to JP2008244883A priority Critical patent/JP5101446B2/en
Publication of JP2010078378A publication Critical patent/JP2010078378A/en
Application granted granted Critical
Publication of JP5101446B2 publication Critical patent/JP5101446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive granular substance detecting sensor capable of precisely separating Soot and SOF constituting a granular substance to detect them. <P>SOLUTION: The granular substance detecting sensor for detecting the granular substance contained in the exhaust gas discharged from an internal combustion engine includes a first measuring element 11 having an oxidation capacity for combusting the granular substance, a second measuring element 12 of which the oxidation capacity for combusting the granular substance is lower than that of the first measuring element 11, the first and second thermal electromotive force producing members 13 and 14, which produce electromotive force by the combustion heat of the granular substance, respectively connected to the first and second measuring elements 11 and 12, and a detection means 15 for detecting the amount of the granular substance on the basis of the difference between the thermal electromotive force produced by the first thermal electromotive force producing member 13 and the thermal electromotive force produced by the second thermal electromotive force producing member 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粒子状物質(Particulate Matter、以下PMという)を検出するためのセンサに関し、特に、自動車のリーンバーンエンジンから排出される排ガスに含まれるPMや、工場等の排煙に含まれるPMの検出に利用されるセンサに関する。   The present invention relates to a sensor for detecting particulate matter (hereinafter referred to as PM), and in particular, PM contained in exhaust gas discharged from a lean burn engine of an automobile, and PM contained in smoke emitted from a factory or the like. The present invention relates to a sensor that is used for detection of the above.

ディーゼルエンジン等のリーンバーンエンジンから排出される排ガス中に含まれるPMは、大気汚染等の原因物質とされており、その排出量の低減が課題となっている。その対応として、燃焼改善によるPM排出量の低減技術や、ディーゼル微粒子フィルタ(Diesel Particulate Filter、以下DPFという)が提案されており、PM排出量の大幅な低減が可能となってきている。   PM contained in exhaust gas discharged from a lean burn engine such as a diesel engine is regarded as a causative substance such as air pollution, and reduction of the emission amount is a problem. In response to this, a technique for reducing PM emissions by improving combustion and a diesel particulate filter (hereinafter referred to as DPF) have been proposed, and PM emissions can be significantly reduced.

DPFは、セラミック製又は金属製の多孔質フィルタであり、PMを含んだ排ガスを通過させることにより、排ガス中からPMを分離して捕集する。DPFに捕集されたPMは、一定量が堆積した段階で、エンジン制御等により排ガス温度を上昇させて燃焼除去される。DPF上に堆積したPM量は、走行距離や時間、エンジン情報(エンジン回転数やトルク等)に基づいて推定される。また、堆積したPM量は、DPF上下流の圧力差を計測し、PMの堆積に起因するDPFの圧力損失の上昇度合いから推定される。   The DPF is a porous filter made of ceramic or metal, and separates and collects PM from the exhaust gas by passing the exhaust gas containing PM. The PM collected in the DPF is burned and removed by raising the exhaust gas temperature by engine control or the like when a certain amount is accumulated. The amount of PM accumulated on the DPF is estimated based on travel distance, time, and engine information (engine speed, torque, etc.). The amount of accumulated PM is estimated from the degree of increase in the pressure loss of the DPF caused by PM accumulation by measuring the pressure difference between the upstream and downstream of the DPF.

一方、排ガス中のPMを直接的に検出し、DPFへのPM堆積量を推定する手法も提案されている。その方式としては、光学方式、電気抵抗方式、電荷方式、マイクロ波方式等が挙げられる。これらのうち、光学方式については、既に排ガスのスモーク測定用として市販されている。また、振動型質量検出方式の提案もなされている(例えば、特許文献1〜3参照)。
米国特許出願公開第2003/0123059号明細書 米国特許第6786075号明細書 特開2006−208123号公報
On the other hand, a method for directly detecting PM in exhaust gas and estimating the amount of PM deposited on the DPF has also been proposed. Examples of the method include an optical method, an electric resistance method, a charge method, and a microwave method. Among these, the optical system is already on the market for measuring smoke of exhaust gas. Further, a vibration type mass detection method has also been proposed (see, for example, Patent Documents 1 to 3).
US Patent Application Publication No. 2003/0123059 US Pat. No. 6,786,075 JP 2006-208123 A

しかしながら、従来から提案されているPM検出センサ(以下、PMセンサという)は、コスト高であったり、性能保証の面で課題を有している。例えば、光学式PMセンサの場合、排ガス中では光学レンズがPMの付着等により汚染される。このため、PM検出感度や精度が低下するのを回避すべく、定期的なメンテナンスが必要である等、長期間の連続的な使用が困難である。   However, conventionally proposed PM detection sensors (hereinafter referred to as PM sensors) are expensive and have problems in terms of performance assurance. For example, in the case of an optical PM sensor, the optical lens is contaminated by PM adhesion or the like in the exhaust gas. For this reason, it is difficult to use continuously for a long period of time, for example, periodic maintenance is required to avoid a decrease in PM detection sensitivity and accuracy.

また、PMは、主として固体状カーボンからなる煤(以下Sootという)と可溶性有機物(Soluble Organic Fraction、以下SOFという)から構成されており、主にSootがDPFに捕集される。従って、DPF上のPM堆積量の推定精度を高めるためには、PMを構成するSootとSOFとを分離して検出できることが望ましい。しかしながら、従来から提案されているPMセンサでは、SootとSOFとを分離して検出することはできなかった。   PM is mainly composed of soot made of solid carbon (hereinafter referred to as “Soot”) and a soluble organic substance (hereinafter referred to as “SOF”), and the soot is mainly collected in the DPF. Therefore, in order to improve the estimation accuracy of the PM accumulation amount on the DPF, it is desirable that the soot and SOF that constitute the PM can be detected separately. However, the conventionally proposed PM sensor could not detect Soot and SOF separately.

従って、PMを構成するSootとSOFとを精度良く分離して検出でき、且つ低廉なPMセンサの開発が求められており、本発明の目的は、係る要求を満たすPMセンサを提供することにある。   Accordingly, there is a need for the development of an inexpensive PM sensor that can accurately detect and detect the Soot and SOF constituting the PM, and an object of the present invention is to provide a PM sensor that satisfies such a requirement. .

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、PMを燃焼させる酸化能を有する第1測定素子と、PMを燃焼させる酸化能が第1測定素子より低い第2測定素子と、を備えたPMセンサによれば、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, according to the PM sensor including the first measuring element having an oxidizing ability for burning PM and the second measuring element having an oxidizing ability for burning PM lower than that of the first measuring element, the above problem can be solved. As a result, the present invention has been completed. More specifically, the present invention provides the following.

請求項1記載の発明は、内燃機関から排出される排ガス中に含まれる粒子状物質を検出するための検出センサであって、前記粒子状物質を燃焼させる酸化能を有する第1測定素子と、前記粒子状物質を燃焼させる酸化能が前記第1測定素子より低い第2測定素子と、前記第1測定素子及び前記第2測定素子のそれぞれに接続され、前記粒子状物質の燃焼熱により起電力を発生する第1熱起電力発生部材及び第2熱起電力発生部材と、前記第1熱起電力発生部材で発生した熱起電力と前記第2熱起電力発生部材で発生した熱起電力との差に基づいて、前記粒子状物質の量を検出する検出手段と、を備えることを特徴とする。   The invention according to claim 1 is a detection sensor for detecting particulate matter contained in exhaust gas discharged from an internal combustion engine, the first measuring element having an oxidizing ability to burn the particulate matter, An electromotive force is generated by the combustion heat of the particulate matter, connected to each of the second measurement element, the first measurement element, and the second measurement element having an oxidizing ability for burning the particulate matter lower than that of the first measurement element. A first thermoelectromotive force generating member and a second thermoelectromotive force generating member, a thermoelectromotive force generated by the first thermoelectromotive force generating member, and a thermoelectromotive force generated by the second thermoelectromotive force generating member. And a detecting means for detecting the amount of the particulate matter based on the difference.

