JP2012012960A - Particulate matter detection sensor - Google Patents

Particulate matter detection sensor Download PDF

Info

Publication number
JP2012012960A
JP2012012960A JP2010147862A JP2010147862A JP2012012960A JP 2012012960 A JP2012012960 A JP 2012012960A JP 2010147862 A JP2010147862 A JP 2010147862A JP 2010147862 A JP2010147862 A JP 2010147862A JP 2012012960 A JP2012012960 A JP 2012012960A
Authority
JP
Japan
Prior art keywords
particulate matter
temperature
detection
sensor
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010147862A
Other languages
Japanese (ja)
Inventor
Satoshi Nakamura
中村  聡
Shinya Teranishi
真哉 寺西
Hirofumi Takeuchi
博文 武内
Takashi Sawada
高志 澤田
Hideaki Ito
英明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2010147862A priority Critical patent/JP2012012960A/en
Priority to DE102011078242A priority patent/DE102011078242A1/en
Priority to US13/170,269 priority patent/US20110314796A1/en
Publication of JP2012012960A publication Critical patent/JP2012012960A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of detection accuracy, and to obtain a stable sensor output, in a particulate matter detection sensor of an electric resistance type used for detecting PMs in exhaust gas.SOLUTION: A gas sensor element 10 of the PM sensor 1 attached to an exhaust pipe EX of an engine E/G is constituted by laminating a heater 300 on a detection part 100 having detection electrodes 11, 12. A control circuit 2 executes starting combustion control for holding a temperature of the detection part 100 at a temperature T1 at which the particulate matter PM can be burnt for a preset time S1 by carrying electricity to the heater 300 at start-up, after that, performs normal control, and prevents wrong detection caused by the residue of the particulate matter PM.

Description

本発明は、車両用内燃機関の排気浄化システムにおいて、排出ガス中に存在する微粒子状物質の量を検出する、電気抵抗式の粒子状物質検出センサに関するもので、例えば、微粒子状物質を捕集するパティキュレートフィルタの異常検出に有効である。   The present invention relates to an electrical resistance particulate matter detection sensor for detecting the amount of particulate matter present in exhaust gas in an exhaust gas purification system for an internal combustion engine for a vehicle. This is effective for detecting abnormalities in the particulate filter.

自動車用ディーゼルエンジン等において、排気ガスに含まれる環境汚染物質、特に煤粒子(Soot)および可溶性有機成分(SOF)を主体とする微粒子状物質(Particulate Matter;以下、適宜PMと称する)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、適宜DPFと称する)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に排気ガスを通過させてPMを捕捉する。   Collects environmental pollutants contained in exhaust gas, especially particulate matter (Particulate Matter; hereinafter referred to as PM as appropriate) mainly composed of soot particles and soluble organic components (SOF) in automobile diesel engines, etc. In order to do this, a diesel particulate filter (hereinafter referred to as DPF as appropriate) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by passing exhaust gas through a partition wall having a large number of pores.

DPFは、PM捕集量が許容量を超えると、目詰まりが生じて負圧が増大したり、PMのすり抜けが増加したりするおそれがあり、定期的に再生処理を行って捕集能力を回復させている。再生時期の判断には、例えば、PM捕集量の増加により前後差圧が増大することを利用することができ、差圧センサの検出結果に基づいてPM捕集量を検出している。再生処理は、ヒータ加熱あるいはポスト噴射等により高温の燃焼排気ガスをDPF内に導入し、PMを燃焼除去する。   If the amount of collected PM exceeds the allowable amount, DPF may cause clogging and increase the negative pressure or increase the slipping of PM. It is recovering. For example, the regeneration time can be determined by using the fact that the differential pressure increases due to an increase in the amount of collected PM, and the amount of collected PM is detected based on the detection result of the differential pressure sensor. In the regeneration process, high-temperature combustion exhaust gas is introduced into the DPF by heater heating or post injection, and PM is burned and removed.

一方、排気ガス中のPMを直接検出するためのセンサが提案されている。このPMセンサを、例えばDPFの下流に設置して、DPFをすり抜けるPM量を測定し、車載式故障診断装置(OBD;On Board Diagnosis)において、DPFの作動状態の監視、例えば亀裂や破損といった異常の検出に利用することができる。あるいはDPFの上流に設置して、DPFに流入するPM量を測定し、差圧センサに代わる再生時期の判断に利用することも検討されている。   On the other hand, a sensor for directly detecting PM in exhaust gas has been proposed. This PM sensor is installed downstream of the DPF, for example, and the amount of PM passing through the DPF is measured. In an on-board diagnosis (OBD), monitoring of the operating state of the DPF, for example, abnormalities such as cracks and breakage It can be used for detection. Alternatively, it is also considered to install upstream of the DPF, measure the amount of PM flowing into the DPF, and use it to determine the regeneration time instead of the differential pressure sensor.

従来技術として、特許文献1には、絶縁性を有する基板の表面に、一対の導電性電極を形成し、基板の裏面または内部には発熱体を形成した電気抵抗式のスモーク濃度センサが開示されている。このセンサは、煤粒子が導電性を有することを利用したもので、検出部となる電極間に、煤粒子が堆積することで生じる電気抵抗値の変化を検出する。発熱体は、検出部の温度を400℃〜600℃に加熱し、PM濃度に応じて電極間抵抗を測定した後、付着したPMを焼き切って検出能力を回復させている。   As a conventional technique, Patent Document 1 discloses an electric resistance type smoke density sensor in which a pair of conductive electrodes are formed on the surface of an insulating substrate and a heating element is formed on the back surface or inside of the substrate. ing. This sensor utilizes the conductivity of the soot particles, and detects a change in the electrical resistance value caused by the soot particles being deposited between the electrodes serving as the detection unit. The heating element heats the temperature of the detection unit to 400 ° C. to 600 ° C., measures the interelectrode resistance according to the PM concentration, and then burns off the attached PM to restore the detection capability.

特許文献2には、電気絶縁材に相互に離間する複数の電極を形成したPMトラップセンサを用い、両電極間の電気抵抗値に相関する指標を計測して、所定基準より小さくなった時に、パティキュレートフィルタの故障と判定する装置が開示されている。また、電気抵抗値の計測精度を向上させるため、定期的(所定の走行時間毎、所定の走行距離毎、使用燃料量毎)にPMトラップセンサのリセットを行っている。   Patent Document 2 uses a PM trap sensor in which a plurality of electrodes that are spaced apart from each other are formed on an electrical insulating material, measures an index that correlates with the electrical resistance value between the two electrodes, and when it becomes smaller than a predetermined reference, An apparatus for determining a failure of a particulate filter is disclosed. Further, in order to improve the measurement accuracy of the electric resistance value, the PM trap sensor is reset periodically (every predetermined travel time, every predetermined travel distance, and every amount of fuel used).

なお、PMを検出する技術としては、他に触媒と熱電対を用いてPMの酸化反応による発熱を検出するセンサや、波長可変ダイオードレーザを用いて排気ガスの化学種や温度をモニタリングする方法が知られるが、電気抵抗式のセンサは、簡易な構成で比較的安定した出力が得られる利点がある。   In addition, as a technique for detecting PM, there are a sensor for detecting heat generation by oxidation reaction of PM using a catalyst and a thermocouple, and a method for monitoring chemical species and temperature of exhaust gas using a wavelength tunable diode laser. As is known, the electric resistance type sensor has an advantage that a relatively stable output can be obtained with a simple configuration.

特公平2−44386号公報Japanese Examined Patent Publication No. 2-44386 特開2009−144577号公報JP 2009-1444577 A

ところで、エンジン始動時には、前回の運転により排出されたPMがエンジン停止時にセンサ検出部に付着したまま残っている可能性がある。特許文献1のセンサでは、測定後に加熱を継続することで、その都度PMを焼き切るとしているが、検出時のヒータ温度400℃〜600℃は必ずしもPMの燃焼に十分高い温度ではなく、また測定からエンジン停止までに十分な時間がないと、確実に回復することは難しい。特許文献2のセンサでは、所定期間経過する毎にPM燃焼温度に所定時間加熱してリセットするが、この場合もタイミングによってはリセットされないままエンジンが停止するおそれがある。   By the way, when starting the engine, there is a possibility that PM discharged by the previous operation remains attached to the sensor detection unit when the engine is stopped. In the sensor of Patent Document 1, the PM is burned out each time by continuing the heating after the measurement, but the heater temperature of 400 ° C. to 600 ° C. at the time of detection is not necessarily a sufficiently high temperature for PM combustion. If there is not enough time to stop the engine, it is difficult to reliably recover. In the sensor of Patent Document 2, every time a predetermined period elapses, the PM combustion temperature is heated for a predetermined time and reset. However, in this case, the engine may stop without being reset depending on the timing.

そのような場合、センサ検出部に付着して残っているPMの性状が、エンジン停止中または再始動時の環境により変化してしまい、始動後のセンサ出力値の誤差が大きくなりやすい。例えば、エンジン停止時の排気管に含まれる水分やオイル由来成分が付着したり、PMに含まれるSOF分が蒸発したりすると、エンジン停止時の出力値から変化してしまう。   In such a case, the property of the PM remaining on the sensor detection unit changes depending on the environment when the engine is stopped or restarted, and the error of the sensor output value after starting tends to increase. For example, if moisture or oil-derived components contained in the exhaust pipe when the engine is stopped adheres or the SOF content contained in the PM evaporates, the output value changes when the engine is stopped.

