JP2009144577A - Failure determination device for particulate filter - Google Patents

Failure determination device for particulate filter Download PDF

Info

Publication number
JP2009144577A
JP2009144577A JP2007321541A JP2007321541A JP2009144577A JP 2009144577 A JP2009144577 A JP 2009144577A JP 2007321541 A JP2007321541 A JP 2007321541A JP 2007321541 A JP2007321541 A JP 2007321541A JP 2009144577 A JP2009144577 A JP 2009144577A
Authority
JP
Japan
Prior art keywords
particulate filter
failure determination
determination device
dpf
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007321541A
Other languages
Japanese (ja)
Inventor
Kazuhito Kawashima
川島  一仁
Keisuke Tashiro
圭介 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007321541A priority Critical patent/JP2009144577A/en
Publication of JP2009144577A publication Critical patent/JP2009144577A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure determination device for a particulate filter capable of accurately detecting even minor failure. <P>SOLUTION: The failure determination device for the particulate filter is provided with DPF 3 provided on an exhaust passage 4 of an engine 1 and capturing a particulate matter in an exhaust gas; an insulation layer 10 comprising an electric insulation material provided on the exhaust passage 4 so as to be positioned on a downstream side of DPF 3 and deposited with the particulate matter passed through DPF 3; a plurality of electrodes provided on the insulation layer 10 so as to be separated from one another; and ECU 7 for measuring an index correlated to an electric resistance value between the plurality of electrodes 11 and determining the failure of DPF 3 when it is detected that the measured index becomes smaller than a predetermined reference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気ガスを浄化するパティキュレートフィルタの故障判定装置に関する。   The present invention relates to a failure determination device for a particulate filter that purifies exhaust gas from an internal combustion engine.

主に液体燃料の拡散燃焼により出力を取り出すディーゼル機関などでは、パティキュレートマター(PM;Particulate Matter)の排出が問題となる。このPM排出を抑制する手段として、排気系にディーゼルパティキュレートフィルタ(DPF;Diesel Particulate Filter)を設置するものがある。このDPFの故障としては、強制再生時の過堆積PM燃焼(過昇温燃焼)に伴う溶損等が挙げられる。溶損等のように、DPF破損に伴い、大きな開口部が形成される場合には、DPFの前後圧損や温度を計測することで故障を判定することが可能であり、そのような故障モニタシステムが既に知られている。
その一例として、特許文献1では、パティキュレートフィルタの前後差圧と、排気ガスの体積流量に基づいて算出した堆積PM量の時間的変化に基づいてパティキュレートフィルタの故障判定を行う手法が開示されている。
Particulate matter (PM) emission is a problem in diesel engines and the like that extract their output mainly by diffusion combustion of liquid fuel. As a means for suppressing this PM emission, there is one that installs a diesel particulate filter (DPF; Diesel Particulate Filter) in the exhaust system. Examples of the failure of the DPF include melting damage accompanying overdeposition PM combustion (overheated combustion) during forced regeneration. When a large opening is formed due to DPF breakage, such as melting damage, it is possible to determine a failure by measuring the pressure loss and temperature of the DPF before and after, and such a failure monitoring system Is already known.
As an example, Patent Document 1 discloses a method for determining a failure of a particulate filter based on a temporal change in a deposited PM amount calculated based on a differential pressure across the particulate filter and a volume flow rate of exhaust gas. ing.

特開平8−284644号公報JP-A-8-284644

しかしながら、上述の従来の故障モニタシステムは、フィルタの前後圧損を差圧計測により計測する方式であるため、例えばクラック発生等のようなDPFの軽微な故障を的確に判断するのは困難であった。   However, since the above-described conventional failure monitoring system is a method of measuring the pressure loss across the filter by differential pressure measurement, it is difficult to accurately determine minor failures in the DPF such as the occurrence of cracks, for example. .

また、故障モニタシステムに要求される性能は、地球環境問題に対する社会的関心の高まりを背景に、軽微な故障であっても精度よく検知できることが求められる傾向にあり、上記従来例ではこのような社会的要請に十分応えることができない問題がある。   In addition, the performance required for a failure monitoring system tends to be required to be accurately detected even for minor failures against the background of increasing social interest in global environmental problems. There is a problem that cannot fully meet social demands.

本発明は上記課題に鑑みなされたもので、軽微な故障であっても精度よく検知することができるパティキュレートフィルタの故障判定装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a particulate filter failure determination device that can accurately detect even a minor failure.

上記課題を解決する第1の発明に係るパティキュレートフィルタの故障判定装置は、
内燃機関の排気通路に設けられ、排ガス中のパティキュレートマターを捕集するパティキュレートフィルタと、
前記パティキュレートフィルタの下流に位置して前記排気通路に設けられ、前記パティキュレートフィルタを通過したパティキュレートマターが付着する電気絶縁材と、
前記電気絶縁材に相互に離間して設けられた複数の電極と、
前記複数の電極間の電気抵抗値に相関する指標を計測し、計測した指標が所定基準より小さくなったことを検出すると、前記パティキュレートフィルタの故障を判定する制御手段とを備えたことを特徴とする。
A particulate filter failure determination apparatus according to a first invention for solving the above-described problems is provided.
A particulate filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust gas;
An electrical insulating material that is provided in the exhaust passage located downstream of the particulate filter, and to which the particulate matter that has passed through the particulate filter adheres;
A plurality of electrodes provided at a distance from each other in the electrical insulating material;
Control means for measuring an index correlating with an electrical resistance value between the plurality of electrodes and detecting a failure of the particulate filter when detecting that the measured index is smaller than a predetermined reference. And

上記課題を解決する第2の発明に係るパティキュレートフィルタの故障判定装置は、
上記第1の発明に記載のパティキュレートフィルタの故障判定装置において、
前記電気絶縁材は、前記パティキュレートフィルタより小容量であることを特徴とする。
A particulate filter failure determination apparatus according to a second invention for solving the above-mentioned problems is as follows.
In the particulate filter failure determination device according to the first invention,
The electrical insulating material has a smaller capacity than the particulate filter.