本発明に係るPMセンサを内燃機関の排気流路内に設置すると、第1測定素子及び第2測定素子に排ガス中のPMが付着する。PMを燃焼させる酸化能を有する第1測定素子は、PMが自然燃焼する温度である600℃よりも低い温度でPMを燃焼する。これに対して、第2測定素子は第1測定素子よりも酸化能が低く、第1測定素子上ではPMが燃焼し、第2測定素子上ではPMは燃焼しないような温度下では、両者間にPM燃焼熱の差が生じる。発生したPM燃焼熱は、第1測定素子及び第2測定素子のそれぞれに接続されている第1熱起電力発生部材及び第2熱起電力発生部材に作用し、それぞれ異なる熱起電力が発生する。これらの熱起電力の差はPM量に比例することから、この熱起電力差を捉えることにより、精度良くPM量を検出することができる。   When the PM sensor according to the present invention is installed in the exhaust passage of the internal combustion engine, PM in the exhaust gas adheres to the first measurement element and the second measurement element. The 1st measuring element which has the oxidation ability which burns PM burns PM at temperature lower than 600 ° C which is the temperature which PM burns naturally. On the other hand, the second measuring element has lower oxidizing ability than the first measuring element, and PM is combusted on the first measuring element and PM is not combusted on the second measuring element. Difference in PM combustion heat occurs. The generated PM combustion heat acts on the first thermoelectromotive force generating member and the second thermoelectromotive force generating member connected to the first measuring element and the second measuring element, respectively, and different thermoelectromotive forces are generated. . Since the difference between these thermoelectromotive forces is proportional to the amount of PM, the amount of PM can be detected with high accuracy by capturing the difference in thermoelectromotive force.

請求項2記載の発明は、請求項1記載の粒子状物質検出センサにおいて、前記検出手段は、前記粒子状物質を構成する煤は燃焼しないが可溶性有機物が燃焼する第1燃焼領域、並びに前記煤及び前記可溶性有機物が燃焼する第2燃焼領域の各領域における、前記第1熱起電力発生部材で発生した熱起電力と前記第2熱起電力発生部材で発生した熱起電力との差に基づいて、前記煤及び前記可溶性有機物それぞれの量を検出することを特徴とする。   According to a second aspect of the present invention, in the particulate matter detection sensor according to the first aspect, the detection means does not burn the soot that constitutes the particulate matter, but burns soluble organic matter, and the soot. And the difference between the thermoelectromotive force generated by the first thermoelectromotive force generating member and the thermoelectromotive force generated by the second thermoelectromotive force generating member in each region of the second combustion region where the soluble organic matter burns. And detecting the amounts of each of the soot and the soluble organic matter.

PMを構成するSootとSOFとでは、その燃焼温度に差があり、有機成分であるSOFに比して固体状カーボンからなるSootの方が燃焼温度が高い。このため、PM酸化能を有する測定素子の温度がSootを燃焼できない温度、即ち第1燃焼領域にあるときには、SOFのみが燃焼してSOFの燃焼熱に比例する熱起電力が発生する。これに対して、温度が上昇し、Sootが燃焼可能な温度、即ち第2燃焼領域にあるときには、SOFの燃焼熱とSootの燃焼熱のトータルに比例する熱起電力が発生する。従って、第1燃焼領域及び第2燃焼領域の各領域において、第1熱起電力発生部材で発生した熱起電力と第2熱起電力発生部材で発生した熱起電力との差を検出する検出手段を備えた本発明によれば、第1燃焼領域における熱起電力差と、第2燃焼領域における熱起電力差との差分に基づいて、PM中のSOFとSootとを精度良く分離して検出することができる。   There is a difference in combustion temperature between Soot and SOF constituting PM, and Soot made of solid carbon has a higher combustion temperature than SOF which is an organic component. For this reason, when the temperature of the measuring element having PM oxidizing ability is in a temperature at which the soot cannot be combusted, that is, in the first combustion region, only the SOF is combusted and a thermoelectromotive force proportional to the combustion heat of the SOF is generated. On the other hand, when the temperature rises and the temperature at which the soot can be combusted, that is, in the second combustion region, a thermoelectromotive force is generated that is proportional to the sum of the combustion heat of the SOF and the combustion heat of the soot. Therefore, in each of the first combustion region and the second combustion region, detection for detecting a difference between the thermoelectromotive force generated by the first thermoelectromotive force generating member and the thermoelectromotive force generated by the second thermoelectromotive force generating member. According to the present invention provided with the means, the SOF and the Soot in the PM are accurately separated based on the difference between the thermoelectromotive force difference in the first combustion region and the thermoelectromotive force difference in the second combustion region. Can be detected.

請求項3記載の発明は、請求項1又は2記載の粒子状物質検出センサにおいて、前記第1測定素子及び前記第2測定素子は、同一の多孔質体上に設けられていることを特徴とする。   The invention according to claim 3 is the particulate matter detection sensor according to claim 1 or 2, wherein the first measurement element and the second measurement element are provided on the same porous body. To do.

本発明のPMセンサでは、同一の多孔質体上に第1測定素子及び第2測定素子が設けられている。このため、本発明によれば、センサを小型化でき、レイアウト上有利であるとともに、材料費を削減できる。   In the PM sensor of the present invention, the first measurement element and the second measurement element are provided on the same porous body. For this reason, according to this invention, a sensor can be reduced in size, it is advantageous on a layout, and material cost can be reduced.

請求項4記載の発明は、請求項1から3いずれか記載の粒子状物質検出センサにおいて、前記第1測定素子及び前記第2測定素子は、少なくともAl、SiO、MgO、及びCaOを含む天草陶土から形成された多孔質体であることを特徴とする。 According to a fourth aspect of the present invention, in the particulate matter detection sensor according to any one of the first to third aspects, the first measurement element and the second measurement element are at least Al 2 O 3 , SiO 2 , MgO, and CaO. It is characterized by being a porous body formed from Amakusa porcelain clay.

天草陶土から形成された多孔質体による測定素子は、排ガス流路での使用に際し、排ガスで想定される温度域(最高で800℃)において、十分な耐熱性及び機械的強度を有する。機械的強度に関しては、天草陶土に含まれるSiOがバインダー的な役割を担い、排ガス流路での使用に耐え得る強度を発現するためであると考えられる。 A measurement element made of a porous material formed from Amakusa porcelain clay has sufficient heat resistance and mechanical strength in a temperature range (up to 800 ° C.) assumed for exhaust gas when used in an exhaust gas flow path. Regarding the mechanical strength, it is considered that SiO 2 contained in Amakusa porcelain clay plays a role of a binder and develops a strength that can withstand use in an exhaust gas flow path.

請求項5記載の発明は、請求項4記載の粒子状物質検出センサにおいて、前記第1測定素子及び前記第2測定素子は、孔形成剤としてポリビニルアルコールを用いて形成された多孔質体であることを特徴とする。   The invention according to claim 5 is the particulate matter detection sensor according to claim 4, wherein the first measurement element and the second measurement element are porous bodies formed using polyvinyl alcohol as a pore-forming agent. It is characterized by that.

天草陶土を原料として多孔質体を形成するには、孔形成剤を所定量添加して混合するのが有効である。具体的には、天草陶土粉末に、孔形成剤としてポリビニルアルコール(以下PVAという)を所定量添加して混合し、成型した後、焼成することにより、PVAが揮散して気孔が形成される。即ち、第1測定素子及び第2測定素子を形成する際に、孔形成剤としてPVAを用いることにより、排ガス中のPMとガス成分を分離してガス成分を透過するのに十分な気孔を有する多孔質体が得られる。従って、本発明によれば、排ガス中のPMとガス成分とを分離してガス成分を透過させることができる測定素子を用いていることから、PMを精度良く検出できる。   In order to form a porous body using Amakusa porcelain clay as a raw material, it is effective to add and mix a predetermined amount of a pore-forming agent. Specifically, polyvinyl alcohol (hereinafter referred to as PVA) as a pore-forming agent is added to Amakusa porcelain powder in a predetermined amount, mixed, molded, and then fired, whereby PVA is volatilized to form pores. That is, when forming the first measurement element and the second measurement element, PVA is used as a pore-forming agent, so that there are sufficient pores to separate the PM and gas components in the exhaust gas and permeate the gas components. A porous body is obtained. Therefore, according to the present invention, the PM can be detected with high accuracy because the measuring element capable of separating the PM and the gas component in the exhaust gas and transmitting the gas component is used.

請求項6記載の発明は、請求項1から5いずれか記載の粒子状物質検出センサにおいて、前記第1測定素子は、少なくともAgを含むことを特徴とする。   According to a sixth aspect of the present invention, in the particulate matter detection sensor according to any of the first to fifth aspects, the first measurement element includes at least Ag.

高いPM酸化能を付与すべく、第1測定素子を構成する多孔質体にAgを担持させると、PMが自然燃焼を始める温度(600℃)よりも低い温度でPMを酸化燃焼することができる。これは、多孔質体上に担持されたAgの最表面が酸化されて活性な酸素原子で覆われた状態となり、そこにPMが接触する結果、低温でのPMの酸化燃焼が可能になると考えられる。   When Ag is supported on the porous body constituting the first measuring element in order to provide high PM oxidation ability, PM can be oxidized and burned at a temperature lower than the temperature at which PM starts spontaneous combustion (600 ° C.). . This is because the outermost surface of Ag supported on the porous body is oxidized and covered with active oxygen atoms, and PM comes into contact therewith, so that oxidation combustion of PM at a low temperature becomes possible. It is done.