そこで本発明は、内燃機関の排気ガス中のPM検出に用いられる電気抵抗式の粒子状物質検出センサにおいて、検出部に堆積した排気微粒子が残留することで、検出精度が低下するのを防止し、常に安定したセンサ出力を得て、高い検出精度を実現できる粒子状物質検出センサを提供することを目的とする。   Therefore, the present invention prevents the detection accuracy from deteriorating due to the remaining exhaust particulate matter remaining in the detection part in the electric resistance type particulate matter detection sensor used for detecting PM in the exhaust gas of the internal combustion engine. An object of the present invention is to provide a particulate matter detection sensor capable of always obtaining a stable sensor output and realizing high detection accuracy.

本発明の請求項1に記載の発明は、内燃機関の排気通路に配設されて、排出ガス中の微粒子状物質の量を検出する粒子状物質検出センサであって、
絶縁性基体の表面に一対の検出用電極を形成した検出部と、該検出部を所定温度に加熱するヒータ部を有するセンサ素子と、
上記検出部に導入される微粒子状物質の量に応じて変化する上記一対の検出用電極間の電気抵抗値を検出するとともに、上記ヒータ部への通電を制御する制御部を有し、
上記制御部には、
上記内燃機関の始動時に上記ヒータ部へ通電して、上記検出部の温度を微粒子状物質が燃焼可能な温度T1にて予め設定した時間S1保持し、上記検出部表面の微粒子状物質を燃焼除去する始動時燃焼制御手段と、
該始動時燃焼制御の後に、上記ヒータ部への通電を制御して上記検出部の温度を上記温度T1より低い温度範囲に保持し、上記検出部に付着する微粒子状物質の検出を行う通常時制御手段を設けることを特徴とする。
The invention according to claim 1 of the present invention is a particulate matter detection sensor which is disposed in an exhaust passage of an internal combustion engine and detects the amount of particulate matter in exhaust gas,
A detection unit having a pair of detection electrodes formed on the surface of the insulating substrate; and a sensor element having a heater unit for heating the detection unit to a predetermined temperature;
A controller that detects an electrical resistance value between the pair of detection electrodes that changes in accordance with the amount of particulate matter introduced into the detector, and that controls the energization of the heater;
In the control unit,
When the internal combustion engine is started, the heater is energized, and the temperature of the detection unit is maintained for a preset time S1 at a temperature T1 at which the particulate matter can burn, and the particulate matter on the surface of the detection unit is removed by combustion. A starting combustion control means,
After the start-up combustion control, the energization to the heater unit is controlled to maintain the temperature of the detection unit in a temperature range lower than the temperature T1, and the particulate matter adhering to the detection unit is detected in a normal time. Control means is provided.

本発明の請求項2に記載の発明において、上記制御部には、上記内燃機関の運転状態に基づいて、始動から上記ヒータ部へ通電するまでのタイミングを決定する通電タイミング決定手段を設ける。   In the invention according to claim 2 of the present invention, the control unit is provided with energization timing determining means for determining a timing from start to energization of the heater unit based on an operating state of the internal combustion engine.

本発明の請求項3に記載の発明において、上記通電タイミング決定手段は、上記内燃機関の排気通路に存在する凝縮水による被水危険度を算出し、算出された被水危険度に応じて上記ヒータ部への通電を遅延させる。   In the invention according to claim 3 of the present invention, the energization timing determining means calculates a water exposure risk due to the condensed water present in the exhaust passage of the internal combustion engine, and determines the water exposure risk according to the calculated water exposure risk. Delay energization to the heater.

本発明の請求項4に記載の発明において、上記始動時燃焼制御手段は、温度T1が600℃以上900℃以下である。   In the invention according to claim 4 of the present invention, the starting combustion control means has a temperature T1 of 600 ° C. or higher and 900 ° C. or lower.

本発明の請求項5に記載の発明において、上記始動時燃焼制御手段は、温度T1を650℃以上であり、時間S1を20秒以上の予め設定した値に制御する。   In the invention according to claim 5 of the present invention, the starting combustion control means controls the temperature T1 to 650 ° C. or more and the time S1 to a preset value of 20 seconds or more.

本発明の請求項6に記載の発明において、上記通常時制御手段は、温度範囲を50℃以上600℃以下の予め設定した値に制御する。   In the invention according to claim 6 of the present invention, the normal time control means controls the temperature range to a preset value between 50 ° C. and 600 ° C.

本発明の請求項7に記載の発明において、櫛歯状の上記一対の検出用電極とリード部を形成して上記検出部とし、上記絶縁性基体の先端部裏面に、ヒータ電極およびリード部を形成して上記ヒータ部とする。   In the invention according to claim 7 of the present invention, the pair of detection electrodes and the lead part having a comb shape are formed as the detection part, and the heater electrode and the lead part are provided on the back surface of the tip part of the insulating substrate. The heater portion is formed.

本発明の請求項1に記載の粒子状物質検出センサは、エンジン停止時、始動する度に、ヒータ部へ通電して検出部に堆積した微粒子状物質を燃焼除去する始動時燃焼制御を実施するので、残留する微粒子状物質の影響で、センサ出力の誤差が大きくなるのを防止できる。したがって、エンジン停止時あるいは再始動時の環境によらず、安定して精度よい検出が可能である。   The particulate matter detection sensor according to claim 1 of the present invention performs start-up combustion control in which the particulate matter accumulated in the detection unit is burned and removed by energizing the heater unit each time the engine is started when the engine is stopped. Therefore, it is possible to prevent an increase in sensor output error due to the influence of the remaining particulate matter. Therefore, stable and accurate detection is possible regardless of the environment when the engine is stopped or restarted.

本発明の請求項2に記載の発明によれば、再始動時の環境が、例えば雰囲気中の水分が付着してセンサ出力の誤差が大きくなり、あるいは被水割れが生じるおそれがある場合には、ヒータ部へ通電するタイミングを遅らせることができる。よって、被水割れ等の不具合を防止しながら、精度よい検出を可能にする。 According to the invention described in claim 2 of the present invention, when the environment at the time of restart is, for example, when moisture in the atmosphere adheres, an error in sensor output may increase, or water cracking may occur. The timing for energizing the heater can be delayed. Therefore, accurate detection is possible while preventing problems such as water cracking.

本発明の請求項3に記載の発明によれば、通電タイミングを決定する際に、被水危険度を算出して判断するので、被水による不具合を確実に防止できる。   According to the invention described in claim 3 of the present invention, when the energization timing is determined, the water exposure risk level is calculated and determined, so that it is possible to reliably prevent problems due to water exposure.

本発明の請求項4に記載の発明によれば、始動時燃焼制御における温度T1を600℃〜900℃以下とすることで、素子耐久性を保持し、エネルギーコストを抑制しながら確実に微粒子状物質を燃焼除去することができる。   According to the invention described in claim 4 of the present invention, the temperature T1 in the start-up combustion control is set to 600 ° C. to 900 ° C. or less, so that the element durability is maintained, and the particulates are surely formed while suppressing the energy cost. Substances can be burned off.

本発明の請求項5に記載の発明によれば、始動時燃焼制御の温度T1を650℃以上とし、時間S1を20秒以上とすることで、効率よく微粒子状物質を燃焼除去することができる。   According to the fifth aspect of the present invention, the particulate matter can be efficiently burned and removed by setting the temperature T1 for starting combustion control to 650 ° C. or more and the time S1 to 20 seconds or more. .

本発明の請求項6に記載の発明によれば、通常時制御では、50℃〜600℃以下の温度範囲に保持することで、安定したセンサ出力を得ることができる。   According to the invention described in claim 6 of the present invention, in the normal control, a stable sensor output can be obtained by maintaining the temperature range of 50 ° C. to 600 ° C. or less.

本発明の請求項7に記載の発明によれば、好適には、一対の検出用電極とリード部にて検出部を構成し、その裏面側にヒータ電極およびリード部からなるヒータ部を積層することで、センサ素子が容易に得られる。   According to the invention described in claim 7 of the present invention, preferably, the detection portion is configured by a pair of detection electrodes and a lead portion, and the heater portion including the heater electrode and the lead portion is laminated on the back side thereof. Thus, the sensor element can be easily obtained.

本発明の第1実施形態であり、(a)は、PMセンサの主要部であるPMセンサ素子構成を示す概略斜視図、(b)は、本発明が適用される自動車用ディーゼルエンジンの排ガス浄化システムの全体構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, (a) is a schematic perspective view which shows PM sensor element structure which is the principal part of PM sensor, (b) is exhaust gas purification of the diesel engine for motor vehicles to which this invention is applied. It is the schematic which shows the whole structure of a system. 図1(b)の要部拡大図であり、自動車用ディーゼルエンジンの排気管に、PMセンサを取り付けた状態を示す概略断面図である。It is a principal part enlarged view of FIG.1 (b), and is a schematic sectional drawing which shows the state which attached the PM sensor to the exhaust pipe of the diesel engine for motor vehicles. 本発明の第1実施形態において、制御回路によるPMセンサのヒータ部への通電制御内容を示すフローチャートである。In 1st Embodiment of this invention, it is a flowchart which shows the electricity supply control content to the heater part of PM sensor by a control circuit. 始動時燃焼制御の詳細内容を示すフローチャートである。It is a flowchart which shows the detailed content of the combustion control at the time of starting. 始動時燃焼制御における素子温度と保持時間の組み合わせを示す図である。It is a figure which shows the combination of element temperature and holding time in combustion control at the time of starting. (a)は、通常制御時のPMセンサ出力の時間経過を示すタイムチャート、(b)は、始動時燃焼制御を実施しない時のPMセンサ出力の時間経過を示すタイムチャート、(c)は、始動時燃焼制御を実施した時のPMセンサ出力の時間経過を示すタイムチャートである。(A) is a time chart showing the time lapse of PM sensor output during normal control, (b) is a time chart showing the lapse of time of PM sensor output when the combustion control at start-up is not performed, and (c) is It is a time chart which shows the time passage of PM sensor output at the time of implementing combustion control at the time of starting.