上記課題を解決する第3の発明に係るパティキュレートフィルタの故障判定装置は、
上記第1又は第2の発明に記載のパティキュレートフィルタの故障判定装置において、
前記電気絶縁体に設けられたヒータを更に有し、
前記制御手段は、前記ヒータに通電して、前記電気絶縁材に付着したパティキュレートマターを定期的に除去することを特徴とする。
A particulate filter failure determination device according to a third aspect of the present invention for solving the above-described problem is provided.
In the particulate filter failure determination device according to the first or second invention,
A heater provided on the electrical insulator;
The control means energizes the heater to periodically remove particulate matter adhering to the electrical insulating material.

上記課題を解決する第4の発明に係るパティキュレートフィルタの故障判定装置は、
上記第1から第3の発明にいずれかの1つに記載のパティキュレートフィルタの故障判定装置において、
前記制御手段は、排気温度が、凝縮水の気化温度以上で、かつ、パティキュレートマターの燃焼温度以下であるときに、前記計測した指標を評価することを特徴とする。
A particulate filter failure determination device according to a fourth aspect of the present invention for solving the above-described problem is provided.
In the particulate filter failure determination device according to any one of the first to third aspects of the invention,
The control means evaluates the measured index when the exhaust gas temperature is equal to or higher than the vaporization temperature of the condensed water and equal to or lower than the combustion temperature of the particulate matter.

第1の発明によれば、パティキュレートフィルタの下流に電気絶縁材を設け、電気絶縁材に付着するパティキュレートマターによって変化する電気抵抗値に相関する指標を計測し、この指標に基づいて故障を判断するため、パティキュレートフィルタを通過したパティキュレートマターの堆積量に応じた判定を行うことができ、パティキュレートフィルタの性能低下を高精度に判定できる。従って、パティキュレートフィルタの前後差圧などでは検知できないような故障(微小クラック等)であっても、精度良く検知して、パティキュレートフィルタの軽微な故障モニタが可能となる。   According to the first invention, an electrical insulating material is provided downstream of the particulate filter, an index that correlates with an electrical resistance value that varies depending on the particulate matter adhering to the electrical insulating material is measured, and a failure is determined based on the index. Therefore, it is possible to make a determination according to the accumulation amount of the particulate matter that has passed through the particulate filter, and it is possible to determine with a high degree of accuracy the performance of the particulate filter. Therefore, even a failure (such as a microcrack) that cannot be detected by the differential pressure across the particulate filter can be detected with high accuracy, and a minor failure monitoring of the particulate filter can be performed.

第2の発明によれば、電気絶縁材をパティキュレートフィルタより小さくするので、パティキュレートフィルタの性能低下を応答性良く判定でき、装置の大型化も抑制することができる。   According to the second invention, since the electrical insulating material is made smaller than the particulate filter, it is possible to determine the performance deterioration of the particulate filter with good responsiveness, and to suppress the enlargement of the apparatus.

第3、第4の発明によれば、電気絶縁材に付着したパティキュレートマターを定期的に除去するので、又、排気温度が、凝縮水の気化温度以上で、かつ、パティキュレートマターの燃焼温度以下であるときに、計測した指標を評価するので、誤判定を防止して、精度の高い判定を実現することができる。   According to the third and fourth inventions, particulate matter adhering to the electrical insulating material is periodically removed, and the exhaust temperature is equal to or higher than the vaporization temperature of the condensed water, and the combustion temperature of the particulate matter. Since the measured index is evaluated when the following is true, it is possible to prevent erroneous determination and achieve highly accurate determination.

以下、図1〜図4を用いて、本発明に係るパティキュレートフィルタの故障判定装置を詳細に説明する。   Hereinafter, the particulate filter failure determination device according to the present invention will be described in detail with reference to FIGS.

図1(a)は、本発明に係るパティキュレートフィルタの故障判定装置を示す概略図であり、図1(b)は、そのA部分の拡大図である。又、図2は、本発明に係る本発明に係るパティキュレートフィルタの故障判定装置おける制御を説明するフローチャートであり、図3は、その故障判定を説明するグラフである。   FIG. 1A is a schematic diagram showing a particulate filter failure determination apparatus according to the present invention, and FIG. 1B is an enlarged view of a portion A thereof. FIG. 2 is a flowchart for explaining the control in the particulate filter failure determination apparatus according to the present invention, and FIG. 3 is a graph for explaining the failure determination.

本発明における内燃機関は、主に燃料の拡散燃焼により出力を得るディーゼルエンジン(以降、エンジンと呼ぶ。)1であり、図1(a)に示すように、その排気通路4に配置され、排気中のNOをNO2に酸化するディーゼル酸化触媒(Diesel Oxidation Catalyst;以降、DOCと略す。)2と、DOC2の下流に位置して排気通路4に設けられ、排気中のPMを捕集するDPF3を備える。 The internal combustion engine in the present invention is a diesel engine (hereinafter referred to as an engine) 1 that obtains an output mainly by diffusion combustion of fuel, and is disposed in the exhaust passage 4 as shown in FIG. Diesel Oxidation Catalyst (hereinafter abbreviated as DOC) 2 that oxidizes NO in NO 2 , and DPF 3 that is provided downstream of DOC 2 in exhaust passage 4 and collects PM in the exhaust Is provided.

更に、DPF3の下流に位置して排気通路4に設けられ、捕集されずにDPF3を通過したPMの堆積量を計測するPMトラップセンサ5を備えている。PMトラップセンサ5のセンサヘッド6は、排気通路4の内部に配置されており、このセンサヘッド6で検知したPMの堆積量を電子制御装置(制御手段;以降、ECU(Electronics Control Unit)と略す。)7がモニタすることにより、後述する制御を行っている。   Furthermore, a PM trap sensor 5 is provided in the exhaust passage 4 that is located downstream of the DPF 3 and measures the accumulated amount of PM that has passed through the DPF 3 without being collected. The sensor head 6 of the PM trap sensor 5 is disposed inside the exhaust passage 4, and the amount of PM detected by the sensor head 6 is abbreviated as an electronic control device (control means; hereinafter referred to as an ECU (Electronics Control Unit)). .) The control described later is performed by 7 monitoring.