本発明によれば、PMを構成するSootとSOFとを精度良く分離して検出でき、且つ低廉なPMセンサを提供できる。   According to the present invention, it is possible to provide a low-priced PM sensor that can separate and detect the Soot and SOF constituting the PM with high accuracy.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態に係るPMセンサの全体構成を図1に示す。図1に示されるように、PMセンサ10は、内燃機関(図示せず)の排気流路20内に設置され、内燃機関から排出される排ガス中に含まれるPMを検出するためのセンサである。PMセンサ10は、PMを燃焼させる酸化能を有する第1測定素子11と、PMを燃焼させる酸化能が第1測定素子11より低い第2測定素子12と、第1測定素子11及び第2測定素子12のそれぞれに接続され、PMの燃焼熱により起電力を発生する第1熱起電力発生部材13及び第2熱起電力発生部材14と、第1熱起電力発生部材13で発生した熱起電力と第2熱起電力発生部材14で発生した熱起電力との差に基づいて、PM量を検出する検出手段15と、を備える。   FIG. 1 shows the overall configuration of a PM sensor according to an embodiment of the present invention. As shown in FIG. 1, the PM sensor 10 is a sensor that is installed in an exhaust passage 20 of an internal combustion engine (not shown) and detects PM contained in exhaust gas discharged from the internal combustion engine. . The PM sensor 10 includes a first measuring element 11 having an oxidizing ability for burning PM, a second measuring element 12 having an oxidizing ability for burning PM lower than that of the first measuring element 11, and the first measuring element 11 and the second measuring element. A first thermoelectromotive force generating member 13 and a second thermoelectromotive force generating member 14 that are connected to each of the elements 12 and generate electromotive force by the combustion heat of PM, and heat generated by the first thermoelectromotive force generating member 13 Detection means 15 for detecting the amount of PM based on the difference between the electric power and the thermoelectromotive force generated by the second thermoelectromotive force generating member 14.

[測定素子]
第1測定素子11及び第2測定素子12としては、多孔質体であることが好ましく、本実施形態では、少なくともAl、SiO、MgO、及びCaOを含む天草陶土から形成された多孔質体が用いられている。天草陶土は、天草地方で産出される陶器の原料である。天草陶土を用いて形成された多孔質体は、排ガス流路での使用に際し、排ガスで想定される温度域(最高で800℃)において、十分な耐熱性及び機械的強度を有する。これは、天草陶土に含まれるSiOがバインダー的な役割を担い、排ガス流路での使用に耐え得る強度を発現するためであると考えられる。
[Measuring element]
The first measuring element 11 and the second measuring element 12 are preferably porous bodies. In this embodiment, the first measuring element 11 and the second measuring element 12 are porous formed from Amakusa porcelain containing at least Al 2 O 3 , SiO 2 , MgO, and CaO. A mass is used. Amakusa pottery is a raw material for pottery produced in the Amakusa region. The porous body formed using Amakusa porcelain clay has sufficient heat resistance and mechanical strength in the temperature range (maximum of 800 ° C.) assumed for the exhaust gas when used in the exhaust gas flow path. This is considered to be because SiO 2 contained in Amakusa porcelain clay plays a role of a binder and develops strength that can withstand use in an exhaust gas flow path.

具体的には、この天草陶土の粉末を用い、多孔質体とするために、孔形成剤としてPVAを所定量添加して混合し、成型した後、焼成することにより、有機物のPVAが揮散して気孔が形成される。PVAの添加量としては、天草陶土:PVA=2:1〜4:1(重量比)とすることが好ましい。PVAを用いて形成された多孔質体について、水銀ポロシメーターにより気孔の大きさを測定すると、0.5μm〜6.0μmである。また、そのガス透過性を測定すると、30mL・cm・cm/秒/atm以上であり、排ガス中のPMとガス成分とを分離してガス成分を透過するのに十分なガス透過性を有する。 Specifically, in order to use this Amakusa porcelain powder and make a porous body, a predetermined amount of PVA is added as a pore-forming agent, mixed, molded, and then fired to evaporate organic PVA. As a result, pores are formed. The amount of PVA added is preferably Amakusa porcelain clay: PVA = 2: 1 to 4: 1 (weight ratio). About the porous body formed using PVA, when the magnitude | size of a pore is measured with a mercury porosimeter, they are 0.5 micrometer-6.0 micrometers. Further, when its gas permeability is measured, it is 30 mL · cm · cm 2 / sec / atm or more, and it has sufficient gas permeability to separate the PM and the gas component in the exhaust gas and permeate the gas component. .

本実施形態の第2測定素子は、上記の天草陶土から形成された多孔質体そのものが用いられている。本実施形態のように、第2測定素子としては、PM酸化能を有さない素子が好ましく使用される。一方、第1測定素子は、第2測定素子よりも高いPM酸化能を有していればよく、本実施形態では、上記の天草陶土から形成された多孔質体に、Agを担持させたものが用いられている。具体的には、天草陶土から形成された多孔質体を、硝酸銀水溶液中に浸漬させるディップコート法により、Agを担持させたものが用いられている。Agの担持量としては、天草陶土から形成された多孔質体に対して、5〜30重量%であることが好ましい。Agは低温でのPM燃焼活性に優れるため、Agを担持させることにより、第1測定素子上において低温下でのPMの酸化燃焼が可能となる。   The porous body itself formed from the above Amakusa porcelain is used for the second measuring element of this embodiment. As in the present embodiment, as the second measuring element, an element having no PM oxidation ability is preferably used. On the other hand, the first measuring element only needs to have higher PM oxidation ability than the second measuring element. In this embodiment, Ag is supported on the porous body formed from the above Amakusa porcelain clay. Is used. Specifically, a material in which Ag is supported by a dip coating method in which a porous material formed from Amakusa porcelain clay is immersed in an aqueous silver nitrate solution is used. The supported amount of Ag is preferably 5 to 30% by weight with respect to the porous body formed from Amakusa porcelain clay. Since Ag is excellent in PM combustion activity at a low temperature, it is possible to oxidize and burn PM at a low temperature on the first measurement element by supporting Ag.

ここで、「酸化能」とは、PMを酸化燃焼させる能力を表し、酸化能が高い測定素子は、酸化能が低い測定素子に比して、低温で効率良くPMを酸化燃焼することができる。また、「PM酸化能を有さない」とは、PMを構成するSoot及びSOFのいずれに対しても酸化燃焼する能力が無いことを意味する。   Here, “oxidation ability” represents the ability to oxidize and burn PM, and a measurement element with high oxidation ability can oxidize and burn PM efficiently at a lower temperature than a measurement element with low oxidation ability. . Further, “having no PM oxidizing ability” means that there is no ability to oxidize and burn any of Soot and SOF that constitute PM.

[熱起電力発生部材]
第1熱起電力発生部材13及び第2熱起電力発生部材14を構成する部材は、PMの燃焼により生じる熱により起電力を発生するものであればよく、本実施形態では、一般的な熱起電力発生部材である熱電対が用いられている。また、第1熱起電力発生部材13と第2熱起電力発生部材14とでは、同一の材質からなる熱電対が用いられている。
[Thermo-electromotive force generating member]
The members constituting the first thermoelectromotive force generating member 13 and the second thermoelectromotive force generating member 14 may be any members that generate electromotive force by heat generated by PM combustion. A thermocouple which is an electromotive force generating member is used. The first thermoelectromotive force generating member 13 and the second thermoelectromotive force generating member 14 use thermocouples made of the same material.

[検出手段]
検出手段15では、第1熱起電力発生部材13で発生した熱起電力と第2熱起電力発生部材14で発生した熱起電力との差に基づいて、PM量が検出される。各熱起電力発生部材で生じた熱起電力は、各測定素子で発生したPM燃焼熱に比例することから、両熱起電力の差分を求めることにより、PM量を検出することができる。
また、検出手段15では、PMを構成するSootを燃焼させずにSOFを燃焼させる第1燃焼領域、並びにSoot及びSOFを燃焼させる第2燃焼領域それぞれにおいて、第1熱起電力発生部材13で発生した熱起電力と、第2熱起電力発生部材14で発生した熱起電力の差分を求め、それら差分に基づいて、Soot及びSOFそれぞれの量を検出することができる。PM、Soot、及びSOFそれぞれの量を検出可能な理由の詳細については、後述する。
[Detection means]
The detection means 15 detects the amount of PM based on the difference between the thermoelectromotive force generated by the first thermoelectromotive force generating member 13 and the thermoelectromotive force generated by the second thermoelectromotive force generating member 14. Since the thermoelectromotive force generated in each thermoelectromotive force generating member is proportional to the PM combustion heat generated in each measuring element, the amount of PM can be detected by obtaining the difference between both thermoelectromotive forces.
Further, the detection means 15 generates the first thermoelectromotive force generating member 13 in each of the first combustion region in which the SOF is combusted without burning the soot constituting the PM and the second combustion region in which the soot and the SOF are combusted. The difference between the generated thermoelectromotive force and the thermoelectromotive force generated by the second thermoelectromotive force generating member 14 can be obtained, and the respective amounts of Soot and SOF can be detected based on the difference. Details of the reason for detecting the amounts of PM, Soot, and SOF will be described later.