以下、本発明の粒子状物質検出センサを、内燃機関の排ガス浄化システムへ適用した第1実施形態について、図面を参照しながら説明する。図1(b)は、内燃機関である自動車用ディーゼルエンジンE/Gのシステム概略図であり、粒子状物質検出センサとしてのPMセンサ1を含む排ガス浄化システムの全体構成を示す。図1(a)は、PMセンサ1の主要部であるPMセンサ素子10構成を示す図であり、図2は、図1(b)の要部を拡大した図で、内燃機関である自動車用ディーゼルエンジンE/Gの排気管EXに、PMセンサ1を取り付けた状態を示す。   Hereinafter, a first embodiment in which a particulate matter detection sensor of the present invention is applied to an exhaust gas purification system of an internal combustion engine will be described with reference to the drawings. FIG. 1B is a system schematic diagram of an automotive diesel engine E / G that is an internal combustion engine, and shows an overall configuration of an exhaust gas purification system including a PM sensor 1 as a particulate matter detection sensor. FIG. 1A is a diagram showing a configuration of a PM sensor element 10 which is a main part of the PM sensor 1, and FIG. 2 is an enlarged view of a main part of FIG. The state which attached PM sensor 1 to exhaust pipe EX of diesel engine E / G is shown.

図1(b)のエンジンE/Gは、各気筒に共通のコモンレールRに、高圧ポンプPMPにて昇圧した高圧燃料を所定の噴射圧となるように蓄圧するコモンレール燃料噴射システムを採用し、インジェクタINJによって燃焼室内に直接噴射する直噴エンジンとして構成されている。PMセンサ1は、エンジンE/Gの排気通路である排気管EXにおいて、ディーゼルパティキュレートフィルタDPFの下流に設けられ、エンジンE/G各部とともに制御部となる制御回路2によって制御される。この制御の詳細については後述する。   The engine E / G in FIG. 1B employs a common rail fuel injection system that accumulates high pressure fuel that has been boosted by a high pressure pump PMP in a common rail R that is common to each cylinder so as to achieve a predetermined injection pressure. The engine is configured as a direct injection engine that directly injects into the combustion chamber by INJ. The PM sensor 1 is provided downstream of the diesel particulate filter DPF in the exhaust pipe EX, which is an exhaust passage of the engine E / G, and is controlled by a control circuit 2 serving as a control unit together with each part of the engine E / G. Details of this control will be described later.

まず、図1(b)において、エンジンE/Gのシステム構成について説明する。エンジンE/Gの排気マニホールドMHEXには、タービンTRBが設けられ、タービンTRBに連動して過給器TRBCGRが回転すると、圧縮された空気がインタクーラCLRINTを通過して吸気マニホールドMHINに送られる。排気マニホールドMHEXから排出される燃焼排気の一部はEGRバルブVEGRおよびEGRクーラCLREGRを介して吸気マニホールドMHINに還流する。過給により吸気量を増大して燃焼効率を高め、EGRにより燃焼を緩やかにしてNOx等の排出を抑制する。 First, referring to FIG. 1B, the system configuration of the engine E / G will be described. The exhaust manifold MH EX of the engine E / G is provided with a turbine TRB. When the turbocharger TRB CGR rotates in conjunction with the turbine TRB, the compressed air passes through the intercooler CLR INT and enters the intake manifold MH IN . Sent. A part of the combustion exhaust discharged from the exhaust manifold MH EX returns to the intake manifold MH IN via the EGR valve V EGR and the EGR cooler CLR EGR . The intake amount is increased by supercharging to increase combustion efficiency, and the combustion is moderated by EGR to suppress the emission of NOx and the like.

排気マニホールドMHEXに接続する排気管EXには、ディーゼル酸化触媒DOCおよびディーゼルパティキュレートフィルタDPFが設けられ、燃焼排気ガスを処理する。すなわち、排気管Eに排出された燃焼排気ガスは、上流側のディーゼル酸化触媒DOCを通過する間に、未燃焼の炭化水素HC、一酸化炭素COおよび一酸化窒素NOが酸化され、下流側のディーゼルパティキュレートフィルタDPFを通過する間に、煤粒子(Soot)、可溶性有機成分(SOF)および無機成分からなる微粒子状物質PMが捕集される。 The exhaust pipe EX connected to the exhaust manifold MH EX is provided with a diesel oxidation catalyst DOC and a diesel particulate filter DPF, and processes combustion exhaust gas. That is, while the combustion exhaust gas discharged into the exhaust pipe E passes through the upstream diesel oxidation catalyst DOC, unburned hydrocarbons HC, carbon monoxide CO, and nitrogen monoxide NO are oxidized, and the downstream side While passing through the diesel particulate filter DPF, the particulate matter PM composed of soot particles (Soot), soluble organic components (SOF) and inorganic components is collected.

ディーゼル酸化触媒DOCは公知のモノリス担体、例えばコーディエライト等のセラミックスハニカム構造体よりなる担体表面に、酸化触媒を担持してなる。ディーゼル酸化触媒DOCは、ディーゼルパティキュレートフィルタDPFの強制再生時に、供給される燃料の酸化燃焼により排気温度を上昇させ、あるいは微粒子状物質PM中のSOF成分を酸化除去する。また、NOの酸化により生成するNOは、後段のディーゼルパティキュレートフィルタDPFに堆積した微粒子状物質PMの酸化剤として使用され、連続的な酸化を可能にする。 The diesel oxidation catalyst DOC is formed by supporting an oxidation catalyst on a known monolithic carrier, for example, a carrier surface made of a ceramic honeycomb structure such as cordierite. The diesel oxidation catalyst DOC raises the exhaust temperature by oxidative combustion of the supplied fuel or oxidizes and removes the SOF component in the particulate matter PM during forced regeneration of the diesel particulate filter DPF. Further, NO 2 generated by oxidation of NO is used as an oxidant for the particulate matter PM deposited on the diesel particulate filter DPF at the subsequent stage, and enables continuous oxidation.

ディーゼルパティキュレートフィルタDPFは、公知のウォールフロータイプのフィルタ構造を有する。例えば、コーディエライト等の耐熱性セラミックスよりなる多孔質セラミックスハニカム構造体を成形し、ガス流路となる多数のセルの入口側または出口側のいずれか一方を、隣接するセルで互い違いになるように目封じしてフィルタとする。この時、ガス流路を区画するセル壁を貫通して多数の細孔が形成され、ディーゼルパティキュレートフィルタDPFに導入される排出ガス中の微粒子状物質PMを捕獲する。ディーゼル酸化触媒DOCとディーゼルパティキュレートフィルタDPFを一体化した連続再生式ディーゼルパティキュレートフィルタとして構成することもできる。   The diesel particulate filter DPF has a known wall flow type filter structure. For example, a porous ceramic honeycomb structure made of heat-resistant ceramics such as cordierite is formed, and either the inlet side or the outlet side of a large number of cells serving as gas flow paths are staggered in adjacent cells. Seal the filter to make a filter. At this time, a large number of pores are formed through the cell walls defining the gas flow path, and the particulate matter PM in the exhaust gas introduced into the diesel particulate filter DPF is captured. It can also be configured as a continuously regenerating diesel particulate filter in which the diesel oxidation catalyst DOC and the diesel particulate filter DPF are integrated.

排気管EXには、ディーゼルパティキュレートフィルタDPFに堆積した微粒子状物質PMの量を監視するために、差圧センサSPが設けられる。差圧センサSPは、圧力導入管を介してディーゼルパティキュレートフィルタDPFの上流側および下流側と接続されており、その前後差圧に応じた信号を出力する。また、ディーゼル酸化触媒DOCの上流および、ディーゼルパティキュレートフィルタDPFの上下流には、温度センサS1、S2、S3が配設されて、各部の排気温度を監視している。制御回路2は、これら出力に基づいてディーゼル酸化触媒DOCの触媒活性状態やディーゼルパティキュレートフィルタDPFのPM捕集状態を監視し、PM捕集量が許容量を超えると、強制再生を行って微粒子状物質PMを燃焼除去する再生制御を実施する。   The exhaust pipe EX is provided with a differential pressure sensor SP in order to monitor the amount of particulate matter PM deposited on the diesel particulate filter DPF. The differential pressure sensor SP is connected to the upstream side and the downstream side of the diesel particulate filter DPF via a pressure introducing pipe, and outputs a signal corresponding to the differential pressure before and after that. Further, temperature sensors S1, S2, and S3 are disposed upstream of the diesel oxidation catalyst DOC and upstream and downstream of the diesel particulate filter DPF to monitor the exhaust temperature of each part. Based on these outputs, the control circuit 2 monitors the catalyst activation state of the diesel oxidation catalyst DOC and the PM trapping state of the diesel particulate filter DPF. If the PM trapping amount exceeds an allowable amount, the control circuit 2 performs forced regeneration to generate fine particles. The regeneration control for burning and removing the particulate matter PM is performed.