PMトラップセンサ5について、図1(b)を参照して、更に詳細に説明する。
PMトラップセンサ5のセンサヘッド6は、捕集されずにDPF3を通過したPM16が付着する電気絶縁材からなる絶縁層10と、相互に離間して絶縁層10に設けられた2本以上の複数の電極11と、複数の電極11間の電気抵抗値を測定する測定器12とを有している。なお、電気抵抗値に代えて、電気抵抗値に相関する指標、例えば、電流、電圧を測定するようにしてもよい。又、絶縁層10としては、例えば、アルミナ等を使用する。
The PM trap sensor 5 will be described in more detail with reference to FIG.
The sensor head 6 of the PM trap sensor 5 includes an insulating layer 10 made of an electrical insulating material to which PM 16 that has passed through the DPF 3 without being collected and two or more plural pieces provided on the insulating layer 10 apart from each other. Electrode 11 and a measuring instrument 12 for measuring the electrical resistance value between the plurality of electrodes 11. Instead of the electrical resistance value, an index correlated with the electrical resistance value, for example, a current or a voltage may be measured. As the insulating layer 10, for example, alumina or the like is used.

更に、絶縁層10には、絶縁層10を加熱するヒータ層13を設けており、ヒータ層13の加熱抵抗14にヒータ制御電源15からの電圧を付与することにより、絶縁層10をPM燃焼温度以上に加熱しており、これにより、絶縁層10に付着したPMを燃焼させている。   Further, the insulating layer 10 is provided with a heater layer 13 for heating the insulating layer 10, and by applying a voltage from the heater control power supply 15 to the heating resistor 14 of the heater layer 13, the insulating layer 10 is heated to the PM combustion temperature. As a result, the PM adhering to the insulating layer 10 is burned.

なお、この絶縁層10は、DPF3と比較して、小容量となる大きさのものである。これは、絶縁層10を小容量とすることにより、DPF3の性能低下を応答性良く判定すると共に、装置の大型化を抑制するためである。   Note that the insulating layer 10 has a smaller capacity than the DPF 3. This is to reduce the performance of the DPF 3 with good responsiveness and reduce the size of the device by reducing the capacity of the insulating layer 10.

詳細は図3において説明するが、センサヘッド6においては、PM16が絶縁層10に堆積していくと、電極11間の電気抵抗値に変化が現れるため、この変化をとらえることにより、軽微な故障を検知可能にしている。   Although details will be described with reference to FIG. 3, in the sensor head 6, when PM 16 is deposited on the insulating layer 10, a change appears in the electric resistance value between the electrodes 11. Can be detected.

ここで、図2、図3を参照して、本発明に係るパティキュレートフィルタの故障判定装置おける制御を説明する。   Here, with reference to FIG. 2 and FIG. 3, the control in the particulate filter failure determination apparatus according to the present invention will be described.

ECU7において、前回PMトラップセンサ5をリセット(リセットについては後述する。)してからの経過期間をモニタしておく。そして、所定期間経過している場合には、ステップS2へ進み、所定期間経過していない場合には、ステップS3へ進む(ステップS1)。経過期間としては、例えば、車両の走行距離、走行時間、使用燃料量を積算することにより行う。   In the ECU 7, the elapsed period since the previous PM trap sensor 5 was reset (the reset will be described later) is monitored. If the predetermined period has elapsed, the process proceeds to step S2, and if the predetermined period has not elapsed, the process proceeds to step S3 (step S1). For example, the elapsed period is obtained by integrating the travel distance, travel time, and amount of fuel used.

所定期間経過している場合には、PMトラップセンサ5のリセットを行う(ステップS2)。つまり、後述する電気抵抗値の計測精度を向上させるため、定期的(所定の走行時間毎、所定の走行距離毎、使用燃料量毎)にPMトラップセンサ5のリセットを行っている。   If the predetermined period has elapsed, the PM trap sensor 5 is reset (step S2). That is, the PM trap sensor 5 is reset periodically (every predetermined travel time, every predetermined travel distance, every amount of fuel used) in order to improve the measurement accuracy of the electrical resistance value described later.

ここで、PMトラップセンサ5のリセットについて説明する。図1(b)に示したように、センサヘッド6において、絶縁層10にはヒータ層13が設けられており、このヒータ層13を用いて、絶縁層10をPM燃焼温度以上に加熱可能になっている。そして、所定期間経過した場合には、ヒータ層13の加熱抵抗14に通電し、絶縁層10をPM燃焼温度以上に所定時間加熱し、付着したPMを燃焼して、絶縁層10に付着したPMを除去することで、PMトラップセンサ5自体のリセットを行っている。   Here, reset of the PM trap sensor 5 will be described. As shown in FIG. 1B, in the sensor head 6, the insulating layer 10 is provided with a heater layer 13, and the heater layer 13 can be used to heat the insulating layer 10 to the PM combustion temperature or higher. It has become. When a predetermined period has elapsed, the heating resistor 14 of the heater layer 13 is energized, the insulating layer 10 is heated to a temperature equal to or higher than the PM combustion temperature for a predetermined time, the adhered PM is burned, and the PM adhered to the insulating layer 10 The PM trap sensor 5 itself is reset by removing.

これは、DPF3が正常に機能していても、OBD規制値未満の数値ではあるが、DPF3を通過してくるPMが存在し、そのように微量なPMであっても、絶縁層10に付着し積層していけば、絶縁層10における電気抵抗値測定に誤差を生じる可能性があるからである。そこで、本発明においては、そのような誤差を抑えて、誤判定が生じないようにするため、PMトラップセンサ5のリセットを行っている。   This is a numerical value less than the OBD regulation value even if the DPF 3 is functioning normally, but there is PM passing through the DPF 3, and even such a minute amount of PM adheres to the insulating layer 10. This is because if the layers are stacked, an error may occur in the measurement of the electric resistance value in the insulating layer 10. Therefore, in the present invention, the PM trap sensor 5 is reset in order to suppress such an error and prevent erroneous determination.