以上のような構成を備えたPMセンサ10によれば、以下の効果が奏される。
本実施形態に係るPMセンサ10を内燃機関の排気流路20内に設置すると、第1測定素子11及び第2測定素子12に排ガス中のPMが付着する。PMを燃焼させる酸化能を有する第1測定素子11は、PMが自然燃焼する温度である600℃よりも低い温度でPMを燃焼する。これに対して、第2測定素子12は第1測定素子11よりも酸化能が低く、図2に示されるように、第1測定素子11上ではPMが燃焼し、第2測定素子12上ではPMは燃焼しないような温度下では、両者間にPM燃焼熱の差が生じる。発生したPM燃焼熱は、第1測定素子11及び第2測定素子12のそれぞれに接続されている第1熱起電力発生部材13及び第2熱起電力発生部材14に作用し、それぞれ異なる熱起電力が発生する。具体的には、第1熱起電力発生部材13で発生する熱起電力Aは、第2熱起電力発生部材14で発生する熱起電力Bよりも大きい。これらの熱起電力の差はPM量に比例することから、この熱起電力差A−Bを捉えることにより、精度良くPM量を検出することができる。
According to PM sensor 10 provided with the above composition, the following effects are produced.
When the PM sensor 10 according to the present embodiment is installed in the exhaust flow path 20 of the internal combustion engine, PM in the exhaust gas adheres to the first measurement element 11 and the second measurement element 12. The first measuring element 11 having an oxidizing ability for burning PM burns PM at a temperature lower than 600 ° C., which is a temperature at which PM spontaneously burns. On the other hand, the second measuring element 12 has a lower oxidizing ability than the first measuring element 11, and as shown in FIG. 2, PM burns on the first measuring element 11 and on the second measuring element 12. Under a temperature at which PM does not burn, there is a difference in PM combustion heat between the two. The generated PM combustion heat acts on the first thermoelectromotive force generating member 13 and the second thermoelectromotive force generating member 14 connected to the first measuring element 11 and the second measuring element 12, respectively. Electric power is generated. Specifically, the thermoelectromotive force A generated by the first thermoelectromotive force generating member 13 is larger than the thermoelectromotive force B generated by the second thermoelectromotive force generating member 14. Since the difference between these thermoelectromotive forces is proportional to the PM amount, the PM amount can be detected with high accuracy by capturing the thermoelectromotive force difference AB.

ところで、PMを構成するSootとSOFとでは、その燃焼温度に差があり、有機成分であるSOFに比して固体状カーボンからなるSootの方が燃焼温度が高い。SootとSOFの燃焼領域を表した図を図3に示す。図3は、PM酸化能を有さない多孔質体(第2測定素子)、及びPM酸化能を有する多孔質体(第1測定素子)のそれぞれに、PMの代替物としてカーボンブラック(以下、CBという)を担持させたときのCB重量減少率を、PM減少率に置き換えて表したものである。また、図3の燃焼曲線は、後述する試験例と同様の測定により得られたものである。   By the way, there is a difference in combustion temperature between Soot and SOF constituting PM, and Soot made of solid carbon has a higher combustion temperature than SOF which is an organic component. FIG. 3 shows the soot and SOF combustion regions. FIG. 3 shows carbon black (hereinafter referred to as “PM black”) as a substitute for PM in each of a porous body having no PM oxidation ability (second measurement element) and a porous body having PM oxidation ability (first measurement element). CB weight reduction rate when carrying CB) is replaced with PM reduction rate. Moreover, the combustion curve of FIG. 3 was obtained by the same measurement as the test example mentioned later.

ここで、図3において、CB(PM)重量減少が10%を超えたときの温度は、Soot燃焼開始温度と呼ばれ、PM酸化能を有さない多孔質体上のCB10%減少温度(600℃)以上の領域は、PM(Soot)自然燃焼領域と呼ばれる。また、PM酸化能を有する多孔質体上のCB10%減少温度(T0)〜600℃の領域は、PM(Soot)酸化燃焼領域と呼ばれ、PM酸化能を有する多孔質体上のCB10%減少温度(T0)以下の領域は、SOF酸化燃焼領域と呼ばれる。このように、PMを構成するSootとSOFとでは、その燃焼領域に大きな差があることから、その差を利用することにより、SootとSOFとの分離検出が可能となる。
例えば、SOFの検出は、T0以下の領域で、HCを十分に酸化できる温度(T1:300℃程度)で検出でき、PMの検出は、T0以上の領域でCB50%減少温度(T2:500℃程度)で検出できる。ここで、CB50%減少としたのは、CB減少率が50%のときにPM燃焼速度が最も大きいからである。
Here, in FIG. 3, the temperature when the CB (PM) weight reduction exceeds 10% is called the soot combustion start temperature, and the CB 10% reduction temperature (600 on the porous body having no PM oxidizing ability) The region above (° C.) is called a PM (Soot) natural combustion region. Moreover, the region of CB10% decreasing temperature (T0) to 600 ° C. on the porous body having PM oxidizing ability is called a PM (Soot) oxidizing combustion region, and CB10% decreasing on the porous body having PM oxidizing ability. The region below the temperature (T0) is called the SOF oxidation combustion region. Thus, there is a large difference in the combustion region between the Soot and the SOF that constitute the PM, and by using the difference, the Soot and the SOF can be detected separately.
For example, SOF can be detected at a temperature that can sufficiently oxidize HC in a region below T0 (T1: about 300 ° C.), and PM can be detected at a CB50% decreasing temperature (T2: 500 ° C. in a region above T0. Degree). Here, the reason why CB is reduced by 50% is that the PM combustion rate is the highest when the CB reduction rate is 50%.

PM酸化能を有する第1測定素子の温度がSootを燃焼できないSOF酸化燃焼領域、即ち第1燃焼領域にあるときには、SOFのみが燃焼してSOFの燃焼熱に比例する熱起電力が発生する。第1燃焼領域にあるときのPMセンサ10のメカニズムを図4に示す。SOFの燃焼が生じる第1熱起電力発生部材13の熱起電力A1と、SOFの燃焼が生じていない第2熱起電力発生部材14の熱起電力B1との差分C1は、SOFの燃焼熱に比例する。   When the temperature of the first measuring element having PM oxidation ability is in the SOF oxidation combustion region where the soot cannot be combusted, that is, in the first combustion region, only SOF is combusted and a thermoelectromotive force proportional to the combustion heat of SOF is generated. The mechanism of the PM sensor 10 when in the first combustion region is shown in FIG. The difference C1 between the thermoelectromotive force A1 of the first thermoelectromotive force generating member 13 where the SOF combustion occurs and the thermoelectromotive force B1 of the second thermoelectromotive force generating member 14 where the SOF combustion does not occur is the combustion heat of the SOF Is proportional to

また、温度が上昇し、Sootが燃焼可能なPM(Soot)酸化燃焼領域、即ち第2燃焼領域にあるときには、SOFの燃焼熱とSootの燃焼熱のトータルに比例する熱起電力が発生する。第2燃焼領域にあるときのPMセンサ10のメカニズムを図5に示す。SOF及びSootの燃焼が生じる第1熱起電力発生部材13の熱起電力A2と、SOF及びSootいずれの燃焼も生じない第2熱起電力発生部材14の熱起電力B2との差分C2は、PM(Soot+SOF)の燃焼熱に比例する。   Further, when the temperature rises and the soot is combustible in the PM (Soot) oxidation combustion region, that is, in the second combustion region, a thermoelectromotive force is generated that is proportional to the sum of the combustion heat of the SOF and the combustion heat of the Soot. FIG. 5 shows the mechanism of the PM sensor 10 when in the second combustion region. The difference C2 between the thermoelectromotive force A2 of the first thermoelectromotive force generating member 13 where SOF and Soot combustion occurs and the thermoelectromotive force B2 of the second thermoelectromotive force generating member 14 where neither SOF nor Soot combustion occurs is: It is proportional to the combustion heat of PM (Soot + SOF).