さらに制御回路2には、エンジンE/Gの運転状態を知るための各種センサ信号、例えばエアフロメータAFMからの吸気量や吸気温度、エンジン潤滑油や冷却水の温度、エンジン回転数、スロットル開度等が入力している。制御回路2は、これら信号に基づいて燃料噴射量、噴射時期等を算出し、燃料噴射を制御する。   Further, the control circuit 2 has various sensor signals for knowing the operating state of the engine E / G, for example, intake air amount and intake air temperature from the air flow meter AFM, engine lubricating oil and cooling water temperature, engine speed, throttle opening degree. Etc. are entered. The control circuit 2 calculates the fuel injection amount, the injection timing, and the like based on these signals, and controls the fuel injection.

本実施形態のPMセンサ1は、ディーゼルパティキュレートフィルタDPFを通過して下流側にすり抜ける微粒子状物質PMを検出する。図1(a)において、PMセンサ素子10は、絶縁性基体である絶縁基板13の表面に、検出部100を構成する一対の検出用電極11、12と電極リード部111、121を有し、絶縁基板13の裏面側には、検出部100を加熱するためのヒータ部300が積層されている。検出部100は電極リード部111、121を介して制御回路2と接続し、検出用電極11、12間の電極間抵抗に応じた値を出力する。ヒータ部300は、絶縁基板32の表面に、ヒータ電極31とヒータリード部311、312が形成され、ヒータリード部311、312を介してヒータ電源21に接続し、制御回路2からの指令により通電が制御される。   The PM sensor 1 of the present embodiment detects the particulate matter PM that passes through the diesel particulate filter DPF and slips downstream. In FIG. 1A, the PM sensor element 10 has a pair of detection electrodes 11 and 12 and electrode lead portions 111 and 121 constituting the detection unit 100 on the surface of an insulating substrate 13 that is an insulating substrate. A heater unit 300 for heating the detection unit 100 is stacked on the back side of the insulating substrate 13. The detection unit 100 is connected to the control circuit 2 via the electrode lead portions 111 and 121, and outputs a value corresponding to the interelectrode resistance between the detection electrodes 11 and 12. The heater unit 300 has a heater electrode 31 and heater lead portions 311 and 312 formed on the surface of the insulating substrate 32, and is connected to the heater power source 21 via the heater lead portions 311 and 312, and is energized by a command from the control circuit 2. Is controlled.

検出部100は、アルミナ等の電気絶縁性および耐熱性に優れたセラミック材料をドクターブレード法、プレス成形法等の公知の手法を用いて平板状の絶縁基板13に形成し、その先端部表面に、所定の電極間距離をおいて対向する櫛歯形状の検出用電極11、12を形成している。検出用電極11、12は、例えば白金等の貴金属を含む導電性ペーストを、所定のパターンに印刷して形成され、同様にして絶縁基板13表面に印刷形成される電極リード部111、121の一端に、それぞれ接続している。ヒータ部300は、同様の手法で平板状の絶縁基板32を形成し、その表面(検出部100側の面)に所定パターンのヒータ電極30とヒータリード部311、312を印刷形成してなる。ヒータ部300のヒータ電極31は、検出用電極11、12の直下に配置されて、検出部100を効率よく所定温度に加熱する。   The detection unit 100 is formed on a flat insulating substrate 13 using a known method such as a doctor blade method or a press molding method with a ceramic material excellent in electrical insulation and heat resistance, such as alumina, and is formed on the surface of the tip portion. Comb-shaped detection electrodes 11 and 12 that face each other at a predetermined inter-electrode distance are formed. The detection electrodes 11 and 12 are formed by printing a conductive paste containing a noble metal such as platinum in a predetermined pattern, and similarly, one ends of electrode lead portions 111 and 121 printed on the surface of the insulating substrate 13. Are connected to each other. The heater unit 300 is formed by forming a flat insulating substrate 32 by the same method, and printing and forming a predetermined pattern of heater electrodes 30 and heater lead portions 311 and 312 on the surface (surface on the detection unit 100 side). The heater electrode 31 of the heater unit 300 is disposed immediately below the detection electrodes 11 and 12 and efficiently heats the detection unit 100 to a predetermined temperature.

図2において、PMセンサ1は、排気管EXの管壁に螺結される筒状ハウジング50を有し、その内部に筒状インシュレータ60に挿入固定されたPMセンサ素子10の上半部を保持している。PMセンサ素子10の下半部は、筒状ハウジング50の下端部に固定されて排気管EX内に突出する中空のカバー体40内に位置している。カバー体40の底部および側部には、ディーゼルパティキュレートフィルタDPFを通過した微粒子状物質PMを含む排出ガスが流出入するための通孔410、411が穿設されている。   In FIG. 2, the PM sensor 1 has a cylindrical housing 50 screwed to the tube wall of the exhaust pipe EX, and holds the upper half of the PM sensor element 10 inserted and fixed in the cylindrical insulator 60 therein. is doing. The lower half of the PM sensor element 10 is positioned in a hollow cover body 40 that is fixed to the lower end of the cylindrical housing 50 and protrudes into the exhaust pipe EX. Through holes 410 and 411 through which exhaust gas containing particulate matter PM that has passed through the diesel particulate filter DPF flows in and out are formed in the bottom and sides of the cover body 40.

この時、微粒子状物質PMを確実に捕捉するため、図示するように、PMセンサ素子100の検出部100が排気管EXの上流側を向くように配置するとよい。また、検出部100を除く絶縁基板13の表面に、電極リード部111、121を覆って絶縁性保護層14を形成すると、リード部111、121間に微粒子状物質PMが堆積することによる誤検出を防止することができる。   At this time, in order to surely capture the particulate matter PM, it is preferable to arrange the detection unit 100 of the PM sensor element 100 so as to face the upstream side of the exhaust pipe EX as illustrated. Further, when the insulating protective layer 14 is formed on the surface of the insulating substrate 13 excluding the detection unit 100 so as to cover the electrode lead units 111 and 121, erroneous detection due to accumulation of particulate matter PM between the lead units 111 and 121. Can be prevented.

次に、PMセンサ1の基本作動について説明する。図2において、被測定ガスとなるエンジンE/Gの排出ガスは、PMセンサ1のカバー体40の上流側の通孔411から内部に導入され、PMセンサ素子100と接触した後、底面の通孔410または下流側の通孔411から排出される。図1(a)において、検出部100の表面には、櫛歯形状の検出用電極11、12が所定の間隙を有して形成されているので、初期状態では非導通状態である。排出ガスと接触することにより、導電性の煤粒子を含む微粒子状物質PMが付着し徐々に堆積すると、ある時点で検出用電極11、12間が導通する。そして、PM堆積量の増加に伴い電極間抵抗は大きく低下するので、この関係に基づいてディーゼルパティキュレートフィルタDPFの故障判定を行うことができる。   Next, the basic operation of the PM sensor 1 will be described. In FIG. 2, the exhaust gas of the engine E / G, which is the gas to be measured, is introduced into the inside through the through hole 411 on the upstream side of the cover body 40 of the PM sensor 1, contacts the PM sensor element 100, and then passes through the bottom surface. The gas is discharged from the hole 410 or the downstream through hole 411. In FIG. 1A, since comb-shaped detection electrodes 11 and 12 are formed on the surface of the detection unit 100 with a predetermined gap, the initial state is a non-conductive state. When the particulate matter PM containing conductive soot particles adheres and gradually accumulates by contacting with the exhaust gas, the detection electrodes 11 and 12 are electrically connected at a certain point. Since the interelectrode resistance greatly decreases as the PM deposition amount increases, the failure determination of the diesel particulate filter DPF can be performed based on this relationship.

例えば、ディーゼルパティキュレートフィルタDPFに、セル壁の破損といった何らかの不具合が生じて、正常な捕集が困難になると、排出ガスとともに放出される微粒子状物質PMが急増する。したがって、制御回路2により、所定期間にディーゼルパティキュレートフィルタDPFをすり抜ける微粒子状物質PMの量をモニタし、正常時よりも明らかに多ければ、異常と判断することができる。なお、正常時であってもPM堆積量が一定量を超えると、電極間抵抗の変化が小さくなり、検出精度が低下するため、通常は、所定期間経過後に、堆積したPMを燃焼除去するセンサ再生制御を行うことが望ましい。   For example, when a certain problem such as a cell wall breakage occurs in the diesel particulate filter DPF and normal collection becomes difficult, the particulate matter PM released together with the exhaust gas rapidly increases. Therefore, the control circuit 2 monitors the amount of the particulate matter PM that passes through the diesel particulate filter DPF during a predetermined period. If the amount is clearly larger than normal, it can be determined as abnormal. Even if it is normal, if the amount of accumulated PM exceeds a certain amount, the change in inter-electrode resistance becomes small and the detection accuracy decreases, so usually a sensor that burns and removes the deposited PM after a predetermined period of time. It is desirable to perform playback control.