次に、同様に、計測精度を向上させるため、電極11間の電気抵抗値をモニタ可能な条件を満足しているかどうか確認する。そして、モニタ可能な条件を満足している場合には、ステップS4へ進み、モニタ可能な条件を満足していない場合には、本制御を終了する(ステップS3)。   Next, similarly, in order to improve the measurement accuracy, it is confirmed whether or not a condition for monitoring the electrical resistance value between the electrodes 11 is satisfied. If the monitorable condition is satisfied, the process proceeds to step S4. If the monitorable condition is not satisfied, the present control is terminated (step S3).

電気抵抗値をモニタ可能な条件は、具体的には、排気温度を測定する温度センサ(図示省略)をECU7でモニタすることにより、排気温度が凝縮水の気化温度(≒100℃)以上であり、かつ、PMの燃焼温度以下であるか確認している。これは、絶縁層10に凝縮水が付着している状態であると、その凝縮水(導電体)の影響により、電気抵抗値測定に誤差を生じる可能性があるためである。抵抗値をモニタするタイミングとしては、例えば、排気通路4の凝縮水による影響を排除するべく、凝縮水が気化する温度となって、この温度が所定時間経過した後に実施するか、又は、凝縮水の気化温度以上、PMの燃焼温度以下にヒータ層13の温度を設定し、安定したところでモニタを行うようにしている。   Specifically, the conditions under which the electrical resistance value can be monitored are such that the exhaust temperature is equal to or higher than the vaporization temperature of the condensed water (≈100 ° C.) by monitoring a temperature sensor (not shown) for measuring the exhaust temperature with the ECU 7. And it is confirmed whether it is below the combustion temperature of PM. This is because if the condensed water adheres to the insulating layer 10, an error may occur in the electrical resistance measurement due to the influence of the condensed water (conductor). As the timing for monitoring the resistance value, for example, in order to eliminate the influence of the condensed water in the exhaust passage 4, the temperature becomes a temperature at which the condensed water evaporates, and this temperature is measured after a predetermined time has elapsed, or the condensed water is condensed. The temperature of the heater layer 13 is set to be equal to or higher than the vaporization temperature and equal to or lower than the combustion temperature of PM, and monitoring is performed when the temperature is stabilized.

電気抵抗値をモニタ可能な条件である場合には、次に、電極11間の電気抵抗値をモニタし、異常があるかどうか確認し、その評価を行う。そして、異常がある場合には、ステップS5へ進み、異常がない場合には、本制御を終了する(ステップS4)。   If the conditions are such that the electrical resistance value can be monitored, then the electrical resistance value between the electrodes 11 is monitored to check whether there is an abnormality and to evaluate it. If there is an abnormality, the process proceeds to step S5. If there is no abnormality, the present control is terminated (step S4).

このとき、異常があるかどうかの判定は、図3に示すグラフを用いて判定する。図3に示すグラフは、予め、PMトラップセンサ5に堆積したPMの堆積量と電極11間の抵抗値との関係を求め、この関係に基づいて、故障判定閾値Rt(所定基準)を求めておく。これは、PM(すす)が導電体であるため、当初電極間抵抗値が絶縁状態であったものが、PMの堆積量に応じて電極間抵抗値が低下するためである。そして、モニタした電気抵抗値が故障判定閾値Rtより小さくなったことを検出したとき、DPF3に軽微な故障があると判定する。この故障判定閾値Rtは、例えば、OBD(On Board Diagnosis)規制値を基準にして規定すればよい。   At this time, whether there is an abnormality is determined using the graph shown in FIG. The graph shown in FIG. 3 obtains a relationship between the amount of PM deposited on the PM trap sensor 5 and the resistance value between the electrodes 11 in advance, and obtains a failure determination threshold Rt (predetermined reference) based on this relationship. deep. This is because, since PM (soot) is a conductor, the resistance value between the electrodes that was initially in an insulating state decreases depending on the amount of PM deposited. When it is detected that the monitored electrical resistance value is smaller than the failure determination threshold value Rt, it is determined that there is a minor failure in the DPF 3. The failure determination threshold value Rt may be defined based on, for example, an OBD (On Board Diagnosis) regulation value.

DPF3の故障により、DPF3に捕集されないPMが増えた場合には、例え、微小クラックの発生等の軽微な故障であっても、DPF3の下流に配置したPMトラップセンサ5へのPMの堆積量が増加する。そして、所定の堆積量を超えると、モニタした電気抵抗値が故障判定閾値Rtより低下することになり、よって、DPF3の故障と判定することができる。   When PM that is not collected by DPF 3 increases due to failure of DPF 3, even if it is a minor failure such as generation of a microcrack, the amount of PM deposited on PM trap sensor 5 arranged downstream of DPF 3 Will increase. Then, when the predetermined accumulation amount is exceeded, the monitored electric resistance value falls below the failure determination threshold value Rt, and therefore, it can be determined that the DPF 3 has failed.

次に、電極11間の電気抵抗値に異常がある場合には、警告灯を点灯すると共にECU11のメモリに故障を記憶しておく(ステップS5)。   Next, when there is an abnormality in the electrical resistance value between the electrodes 11, a warning lamp is turned on and a failure is stored in the memory of the ECU 11 (step S5).

このように、上記制御においては、PMトラップセンサ5を用い、付着するPMの堆積量によって変化する電気抵抗値に基づいて故障を判断するため、DPF3を通過したPMの堆積量に応じた判定を行うことができ、DPF3の前後差圧等では検知できないような故障(微小クラック等)であっても、DPF3の性能低下を高精度に判定でき、応答性良く、精度良い故障モニタが可能となる。   As described above, in the above control, the PM trap sensor 5 is used to determine a failure based on the electrical resistance value that changes depending on the amount of deposited PM. Therefore, the determination according to the amount of accumulated PM passing through the DPF 3 is performed. Even if a failure (such as a microcrack) that cannot be detected by the differential pressure across the DPF 3 can be performed, it is possible to determine the performance degradation of the DPF 3 with high accuracy, and it is possible to monitor the failure with good responsiveness and accuracy. .