従って、図6に示されるように、第1燃焼領域(SOF酸化燃焼領域)及び第2燃焼領域(PM(Soot)酸化燃焼領域)の各領域において、第1熱起電力発生部材13で発生した熱起電力と第2熱起電力発生部材14で発生した熱起電力との差を検出する検出手段15を備えた本実施形態によれば、第1燃焼領域(SOF酸化燃焼領域)における熱起電力差と、第2燃焼領域(PM(Soot)酸化燃焼領域)における熱起電力差との差分に基づいて、PM中のSOFとSootとを精度良く分離して検出することができる。   Therefore, as shown in FIG. 6, the first thermoelectromotive force generating member 13 generates the first combustion region (SOF oxidation combustion region) and the second combustion region (PM (Soot) oxidation combustion region). According to the present embodiment including the detection means 15 that detects the difference between the thermoelectromotive force and the thermoelectromotive force generated by the second thermoelectromotive force generating member 14, the heat generation in the first combustion region (SOF oxidation combustion region) is performed. Based on the difference between the power difference and the thermoelectromotive force difference in the second combustion region (PM (Soot) oxidation combustion region), it is possible to accurately separate and detect the SOF and the Soot in the PM.

また、天草陶土から形成された多孔子質体を利用した測定素子は、排ガス流路20内での使用に際し、排ガスで想定される温度域(最高で800℃)において、十分な耐熱性及び機械的強度を有する。これは、天草陶土に含まれるSiOがバインダー的な役割を担い、排ガス流路20での使用に耐え得る強度を発現するためであると考えられる。また、天草陶土から形成された多孔子質体は、十分なガス透過性を有するため、排ガス中に含まれるPMを効率良く検出できる。 In addition, a measuring element using a porous material formed from Amakusa porcelain clay has sufficient heat resistance and mechanical properties in the temperature range (maximum 800 ° C.) expected for exhaust gas when used in the exhaust gas flow path 20. Strength. This is considered to be because SiO 2 contained in Amakusa porcelain clay plays a role of a binder and develops strength that can withstand use in the exhaust gas flow path 20. Moreover, since the porous body formed from Amakusa porcelain has sufficient gas permeability, PM contained in exhaust gas can be detected efficiently.

孔形成剤としてポリビニルアルコール(PVA)を用いて形成された多孔質体からなる第1測定素子11及び第2測定素子12によれば、排ガス中のPMとガス成分とを分離してガス成分を透過させることができる。このため、PVAを用いて形成された多孔質体を利用した第1測定素子11及び第2測定素子12は、排ガス中のPMとガス成分を分離してガス成分を透過するのに十分な気孔を有し、PMを精度良く検出できる。   According to the 1st measuring element 11 and the 2nd measuring element 12 which consist of a porous body formed using polyvinyl alcohol (PVA) as a pore formation agent, PM in a waste gas and a gas component are isolate | separated and a gas component is separated. Can be transmitted. For this reason, the 1st measuring element 11 and the 2nd measuring element 12 using the porous body formed using PVA have sufficient pores to separate the PM and the gas component in the exhaust gas and permeate the gas component. PM can be detected with high accuracy.

また、第1測定素子11を構成する多孔質体にAgが担持されているため、PMが自然燃焼を始める温度(600℃)よりも低い温度でPMを酸化燃焼できる。これは、多孔質体上に担持されたAgの最表面が酸化されて活性な酸素原子で覆われた状態となり、そこにPMが接触する結果、低温でのPMの酸化燃焼が可能になると考えられる。   Further, since Ag is supported on the porous body constituting the first measuring element 11, the PM can be oxidized and burned at a temperature lower than the temperature at which PM starts spontaneous combustion (600 ° C.). This is because the outermost surface of Ag supported on the porous body is oxidized and covered with active oxygen atoms, and PM comes into contact therewith, so that oxidation combustion of PM at a low temperature becomes possible. It is done.

以上のことから、本実施形態に係るPMセンサ10によれば、AgによるPMの低温酸化燃焼により発生する燃焼熱を熱起電力として検出することにより、廉価で、且つSootとSOFの分離検出が可能な高精度PMセンサを提供できる。   From the above, according to the PM sensor 10 according to the present embodiment, by detecting the combustion heat generated by the low-temperature oxidation combustion of PM by Ag as the thermoelectromotive force, it is inexpensive and can detect the separation between the Soot and the SOF. A possible high-precision PM sensor can be provided.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば、同一の多孔質体上に第1測定素子11及び第2測定素子12を設けることができる。具体的には、天草陶土から形成された多孔質体の一部を、硝酸銀水溶液中に浸漬させることにより、一部にAgを担持させることができ、第1測定素子11及び第2測定素子12を同一の多孔質体上に設けることができる。この変形例によれば、PMセンサを小型化でき、レイアウト上有利であるとともに、材料費を削減できる。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, the first measurement element 11 and the second measurement element 12 can be provided on the same porous body. Specifically, by immersing a part of the porous body formed from Amakusa porcelain in an aqueous silver nitrate solution, Ag can be supported on a part thereof, and the first measurement element 11 and the second measurement element 12 are supported. Can be provided on the same porous body. According to this modification, the PM sensor can be reduced in size, which is advantageous in terms of layout and can reduce the material cost.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<試験例1>
天草陶土から形成した多孔質体からなる素子(以下、セラミックス多孔質体素子という)、及びこれにAgを担持させた素子(以下、Ag担持セラミックス多孔質体素子という)について、従来よりPM燃焼活性を有する多孔質体として知られているLa0.90.1CoO多孔質体(以下、LKC多孔質体素子という)とのPM燃焼活性の比較を行った。各素子の作製、及び評価方法は以下の通りとした。
<Test Example 1>
Conventionally, PM burning activity has been achieved for an element made of a porous material made of Amakusa porcelain clay (hereinafter referred to as a ceramic porous element) and an element in which Ag is supported (hereinafter referred to as an Ag-supporting ceramic porous element). The PM combustion activity was compared with a La 0.9 K 0.1 CoO 3 porous body (hereinafter referred to as LKC porous body element) known as a porous body having s. The production of each element and the evaluation method were as follows.

[素子の作製]
天草陶土粉末に、孔形成剤としてPVAを所定量添加して混合した。混合粉末を、錠剤成型器を用いて、20MPaで10分間の成型処理を行った。成型後、800℃で焼成することにより、PVAが揮発して形成された気孔を有するセラミックス多孔質体素子を得た。
また、得られたセラミックス多孔質体素子を、硝酸銀水溶液に浸漬(ディップコート法)させることにより、Agを5重量%担持させ、Ag担持セラミックス多孔質体素子を得た。
[Production of element]
A predetermined amount of PVA as a pore-forming agent was added to Amakusa porcelain powder and mixed. The mixed powder was subjected to a molding process at 20 MPa for 10 minutes using a tablet molding machine. After the molding, firing was performed at 800 ° C. to obtain a ceramic porous body element having pores formed by volatilization of PVA.
Further, the obtained ceramic porous body element was immersed in a silver nitrate aqueous solution (dip coating method) to support 5% by weight of Ag, thereby obtaining an Ag-supporting ceramic porous body element.

また、LKC多孔質体を構成するLa、K、Coを所定量含み、蒸発乾固法により調製されたLKC前駆体粉末に、孔形成剤としてPVAを所定量添加して混合した。混合粉末を、錠剤成型器を用いて、20MPaで10分間の成型処理を行った。成型後、1100℃で焼成することにより、PVAが揮発して形成された気孔を有するLKC多孔質体素子を得た。   Further, a predetermined amount of PVA as a pore-forming agent was added to and mixed with the LKC precursor powder containing a predetermined amount of La, K, and Co constituting the LKC porous body and prepared by the evaporation to dryness method. The mixed powder was subjected to a molding process at 20 MPa for 10 minutes using a tablet molding machine. By firing at 1100 ° C. after molding, an LKC porous element having pores formed by volatilization of PVA was obtained.

[評価方法]
作製した各素子に対して、PMの代替物としてCBを5.0重量%担持させた。CBを担持させた各素子について、以下の条件でTG測定を行い、それらの熱重量変化を比較することにより、PM燃焼活性の評価を行った。なお、評価に際しては、スパチュラを用いて一定時間、素子にCBを振りかけて付着させるLC法(loose contact法)により、排ガス中でのPMと素子との接触状態を模擬的に再現した。
[Evaluation methods]
Each manufactured device was loaded with 5.0% by weight of CB as an alternative to PM. About each element which carry | supported CB, TG measurement was performed on the following conditions, and PM combustion activity was evaluated by comparing those thermogravimetric changes. In the evaluation, a contact state between PM and the element in the exhaust gas was simulated by an LC method (loose contact method) in which CB was sprinkled on the element for a certain period of time using a spatula.