ところが、センサ再生制御を行うことなく、エンジンE/Gが停止され、再び始動した場合には、PMセンサ1の検出部100に前回付着した微粒子状物質PMが残留していることになる。この場合、微粒子状物質PMの性状が停止時および再始動時の環境により変化し、センサ出力に影響する。例えば、排気管EXが高温の状態でエンジン停止した場合、付着した微粒子状物質PMの有機成分(SOF)のみ蒸発することが考えられる。すると微粒子状物質PMの導電性が変化し、始動後のセンサ出力が当初の挙動と異なってしまう。また、始動時の環境が低温の場合、排気中の水蒸気により検出部が結露し水分が付着してしまう。するとセンサ作動時の微粒子状物質PMの付着状態が異なったり、あるいは、水分の蒸発によりセンサ出力に誤差が出てしまう。これら停止時、始動時の環境は毎回異なっており、例えば、有機成分(SOF)は、温度や排気成分(酸素濃度)によっては蒸発せずに硬化または燃焼するため、これによって発生する誤差は予測が困難である。   However, when the engine E / G is stopped and restarted without performing the sensor regeneration control, the particulate matter PM previously adhered to the detection unit 100 of the PM sensor 1 remains. In this case, the property of the particulate matter PM changes depending on the environment at the time of stopping and restarting, and affects the sensor output. For example, when the engine is stopped with the exhaust pipe EX at a high temperature, it is conceivable that only the organic component (SOF) of the attached particulate matter PM evaporates. As a result, the conductivity of the particulate matter PM changes, and the sensor output after startup differs from the initial behavior. In addition, when the environment at the time of start-up is low, the detector is condensed by water vapor in the exhaust, and moisture is attached. Then, the adhesion state of the particulate matter PM at the time of sensor operation is different, or an error occurs in the sensor output due to evaporation of moisture. The environment at the time of stopping and starting is different each time. For example, the organic component (SOF) hardens or burns without evaporating depending on the temperature and exhaust component (oxygen concentration), so the error that occurs is predicted. Is difficult.

そこで、本発明では、制御回路2により、始動時および通常時のヒータ部300への通電を制御し、特に始動時に微粒子状物質PMを燃焼除去した後に、通常のPM検出のための制御を実施することで、出力誤差を抑制する。具体的には、
エンジンE/Gの始動時にヒータ部300へ通電して、検出部100の温度を微粒子状物質PMが燃焼可能な温度T1にて予め設定した時間S1保持し、検出部100表面の微粒子状物質PMを燃焼除去する始動時燃焼制御を実施し(始動時燃焼制御手段)、
この始動時燃焼制御の後に、ヒータ部300への通電を制御して検出部300の温度を温度T1より低い温度範囲に保持し、検出部100に付着する微粒子状物質PMの検出を行う通常時制御を実施する(通常時制御手段)。
Therefore, in the present invention, the control circuit 2 controls the energization to the heater unit 300 at the start time and the normal time, and in particular, after the particulate matter PM is burned and removed at the start time, control for normal PM detection is performed. By doing so, the output error is suppressed. In particular,
When the engine E / G is started, the heater unit 300 is energized, and the temperature of the detection unit 100 is maintained for a preset time S1 at a temperature T1 at which the particulate matter PM can burn, and the particulate matter PM on the surface of the detection unit 100 The combustion control at the start to remove the combustion (combustion control means at the start),
After the start-up combustion control, the energization to the heater unit 300 is controlled to keep the temperature of the detection unit 300 in a temperature range lower than the temperature T1, and the particulate matter PM adhering to the detection unit 100 is detected. Control is performed (normal time control means).

始動時燃焼制御において、ヒータ部300への通電開始を始動と同時に行う場合、排気管EX中に凝縮した水が飛散し、高温の検出部100に付着することで割れてしまうことがある。これを防止するためには、排気管EX中の凝縮水が乾燥してなくなるか、飛散してセンサ素子10に付着しなくなるまで、通電開始を遅らせる必要がある。そこで、このような場合には、始動時燃焼制御のための通電を直ちに行わず、エンジンE/Gの運転状態から被水の危険度合いを判断し、被水危険度が許容範囲となるまで通電タイミングを遅らせるのがよい。あるいは、エンジンE/Gの運転状態から算出される被水危険係数と、通電タイミングの関係を予め実験的に求めておき、被水危険係数に応じて決定されるタイミングで、通電を開始することもできる。これにより、被水割れを抑制しながら精度よい検出が可能となる。   In the start-up combustion control, when the energization of the heater unit 300 is started simultaneously with the start-up, water condensed in the exhaust pipe EX may scatter and adhere to the high-temperature detection unit 100 and may break. In order to prevent this, it is necessary to delay the start of energization until the condensed water in the exhaust pipe EX is not dried or scattered and does not adhere to the sensor element 10. Therefore, in such a case, the energization for starting combustion control is not performed immediately, the water exposure risk level is determined from the operating state of the engine E / G, and the energization is performed until the water exposure risk level is within an allowable range. It is better to delay the timing. Alternatively, the relationship between the water exposure risk coefficient calculated from the operating state of the engine E / G and the energization timing is experimentally obtained in advance, and energization is started at a timing determined according to the water exposure risk coefficient. You can also. Thereby, it becomes possible to detect with high accuracy while suppressing water cracking.

次に、図3、4のフローチャートに基づいて、制御回路2にて実施される制御の一例を具体的に説明する。図3において、エンジンE/Gの始動時には、まずステップS100で、各種センサからのデータ取込みを行う。この時、エンジンE/Gの運転状態や排気管EX内の温度条件を知るために、例えば、エンジン冷却水温、潤滑油温を図示しない水温センサ、油温センサから取り込み、外気温としてエアフロメータAFMに内蔵される吸気温センサの出力を、PMセンサ1近傍の排気温としてディーゼルパティキュレートフィルタDPF下流の温度センサS3出力を取り込む。また、エンジンE/Gの回転数や燃料噴射量Q、運転時間等を取り込む。   Next, an example of the control performed by the control circuit 2 will be specifically described based on the flowcharts of FIGS. In FIG. 3, when starting the engine E / G, first, in step S100, data acquisition from various sensors is performed. At this time, in order to know the operating state of the engine E / G and the temperature condition in the exhaust pipe EX, for example, the engine cooling water temperature and the lubricating oil temperature are taken in from a water temperature sensor and an oil temperature sensor (not shown), and the air flow meter AFM is used as the outside temperature. The temperature sensor S3 output downstream of the diesel particulate filter DPF is taken as the output of the intake air temperature sensor built in the exhaust gas near the PM sensor 1. Further, the engine E / G rotation speed, fuel injection amount Q, operating time, and the like are taken in.

ステップS101では、これらデータに基づいて、PMセンサ1の被水危険度を算出する。具体的には、前回の運転停止からの時間と、始動後の運転条件および温度条件から、PMセンサ1より上流の排気管EX内に発生し滞留する凝縮水量を予測し、排気管EX形状から予め求めた関係を用いて被水危険係数を算出することができる。例えば、外気温が低い条件では、運転停止後に排気管EXの温度低下により雰囲気中の水分が凝縮し、あるいは始動直後に低温の排気管EX内に排気が流入すると排気中の水分が凝縮する。また、運転停止からの時間が比較的短く、排気管EX内の温度が比較的高ければ、この凝縮水量は少なく、排気温が上昇して凝縮水が蒸発までの時間も短い。また、凝縮水量が同じであっても、例えば排気管EXが屈曲部を有する形状である場合には、凝縮水が滞留しやすく、排気によって飛散されにくい。したがって、これら条件を変更した実験結果に基づいてマップを作成しておくか、演算式を使用して求めることができる。   In step S101, the water exposure risk of the PM sensor 1 is calculated based on these data. Specifically, the amount of condensed water generated and retained in the exhaust pipe EX upstream from the PM sensor 1 is predicted from the time since the previous operation stop, and the operating conditions and temperature conditions after the start, and from the shape of the exhaust pipe EX The flooding risk coefficient can be calculated using the relationship obtained in advance. For example, under conditions where the outside air temperature is low, moisture in the atmosphere is condensed due to the temperature drop of the exhaust pipe EX after the operation is stopped, or moisture in the exhaust is condensed when the exhaust flows into the low temperature exhaust pipe EX immediately after the start. Further, if the time from the stop of operation is relatively short and the temperature in the exhaust pipe EX is relatively high, the amount of condensed water is small, and the time until the condensed water evaporates due to an increase in exhaust gas temperature is also short. Even if the amount of condensed water is the same, for example, when the exhaust pipe EX has a bent portion, the condensed water tends to stay and is not easily scattered by the exhaust. Therefore, a map can be created based on the experimental results obtained by changing these conditions, or can be obtained using an arithmetic expression.

ステップS102では、ステップS101で求めた被水危険度が一定値より小さいか否かを判定する。この一定値は、PMセンサ1への通電開始により被水割れの可能性がある最低値であり、肯定判定された場合には、被水割れのおそれがない、すなわち通電開始タイミングと判断して、ステップS103の始動時燃焼制御へ進む。否定判断された場合にはステップS100へ戻り、被水割れのおそれがなくなるまで通電を遅延するために、ステップS100〜S102を繰り返す。   In step S102, it is determined whether the water exposure risk obtained in step S101 is smaller than a certain value. This constant value is the lowest value that may cause water cracking due to the start of energization of the PM sensor 1, and if an affirmative determination is made, it is determined that there is no possibility of water cracking, that is, the energization start timing. Then, the process proceeds to start-up combustion control in step S103. If a negative determination is made, the process returns to step S100, and steps S100 to S102 are repeated in order to delay the energization until there is no risk of water cracking.

ステップS103では、始動時燃焼制御により、PMセンサ1のヒータ部300に通電し、微粒子状物質PMを燃焼除去する。この制御の詳細を、図4により説明する。図4のステップS200では、PMセンサ1への微粒子状物質PMの堆積状態を知るために、データ取り込みを行う。この時、
1)前回運転時において、通常制御によるPM燃焼を実施してから運転停止するまでの期間
2)運転停止期間
3)今回の始動から始動時燃焼制御を開始するまでの期間
の各期間について、PMセンサ1に付着した微粒子状物質PM、またはその変化を知るために、各種センサからエンジン冷却水温、潤滑油温、外気温、排気温、エンジン回転数、噴射量Qといった運転状態、温度条件、さらに運転時間等のデータを取り込む。
In step S103, the heater part 300 of the PM sensor 1 is energized by the combustion control at start-up to burn and remove the particulate matter PM. Details of this control will be described with reference to FIG. In step S200 of FIG. 4, data acquisition is performed in order to know the deposition state of the particulate matter PM on the PM sensor 1. At this time,
1) Period from the time when PM combustion is performed by normal control to the time when operation is stopped in the previous operation 2) Operation stop period 3) PM for each period of the period from the current start to the start of start-time combustion control In order to know the particulate matter PM adhering to the sensor 1 or its change, the operation state, temperature conditions such as engine cooling water temperature, lubricating oil temperature, outside air temperature, exhaust temperature, engine speed, injection amount Q from various sensors, Capture data such as operation time.

ステップS201では、これらデータに基づいて、
1)前回運転停止時点において、PMセンサ1に付着している微粒子状物質PMの量
2)運転停止期間中に付着または蒸発する水分、HC分
3)今回の始動から始動時燃焼制御の開始までに付着する微粒子状物質PMの量
を求め、現在の微粒子状物質PMの付着状態(付着量および成分比)を予測する。運転期間中における微粒子状物質PMの付着量、停止中の水分、HC分による変化は、運転状態や排気管EX内の環境によって異なり、予め実験を行って作成したマップを使用するか、理論に基づく演算式を用いて算出することができる。
In step S201, based on these data,
1) The amount of particulate matter PM adhering to the PM sensor 1 at the time of the previous operation stop 2) Moisture adhering or evaporating during the operation stop period, HC content 3) From the current start to the start of start-up combustion control The amount of the particulate matter PM adhering to the particle is obtained, and the current adhesion state (attachment amount and component ratio) of the particulate matter PM is predicted. Changes in the amount of particulate matter PM deposited during operation, moisture during stoppage, and HC content vary depending on the operating conditions and the environment in the exhaust pipe EX. It can be calculated using an arithmetic expression based on it.

次いで、ステップS202に進み、ステップS201で算出した微粒子状物質PMの付着状態(付着量および成分比)から、微粒子状物質PMの燃焼制御条件(温度および時間)を算出する。始動時燃焼制御において、温度T1は微粒子状物質PMが燃焼可能な温度以上、通常、600℃以上とするのがよく、また、センサ素子10の耐久性(ヒータ部300)の観点からは、900℃以下であるとよい。時間S1は温度T1に依存し、温度T1を高くするほど時間S1を短時間とすることができる。制御性の観点からは、時間S1は5分以下とするのがよい。   Next, the process proceeds to step S202, and combustion control conditions (temperature and time) of the particulate matter PM are calculated from the adhesion state (attachment amount and component ratio) of the particulate matter PM calculated in step S201. In the start-up combustion control, the temperature T1 is preferably set to be equal to or higher than the temperature at which the particulate matter PM can be combusted, usually 600 ° C. or higher. It is good that it is below ℃. The time S1 depends on the temperature T1, and the higher the temperature T1, the shorter the time S1 can be. From the viewpoint of controllability, the time S1 is preferably 5 minutes or less.

図5は、素子温度T1と保持時間S1の関係を調べた結果を示す。試験条件は、図1(b)のように排気管EXにPMセンサ1を装着し、エンジンE/G始動後にPMセンサ1のヒータ部300への通電制御を行って所定温度(T1)に時間(S1)保持した時の微粒子状物質PMの付着状態を観察した。この時、素子温度T1は550℃〜750℃とし、保持時間S1を変更して、付着の有無を示した。図示されるように、素子温度T1が600℃の時は保持温度20秒以上、素子温度T1が700℃の時は保持温度10秒以上で、微粒子状物質PMの付着がない状態まで除去できる。素子温度T1が550℃以下では保持時間S1が80秒でも微粒子状物質PMが付着しており、燃焼除去するには、600℃以上とすることが必要となる。好ましくは、素子温度T1650℃以上、保持温度20秒以上とするのがよい。   FIG. 5 shows the result of examining the relationship between the element temperature T1 and the holding time S1. As shown in FIG. 1B, the test condition is that the PM sensor 1 is attached to the exhaust pipe EX, the energization control is performed on the heater unit 300 of the PM sensor 1 after the engine E / G is started, and the time is set to a predetermined temperature (T1). (S1) The adhesion state of the particulate matter PM when held was observed. At this time, the element temperature T1 was set to 550 ° C. to 750 ° C., and the holding time S1 was changed to indicate the presence or absence of adhesion. As shown in the figure, when the element temperature T1 is 600 ° C., the holding temperature is 20 seconds or more, and when the element temperature T1 is 700 ° C., the holding temperature is 10 seconds or more. When the element temperature T1 is 550 ° C. or lower, the particulate matter PM is adhered even when the holding time S1 is 80 seconds, and it is necessary to set the temperature to 600 ° C. or higher for combustion removal. Preferably, the element temperature T1650 ° C. or higher and the holding temperature 20 seconds or higher are preferable.

ステップS203では、始動時燃焼制御を開始し、ステップS202で決定した条件(温度T1、時間S1)にて、PMセンサ1のヒータ部300へ通電制御を行って微粒子状物質PMを燃焼除去する。PMセンサ1のヒータ部300への通電により、検出部100を温度T1にて時間S1保持した後、ステップS204にて、始動時燃焼制御を終了する。   In step S203, start-up combustion control is started, and energization control is performed on the heater unit 300 of the PM sensor 1 under the conditions determined in step S202 (temperature T1, time S1) to burn and remove the particulate matter PM. After the detection unit 100 is held at the temperature T1 for a time S1 by energization of the heater unit 300 of the PM sensor 1, the start-up combustion control is terminated in step S204.

その後、図3のステップS104に進み、通常時制御を開始する。通常時制御では、PMセンサ1のヒータ部300への通電により、検出部100の温度を始動時燃焼制御の温度T1より低い温度範囲に保持し、この状態で検出部100に付着する微粒子状物質PMの検出を行う。具体的には、温度範囲は50℃以上600℃以下の範囲で予め設定した値に制御することで、安定した出力を得ることができる。   Thereafter, the process proceeds to step S104 in FIG. 3, and normal time control is started. In the normal control, the particulate matter adhering to the detection unit 100 in this state is maintained by keeping the temperature of the detection unit 100 in a temperature range lower than the temperature T1 of the start-time combustion control by energizing the heater unit 300 of the PM sensor 1. PM detection is performed. Specifically, a stable output can be obtained by controlling the temperature range to a preset value in the range of 50 ° C. to 600 ° C.

図6(a)は、通常時制御を連続して行った場合のPMセンサ1の出力を示す図であり、検出開始から一定の不感時間経過後に、検出部100の一対の検出用電極11、12間が導通してセンサ出力が立ち上がり、時間経過とともにセンサ出力が急増した後、飽和する特性を示している。これは検出部100に付着する微粒子状物質PMが増加するのに伴い、電極間抵抗が急低下するものの、所定量を超えるとそれ以上抵抗値が変化しなくなるためで、定期的にセンサ再生制御を行って、堆積した微粒子状物質PMを除去する必要がある。この場合のセンサ再生制御は、始動時燃焼制御と同様に行うことができ、微粒子状物質PMが燃焼可能な温度以上で所定時間保持すればよい。例えば、600℃〜900℃、好適には650℃以上で20秒以上、700℃で10秒以上保持する。その後、同様の制御を繰り返し行う。   FIG. 6A is a diagram illustrating the output of the PM sensor 1 when the normal control is continuously performed, and after a certain dead time has elapsed since the start of detection, the pair of detection electrodes 11 of the detection unit 100, The sensor output rises when 12 are connected, and the sensor output rapidly increases with time, and then saturates. This is because the inter-electrode resistance rapidly decreases as the amount of particulate matter PM adhering to the detection unit 100 increases, but the resistance value does not change any more when a predetermined amount is exceeded. To remove the deposited particulate matter PM. The sensor regeneration control in this case can be performed in the same manner as the start-up combustion control, and it may be held for a predetermined time at a temperature at which the particulate matter PM can be combusted or higher. For example, it is maintained at 600 ° C. to 900 ° C., preferably 650 ° C. or higher for 20 seconds or longer, and 700 ° C. for 10 seconds or longer. Thereafter, similar control is repeated.

図6(b)は、通常時制御による検出開始後、センサ再生制御を行うことなく、エンジン停止に至った場合に、再始動時のセンサ出力変化を示す図である。左図は検出部100の一対の検出用電極11、12間が導通しセンサ出力が立ち上がった後に、エンジン停止した場合であり、再始動時に始動時燃焼制御を行っていない。この時、ソーク時の微粒子状物質PMの性状変化、水分付着等により、本来の出力変化(点線)に対してPM感度が変化し、PM堆積量を誤検出するおそれが高い。また、右図はセンサ再生制御後に、検出部100の一対の検出用電極11、12間が導通しセンサ出力が立ち上がった後、不感時間にエンジン停止した場合である。この場合も、センサ再生制御後に堆積した微粒子状物質PMが残留している影響で不感時間が変化し、精度よい検出が困難になる。   FIG. 6B is a diagram showing a change in sensor output at the restart when the engine is stopped without performing the sensor regeneration control after the detection by the normal time control is started. The left figure shows a case where the engine is stopped after the pair of detection electrodes 11 and 12 of the detection unit 100 are conducted and the sensor output rises, and the start-up combustion control is not performed at the time of restart. At this time, the PM sensitivity changes with respect to the original output change (dotted line) due to the change in the properties of the particulate matter PM during soaking, moisture adhesion, and the like, and there is a high possibility of erroneously detecting the PM deposition amount. The right figure shows a case where the engine is stopped in a dead time after the sensor regeneration control, after the pair of detection electrodes 11 and 12 of the detection unit 100 are connected and the sensor output rises. Also in this case, the dead time changes due to the effect that the particulate matter PM deposited after the sensor regeneration control remains, and accurate detection becomes difficult.

これに対して図6(c)は、再始動時に本願発明の始動時燃焼制御を行った場合であり、センサ再生制御を行うことなく、エンジン停止に至った場合でも、PM感度変化や不感時間のずれを生じることなく、微粒子状物質PMの検出を正常に行うことができる。   On the other hand, FIG. 6C shows the case where the start-up combustion control of the present invention is performed at the time of restart, and even when the engine is stopped without performing the sensor regeneration control, the PM sensitivity change and dead time are reduced. The particulate matter PM can be normally detected without causing any deviation.

このようにして形成される本発明の微粒子センサは、高い検出精度を有し、DPFの下流に設置されて、DPFの異常検出に利用することができる。あるいは、DPFの上流に設置されて、DPFに流入する微粒子状物質PMを直接検出するシステムに利用することもできる。   The fine particle sensor of the present invention formed in this way has high detection accuracy, can be installed downstream of the DPF, and can be used for detecting an abnormality of the DPF. Alternatively, it can be used in a system that is installed upstream of the DPF and directly detects the particulate matter PM flowing into the DPF.

DPF ディーゼルパティキュレートフィルタ
EX 排気管(排気通路)
E/G ディーゼルエンジン(内燃機関)
1 PMセンサ(粒子状物質検出センサ)
10 PMセンサ素子(センサ素子)
100 検出部
11、12 検出電極
111、121 電極リード部
13 絶縁性基板(絶縁性基体)
14 絶縁性保護層
2 制御回路(制御部)
21 ヒータ電源
300 ヒータ部
31 ヒータ電極
32 絶縁性基板
311、312 ヒータリード部
40 カバー体
410、411 通孔
50 ハウジング
60 インシュレータ
DPF Diesel particulate filter EX Exhaust pipe (exhaust passage)
E / G diesel engine (internal combustion engine)
1 PM sensor (particulate matter detection sensor)
10 PM sensor element (sensor element)
100 Detection part 11, 12 Detection electrode 111, 121 Electrode lead part 13 Insulating substrate (insulating base)
14 Insulating protective layer 2 Control circuit (control unit)
21 Heater power supply 300 Heater part 31 Heater electrode 32 Insulating substrate 311, 312 Heater lead part 40 Cover body 410, 411 Through hole 50 Housing 60 Insulator

Claims (7)

内燃機関の排気通路に配設されて、排出ガス中の微粒子状物質の量を検出する粒子状物質検出センサであって、
絶縁性基体の表面に一対の検出用電極を形成した検出部と、該検出部を所定温度に加熱するヒータ部を有するセンサ素子と、
上記検出部に導入される微粒子状物質の量に応じて変化する上記一対の検出用電極間の電気抵抗値を検出するとともに、上記ヒータ部への通電を制御する制御部を有し、
上記制御部には、
上記内燃機関の始動時に上記ヒータ部へ通電して、上記検出部の温度を微粒子状物質が燃焼可能な温度T1にて予め設定した時間S1保持し、上記検出部表面の微粒子状物質を燃焼除去する始動時燃焼制御手段と、
該始動時燃焼制御の後に、上記ヒータ部への通電を制御して上記検出部の温度を上記温度T1より低い温度範囲に保持し、上記検出部に付着する微粒子状物質の検出を行う通常時制御手段を設けることを特徴とする粒子状物質検出センサ。
A particulate matter detection sensor that is disposed in an exhaust passage of an internal combustion engine and detects the amount of particulate matter in exhaust gas,
A detection unit having a pair of detection electrodes formed on the surface of the insulating substrate; and a sensor element having a heater unit for heating the detection unit to a predetermined temperature;
A controller that detects an electrical resistance value between the pair of detection electrodes that changes in accordance with the amount of particulate matter introduced into the detector, and that controls the energization of the heater;
In the control unit,
When the internal combustion engine is started, the heater is energized, and the temperature of the detection unit is maintained for a preset time S1 at a temperature T1 at which the particulate matter can burn, and the particulate matter on the surface of the detection unit is removed by combustion. A starting combustion control means,
After the start-up combustion control, the energization to the heater unit is controlled to maintain the temperature of the detection unit in a temperature range lower than the temperature T1, and the particulate matter adhering to the detection unit is detected in a normal time. A particulate matter detection sensor comprising a control means.
上記制御部には、上記内燃機関の運転状態に基づいて、始動から上記ヒータ部へ通電するまでのタイミングを決定する通電タイミング決定手段を設けた請求項1記載の粒子状物質検出センサ。   The particulate matter detection sensor according to claim 1, wherein the control unit is provided with energization timing determining means for determining a timing from start to energization of the heater unit based on an operating state of the internal combustion engine. 上記通電タイミング決定手段は、上記内燃機関の排気通路に存在する凝縮水による被水危険度を算出し、算出された被水危険度に応じて上記ヒータ部への通電を遅延させる請求項2記載の粒子状物質検出センサ。   3. The energization timing determining means calculates a water exposure risk due to condensed water existing in an exhaust passage of the internal combustion engine, and delays the power supply to the heater unit according to the calculated water exposure risk. Particulate matter detection sensor. 上記始動時燃焼制御手段は、温度T1が600℃以上900℃以下である請求項1ないし3のいずれか1項に記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 3, wherein the start-up combustion control means has a temperature T1 of 600 ° C or higher and 900 ° C or lower. 上記始動時燃焼制御手段は、温度T1を650℃以上であり、時間S1を20秒以上の予め設定した値に制御する請求項4記載の粒子状物質検出センサ。   5. The particulate matter detection sensor according to claim 4, wherein the start-up combustion control means controls the temperature T1 to 650 ° C. or more and the time S1 to a preset value of 20 seconds or more. 上記通常時制御手段は、温度範囲を50℃以上600℃以下の予め設定した値に制御する請求項1ないし5のいずれか1項に記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 5, wherein the normal time control means controls the temperature range to a preset value of 50 ° C or more and 600 ° C or less. 櫛歯状の上記一対の検出用電極とリード部を形成して上記検出部とし、上記絶縁性基体の先端部裏面に、ヒータ電極およびリード部を形成して上記ヒータ部とする請求項1ないし6のいずれか1項に記載の粒子状物質検出センサ。   A pair of comb-like detection electrodes and a lead portion are formed as the detection portion, and a heater electrode and a lead portion are formed on the back surface of the distal end portion of the insulating substrate to form the heater portion. 6. The particulate matter detection sensor according to any one of 6 above.
JP2010147862A 2010-06-29 2010-06-29 Particulate matter detection sensor Withdrawn JP2012012960A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010147862A JP2012012960A (en) 2010-06-29 2010-06-29 Particulate matter detection sensor
DE102011078242A DE102011078242A1 (en) 2010-06-29 2011-06-28 Particle detection sensor and control device for controlling the same
US13/170,269 US20110314796A1 (en) 2010-06-29 2011-06-28 Particulate matter detection sensor and control device of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147862A JP2012012960A (en) 2010-06-29 2010-06-29 Particulate matter detection sensor

Publications (1)

Publication Number Publication Date
JP2012012960A true JP2012012960A (en) 2012-01-19

Family

ID=45115927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147862A Withdrawn JP2012012960A (en) 2010-06-29 2010-06-29 Particulate matter detection sensor

Country Status (3)

Country Link
US (1) US20110314796A1 (en)
JP (1) JP2012012960A (en)
DE (1) DE102011078242A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005734A (en) * 2012-06-21 2014-01-16 Hino Motors Ltd Detection method of particulate amount in exhaust gas exhausted from engine and detection device of the same
JP2014134129A (en) * 2013-01-09 2014-07-24 Nippon Soken Inc Particulate matter detection device
JP2015121140A (en) * 2013-12-24 2015-07-02 日野自動車株式会社 Exhaust emission control device
JP2015175321A (en) * 2014-03-17 2015-10-05 株式会社デンソー Filter failure detector and particulate matter detector
WO2015194468A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection device
JP2016037899A (en) * 2014-08-07 2016-03-22 株式会社デンソー Filter failure detection device
JP2016205168A (en) * 2015-04-17 2016-12-08 株式会社デンソー Failure diagnostic device for filter
JP2016217236A (en) * 2015-05-20 2016-12-22 株式会社日本自動車部品総合研究所 Exhaust emission control device of internal combustion engine and particulate matter detection device
JP2017003572A (en) * 2015-06-09 2017-01-05 アモテック シーオー,エルティーディー Particulate matter sensor and exhaust gas purification system using the same
JP2017044191A (en) * 2015-08-28 2017-03-02 日野自動車株式会社 Failure prevention device for exhaust gas sensor
JP2017078373A (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
JP2017078371A (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
KR101755469B1 (en) 2015-12-08 2017-07-07 현대자동차 주식회사 Particleate matter detection sensor
JP2018096906A (en) * 2016-12-15 2018-06-21 株式会社Soken Particulate substance detector
JP2019120238A (en) * 2018-01-11 2019-07-22 ボッシュ株式会社 Exhaust gas estimated temperature error reduction method and vehicle operation control device
KR20210073555A (en) * 2018-11-21 2021-06-18 헤라우스 넥센소스 게엠베하 Improved precious metal paste for screen-printed electrode structures

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438899B2 (en) * 2009-09-02 2013-05-14 Ford Global Technologies, Llc Method for evaluating degradation of a particulate matter sensor
US8230716B2 (en) * 2009-11-09 2012-07-31 Delphi Technologies, Inc. Method and system for diagnostics of a particulate matter sensor
EP2539561B1 (en) * 2010-02-25 2024-07-17 Standard Motor Products, Inc. Soot sensor system
JP5542007B2 (en) * 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector
DE102010054671A1 (en) * 2010-12-15 2012-06-21 Continental Automotive Gmbh Method for operating a soot sensor
WO2012124054A1 (en) * 2011-03-15 2012-09-20 トヨタ自動車株式会社 Control device of internal combustion engine
JP5547126B2 (en) * 2011-05-11 2014-07-09 日本特殊陶業株式会社 Particle detection system
DE112011102087T5 (en) * 2011-07-25 2013-08-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
KR20130037553A (en) * 2011-10-06 2013-04-16 현대자동차주식회사 Exhaust gas processing device
US9051866B2 (en) * 2012-05-22 2015-06-09 GM Global Technology Operations LLC Method and apparatus for monitoring a particulate filter
US9617899B2 (en) * 2012-12-05 2017-04-11 Ford Global Technologies, Llc Methods and systems for a particulate matter sensor
JP2014118968A (en) * 2012-12-17 2014-06-30 Hyundai Motor Company Co Ltd Particulate material sensor unit
JP6182018B2 (en) * 2013-08-21 2017-08-16 日本特殊陶業株式会社 Particle detection system
KR102295760B1 (en) 2013-11-13 2021-09-01 스토너릿지 인코포레이티드 Soot sensor system
US9778160B2 (en) * 2014-06-09 2017-10-03 Ford Global Technologies, Llc System for sensing particulate matter
KR102163738B1 (en) 2014-07-24 2020-10-08 삼성전자주식회사 mobile device being capable of sensing particulate matter and particulate matter sensing method thereof
JP6426072B2 (en) * 2014-10-02 2018-11-21 株式会社Soken Filter failure detection device, particulate matter detection device
JP6547274B2 (en) * 2014-10-20 2019-07-24 株式会社デンソー Particulate matter detection sensor
JP6426976B2 (en) * 2014-10-24 2018-11-21 日本特殊陶業株式会社 Particle detection system
DE102014222844B4 (en) * 2014-11-10 2018-05-09 Continental Automotive Gmbh soot sensor
JP2016153610A (en) * 2015-02-20 2016-08-25 いすゞ自動車株式会社 Exhaust emission control device
JP2016153737A (en) * 2015-02-20 2016-08-25 いすゞ自動車株式会社 Sensor
US10801389B2 (en) 2015-06-09 2020-10-13 Amotech Co., Ltd. Particulate matter sensor and exhaust gas purification system having the same
US10577994B2 (en) 2015-06-24 2020-03-03 Cummins Emission Solutions Inc. Control of multiple reductant insertion assemblies using a single controller
CN107923295B (en) * 2015-08-27 2020-08-04 康明斯排放处理公司 Particulate matter sensor with engineered particle size cut-off
KR101724499B1 (en) * 2015-12-11 2017-04-07 현대자동차 주식회사 Particulate matter sensor and measurement method thereof
US10078043B2 (en) * 2016-03-08 2018-09-18 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
DE102017202766B4 (en) 2017-02-21 2018-11-22 Continental Automotive Gmbh Method for monitoring the particle emission of an internal combustion engine
JP7225923B2 (en) * 2019-03-04 2023-02-21 富士通株式会社 Reinforcement learning method, reinforcement learning program, and reinforcement learning system
JP7379833B2 (en) 2019-03-04 2023-11-15 富士通株式会社 Reinforcement learning methods, reinforcement learning programs, and reinforcement learning systems
CN114562356B (en) * 2021-02-24 2023-03-24 长城汽车股份有限公司 Detection method of vehicle particulate matter sensor, diagnostic instrument and vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244386A (en) 1988-08-05 1990-02-14 Ricoh Co Ltd Pid controller
JP2009144577A (en) 2007-12-13 2009-07-02 Mitsubishi Motors Corp Failure determination device for particulate filter
JP5253130B2 (en) 2008-12-19 2013-07-31 キヤノン株式会社 Image display device, imaging device, and image display method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005734A (en) * 2012-06-21 2014-01-16 Hino Motors Ltd Detection method of particulate amount in exhaust gas exhausted from engine and detection device of the same
JP2014134129A (en) * 2013-01-09 2014-07-24 Nippon Soken Inc Particulate matter detection device
JP2015121140A (en) * 2013-12-24 2015-07-02 日野自動車株式会社 Exhaust emission control device
JP2015175321A (en) * 2014-03-17 2015-10-05 株式会社デンソー Filter failure detector and particulate matter detector
WO2015194468A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection device
JP2016020683A (en) * 2014-06-16 2016-02-04 株式会社デンソー Particulate matter detector
JP2016037899A (en) * 2014-08-07 2016-03-22 株式会社デンソー Filter failure detection device
JP2016205168A (en) * 2015-04-17 2016-12-08 株式会社デンソー Failure diagnostic device for filter
JP2016217236A (en) * 2015-05-20 2016-12-22 株式会社日本自動車部品総合研究所 Exhaust emission control device of internal combustion engine and particulate matter detection device
JP2017003572A (en) * 2015-06-09 2017-01-05 アモテック シーオー,エルティーディー Particulate matter sensor and exhaust gas purification system using the same
JP2017044191A (en) * 2015-08-28 2017-03-02 日野自動車株式会社 Failure prevention device for exhaust gas sensor
JP2017078371A (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
DE112016004815B4 (en) 2015-10-21 2023-03-09 Denso Corporation particle detection device
WO2017069241A1 (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection apparatus
JP2017078373A (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
DE112016004815T5 (en) 2015-10-21 2018-07-19 Denso Corporation Particle detector
DE112016004813T5 (en) 2015-10-21 2018-07-26 Denso Corporation Particle detector
KR101755469B1 (en) 2015-12-08 2017-07-07 현대자동차 주식회사 Particleate matter detection sensor
JP2018096906A (en) * 2016-12-15 2018-06-21 株式会社Soken Particulate substance detector
JP2019120238A (en) * 2018-01-11 2019-07-22 ボッシュ株式会社 Exhaust gas estimated temperature error reduction method and vehicle operation control device
KR20210073555A (en) * 2018-11-21 2021-06-18 헤라우스 넥센소스 게엠베하 Improved precious metal paste for screen-printed electrode structures
JP2022509142A (en) * 2018-11-21 2022-01-20 ヘレウス ネクセンソス ゲゼルシャフト ミット ベシュレンクテル ハフツング Improved precious metal paste for screen-printed electrode structures
US11621100B2 (en) 2018-11-21 2023-04-04 Heraeus Nexensos Gmbh Noble-metal pastes for screen-printed electrode structures
JP7253051B2 (en) 2018-11-21 2023-04-05 ヘレウス ネクセンソス ゲゼルシャフト ミット ベシュレンクテル ハフツング Improved noble metal paste for screen printed electrode structures
KR102567122B1 (en) 2018-11-21 2023-08-14 헤라우스 넥센소스 게엠베하 An improved noble metal paste for screen-printed electrode structures

Also Published As

Publication number Publication date
US20110314796A1 (en) 2011-12-29
DE102011078242A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
JP2012012960A (en) Particulate matter detection sensor
JP2011080439A (en) Device for detecting abnormality of particulate filter
US8561388B2 (en) Failure detection apparatus for particulate filter
JP2012083210A (en) Particulate substance detection sensor
US20120151992A1 (en) Particulate matter detection sensor
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
JP2009144577A (en) Failure determination device for particulate filter
JP2006266961A (en) Soot sensor
JP2012078130A (en) Particulate substance detection sensor and manufacturing method thereof
JP6172466B2 (en) Filter failure detection device and particulate matter detection device
US20130283887A1 (en) Method for operating a soot sensor
JP5811288B2 (en) Abnormality detection device for engine exhaust system
JP6004028B2 (en) Failure diagnosis device for exhaust purification system
JP6372789B2 (en) Filter fault diagnosis device
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
US11230960B2 (en) Failure detection apparatus and failure detection method for particulate filter
JP2011080926A (en) Particulate detecting element
WO2008004704A1 (en) Control unit and control method for internal combustion engine
WO2016147711A1 (en) Particulate matter detection system
JP2017096153A (en) Control device
JP5768892B2 (en) Control device for internal combustion engine
JP2005194935A (en) Exhaust emission control device
JP2006307701A (en) Exhaust emission control device having particulate filter, and internal combustion engine having the exhaust emission control device
WO2015129463A1 (en) Exhaust purification apparatus for internal combustion engine
WO2015053323A1 (en) Exhaust purification system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903