図4は、本発明に係るパティキュレートフィルタの故障判定装置の他の一例を示す概略図であり、実施例1に示したパティキュレートフィルタの故障判定装置の変形例を示すものである。従って、実施例1に示した構成と同等のものには同じ符号を付し、重複する説明は省略する。   FIG. 4 is a schematic diagram illustrating another example of the particulate filter failure determination apparatus according to the present invention, and illustrates a modification of the particulate filter failure determination apparatus according to the first embodiment. Accordingly, the same components as those shown in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施例のパティキュレートフィルタの故障判定装置は、DPF3自体の下流側に、PMトラップセンサ20を設けたものである。PMトラップセンサ20自体の構成は、図1(b)に示すPMトラップセンサ5と同様に、電気絶縁材からなる絶縁層及び絶縁層に設けた複数の電極を備え、測定器21で複数の電極間の抵抗値(又は、抵抗値に相関する電流値、電圧値)を測定可能な構成である。このPMトラップセンサ20の構成は、実施例1におけるセンサヘッド6にヒータ層13の内蔵が困難な場合、DPF3の強制再生時に、DPF3と同様に温度が上昇する位置、具体的には、DPF3自体の下流側にPMトラップセンサ20を配置して、ヒータ自体を省略した構成である。なお、本実施例における電気絶縁材も、DPF3と比較して、小容量となる大きさのものである。   The particulate filter failure determination apparatus according to the present embodiment includes a PM trap sensor 20 on the downstream side of the DPF 3 itself. Similar to the PM trap sensor 5 shown in FIG. 1B, the PM trap sensor 20 itself includes an insulating layer made of an electrical insulating material and a plurality of electrodes provided on the insulating layer. It is the structure which can measure the resistance value between (or the electric current value and voltage value which correlate with resistance value). The configuration of the PM trap sensor 20 is such that when it is difficult to incorporate the heater layer 13 in the sensor head 6 in the first embodiment, when the DPF 3 is forcedly regenerated, the temperature rises similarly to the DPF 3, specifically, the DPF 3 itself. The PM trap sensor 20 is disposed downstream of the heater, and the heater itself is omitted. In addition, the electrical insulating material in a present Example is also a thing of the magnitude | size used as a small capacity | capacitance compared with DPF3.

そして、本実施例のパティキュレートフィルタの故障判定装置においても、実施例1の図2、図3に示した制御を用いて、DPF3の故障判定が可能である。但し、本実施例のPMトラップセンサ20は、ヒータを備えていないので、センサリセットをする場合には、DPF3の強制再生時に、PMの燃焼温度以上に加熱したDPF3の熱を利用して、PMトラップセンサ20の電気絶縁材に付着したPMを燃焼し、除去することで、PMトラップセンサ20自体のリセットを行っている。   Also in the particulate filter failure determination apparatus of the present embodiment, it is possible to determine the failure of the DPF 3 using the control shown in FIGS. 2 and 3 of the first embodiment. However, since the PM trap sensor 20 of the present embodiment does not include a heater, when the sensor is reset, the heat of the DPF 3 heated to a temperature equal to or higher than the combustion temperature of the PM is used when the DPF 3 is forcibly regenerated. The PM trap sensor 20 itself is reset by burning and removing the PM adhering to the electrical insulating material of the trap sensor 20.

本発明は、パティキュレートフィルタの故障判定を実施するものであり、軽微な故障であっても判定可能なものである。   The present invention performs failure determination of a particulate filter and can determine even a minor failure.

(a)は、本発明に係るパティキュレートフィルタの故障判定装置を示す概略図であり、(b)は、そのA部分の拡大図である。(A) is the schematic which shows the failure determination apparatus of the particulate filter which concerns on this invention, (b) is the enlarged view of the A section. 本発明に係る本発明に係るパティキュレートフィルタの故障判定装置おける制御を説明するフローチャートである。It is a flowchart explaining the control in the failure determination apparatus of the particulate filter concerning the present invention concerning the present invention. 本発明に係る本発明に係るパティキュレートフィルタの故障判定装置おける故障判定を説明するグラフである。It is a graph explaining the failure determination in the failure determination apparatus of the particulate filter concerning the present invention concerning the present invention. 本発明に係るパティキュレートフィルタの故障判定装置の他の一例を示す概略図である。It is the schematic which shows another example of the failure determination apparatus of the particulate filter which concerns on this invention.

符号の説明Explanation of symbols

1 エンジン
2 DOC
3 DPF
4 排気通路
5、20 PMトラップセンサ
6 センサヘッド
10 絶縁層
11 電極
12、21 測定器
13 ヒータ層
14 加熱抵抗
15 ヒータ制御電源
1 Engine 2 DOC
3 DPF
4 Exhaust passage 5, 20 PM trap sensor 6 Sensor head 10 Insulating layer 11 Electrode 12, 21 Measuring device 13 Heater layer 14 Heating resistance 15 Heater control power supply

Claims (4)

内燃機関の排気通路に設けられ、排ガス中のパティキュレートマターを捕集するパティキュレートフィルタと、
前記パティキュレートフィルタの下流に位置して前記排気通路に設けられ、前記パティキュレートフィルタを通過したパティキュレートマターが付着する電気絶縁材と、
前記電気絶縁材に相互に離間して設けられた複数の電極と、
前記複数の電極間の電気抵抗値に相関する指標を計測し、計測した指標が所定基準より小さくなったことを検出すると、前記パティキュレートフィルタの故障を判定する制御手段とを備えたことを特徴とするパティキュレートフィルタの故障判定装置。
A particulate filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust gas;
An electrical insulating material that is provided in the exhaust passage located downstream of the particulate filter, and to which the particulate matter that has passed through the particulate filter adheres;
A plurality of electrodes provided at a distance from each other in the electrical insulating material;
Control means for measuring an index correlating with an electrical resistance value between the plurality of electrodes and detecting a failure of the particulate filter when detecting that the measured index is smaller than a predetermined reference. Particulate filter failure determination device.
請求項1に記載のパティキュレートフィルタの故障判定装置において、
前記電気絶縁材は、前記パティキュレートフィルタより小容量であることを特徴とするパティキュレートフィルタの故障判定装置。
In the particulate filter failure determination device according to claim 1,
The particulate filter failure determination device, wherein the electrical insulating material has a smaller capacity than the particulate filter.
請求項1又は請求項2に記載のパティキュレートフィルタの故障判定装置において、
前記電気絶縁体に設けられたヒータを更に有し、
前記制御手段は、前記ヒータに通電して、前記電気絶縁材に付着したパティキュレートマターを定期的に除去することを特徴とするパティキュレートフィルタの故障判定装置。
In the particulate filter failure determination device according to claim 1 or 2,
A heater provided on the electrical insulator;
The particulate filter failure determination device, wherein the control means periodically energizes the heater to remove particulate matter adhering to the electrical insulating material.
請求項1から請求項3のいずれか1つに記載のパティキュレートフィルタの故障判定装置において、
前記制御手段は、排気温度が、凝縮水の気化温度以上で、かつ、パティキュレートマターの燃焼温度以下であるときに、前記計測した指標を評価することを特徴とするパティキュレートフィルタの故障判定装置。
In the particulate filter failure determination device according to any one of claims 1 to 3,
The particulate filter failure determination device characterized in that the control means evaluates the measured index when the exhaust temperature is equal to or higher than the vaporization temperature of the condensed water and equal to or lower than the combustion temperature of the particulate matter. .
JP2007321541A 2007-12-13 2007-12-13 Failure determination device for particulate filter Pending JP2009144577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321541A JP2009144577A (en) 2007-12-13 2007-12-13 Failure determination device for particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321541A JP2009144577A (en) 2007-12-13 2007-12-13 Failure determination device for particulate filter