測定装置:島津製作所製「DTG−60H」
サンプル:5.0重量%CB/素子(約10mg)
雰囲気:空気中
昇温速度:10℃/分で800℃まで
接触状態:スパチュラで一定時間混合(loose contact、以下LCという)
Measuring device: “DTG-60H” manufactured by Shimadzu Corporation
Sample: 5.0 wt% CB / element (about 10 mg)
Atmosphere: Temperature rise rate in air: 10 ° C./min up to 800 ° C. Contact state: Mixing for a certain time with a spatula

TG測定の結果得られたTGチャートを図7に示す。各素子について、CBの燃焼による重量減少が最も大きかった温度(以下、Tmaxという)を比較すると、最も温度が高かったのがセラミックス多孔質体素であり、次いで高かったのがLKC多孔質体素子であった。これらの素子では、Tmaxが600℃前後であったのに対して、Ag担持セラミックス多孔質体素子のTmaxは、500℃を下回っていた。この結果から、天草陶土から形成した多孔質体からなる素子にAgを担持させた素子は、従来に比して低温でPMを酸化燃焼でき、PM燃焼活性が高いことが確認された。   FIG. 7 shows a TG chart obtained as a result of the TG measurement. Comparing the temperatures at which the weight loss due to CB combustion was greatest (hereinafter referred to as Tmax) for each element, the ceramic porous body had the highest temperature, followed by the LKC porous element. Met. In these elements, Tmax was around 600 ° C., whereas Tmax of the Ag-supporting ceramic porous body element was less than 500 ° C. From this result, it was confirmed that the element in which Ag is supported on the element made of a porous body formed from Amakusa porcelain can oxidize and combust PM at a lower temperature than the conventional one and has high PM combustion activity.

<実施例1>
本発明の効果を、市販のディーゼル発電機から排出される排ガスを用いて検証した。検証には、図8に示されるテスト装置50を用いた。具体的には、ディーゼル発電機60から排出される排ガスの全量を、テスト装置50に取り込み、PM検出テストを実施した。テスト部は、石英ガラス管61内(内径φ50mm)で、その外側に電気ヒータ56を設置し、雰囲気温度を所定の温度に調節した。温度は、上述したように図3を参考にして設定した。
<Example 1>
The effect of the present invention was verified using exhaust gas discharged from a commercial diesel generator. For the verification, a test apparatus 50 shown in FIG. 8 was used. Specifically, the entire amount of exhaust gas discharged from the diesel generator 60 was taken into the test apparatus 50 and a PM detection test was performed. The test unit was installed in the quartz glass tube 61 (inner diameter φ50 mm), and an electric heater 56 was installed outside thereof to adjust the ambient temperature to a predetermined temperature. The temperature was set with reference to FIG. 3 as described above.

石英ガラス管61中に、PM酸化能を有する多孔質体からなるセンサ素子51と、PM酸化能を有さない多孔質体からなる参照素子52と、をガス流に対して垂直に配置し、それぞれに、熱電対からなる熱起電力発生部材53、54を接続し、その出力端の電圧を計測した。なお、ガス温度を計測するために、両素子の間に熱電対からなるガス温度センサ(図示せず)を設置した。   In the quartz glass tube 61, a sensor element 51 made of a porous body having PM oxidizing ability and a reference element 52 made of a porous body not having PM oxidizing ability are arranged perpendicular to the gas flow, Thermoelectromotive force generating members 53 and 54 made of thermocouples were connected to each, and the voltage at the output end was measured. In addition, in order to measure gas temperature, the gas temperature sensor (not shown) which consists of thermocouples was installed between both elements.

センサ素子51及び参照素子52の形状は、φ20mm×5mm厚さのタブレット形状とし、その側面に孔を形成し、その孔に熱電対を挿入して素子を形成した。素子となる多孔質体は、以下の手順で作製した。
原料は、天草地方で産出された陶器の原料となる天草陶土粉末を用いた。多孔質体とするために、孔形成剤としてPVAを天草陶土に対して体積比で1:3となるように添加した。添加後、混練し、該粉末を金型に充填して20MPaで10分間、一軸加圧成型した。成型体を空気中で800℃×5時間の焼成を行い、多孔質体を作製した。センサ素子51とする多孔質体については、さらに硝酸銀水溶液に浸漬してAgを担持させた。Agの担持量は5重量%とした。
The sensor element 51 and the reference element 52 were formed in a tablet shape having a diameter of 20 mm × 5 mm, holes were formed on the side surfaces, and thermocouples were inserted into the holes to form elements. A porous body serving as an element was produced by the following procedure.
The raw material used was Amakusa porcelain clay powder, which is a raw material for pottery produced in the Amakusa region. In order to obtain a porous body, PVA was added as a pore-forming agent so that the volume ratio was 1: 3 with respect to Amakusa porcelain clay. After the addition, the mixture was kneaded, the powder was filled in a mold, and uniaxial pressure molding was performed at 20 MPa for 10 minutes. The molded body was fired in air at 800 ° C. for 5 hours to produce a porous body. The porous body serving as the sensor element 51 was further immersed in an aqueous silver nitrate solution to carry Ag. The amount of Ag supported was 5% by weight.

PM検出テストは、以下の手順で実施した。
石英ガラス管61内に、センサ素子51及び参照素子52を設置し、電気ヒータ56で温度を500℃に安定させた。次いで、無負荷の状態でディーゼル発電機60を起動し、排ガスをテスト部に導入した。一定時間、排ガスを流通させた後、ディーゼル発電機60を停止した。その間、センサ素子51及び参照素子52からの熱起電力出力をモニターし、その差分を計算した。なお、排ガス中のPM濃度は、テストラインから一定流量のガスをポンプ57で取り出し、そのガスをテフロン(登録商標)フィルタ58に通してPMを濾過し、フィルタの前後重量差からPM濃度を算出した。
The PM detection test was performed according to the following procedure.
The sensor element 51 and the reference element 52 were installed in the quartz glass tube 61, and the temperature was stabilized at 500 ° C. with the electric heater 56. Next, the diesel generator 60 was started in a no-load state, and exhaust gas was introduced into the test unit. After circulating the exhaust gas for a certain time, the diesel generator 60 was stopped. Meanwhile, the thermoelectromotive force output from the sensor element 51 and the reference element 52 was monitored, and the difference was calculated. The PM concentration in the exhaust gas is extracted from the test line with a constant flow rate of gas with a pump 57, filtered through a Teflon (registered trademark) filter 58, and the PM concentration is calculated from the difference in weight before and after the filter. did.

<比較例1>
電気ヒータ56の設定温度を、500℃ではなく350℃に設定した以外は、実施例1と同様の操作を行った。
<Comparative Example 1>
The same operation as in Example 1 was performed except that the set temperature of the electric heater 56 was set to 350 ° C. instead of 500 ° C.

<実施例2>
ディーゼル発電機60に、定格出力の31%に相当する抵抗を接続した以外は、実施例1と同様の操作を行った。
<Example 2>
The same operation as in Example 1 was performed except that a resistor corresponding to 31% of the rated output was connected to the diesel generator 60.

<実施例3>
ディーゼル発電機60に、定格出力の44%に相当する抵抗を接続した以外は、実施例1と同様の操作を行った。
<Example 3>
The same operation as in Example 1 was performed except that a resistor corresponding to 44% of the rated output was connected to the diesel generator 60.

実施例1の結果について考察する。
実施例1のPM検出テストにおける時間と熱起電力差との関係を図9に、時間とセンサ温度との関係を図10に示す。
図9及び10に示されるように、ディーゼル発電機60の始動前は、センサ素子51及び参照素子52からの熱起電力が同じであるため、熱起電力の差分は発生しない。ディーゼル発電機60を始動し、排ガスをテスト部に導入すると、センサ素子51に付着したPM(SOF+Soot)が酸化燃焼するため、参照素子52との熱起電力差が生じる。時間の経過とともに熱起電力差は減少し、あるところで一定になる。これは、電気ヒータ56で500℃に加温しているものの、それよりも温度の低い排ガスが流入することによりテスト部の温度が低下し、センサ温度が250℃程度で安定した結果、PM中のSOFのみが酸化燃焼して生じた熱起電力の差を示しているためである。
その後、ディーゼル発電機60を停止すると、再び熱起電力差が上昇してピークを迎えた後、減少に転じ、熱起電力差が消失する。これは、排ガスが流入しなくなったため電気ヒータ56により再び500℃に加温される結果、排ガス流入中に酸化燃焼できずに堆積したSootが酸化燃焼されることにより、熱起電力差が生じたためである。従って、センサ温度を所定の温度に制御することにより、PM中のSootとSOFとを分離して検出することができることが分かった。
Consider the results of Example 1.
FIG. 9 shows the relationship between time and thermal electromotive force difference in the PM detection test of Example 1, and FIG. 10 shows the relationship between time and sensor temperature.
As shown in FIGS. 9 and 10, since the thermoelectromotive force from the sensor element 51 and the reference element 52 is the same before the diesel generator 60 is started, a difference in thermoelectromotive force does not occur. When the diesel generator 60 is started and exhaust gas is introduced into the test section, the PM (SOF + Soot) adhering to the sensor element 51 undergoes oxidative combustion, resulting in a difference in thermoelectromotive force from the reference element 52. The thermoelectromotive force difference decreases with time and becomes constant at a certain point. Although this is heated to 500 ° C. by the electric heater 56, the temperature of the test part is lowered by the flow of exhaust gas having a temperature lower than that, and the sensor temperature is stabilized at about 250 ° C. This is because only the SOF shows the difference in thermoelectromotive force generated by oxidative combustion.
Thereafter, when the diesel generator 60 is stopped, the thermoelectromotive force difference rises again and reaches a peak, and then starts to decrease, and the thermoelectromotive force difference disappears. This is because the exhaust gas no longer flows, and the electric heater 56 heats it again to 500 ° C., so that the soot accumulated without being oxidized and burned during the exhaust gas flow is oxidized and burned, resulting in a thermoelectromotive force difference. It is. Therefore, it has been found that by controlling the sensor temperature to a predetermined temperature, the soot and SOF in the PM can be detected separately.

比較例1の結果について考察する。
比較例1のPM検出テストにおける時間と熱起電力差との関係を図11に、時間とセンサ温度との関係を図12に示す。
図11及び12に示されるように、ディーゼル発電機60の始動前は、センサ素子51及び参照素子52からの熱起電力が同じであるため、熱起電力の差分は発生しない。ディーゼル発電機60を始動して排ガスをテスト部に導入すると、電気ヒータ56の設定温度が350℃であることから、センサ素子51にPMが付着するときの温度も350℃と低いため、SOFのみが燃焼し、その差分の熱起電力差が生じる。しかしながら、排ガス流入によりセンサ温度が200℃以下まで下がるため、SOFも酸化燃焼できなくなり、参照素子52との熱起電力差は生じない。
その後、ディーゼル発電機60を停止し、テスト部へ排ガスが流入しなくなると、電気ヒータ56により加温されても、付着したSootの酸化燃焼が生じないため、熱起電力差は発生しない。この結果から、センサ温度を、Sootを酸化燃焼できる温度で制御しないと、正確なPM検出を行うことができないことが分かった。
Consider the results of Comparative Example 1.
FIG. 11 shows the relationship between the time and the thermoelectromotive force difference in the PM detection test of Comparative Example 1, and FIG. 12 shows the relationship between the time and the sensor temperature.
As shown in FIGS. 11 and 12, since the thermoelectromotive force from the sensor element 51 and the reference element 52 is the same before the diesel generator 60 is started, no difference in thermoelectromotive force occurs. When the diesel generator 60 is started and exhaust gas is introduced into the test unit, the temperature when the PM adheres to the sensor element 51 is as low as 350 ° C. because the set temperature of the electric heater 56 is 350 ° C. Burns and a thermoelectromotive force difference of the difference occurs. However, since the sensor temperature is lowered to 200 ° C. or less due to exhaust gas inflow, SOF cannot be oxidized and burned, and a difference in thermoelectromotive force from the reference element 52 does not occur.
After that, when the diesel generator 60 is stopped and the exhaust gas does not flow into the test section, even if it is heated by the electric heater 56, the attached soot does not undergo oxidative combustion, so no thermoelectromotive force difference occurs. From this result, it was found that accurate PM detection cannot be performed unless the sensor temperature is controlled at a temperature at which the soot can be oxidized and combusted.

実施例2及び3の結果について考察する。
実施例1〜3のPM検出テストにおける時間と熱起電力差との関係を図13に、時間とセンサ温度との関係を図14に、発生したPM濃度と熱起電力差との関係をプロットした図を図15に示す。また、ディーゼル発電機60始動直後(図13のPの部分)におけるPM濃度と熱起電力差を表1に示す。
Consider the results of Examples 2 and 3.
The relationship between the time and the thermoelectromotive force difference in the PM detection test of Examples 1 to 3 is plotted in FIG. 13, the relationship between the time and the sensor temperature is plotted in FIG. 14, and the relationship between the generated PM concentration and the thermoelectromotive force difference is plotted. The obtained figure is shown in FIG. Table 1 shows the PM concentration and the thermoelectromotive force difference immediately after starting the diesel generator 60 (part P in FIG. 13).

Figure 2010078378
Figure 2010078378

実施例2及び3では、実施例1に対して、ディーゼル発電機60の負荷を変更することにより、PMの発生量を変化させたものである。図13〜15及び表1に示されるように、ディーゼル発電機60に負荷を与えてPM発生量を減少させた実施例2及び3は、実施例1に比して熱起電力差が減少することが分かった。また、その減少度合いは、ディーゼル発電機60に与えた負荷に比例することも分かった。従って、この結果から、熱起電力差とPM濃度との間には、良好な相関性があることが確認された。   In the second and third embodiments, the generation amount of PM is changed by changing the load of the diesel generator 60 with respect to the first embodiment. As shown in FIGS. 13 to 15 and Table 1, in Examples 2 and 3 in which a load is applied to the diesel generator 60 to reduce the PM generation amount, the difference in thermoelectromotive force is reduced as compared with Example 1. I understood that. It was also found that the degree of decrease is proportional to the load applied to the diesel generator 60. Therefore, from this result, it was confirmed that there is a good correlation between the thermoelectromotive force difference and the PM concentration.

本発明のPMセンサの全体構成を示す図である。It is a figure showing the whole PM sensor composition of the present invention. 本発明のメカニズムを説明するための図である。It is a figure for demonstrating the mechanism of this invention. SootとSOFの燃焼温度を関係を示す図である。It is a figure which shows the combustion temperature of Soot and SOF. 第1燃焼領域にあるときのPMセンサのメカニズムを示す図である。It is a figure which shows the mechanism of PM sensor when it exists in a 1st combustion area. 第2燃焼領域にあるときのPMセンサのメカニズムを示す図である。It is a figure which shows the mechanism of PM sensor when it exists in a 2nd combustion area | region. 本発明のメカニズムを説明するための図である。It is a figure for demonstrating the mechanism of this invention. 試験例1の結果得られたTGチャートを示す図である。6 is a diagram showing a TG chart obtained as a result of Test Example 1. FIG. テスト装置の全体構成を示す図である。It is a figure which shows the whole structure of a test apparatus. 実施例1の時間と熱起電力差との関係を示す図である。It is a figure which shows the relationship between the time of Example 1, and a thermoelectromotive force difference. 実施例1の時間とセンサ温度との関係を示す図である。It is a figure which shows the relationship between the time of Example 1, and sensor temperature. 比較例1の時間と熱起電力差との関係を示す図である。It is a figure which shows the relationship between the time of the comparative example 1, and a thermoelectromotive force difference. 比較例1の時間とセンサ温度との関係を示す図である。It is a figure which shows the relationship between the time of Comparative Example 1, and sensor temperature. 実施例1〜3の時間と熱起電力差との関係を示す図である。It is a figure which shows the relationship between the time of Examples 1-3 and a thermoelectromotive force difference. 実施例1〜3の時間とセンサ温度との関係を示す図である。It is a figure which shows the relationship between the time of Examples 1-3, and sensor temperature. PM濃度と熱起電力差との関係を示す図である。It is a figure which shows the relationship between PM density | concentration and a thermoelectromotive force difference.