Publications (1)

Publication Number Publication Date
JP2009144577A true JP2009144577A (en) 2009-07-02

Family

ID=40915468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321541A Pending JP2009144577A (en) 2007-12-13 2007-12-13 Failure determination device for particulate filter

Country Status (1)

Country Link
JP (1) JP2009144577A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042226A1 (en) 2009-10-09 2011-04-28 Denso Corporation, Kariya-City Abnormality detector for use in particulate filter of exhaust gas-purification system of diesel engine for motor vehicles, has judging unit which determines if particulate filter is abnormal when difference value exceeds predetermined value
WO2011093313A1 (en) * 2010-01-27 2011-08-04 いすゞ自動車株式会社 Particulate matter sensor
JP2011179467A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Failure diagnostic device for particulate filter
JP2011185167A (en) * 2010-03-09 2011-09-22 Toyota Motor Corp Failure determining device of particulate filter
JP2011256811A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Pm amount detection system
DE102011078242A1 (en) 2010-06-29 2011-12-29 Denso Corporation Particle detection sensor and control device for controlling the same
JP2012017678A (en) * 2010-07-07 2012-01-26 Toyota Motor Corp Failure detecting device for filter of internal combustion engine
US20120031078A1 (en) * 2010-08-06 2012-02-09 Denso Corporation Sensor controller
JP2012037370A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller and exhaust treatment system having the same
JP2012037371A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller
JP2012037373A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller
JP2012062769A (en) * 2010-09-14 2012-03-29 Denso Corp Engine control device
WO2012053097A1 (en) * 2010-10-22 2012-04-26 トヨタ自動車株式会社 Filter failure detection device for internal combustion engine
WO2012063303A1 (en) * 2010-11-08 2012-05-18 トヨタ自動車株式会社 Internal combustion engine particulate matter detection device
DE102011087924A1 (en) 2010-12-08 2012-06-14 Denso Corporation Error detection device for a particle filter
JP2012127268A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Control device for internal combustion engine
WO2012095943A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Pm quantity detecting apparatus and apparatus for detecting failure of particulate filter
WO2012104994A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
WO2012104995A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012189049A (en) * 2011-03-14 2012-10-04 Denso Corp Particulate matter detector and fault detection device for particulate filter
WO2013018224A1 (en) 2011-08-04 2013-02-07 トヨタ自動車株式会社 Device for controlling internal combustion engine
CN102959187A (en) * 2010-12-07 2013-03-06 丰田自动车株式会社 Device for detecting particulate substance in internal combustion engine
JP2013047670A (en) * 2011-06-27 2013-03-07 Delphi Technologies Inc Particulate substance detection method for particulate substance sensor
WO2013030930A1 (en) 2011-08-29 2013-03-07 トヨタ自動車株式会社 Microparticle sensor and method for manufacturing microparticle sensor
JP2013068197A (en) * 2011-09-26 2013-04-18 Denso Corp Detection system
WO2013061421A1 (en) 2011-10-26 2013-05-02 トヨタ自動車株式会社 Device for controlling internal combustion engine
JP2013087645A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Exhaust gas control device for internal combustion engine
WO2013073006A1 (en) 2011-11-15 2013-05-23 トヨタ自動車株式会社 Method for controlling and device for controlling internal combustion engine
WO2013076869A1 (en) 2011-11-25 2013-05-30 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013094021A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Failure detection device for electrically heated catalyst
WO2014076818A1 (en) 2012-11-16 2014-05-22 トヨタ自動車株式会社 Device for detecting abnormality in engine exhaust system
US8775053B2 (en) 2010-08-17 2014-07-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US20140216014A1 (en) * 2011-10-26 2014-08-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2015046445A1 (en) 2013-09-27 2015-04-02 いすゞ自動車株式会社 Diagnosing device
JP2015135078A (en) * 2014-01-17 2015-07-27 トヨタ自動車株式会社 filter abnormality determination system
JP2015218580A (en) * 2014-05-14 2015-12-07 日野自動車株式会社 PM detection device
JP2016037899A (en) * 2014-08-07 2016-03-22 株式会社デンソー Filter failure detection device
WO2016125436A1 (en) * 2015-02-02 2016-08-11 株式会社デンソー Particulate detection device
JP2016205168A (en) * 2015-04-17 2016-12-08 株式会社デンソー Failure diagnostic device for filter
RU2720598C2 (en) * 2015-06-18 2020-05-12 Форд Глобал Текнолоджиз, Ллк Dual-mode leak monitoring in diesel particulate filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218655U (en) * 1985-07-18 1987-02-04
JPH0868313A (en) * 1994-08-29 1996-03-12 Isuzu Ceramics Kenkyusho:Kk Control device for diesel particulate filter
WO2005124313A1 (en) * 2004-06-16 2005-12-29 Robert Bosch Gmbh Method for influencing the deposition of soot on sensors
WO2006027288A1 (en) * 2004-09-07 2006-03-16 Robert Bosch Gmbh Sensor element for particle sensors and method for operating the sensor element
WO2006061278A1 (en) * 2004-12-10 2006-06-15 Robert Bosch Gmbh Resistive particle sensors with measuring electrodes
WO2007000446A1 (en) * 2005-06-28 2007-01-04 Siemens Vdo Automotive Ag Sensor and operating method for detecting soot
JP2007304068A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Exhaust fine particle measuring device
JP2007315275A (en) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd Exhaust gas purifying filter failure diagnosis device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218655U (en) * 1985-07-18 1987-02-04
JPH0868313A (en) * 1994-08-29 1996-03-12 Isuzu Ceramics Kenkyusho:Kk Control device for diesel particulate filter
WO2005124313A1 (en) * 2004-06-16 2005-12-29 Robert Bosch Gmbh Method for influencing the deposition of soot on sensors
WO2006027288A1 (en) * 2004-09-07 2006-03-16 Robert Bosch Gmbh Sensor element for particle sensors and method for operating the sensor element
WO2006061278A1 (en) * 2004-12-10 2006-06-15 Robert Bosch Gmbh Resistive particle sensors with measuring electrodes
WO2007000446A1 (en) * 2005-06-28 2007-01-04 Siemens Vdo Automotive Ag Sensor and operating method for detecting soot
JP2007304068A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Exhaust fine particle measuring device
JP2007315275A (en) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd Exhaust gas purifying filter failure diagnosis device and method

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042226A1 (en) 2009-10-09 2011-04-28 Denso Corporation, Kariya-City Abnormality detector for use in particulate filter of exhaust gas-purification system of diesel engine for motor vehicles, has judging unit which determines if particulate filter is abnormal when difference value exceeds predetermined value
WO2011093313A1 (en) * 2010-01-27 2011-08-04 いすゞ自動車株式会社 Particulate matter sensor
JP2011153930A (en) * 2010-01-27 2011-08-11 Isuzu Motors Ltd Pm (particulate matter) sensor
JP2011179467A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Failure diagnostic device for particulate filter
US8696776B2 (en) 2010-03-09 2014-04-15 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus for particulate filter
JP2011185167A (en) * 2010-03-09 2011-09-22 Toyota Motor Corp Failure determining device of particulate filter
JP2011256811A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Pm amount detection system
DE102011078242A1 (en) 2010-06-29 2011-12-29 Denso Corporation Particle detection sensor and control device for controlling the same
JP2012017678A (en) * 2010-07-07 2012-01-26 Toyota Motor Corp Failure detecting device for filter of internal combustion engine
US9316574B2 (en) 2010-08-06 2016-04-19 Denso Corporation Sensor controller
US9255873B2 (en) * 2010-08-06 2016-02-09 Denso Corporation Sensor controller
JP2012037371A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller
JP2012037373A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller
JP2012037372A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller
US20120031078A1 (en) * 2010-08-06 2012-02-09 Denso Corporation Sensor controller
JP2012037370A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller and exhaust treatment system having the same
US9021868B2 (en) 2010-08-06 2015-05-05 Denso Corporation Sensor controller and exhaust gas treatment system using the same
US8775053B2 (en) 2010-08-17 2014-07-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2012062769A (en) * 2010-09-14 2012-03-29 Denso Corp Engine control device
WO2012053097A1 (en) * 2010-10-22 2012-04-26 トヨタ自動車株式会社 Filter failure detection device for internal combustion engine
JP5120501B2 (en) * 2010-10-22 2013-01-16 トヨタ自動車株式会社 Filter failure detection device for internal combustion engine
US8656700B2 (en) 2010-10-22 2014-02-25 Toyota Jidosha Kabushiki Kaisha Filter failure detection apparatus of an internal combustion engine
WO2012063303A1 (en) * 2010-11-08 2012-05-18 トヨタ自動車株式会社 Internal combustion engine particulate matter detection device
DE112010004519T5 (en) 2010-11-08 2012-10-25 Toyota Jidosha Kabushiki Kaisha Particle detection device for an internal combustion engine
DE112010004519B4 (en) * 2010-11-08 2021-03-04 Toyota Jidosha Kabushiki Kaisha Particle detection device for an internal combustion engine
JP5278615B2 (en) * 2010-11-08 2013-09-04 トヨタ自動車株式会社 Particulate matter detection device for internal combustion engine
US8925370B2 (en) 2010-11-08 2015-01-06 Toyota Jidosha Kabushiki Kaisha Particulate matter detecting apparatus for internal combustion engine
US8845798B2 (en) 2010-12-07 2014-09-30 Toyota Jidosha Kabushiki Kaisha Particulate matter detecting apparatus for internal combustion engine
DE112010005888B4 (en) 2010-12-07 2018-11-22 Toyota Jidosha Kabushiki Kaisha Fine dust detection device for internal combustion engines
CN102959187A (en) * 2010-12-07 2013-03-06 丰田自动车株式会社 Device for detecting particulate substance in internal combustion engine
DE112010005888T5 (en) 2010-12-07 2013-07-18 Toyota Jidosha Kabushiki Kaisha Fine dust detection device for internal combustion engines
JP2012122399A (en) * 2010-12-08 2012-06-28 Denso Corp Failure detection device of particulate filter
DE102011087924A1 (en) 2010-12-08 2012-06-14 Denso Corporation Error detection device for a particle filter
US8561388B2 (en) 2010-12-08 2013-10-22 Denso Corporation Failure detection apparatus for particulate filter
DE102011087924B4 (en) 2010-12-08 2022-01-20 Denso Corporation Error detection device for a particle filter
JP2012127268A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Control device for internal combustion engine
WO2012095943A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Pm quantity detecting apparatus and apparatus for detecting failure of particulate filter
DE112011104817T5 (en) 2011-02-01 2013-11-14 Toyota Jidosha Kabushiki Kaisha Controller of an internal combustion engine
US9528419B2 (en) 2011-02-01 2016-12-27 Toyota Jidosha Kabushiki Kaisha Particulate matter controller for an internal combustion engine
DE112011104812T5 (en) 2011-02-01 2013-10-31 Toyota Jidosha Kabushiki Kaisha Controller of an internal combustion engine
CN103339362A (en) * 2011-02-01 2013-10-02 丰田自动车株式会社 Control device for internal combustion engine
WO2012104994A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
DE112011104817B4 (en) * 2011-02-01 2021-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
WO2012104995A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
DE112011104812B4 (en) 2011-02-01 2017-12-07 Toyota Jidosha Kabushiki Kaisha Controller of an internal combustion engine
CN103339363A (en) * 2011-02-01 2013-10-02 丰田自动车株式会社 Control device for internal combustion engine
US8839610B2 (en) 2011-02-01 2014-09-23 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
JP5553115B2 (en) * 2011-02-01 2014-07-16 トヨタ自動車株式会社 Control device for internal combustion engine
JP5553114B2 (en) * 2011-02-01 2014-07-16 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012189049A (en) * 2011-03-14 2012-10-04 Denso Corp Particulate matter detector and fault detection device for particulate filter
JP2013047670A (en) * 2011-06-27 2013-03-07 Delphi Technologies Inc Particulate substance detection method for particulate substance sensor
RU2555430C1 (en) * 2011-08-04 2015-07-10 Тойота Дзидося Кабусики Кайся Control unit for internal combustion engine
US9410493B2 (en) 2011-08-04 2016-08-09 Toyota Jidosha Kabushiki Kaisha Control unit for internal-combustion engine
WO2013018224A1 (en) 2011-08-04 2013-02-07 トヨタ自動車株式会社 Device for controlling internal combustion engine
WO2013030930A1 (en) 2011-08-29 2013-03-07 トヨタ自動車株式会社 Microparticle sensor and method for manufacturing microparticle sensor
US9523632B2 (en) 2011-08-29 2016-12-20 Toyota Jidosha Kabushiki Kaisha Particulate matter sensor and method for manufacturing particulate matter sensor
CN103782162A (en) * 2011-08-29 2014-05-07 丰田自动车株式会社 Microparticle sensor and method for manufacturing microparticle sensor
JP2013068197A (en) * 2011-09-26 2013-04-18 Denso Corp Detection system
JP2013087645A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Exhaust gas control device for internal combustion engine
DE112011105770B4 (en) * 2011-10-26 2017-03-09 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine and method for controlling an internal combustion engine with a control device
WO2013061421A1 (en) 2011-10-26 2013-05-02 トヨタ自動車株式会社 Device for controlling internal combustion engine
US9133748B2 (en) 2011-10-26 2015-09-15 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
US20140216014A1 (en) * 2011-10-26 2014-08-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US9217349B2 (en) 2011-10-26 2015-12-22 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN103890333A (en) * 2011-10-26 2014-06-25 丰田自动车株式会社 Device for controlling internal combustion engine
WO2013073006A1 (en) 2011-11-15 2013-05-23 トヨタ自動車株式会社 Method for controlling and device for controlling internal combustion engine
US9175586B2 (en) 2011-11-15 2015-11-03 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US9238986B2 (en) 2011-11-25 2016-01-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2013076869A1 (en) 2011-11-25 2013-05-30 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013094021A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Failure detection device for electrically heated catalyst
EP2921664A4 (en) * 2012-11-16 2015-12-02 Toyota Motor Co Ltd Device for detecting abnormality in engine exhaust system
WO2014076818A1 (en) 2012-11-16 2014-05-22 トヨタ自動車株式会社 Device for detecting abnormality in engine exhaust system
US9594068B2 (en) 2012-11-16 2017-03-14 Toyota Jidosha Kabushiki Kaisha Abnormality detection system of engine exhaust system
WO2015046445A1 (en) 2013-09-27 2015-04-02 いすゞ自動車株式会社 Diagnosing device
US10060829B2 (en) 2013-09-27 2018-08-28 Isuzu Motors Limited Diagnosis device
JP2015135078A (en) * 2014-01-17 2015-07-27 トヨタ自動車株式会社 filter abnormality determination system
KR101779732B1 (en) 2014-01-17 2017-09-18 도요타지도샤가부시키가이샤 Filter abnormality determination system
JP2015218580A (en) * 2014-05-14 2015-12-07 日野自動車株式会社 PM detection device
JP2016037899A (en) * 2014-08-07 2016-03-22 株式会社デンソー Filter failure detection device
US10392996B2 (en) 2015-02-02 2019-08-27 Denso Corporation Particulate detection device
WO2016125436A1 (en) * 2015-02-02 2016-08-11 株式会社デンソー Particulate detection device
JP2016205168A (en) * 2015-04-17 2016-12-08 株式会社デンソー Failure diagnostic device for filter
RU2720598C2 (en) * 2015-06-18 2020-05-12 Форд Глобал Текнолоджиз, Ллк Dual-mode leak monitoring in diesel particulate filter

Similar Documents

Publication Publication Date Title
JP2009144577A (en) Failure determination device for particulate filter
JP5115873B2 (en) Particulate filter failure detection device
JP6070659B2 (en) Particulate filter abnormality diagnosis device
JP6137229B2 (en) Particulate filter abnormality diagnosis device
EP2492481A1 (en) Soot sensor functional capability monitoring
JP2012012960A (en) Particulate matter detection sensor
JP5582459B2 (en) Particulate matter detection device and particulate filter failure detection device
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
JP2011080439A (en) Device for detecting abnormality of particulate filter
JP6520898B2 (en) Abnormality diagnosis device of exhaust purification system
US9863301B2 (en) Filter fault detection apparatus
JP2006266961A (en) Soot sensor
JP6090293B2 (en) Filter function diagnostic device
JP5561262B2 (en) Detection system
JP2010275917A (en) Failure determination device for particulate matter detection means
JP6252537B2 (en) Particulate filter abnormality diagnosis device
KR102340459B1 (en) Method for operating a particle sensor
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP6481966B2 (en) Control device
JP5924546B2 (en) Filter failure detection device
JP5605112B2 (en) Engine exhaust purification system
JP2012077668A (en) Sensor control device
JP7172860B2 (en) Exhaust gas sensor
JP5531459B2 (en) PM sensor
JP2011089430A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228