符号の説明Explanation of symbols

10 PMセンサ
11 第1測定素子
12 第2測定素子
13 第1熱起電力発生部材
14 第2熱起電力発生部材
15 検出手段
DESCRIPTION OF SYMBOLS 10 PM sensor 11 1st measuring element 12 2nd measuring element 13 1st thermoelectromotive force generating member 14 2nd thermoelectromotive force generating member 15 Detection means

Claims (6)

内燃機関から排出される排ガス中に含まれる粒子状物質を検出するための検出センサであって、
前記粒子状物質を燃焼させる酸化能を有する第1測定素子と、
前記粒子状物質を燃焼させる酸化能が前記第1測定素子より低い第2測定素子と、
前記第1測定素子及び前記第2測定素子のそれぞれに接続され、前記粒子状物質の燃焼熱により起電力を発生する第1熱起電力発生部材及び第2熱起電力発生部材と、
前記第1熱起電力発生部材で発生した熱起電力と前記第2熱起電力発生部材で発生した熱起電力との差に基づいて、前記粒子状物質の量を検出する検出手段と、を備えることを特徴とする粒子状物質検出センサ。
A detection sensor for detecting particulate matter contained in exhaust gas discharged from an internal combustion engine,
A first measuring element having an oxidizing ability to burn the particulate matter;
A second measuring element having an oxidizing ability for burning the particulate matter lower than that of the first measuring element;
A first thermoelectromotive force generating member and a second thermoelectromotive force generating member connected to each of the first measuring element and the second measuring element and generating electromotive force by the combustion heat of the particulate matter;
Detecting means for detecting the amount of the particulate matter based on the difference between the thermoelectromotive force generated by the first thermoelectromotive force generating member and the thermoelectromotive force generated by the second thermoelectromotive force generating member; A particulate matter detection sensor comprising:
前記検出手段は、前記粒子状物質を構成する煤は燃焼しないが可溶性有機物が燃焼する第1燃焼領域、並びに前記煤及び前記可溶性有機物が燃焼する第2燃焼領域の各領域における、前記第1熱起電力発生部材で発生した熱起電力と前記第2熱起電力発生部材で発生した熱起電力との差に基づいて、前記煤及び前記可溶性有機物それぞれの量を検出することを特徴とする請求項1記載の粒子状物質検出センサ。   The detection means includes the first heat in each of the first combustion region where the soot composing the particulate matter does not burn but the soluble organic matter burns, and the second combustion region where the soot and the soluble organic matter burn. The amount of each of the soot and the soluble organic matter is detected based on the difference between the thermoelectromotive force generated by the electromotive force generating member and the thermoelectromotive force generated by the second thermoelectromotive force generating member. Item 1. The particulate matter detection sensor according to Item 1. 前記第1測定素子及び前記第2測定素子は、同一の多孔質体上に設けられていることを特徴とする請求項1又は2記載の粒子状物質検出センサ。   The particulate matter detection sensor according to claim 1, wherein the first measurement element and the second measurement element are provided on the same porous body. 前記第1測定素子及び前記第2測定素子は、少なくともAl、SiO、MgO、及びCaOを含む天草陶土から形成された多孔質体であることを特徴とする請求項1から3いずれか記載の粒子状物質検出センサ。 The first measuring device and the second measuring element are all at least Al 2 O 3, SiO 2, MgO, and from the claims 1, characterized in that a porous body formed from Amakusa clay containing CaO 3 Or a particulate matter detection sensor. 前記第1測定素子及び前記第2測定素子は、孔形成剤としてポリビニルアルコールを用いて形成された多孔質体であることを特徴とする請求項4記載の粒子状物質検出センサ。   The particulate matter detection sensor according to claim 4, wherein the first measurement element and the second measurement element are porous bodies formed using polyvinyl alcohol as a pore-forming agent. 前記第1測定素子は、少なくともAgを含むことを特徴とする請求項1から5いずれか記載の粒子状物質検出センサ。   The particulate matter detection sensor according to claim 1, wherein the first measurement element contains at least Ag.
JP2008244883A 2008-09-24 2008-09-24 Particulate matter detection sensor Expired - Fee Related JP5101446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244883A JP5101446B2 (en) 2008-09-24 2008-09-24 Particulate matter detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244883A JP5101446B2 (en) 2008-09-24 2008-09-24 Particulate matter detection sensor

Publications (2)

Publication Number Publication Date
JP2010078378A true JP2010078378A (en) 2010-04-08
JP5101446B2 JP5101446B2 (en) 2012-12-19

Family

ID=42209012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244883A Expired - Fee Related JP5101446B2 (en) 2008-09-24 2008-09-24 Particulate matter detection sensor

Country Status (1)

Country Link
JP (1) JP5101446B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512917A (en) * 2012-06-29 2014-01-15 现代自动车株式会社 Sensor for measuring soot of diesel engine
JP2014009685A (en) * 2012-06-29 2014-01-20 Hyundai Motor Company Co Ltd Soluble organic fraction sensing system for diesel engine
WO2016147301A1 (en) * 2015-03-16 2016-09-22 株式会社白山製作所 Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device
JP2016173251A (en) * 2015-03-16 2016-09-29 株式会社日本自動車部品総合研究所 Particulate matter detection sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148047A (en) * 1980-04-18 1981-11-17 Koumiyou Rikagaku Kogyo Kk Thermal conductivity type gas detector
JPH08201326A (en) * 1995-01-30 1996-08-09 Gastar Corp Exhaust co concentration detecting device for combustion apparatus
JPH1123507A (en) * 1997-05-02 1999-01-29 Yamatake Honeywell Co Ltd Moisture-sensitive element and its manufacture
JP2000131277A (en) * 1998-10-16 2000-05-12 Varta Geraetebatterie Gmbh Electrochemical gas sensor
JP2001091487A (en) * 1999-09-20 2001-04-06 Yazaki Corp Gas detector
JP2003098135A (en) * 2001-09-27 2003-04-03 Horiba Ltd Granular substance sensor and method for measuring granular substance using the same
JP2006322380A (en) * 2005-05-19 2006-11-30 Honda Motor Co Ltd Exhaust emission control device
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148047A (en) * 1980-04-18 1981-11-17 Koumiyou Rikagaku Kogyo Kk Thermal conductivity type gas detector
JPH08201326A (en) * 1995-01-30 1996-08-09 Gastar Corp Exhaust co concentration detecting device for combustion apparatus
JPH1123507A (en) * 1997-05-02 1999-01-29 Yamatake Honeywell Co Ltd Moisture-sensitive element and its manufacture
JP2000131277A (en) * 1998-10-16 2000-05-12 Varta Geraetebatterie Gmbh Electrochemical gas sensor
JP2001091487A (en) * 1999-09-20 2001-04-06 Yazaki Corp Gas detector
JP2003098135A (en) * 2001-09-27 2003-04-03 Horiba Ltd Granular substance sensor and method for measuring granular substance using the same
JP2006322380A (en) * 2005-05-19 2006-11-30 Honda Motor Co Ltd Exhaust emission control device
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512917A (en) * 2012-06-29 2014-01-15 现代自动车株式会社 Sensor for measuring soot of diesel engine
JP2014009685A (en) * 2012-06-29 2014-01-20 Hyundai Motor Company Co Ltd Soluble organic fraction sensing system for diesel engine
JP2014010147A (en) * 2012-06-29 2014-01-20 Hyundai Motor Company Co Ltd Soot measurement sensor of diesel engine
WO2016147301A1 (en) * 2015-03-16 2016-09-22 株式会社白山製作所 Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device
JP2016173251A (en) * 2015-03-16 2016-09-29 株式会社日本自動車部品総合研究所 Particulate matter detection sensor
US20180083177A1 (en) * 2015-03-16 2018-03-22 Hakusan, Inc. Thermoelectric material, manufacturing method of thermoelectric material, and thermoelectric converter

Also Published As

Publication number Publication date
JP5101446B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4923948B2 (en) Gas sensor element
JP6804941B2 (en) Method of suppressing output deterioration of hybrid potential type gas sensor
US7488367B2 (en) Honeycomb filter and method of manufacturing the same
JP5101446B2 (en) Particulate matter detection sensor
JP6691447B2 (en) Catalyst deterioration diagnosis method
JP2001221759A (en) Sensor for determining smoke density and method
JP2012012960A (en) Particulate matter detection sensor
KR940702608A (en) Waste gas sensor and process for producing the same
JP2012214364A (en) HONEYCOMB STRUCTURE, Si-SiC BASED COMPOSITE MATERIAL, METHOD FOR MANUFACTURING HONEYCOMB STRUCTURE, AND METHOD FOR MANUFACTURING Si-SiC BASED COMPOSITE MATERIAL
WO2016147711A1 (en) Particulate matter detection system
JP2011080780A (en) Particulate detection element
CN102910903A (en) Low-temperature cofiring method of zirconia-based sensor
US20180306087A1 (en) Particulate matter detection apparatus
WO2012132837A1 (en) Method for producing honeycomb structured body, method for producing si-sic-based composite material, and honeycomb structured body
US10648388B2 (en) Method for controlling an internal combustion engine having an exhaust system component including a self-healing ceramic material
JP5119212B2 (en) Ammonia concentration detection method
JP2011169757A (en) Resistive oxygen sensor element
JP2010256112A (en) Gas sensor element, gas sensor incorporating the same, and method for manufacturing the gas sensor element
JP6443397B2 (en) A / F sensor and manufacturing method thereof
JP2009281973A (en) Soot detection device
JP2006222068A (en) Ceramic heater and its manufacturing method
JP6476607B2 (en) Gas sensor element
JP2006102577A (en) Production method of exhaust gas purification material
JP5858030B2 (en) Control device for exhaust gas sensor containing self-healing ceramic material
JPWO2012023494A1 (en) Oxidation catalyst suitable for burning light oil components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees