JP2011203093A - Gas sensor, and disconnection detection method thereof - Google Patents

Gas sensor, and disconnection detection method thereof Download PDF

Info

Publication number
JP2011203093A
JP2011203093A JP2010070221A JP2010070221A JP2011203093A JP 2011203093 A JP2011203093 A JP 2011203093A JP 2010070221 A JP2010070221 A JP 2010070221A JP 2010070221 A JP2010070221 A JP 2010070221A JP 2011203093 A JP2011203093 A JP 2011203093A
Authority
JP
Japan
Prior art keywords
detection
disconnection
resistor
gas sensor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070221A
Other languages
Japanese (ja)
Inventor
Yuzo Matsumoto
雄三 松本
Mikiyasu Matsuoka
幹泰 松岡
Takashi Sawada
高志 澤田
Katsuhide Akimoto
克英 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010070221A priority Critical patent/JP2011203093A/en
Priority to DE201110006167 priority patent/DE102011006167A1/en
Publication of JP2011203093A publication Critical patent/JP2011203093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods

Abstract

PROBLEM TO BE SOLVED: To provide a gas sensor that detects concentration of conductive fine particles contained in gas to be measured, has no dead period, rapidly detects a disconnection failure, and has high reliability, and to provide a disconnection detection method of the same.SOLUTION: As a disconnection detecting means for detecting the existence of disconnection of conduction routes (111-117 and 121-127) connecting between a detection part 11 and a resistance measuring means 60, a disconnection detecting resistor 13 having a predetermined resistance value Ris disposed on an anti-resistance measuring means side so that the resistor conducts a pair of detection electrodes 110 and 120 to each other and is parallel to a detecting resistor Rformed between the detection electrodes (110 and 120).

Description

本発明は、内燃機関の燃焼排気等の被測定ガス中に含まれる導電性微粒子を検出するガスセンサとガスセンサの断線異常を早期に検出する断線検出方法に関する。   The present invention relates to a gas sensor for detecting conductive fine particles contained in a gas to be measured such as combustion exhaust gas of an internal combustion engine, and a disconnection detection method for early detection of disconnection abnormality of the gas sensor.

近年、コモンレール式燃料噴射システム、過給器システム、酸化触媒、ディーゼル粒子状物質フィルタDPF、選択触媒還元(SCR)システム、排気再循環(EGR)システム等を組み合わせて、ディーゼル機関やガソリンリーンバーン機関等の燃焼排気中に含まれる窒素酸化物NOx、粒状物質PM、未燃炭化水素HC等の環境負荷物質の低減が図られている。
このようなシステムに用いられるDPFは、一般に、耐熱性に優れ、かつ、無数の細孔を有する多孔質セラミックスを素材としたハニカム構造とされ、多孔質の隔壁に存在する細孔中にPMを捕捉し、PMが堆積して細孔に目詰まりを起こして圧力損失が高くなると、バーナやヒータ等で加熱したり、機関の燃焼爆発後に少量の燃料を噴射するポスト噴射等によりDPF内に高温の燃焼排気を導入したりして、DPFを加熱し、DPF内に捕集されたPMを燃焼除去して再生できる構成とされている。
内燃機関の燃焼効率をさらに向上すべく、このようなDPFの再生時期の判断や、DPFの劣化、破損等を検出するOBD(オンボードダイアグノーシス、車載式故障診断装置)や、内燃機関のフィードバック制御等において、燃焼排気中に含まれるPMを高精度で連続的に検出できるガスセンサが必要とされている。さらに、このようなPMを検出するガスセンサを用いる場合、ガスセンサの故障に対する確実なフェールセーフが求められている。
In recent years, diesel engines and gasoline lean burn engines have been combined with common rail fuel injection systems, supercharger systems, oxidation catalysts, diesel particulate filter DPF, selective catalytic reduction (SCR) systems, exhaust gas recirculation (EGR) systems, etc. Reduction of environmentally hazardous substances such as nitrogen oxides NOx, particulate matter PM, unburned hydrocarbons HC, etc. contained in combustion exhaust gas such as the above.
The DPF used in such a system generally has a honeycomb structure made of porous ceramics having excellent heat resistance and countless pores, and PM is contained in the pores existing in the porous partition walls. When trapped, PM accumulates, clogs the pores and the pressure loss increases, it is heated in the DPF by heating with a burner or heater, or by post injection that injects a small amount of fuel after the combustion explosion of the engine. The combustion exhaust gas is introduced, the DPF is heated, and PM collected in the DPF is burned and removed to be regenerated.
In order to further improve the combustion efficiency of the internal combustion engine, determination of the DPF regeneration timing, OBD (on-board diagnosis, in-vehicle fault diagnosis device) for detecting deterioration, breakage, etc. of the DPF, feedback of the internal combustion engine In control and the like, there is a need for a gas sensor that can continuously detect PM contained in combustion exhaust gas with high accuracy. Furthermore, when using such a gas sensor for detecting PM, there is a demand for reliable fail-safe against a failure of the gas sensor.

燃焼排気中のPMの検出手段として、特許文献1には、耐熱性及び電気絶縁性を有する基板の表面に一対の電極を形成し、該電極間を検出部とし、前記基板の裏面及び/又は内部に発熱体を形成し、該基板上の検出部を形成する前記電極、検出部及び端子部を除く導電部を気密で電気絶縁物質よりなる保護層で被覆し、該検出部と保護層との境界付近の発熱体の発熱密度を該検出部の発熱密度より高くし、該検出部の温度を400℃以上で且つ600℃以下に加熱することを特徴とするスモーク濃度センサが開示されている。   As a means for detecting PM in combustion exhaust gas, Patent Document 1 discloses that a pair of electrodes is formed on the surface of a substrate having heat resistance and electrical insulation, and a gap between the electrodes is used as a detection unit. A heating element is formed inside, and the conductive portion excluding the electrode, the detection portion, and the terminal portion forming the detection portion on the substrate is covered with a protective layer made of an airtight and electrically insulating material, and the detection portion, the protective layer, A smoke density sensor is disclosed in which the heat generation density of a heating element in the vicinity of the boundary is made higher than the heat generation density of the detection unit, and the temperature of the detection unit is heated to 400 ° C. or more and 600 ° C. or less. .

ところが、特許文献1にあるような、従来のスモーク濃度センサでは、導電性のスモークの堆積により変化する一対の電極間の電気抵抗を電子回路により検出しているが、スモークが堆積していない状態では一対の電極間は絶縁状態であるので、スモークの堆積によって一対の電極間の電気抵抗が徐々に低下し電子回路によって電気抵抗が検出できるようになるまでに不感期間が存在する。   However, in the conventional smoke concentration sensor as disclosed in Patent Document 1, the electrical resistance between the pair of electrodes that changes due to the deposition of conductive smoke is detected by an electronic circuit, but the smoke is not deposited. In this case, since the pair of electrodes is in an insulated state, there is a dead period until the electrical resistance between the pair of electrodes gradually decreases due to the deposition of smoke and the electrical resistance can be detected by the electronic circuit.

このような不感期間の問題を解消する方法として、特許文献2には、ガス流内の微粒子を検出するための検出装置であって、基板上に形成された少なくとも2つの電極からなる電極対を具備すると共に、該電極対の少なくとも2つの電極が導電層によって覆われ、該導電層の抵抗値が測定ガス中の微粒子によって形成される抵抗値の最小値と同等又はそれ以下の抵抗値であることを特徴とする微粒子検出装置が開示されている。   As a method for solving the problem of such a dead period, Patent Document 2 discloses a detection device for detecting fine particles in a gas flow, and includes an electrode pair including at least two electrodes formed on a substrate. And at least two electrodes of the electrode pair are covered with a conductive layer, and the resistance value of the conductive layer is equal to or less than the minimum value of the resistance value formed by the fine particles in the measurement gas. A fine particle detection apparatus characterized by the above is disclosed.

また、特許文献3には、このような微粒子検出装置において、ガス流中の微粒子を検出する検出用の電極対とは別に参照用の電極対を具備し、検出用の電極対間に流れる電流と参照用の電極対間に流れる電流との比又は差が所定の閾値を超えたとき断線と認識する検出装置と異常検出方法が開示されている。   Further, in Patent Document 3, in such a particle detection apparatus, a reference electrode pair is provided separately from a detection electrode pair for detecting particles in a gas flow, and a current flowing between the detection electrode pair is disclosed. And a detection apparatus and an abnormality detection method for recognizing a disconnection when the ratio or difference between the current flowing between the reference electrode pair and the reference electrode pair exceeds a predetermined threshold value are disclosed.

ところが、特許文献2にあるように、2つの電極を覆うように形成した導電層によって電極間を導通させて、電極間に堆積する微粒子によって形成される抵抗が検出可能となるまでの不感期間を解消しようとした場合、導電層の抵抗値として、極めて狭い範囲の抵抗値を維持することが必要となる。
しかし、このような微粒子検出装置では、検出用の電極対に堆積する微粒子を加熱燃焼除去する必要がある。このため、長期の使用により加熱が繰り返されると導電層と電極との間で金属成分が移動するマイグレーションを起こし、導電層の抵抗値が変化する。導電層の抵抗値の変化は、検出結果に影響を与え、ガス流中の微粒子の正確な検出ができなくなる虞がある。
また、このような検出装置では、導電層によって全面的に両電極間が導通されているため、2つの電極のいずれか一方又は両方に断線異常が生じた場合であっても、導電層によって断線部分を導通する導電パスが形成されるため断線異常を検出することができない。
However, as disclosed in Patent Document 2, the insensitive period until the resistance formed by the fine particles deposited between the electrodes can be detected by conducting between the electrodes by the conductive layer formed so as to cover the two electrodes. In order to solve the problem, it is necessary to maintain a resistance value in a very narrow range as the resistance value of the conductive layer.
However, in such a fine particle detection apparatus, it is necessary to heat and burn away the fine particles deposited on the detection electrode pair. For this reason, when heating is repeated by long-term use, migration in which the metal component moves between the conductive layer and the electrode occurs, and the resistance value of the conductive layer changes. The change in the resistance value of the conductive layer affects the detection result, and there is a possibility that the fine particles in the gas flow cannot be accurately detected.
Moreover, in such a detection apparatus, since both electrodes are electrically connected to each other by the conductive layer, even if a disconnection abnormality occurs in one or both of the two electrodes, the disconnection is caused by the conductive layer. A disconnection abnormality cannot be detected because a conductive path that conducts the portion is formed.

また、特許文献3にあるように、参照用電極対との比較によって検出用電極対の断線の有無を検出しようとした場合、従来の一対の電極によって粒子の検出を行う場合の倍の電極対が必要であるので製造コストの増加を招く虞がある。
さらに、参照用電極対自身の断線を検出することができない虞もある。
Further, as disclosed in Patent Document 3, when it is attempted to detect the presence or absence of disconnection of the detection electrode pair by comparison with the reference electrode pair, the number of electrode pairs that is double that in the case of detecting particles with a conventional pair of electrodes Therefore, there is a risk of increasing the manufacturing cost.
Furthermore, there is a possibility that the disconnection of the reference electrode pair itself cannot be detected.

そこで、かかる実情に鑑み、本願発明は、簡易な構成により被測定ガス中に含まれる導電性の微粒子の濃度を検出するガスセンサにおいて、不感期間がなく、断線異常を速やかに検出できる信頼性の高いガスセンサとその断線検出方法を提供することを目的とする。   Therefore, in view of such circumstances, the present invention has a highly reliable gas sensor that detects the concentration of conductive fine particles contained in the gas to be measured with a simple configuration without a dead period and can quickly detect a disconnection abnormality. An object of the present invention is to provide a gas sensor and a method for detecting disconnection thereof.

第1の発明では、少なくとも、被測定ガスに晒され、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と該検出部を加熱する加熱部とを有する微粒子検出素子と、該微粒子検出素子によって検出された導電性微粒子の量に応じて変化する上記検出電極間の電気抵抗を測定する抵抗測定手段とを具備して、被測定ガス中の導電性微粒子の濃度を検出するガスセンサにおいて、
上記検出部と上記抵抗測定手段との間を繋ぐ導通経路の断線の有無を検出する断線検出手段として、所定の抵抗値を有する断線検出抵抗を上記一対の検出電極を導通すると共に、該検出電極間に形成される検出抵抗に対して並列となるように反抵抗測定手段側に設ける(請求項1)。
In the first invention, at least a detection unit provided with a pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate exposed to the gas to be measured, and a heating unit for heating the detection unit And a resistance measuring means for measuring the electrical resistance between the detection electrodes, which varies depending on the amount of the conductive fine particles detected by the fine particle detection element, and the conductivity in the gas to be measured. In the gas sensor that detects the concentration of functional fine particles,
As a disconnection detection means for detecting the presence or absence of disconnection of a conduction path connecting the detection unit and the resistance measurement means, the disconnection detection resistor having a predetermined resistance value is electrically connected to the pair of detection electrodes, and the detection electrode It is provided on the side of the anti-resistance measuring means so as to be parallel to the detection resistor formed therebetween.

第1の発明によれば、微粒子の堆積により上記検出部に形成される検出抵抗と上記断線検出抵抗とが並列に接続されているので、これらの合成抵抗が低下し、上記抵抗測定手段によって検出するときに、上記微粒子検出素子に流れる電流を該抵抗測定手段の検出限界以上に引上げ、不感期間を解消することができる。
加えて、上記検出部と上記抵抗測定手段とを繋ぐ通電経路が、上記断線検出抵抗を介して直列に接続された状態となるので、上記通電経路に断線が発生した場合には、上記検出部に堆積した微粒子を上記加熱部によって加熱し、微粒子を燃焼除去した直後において、出力電圧が0となるので、確実に上記検出部と上記抵抗測定手段とを繋ぐ通電経路の断線を検出することが可能となり、速やかに異常を警告する等により異常解消のための対応を図ることができる。
According to the first invention, since the detection resistor formed in the detection unit by the deposition of the fine particles and the disconnection detection resistor are connected in parallel, the combined resistance thereof is reduced and detected by the resistance measurement unit. In this case, the current flowing in the fine particle detection element can be increased to a value higher than the detection limit of the resistance measuring means, and the dead time can be eliminated.
In addition, since the energization path connecting the detection unit and the resistance measuring unit is connected in series via the disconnection detection resistor, the detection unit is detected when a disconnection occurs in the energization path. Immediately after the fine particles deposited on the substrate are heated by the heating unit and the fine particles are burned and removed, the output voltage becomes 0. Therefore, it is possible to reliably detect the disconnection of the energization path connecting the detection unit and the resistance measuring means. It becomes possible to take measures to eliminate the abnormality by promptly warning the abnormality.

第2の発明では、上記一対の検出電極を複数の電極が突出する櫛歯形状に形成し、これらを対向せしめる。   In the second invention, the pair of detection electrodes are formed in a comb-teeth shape from which a plurality of electrodes protrude and are made to face each other.

第2の発明によれば、 第1の発明と同様に、不感期間が解消されるのに加え、上記検出部の微粒子が堆積する部分以外の通電経路に断線が発生した場合に、出力電圧が0となるので、断線を検出することが可能となる。   According to the second invention, as in the first invention, in addition to the elimination of the dead period, the output voltage is increased when a disconnection occurs in the energization path other than the portion where the fine particles of the detection unit are deposited. Since it becomes 0, it becomes possible to detect disconnection.

第3の発明では、上記一対の検出電極の一部をクランク状に屈曲させて、これらを対向せしめる(請求項3)。   In a third aspect of the invention, part of the pair of detection electrodes is bent in a crank shape so as to face each other (claim 3).

第3の発明によれば、第1の発明と同様に、不感期間を解消することができる上に、上記一対の検出電極を含め上記検出部と上記抵抗測定手段とを繋ぐ通電経路の全てが、上記断線検出抵抗を介して直列に接続された状態となるので、上記検出電極及び上記通電経路のいずれかに断線が発生した場合に、それが上記検出電極と上記通電経路の如何なる場所であっても、上記検出部に堆積した微粒子を上記加熱部によって加熱し燃焼除去した直後には、出力電圧が0となるので、確実に断線を検出することが可能となり、速やかに異常を警告する等により異常解消のための対応を図ることができ、より信頼性の高いガスセンサが実現できる。   According to the third invention, in the same way as the first invention, the dead period can be eliminated, and all the energization paths connecting the detection unit and the resistance measurement means including the pair of detection electrodes can be performed. Therefore, when the disconnection occurs in either the detection electrode or the energization path, it is any place in the detection electrode and the energization path. However, immediately after the fine particles deposited on the detection unit are heated and removed by the heating unit, the output voltage becomes 0. Therefore, it is possible to detect the disconnection reliably and to promptly warn of an abnormality. Therefore, it is possible to take measures for eliminating the abnormality and to realize a more reliable gas sensor.

第4の発明では、上記断線検出抵抗を熱的に安定した位置に載置する(請求項4)。   In the fourth invention, the disconnection detection resistor is placed at a thermally stable position.

第4の発明によれば、上記断線検出抵抗の抵抗値が安定し、確実に断線検出を行うことができる。   According to the fourth invention, the resistance value of the disconnection detection resistor is stabilized, and disconnection detection can be performed reliably.

第5の発明では、上記断線検出抵抗として感温特性を有するサーミスタを用いると共に、上記検出部側に設ける(請求項5)。   In a fifth aspect of the invention, a thermistor having a temperature sensitive characteristic is used as the disconnection detection resistor, and is provided on the detection unit side.

第5の発明によれば、第1の発明と同様の効果に加え、上記検出部の温度を検出することが可能となり、微粒子検出時の検出部の温度管理や上記加熱部の温度制御がより正確に実現できるようになり、さらに信頼性の高いガスセンサが実現できる。   According to the fifth invention, in addition to the same effect as the first invention, it becomes possible to detect the temperature of the detection unit, and the temperature management of the detection unit and the temperature control of the heating unit at the time of detecting the fine particles are further improved. It can be realized accurately, and a more reliable gas sensor can be realized.

第6の発明では、少なくとも、被測定ガスに晒され、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と該検出部を加熱する加熱部とを有する微粒子検出素子と、該微粒子検出素子によって検出された導電性微粒子の量に応じて変化する上記検出電極間の電気抵抗を測定する抵抗測定手段とを具備して、被測定ガス中の導電性微粒子の濃度を検出するガスセンサの断線検出方法であって、
上記ガスセンサが、上記検出部と上記抵抗測定手段との間を繋ぐ導通経路の断線の有無を検出する断線検出手段として、上記一対の検出電極を導通すると共に、該検出電極間に形成される検出抵抗に対して並列となるように設けた、所定の抵抗値を有する断線検出抵抗を具備し、
少なくとも、上記検出抵抗と上記断線検出抵抗との合成抵抗によって検出される出力電圧と所定の閾値との比較によって断線の有無を検出する断線判定手段を有し、上記出力電圧が所定の閾値を越えた場合に断線と判定する(請求項6)。
In the sixth invention, at least a detection unit provided with a pair of detection electrodes opposed to each other by being exposed to the gas to be measured and providing a predetermined gap on the surface of the electrically insulating heat-resistant substrate, and a heating unit for heating the detection unit, And a resistance measuring means for measuring the electrical resistance between the detection electrodes, which varies depending on the amount of the conductive fine particles detected by the fine particle detection element, and the conductivity in the gas to be measured. A disconnection detection method for a gas sensor for detecting the concentration of conductive fine particles,
As the disconnection detecting means for detecting the presence or absence of disconnection of the conduction path connecting the detection section and the resistance measuring means, the gas sensor conducts the pair of detection electrodes and detects formed between the detection electrodes. Provided with a disconnection detection resistor having a predetermined resistance value provided in parallel with the resistor,
At least disconnection determination means for detecting the presence or absence of disconnection by comparing an output voltage detected by a combined resistance of the detection resistor and the disconnection detection resistor with a predetermined threshold value, and the output voltage exceeds the predetermined threshold value. If it is detected, it is determined that the wire is disconnected (claim 6).

第6の発明によれば、断線を生じていなければ、少なくとも上記断線検出抵抗によって導通が確保されているので、上記出力電圧が必ず発生し、誤差を考慮して、上記出力電圧が上記所定の閾値を越えた場合には、確実に断線していると判断できる。
なお、上記出力電圧が上記所定の閾値以上を断線と判断するか上記所定の閾値以下を断線と判断するかは、上記抵抗測定手段を上記検出抵抗に対してハイサイドに設けるかローサイドに設けるか、上記出力電圧を反転出力とするか非反転出力とするか、上記閾値を上記出力電圧に対してハイサイドに設けるかローサイドに設けるか等によって適宜変更可能である。
According to the sixth aspect of the present invention, if no disconnection occurs, at least conduction is ensured by the disconnection detection resistor. Therefore, the output voltage is always generated, and the output voltage is set to the predetermined value in consideration of an error. When the threshold value is exceeded, it can be determined that the wire is surely disconnected.
Whether the output voltage is determined to be a disconnection when the output voltage is equal to or higher than the predetermined threshold or whether the output voltage is equal to or lower than the predetermined threshold is determined as to whether the resistance measuring unit is provided on the high side or the low side with respect to the detection resistor. The output voltage can be changed as appropriate depending on whether the output voltage is inverted output or non-inverted output, and whether the threshold is provided on the high side or the low side with respect to the output voltage.

第7の発明では、上記加熱部の作動により上記検出部に堆積した微粒子を燃焼除去する燃焼行程と、燃焼時間及び微粒子検出素子の出力のいずれか1つ若しくは両方を用いて微粒子の燃焼完了を判定する微粒子燃焼完了判定手段と、微粒子の燃焼確認後における微粒子検出素子の出力の有無によって断線の有無を判定する断線判定手段とを具備し、微粒子を完全に除去した状態で断線の有無を判定する(請求項7)。   In a seventh aspect of the invention, the combustion of the particulates is completed using one or both of a combustion stroke in which particulates accumulated on the detection portion are burned and removed by the operation of the heating portion, and the combustion time and the output of the particulate detection element. It is provided with a particulate combustion completion judging means for judging, and a disconnection judging means for judging the presence or absence of disconnection based on the presence or absence of the output of the particulate detection element after confirming the combustion of the particulates. (Claim 7).

第7の発明によれば、確実に微粒子を燃焼除去した状態で断線の有無を判定することができる。   According to the seventh aspect, it is possible to determine the presence or absence of disconnection in a state where the fine particles are reliably removed by combustion.

本発明の第1の実施形態における微粒子検出素子を含むガスセンサの概要を示し、(a)は、展開斜視図、(b)は、PM堆積時における検出部の等価回路図、(c)は、PM燃焼後における検出部の等価回路図。The outline | summary of the gas sensor containing the microparticle detection element in the 1st Embodiment of this invention is shown, (a) is an expansion | deployment perspective view, (b) is an equivalent circuit schematic of the detection part at the time of PM deposition, (c) is The equivalent circuit diagram of the detection part after PM combustion. 本発明の第1の実施形態における微粒子検出素子の変形例を示す展開斜視図。The expansion | deployment perspective view which shows the modification of the microparticle detection element in the 1st Embodiment of this invention. 本発明の第1の実施形態における微粒子検出素子を用いたガスセンサ全体の概要を2方向から示す断面図。Sectional drawing which shows the outline | summary of the whole gas sensor using the microparticle detection element in the 1st Embodiment of this invention from two directions. 本発明の第1の実施形態における微粒子検出素子の他の変形例を示す展開斜視図。The expansion | deployment perspective view which shows the other modification of the microparticle detection element in the 1st Embodiment of this invention. 本発明の第1の実施形態における微粒子検出素子の他の変形例の概要を示し、(a)は検出部側から見た斜視図、(b)は、裏面側から見た斜視図。The outline | summary of the other modification of the microparticle detection element in the 1st Embodiment of this invention is shown, (a) is the perspective view seen from the detection part side, (b) is the perspective view seen from the back surface side. 本発明の第1の実施形態における微粒子検出素子の他の変形例を示す展開斜視図。The expansion | deployment perspective view which shows the other modification of the microparticle detection element in the 1st Embodiment of this invention. 本発明の第2の実施形態における微粒子検出素子を含むガスセンサの概要を示し、(a)は、展開斜視図、(b)は、PM堆積時における検出部の等価回路図、(c)は、PM燃焼後における検出部の等価回路図。The outline of the gas sensor containing the particulate detection element in the 2nd embodiment of the present invention is shown, (a) is a development perspective view, (b) is an equivalent circuit diagram of the detection part at the time of PM deposition, (c), The equivalent circuit diagram of the detection part after PM combustion. 本発明の第2の実施形態における微粒子検出素子の変形例を示し、(a)は平面図、(b)は、その断面図、(c)は、他の変形例を示す平面図、(b)は、その断面図。The modification of the microparticle detection element in the 2nd Embodiment of this invention is shown, (a) is a top view, (b) is the sectional drawing, (c) is a top view which shows the other modification, (b) ) Is a cross-sectional view thereof. 本発明の第2の実施形態における検出部の変形例を示し、(a)は、定電流電源を用いた等価回路図、(b)は、低電圧電源を用いた等価回路図。The modification of the detection part in the 2nd Embodiment of this invention is shown, (a) is an equivalent circuit diagram using a constant current power supply, (b) is an equivalent circuit diagram using a low voltage power supply. 本発明のガスセンサに用いられ得断線検出方法を示すフローチャートであって、(a)は、最も基本的なフローチャート、(b)は、より確実な断線検出を図ったフローチャート。It is a flowchart which shows the disconnection detection method used for the gas sensor of this invention, Comprising: (a) is the most basic flowchart, (b) is the flowchart which aimed at more reliable disconnection detection. 本発明のガスセンサに用いられる断線検出方法を示すフローチャート。The flowchart which shows the disconnection detection method used for the gas sensor of this invention. 本発明の微粒子検出素子の不感期間解消効果を比較例と共に示す特性図。The characteristic view which shows the dead period elimination effect of the microparticle detection element of this invention with a comparative example. 本発明のガスセンサの断線検出効果を示し、(a)は、検出部以外で断線が発生した場合の特性図、(b)は、検出部に断線が発生した場合の特性図。The disconnection detection effect of the gas sensor of this invention is shown, (a) is a characteristic diagram when a disconnection occurs in a portion other than the detection unit, (b) is a characteristic diagram when a disconnection occurs in the detection unit.

図1を参照して、本発明の第1の実施形態における微粒子検出素子10とこれを有するガスセンサ1の概要について説明する。
本発明の第1の実施形態における微粒子検出素子10は、例えば、ディーゼル内燃機関から排出される燃焼排気中に含まれる粒子状物質(PM)を捕集するディーゼル粒子状物質フィルタ(DPF)の故障診断(OBD)や、DPFの再生制御を行うべく、燃焼排気中のPM、特に、導電性微粒子の濃度を検出するガスセンサ1に用いられる。
微粒子検出素子10は、所定の間隙を設けて対向する一対の検出電極110と検出電極120とによって形成される検出部11に堆積するPMの量によって変化する検出抵抗RSENを外部に設けた抵抗測定手段60によって測定して、被測定ガス中のPMを検出するものである。検出電極110と検出電極120とは、それぞれリード部111、121から複数の電極が突出する櫛歯形状に形成し、これらを対向せしめてあり、電極間にPMが堆積するようになっている。
本発明の微粒子検出素子10は、検出部11と加熱部14とによって構成され、ガスセンサ1は、微粒子検出素子10と、微粒子検出素子10の検出部11に形成される検出抵抗RSENを測定する抵抗測定手段60と、検出部11を所定の温度に加熱して、検出抵抗RSENを安定化したり、検出部11に堆積したPMを加熱除去したりするための加熱部14への通電を制御するヒータ制御手段61と、抵抗測定手段60からの出力電圧VOUTに応じて、後述する断線判定制御等を行う電子制御装置70とによって構成されている。
With reference to FIG. 1, the outline | summary of the fine particle detection element 10 in the 1st Embodiment of this invention and the gas sensor 1 which has this is demonstrated.
The particulate detection element 10 according to the first embodiment of the present invention is, for example, a failure of a diesel particulate matter filter (DPF) that collects particulate matter (PM) contained in combustion exhaust discharged from a diesel internal combustion engine. In order to perform diagnosis (OBD) and DPF regeneration control, the gas sensor 1 is used to detect the concentration of PM in combustion exhaust gas, particularly, conductive fine particles.
The fine particle detection element 10 has a detection resistor R SEN that varies depending on the amount of PM deposited on the detection unit 11 formed by a pair of detection electrodes 110 and detection electrodes 120 facing each other with a predetermined gap. It is measured by the measuring means 60 and PM in the gas to be measured is detected. The detection electrode 110 and the detection electrode 120 are formed in a comb-like shape in which a plurality of electrodes protrude from the lead portions 111 and 121, respectively, and are opposed to each other, so that PM is deposited between the electrodes.
The particle detection element 10 of the present invention includes a detection unit 11 and a heating unit 14, and the gas sensor 1 measures the particle detection element 10 and a detection resistor R SEN formed in the detection unit 11 of the particle detection element 10. The resistance measurement means 60 and the detection unit 11 are heated to a predetermined temperature to control the energization to the heating unit 14 for stabilizing the detection resistance R SEN and heating and removing the PM deposited on the detection unit 11. The heater control means 61 that performs the disconnection determination control and the like that will be described later according to the output voltage VOUT from the resistance measurement means 60.

本発明の第1の実施形態における微粒子検出素子10の最大の特徴は、図1(b)に示すように、断線検出手段として、所定のオフセット抵抗値ROFFSETを有する断線検出抵抗13を介して検出電極110と検出電極120と導通すると共に、検出抵抗RSENに対して並列となるように断線検出抵抗13を反抵抗測定手段側に設けた点にある。
このような構成とすることによって、断線検出抵抗13のオフセット抵抗ROFFSETと検出抵抗RSENとの合成抵抗RSUM(=ROFFSET・RSEN/(ROFFSET+RSEN))を低くし、合成抵抗RSUMによって降下する出力電圧VOUTを、抵抗測定手段60として設けた分圧抵抗Rによって検出するときに微粒子検出素子10に流れる電流を抵抗測定手段60の検出限界以上に引上げ、不感期間を解消することができる。
検出部11に微粒子PMが堆積し、飽和状態となった場合には、検出抵抗RSENが断線検出抵抗ROFFSETに比べて遙かに小さくなり、電源電圧VCCを検出抵抗RSENと断線検出抵抗ROFFSETとの合成抵抗RSUM及び分圧抵抗Rとによって案分した出力電圧VOUTとして検出することができ、検出部11に堆積した微粒子PMが燃焼除去された場合には、検出抵抗RSENが断線検出抵抗ROFFSETに比べて遙かに大きくなり、電源電圧VCCを断線検出抵抗ROFFSETと分圧抵抗R1とによって案分した出力電圧VOUTとして検出することができる。
加えて、図1(c)に示すように、検出部11と抵抗測定手段60とを繋ぐ通電経路(111〜117、121〜127)が断線検出抵抗13を介して直列に接続された状態となるので、通電経路(111〜117、121〜127)のいずれかに断線が発生した場合に、検出部11に堆積したPMを燃焼除去した直後には、断線箇所によって通電経路が遮断され抵抗測定手段との導通がなくなるので、容易に断線を検出することが可能となり、速やかに異常を警告する等により異常解消のための対応を図ることができる。
なお、本実施形態においては、検出部11と抵抗測定手段60とを繋ぐ通電経路の断線を検出することができるが、検出電極110、120自体の断線を検出することはできない。
As shown in FIG. 1B, the greatest feature of the particle detection element 10 according to the first embodiment of the present invention is through a disconnection detection resistor 13 having a predetermined offset resistance value R OFFSET as a disconnection detection means. The disconnection detection resistor 13 is provided on the anti-resistance measuring means side so as to be electrically connected to the detection electrode 110 and the detection electrode 120 and to be parallel to the detection resistor R SEN .
By adopting such a configuration, the combined resistance R SUM (= R OFFSET · R SEN / (R OFFSET + R SEN )) of the offset resistance R OFFSET and the detection resistance R SEN of the disconnection detection resistance 13 is lowered, and the combined resistance When the output voltage V OUT dropped by R SUM is detected by the voltage dividing resistor R 1 provided as the resistance measuring means 60, the current flowing through the fine particle detection element 10 is raised to the detection limit or more of the resistance measuring means 60, and the dead period is increased. Can be resolved.
Particulate PM is deposited in the detection unit 11, when it becomes saturated becomes much smaller than the detection resistor R SEN disconnection detection resistor R OFFSET, detection resistor R SEN and disconnection detection power supply voltage V CC It can be detected as an output voltage V OUT proportionally divided by the combined resistance R SUM with the resistor R OFFSET and the voltage dividing resistor R 1, and when the particulate PM deposited on the detection unit 11 is removed by combustion, the detection resistance RSEN large becomes much as compared with the disconnection detection resistor R OFFSET, it can be detected as the output voltage V OUT that is prorated by the power supply voltage V CC disconnection detection resistor R OFFSET voltage dividing resistor R1.
In addition, as shown in FIG. 1 (c), the energization paths (111 to 117, 121 to 127) connecting the detection unit 11 and the resistance measurement unit 60 are connected in series via the disconnection detection resistor 13. Therefore, when a disconnection occurs in any one of the energization paths (111 to 117, 121 to 127), immediately after the PM accumulated on the detection unit 11 is burned and removed, the energization path is interrupted by the disconnection point and the resistance is measured. Since there is no continuity with the means, it is possible to easily detect a disconnection, and it is possible to take measures to eliminate the abnormality by promptly warning the abnormality.
In the present embodiment, the disconnection of the energization path connecting the detection unit 11 and the resistance measuring unit 60 can be detected, but the disconnection of the detection electrodes 110 and 120 itself cannot be detected.

電子制御装置70は、抵抗測定手段60によって検出された出力電圧VOUTに基づき、被測定ガス中のPM量を把握し、内燃機関の運転条件にフィードバックさせると共に、PM量に応じて、微粒子検出素子10の検出条件を決定したり、微粒子検出素子10の再生の要否を判断したりして、ヒータ140への通電条件を決定し、さらに、後述する断線判定手段に従って、微粒子検出素子10と抵抗測定手段60と間を繋ぐ通電経路に断線の有無を判定している。 Based on the output voltage VOUT detected by the resistance measuring means 60, the electronic control unit 70 grasps the amount of PM in the gas to be measured, feeds it back to the operating conditions of the internal combustion engine, and detects fine particles according to the amount of PM. The detection condition of the element 10 is determined, the necessity of regeneration of the particle detection element 10 is determined, the condition for energizing the heater 140 is determined, and the particle detection element 10 It is determined whether or not there is a disconnection in the energization path connecting the resistance measuring means 60.

より具体的には、検出部11は、電気絶縁性耐熱基板100と、電気絶縁性耐熱基板100上に所定の距離を離隔して設けた一対の検出電極110と検出電極120と、本発明の要部であり、検出電極110と検出電極120とを繋ぐ断線検出手段として設けた断線検出抵抗13によって構成されている。
本実施形態において、検出電極110と検出電極120とは、外部の抵抗測定手段60との導通を図るリード部111、121に接続されており、複数の検出電極110と検出電極120とが交互に対向するように櫛歯状に形成されている。
さらにリード部111、121の出力側の端部には、端子部112、122が形成され、外部の抵抗測定手段60と接続金具115、116、125、126、導通線117、127を介して接続されている。
また、リード部111、121の反出力側の端部には、本発明の要部であり、検出電極間に堆積するPMによって形成される検出抵抗RSENに対して並列となるように、所定の抵抗値ROFFSETを有し、不感期間解消手段と断線検出手段とを兼ねる、断線検出抵抗13が、断線検出抵抗リード部113、123、断線検出抵抗電極部114、124を介して接続されている。
さらに、断線検出抵抗13をバイパスしてリード部112、121間を短絡するように堆積するPMと、断線検出抵抗13、リード部113、114、123、124との電気絶縁性を確保するために、断線検出抵抗13及びリード部113、114、123、124の表面を覆うように電気絶縁性耐熱材料を用いて絶縁性耐熱保護層150が形成されている。
加熱部14は、通電により発熱するヒータ141と、ヒータ141と通電制御装置61とを接続する一対のヒータリード部142a、142bと、ヒータ端子部144a、144bと、電気絶縁性耐熱基板140と、絶縁性耐熱基板140を貫通し、ヒータリード部142a、142bとヒータ端子部144a、144bとを導通するスルーホール電極143a、143bと、通電線145a、145bと、検出部11以外、特に、電線検出抵抗13を保護する絶縁性耐熱保護層150とによって構成されている。
電気絶縁性耐熱基板100、140は、アルミナ等の電気絶縁性耐熱材料をドクターブレード法、プレス成形法、CIP、HIP等の公知の方法により平板状に形成されている。
検出電極110、120、リード部111、121、端子部112、122、断線検出抵抗リード部113、123、断線検出抵抗端子部114、124、ヒータ141、ヒータリード部142a、142b、ヒータ端子部144a、144bは、厚膜印刷、メッキ、蒸着等の公知の方法により電気絶縁性耐熱基板100、140上に形成されている。
断線検出抵抗13には、金属、金属酸化物、金属化合物、炭素、炭素化合物のいずれか1以上を含む単体又は複合体からなる抵抗体が用いられる。
本実施形態においては、電気絶縁性耐熱基板100の表面に厚膜形成した抵抗体を用いた例を示す。
また、本実施形態においては、断線検出抵抗13は、加熱部14によって加熱可能な位置に形成し、オフセット抵抗ROFFSETの安定化を図っている。
なお、検出部11に堆積するPMによって形成される検出抵抗RSENは、PM堆積時には、数百Ω〜1kΩとなり、PM燃焼時には1MΩ以上に変化する。
また、本実施形態において、断線検出抵抗13のオフセット抵抗ROFFSETは、16kΩ〜36kΩ、出力電圧検出手段60の分圧抵抗Rは、4kΩ〜24kΩに設定され、電源電圧VCCは、5.0vに設定されている。
More specifically, the detection unit 11 includes an electrically insulating heat resistant substrate 100, a pair of the detection electrode 110 and the detection electrode 120 provided on the electrically insulating heat resistant substrate 100 with a predetermined distance therebetween, and It is an essential part, and is constituted by a disconnection detection resistor 13 provided as a disconnection detection means for connecting the detection electrode 110 and the detection electrode 120.
In the present embodiment, the detection electrode 110 and the detection electrode 120 are connected to lead portions 111 and 121 that are electrically connected to the external resistance measuring means 60, and the plurality of detection electrodes 110 and the detection electrodes 120 are alternately arranged. Comb teeth are formed so as to face each other.
Further, terminal portions 112 and 122 are formed at the output side end portions of the lead portions 111 and 121, and are connected to the external resistance measuring means 60 via the connection fittings 115, 116, 125, and 126, and the conductive lines 117 and 127. Has been.
In addition, the end of the lead portions 111 and 121 opposite to the output side is a main portion of the present invention, and is arranged in parallel with the detection resistor R SEN formed by PM deposited between the detection electrodes. The disconnection detection resistor 13 having both the resistance value R OFFSET and serving as both the dead period eliminating means and the disconnection detection means is connected via the disconnection detection resistance lead portions 113 and 123 and the disconnection detection resistance electrode portions 114 and 124. Yes.
Furthermore, in order to ensure electrical insulation between the PM deposited so as to short-circuit between the lead portions 112 and 121 by bypassing the breakage detection resistor 13, and the breakage detection resistor 13 and the lead portions 113, 114, 123, and 124. The insulating heat-resistant protective layer 150 is formed using an electrically insulating heat-resistant material so as to cover the surfaces of the disconnection detecting resistor 13 and the lead portions 113, 114, 123, and 124.
The heating unit 14 includes a heater 141 that generates heat when energized, a pair of heater leads 142a and 142b that connect the heater 141 and the energization control device 61, heater terminal portions 144a and 144b, an electrically insulating heat resistant substrate 140, Through-hole electrodes 143a and 143b that pass through the insulating heat-resistant substrate 140 and connect the heater lead portions 142a and 142b and the heater terminal portions 144a and 144b, the conductive wires 145a and 145b, and the detection unit 11, in particular, electric wire detection The insulating heat-resistant protective layer 150 that protects the resistor 13 is used.
The electrically insulating heat resistant substrates 100 and 140 are formed in a flat plate shape by using an electrically insulating heat resistant material such as alumina by a known method such as a doctor blade method, a press molding method, CIP, or HIP.
Detection electrodes 110 and 120, lead portions 111 and 121, terminal portions 112 and 122, disconnection detection resistance lead portions 113 and 123, disconnection detection resistance terminal portions 114 and 124, heater 141, heater lead portions 142a and 142b, heater terminal portion 144a 144b is formed on the electrically insulating heat-resistant substrates 100 and 140 by a known method such as thick film printing, plating, or vapor deposition.
As the disconnection detection resistor 13, a resistor made of a single substance or a complex containing at least one of metal, metal oxide, metal compound, carbon, and carbon compound is used.
In the present embodiment, an example is shown in which a resistor having a thick film formed on the surface of the electrically insulating heat-resistant substrate 100 is used.
In the present embodiment, the disconnection detection resistor 13 is formed at a position where it can be heated by the heating unit 14 to stabilize the offset resistor R OFFSET .
The detection resistance R SEN formed by PM deposited on the detection unit 11 is several hundred Ω to 1 kΩ during PM deposition, and changes to 1 MΩ or more during PM combustion.
Further, in the present embodiment, the offset resistance R OFFSET disconnection detection resistor 13, 16Keiomega~36keiomega, dividing resistors R 1 of the output voltage detection unit 60 is set to 4Keiomega~24keiomega, the power supply voltage V CC, 5. It is set to 0v.

検出部11にPMが最大量堆積した場合、オフセット抵抗ROFFSETに比べて検出抵抗RSENが遙かに小さいので出力電圧VOUTは、検出抵抗RSENと分圧抵抗Rとによって決まり、4.0v〜4.8vとなり、ダイナミックレンジを有効活用すると共に、出力のバラツキを考慮しても安定して検出可能な範囲となる。
分圧抵抗Rを24kΩ以上にすると出力バラツキが大きくなり、分圧抵抗Rを4kΩ以下にするとダイナミックレンジが低下し、検出精度が悪くなる。
また、検出部11に堆積したPMが燃焼除去された状態では、オフセット抵抗ROFFSETに比べて検出抵抗RSENが遙かに大きいので出力電圧VOUTは、オフセット抵抗ROFFSETと分圧抵抗Rとによって決まり、0.5v〜1.0vとなる。
オフセット抵抗ROFFSETを36kΩ以上にすると、ダイナミックレンジが低下し、検出精度が悪くなり、オフセット抵抗ROFFSETを16kΩ以下にすると、オフセット値が小さくなり、正常時と断線時との判別が困難となる。
When the maximum amount of PM is accumulated in the detection unit 11, the detection resistance R SEN is much smaller than the offset resistance R OFFSET , so that the output voltage VOUT is determined by the detection resistance R SEN and the voltage dividing resistance R 1. The range is 0.0 v to 4.8 v, and the dynamic range is effectively used, and the range can be stably detected even when the output variation is taken into consideration.
Output variations dividing resistors R 1 and be at least 24kΩ increases and the voltage dividing resistors R 1 below 4kΩ reduces the dynamic range, the detection accuracy is deteriorated.
Further, in a state where PM deposited on the detection unit 11 is burned and removed, the detection resistance R SEN is much larger than the offset resistance R OFFSET , so that the output voltage VOUT is equal to the offset resistance R OFFSET and the voltage dividing resistance R 1. And is determined to be 0.5v to 1.0v.
If the offset resistance R OFFSET is set to 36 kΩ or more, the dynamic range is lowered and the detection accuracy is deteriorated. If the offset resistance R OFFSET is set to 16 kΩ or less, the offset value becomes small, and it is difficult to discriminate between a normal time and a disconnection. .

図2を参照して、本発明の第1の実施形態における微粒子検出素子の変形例10aについて説明する。
上記実施形態においては、断線検出抵抗13を加熱部14によって加熱可能な位置に設けて、オフセット抵抗ROFFSETの安定化を図っているが、本実施形態においては、リード部111、121の反出力側から引き出した断線検出抵抗リード部113a、123aを、電気絶縁性基板100の出力側まで引き延ばし、被測定ガスの熱や、加熱部14からの熱を受けず、熱的に安定した位置に、断線検出抵抗端子部114a、124aを設け、チップ抵抗等の固定抵抗器からなる断線検出抵抗13aを実装し、オフセット抵抗ROFFSETの安定化を図っている。
なお、本実施形態において、断線検出抵抗13aとして感温特性を有するサーミスタを用いると共に、検出部側の加熱部14によって加熱可能な位置に設けても良い。
このような構成とすることにより、上記実施形態と同様の効果に加え、検出部11の温度を検出することが可能となり、微粒子検出時の検出部11の温度管理や加熱部14の温度制御がより正確に実現できるようになり、さらに信頼性の高いガスセンサが実現できる。
With reference to FIG. 2, a modified example 10a of the particle detecting element in the first embodiment of the present invention will be described.
In the above embodiment, the disconnection detection resistor 13 is provided at a position where it can be heated by the heating unit 14 to stabilize the offset resistance R OFFSET . However, in this embodiment, the counter output of the lead units 111 and 121 is achieved. The disconnection detection resistance lead portions 113a and 123a drawn from the side are extended to the output side of the electrically insulating substrate 100, and are not subjected to the heat of the gas to be measured or the heat from the heating portion 14, and in a thermally stable position, The disconnection detection resistor terminal portions 114a and 124a are provided, and the disconnection detection resistor 13a composed of a fixed resistor such as a chip resistor is mounted to stabilize the offset resistance R OFFSET .
In the present embodiment, a thermistor having a temperature sensitive characteristic may be used as the disconnection detection resistor 13a, and may be provided at a position that can be heated by the heating unit 14 on the detection unit side.
By adopting such a configuration, in addition to the same effects as those of the above embodiment, the temperature of the detection unit 11 can be detected, and the temperature management of the detection unit 11 and the temperature control of the heating unit 14 at the time of particle detection can be performed. A more accurate gas sensor can be realized with higher accuracy.

図3を参照して、本発明の第1の実施形態における微粒子検出素子10aを用いたガスセンサ1のより具体的な構成について説明する。
ガスセンサ1は、微粒子検出素子10を内側に挿入保持する略筒状のインシュレータ21と、被測定ガスの流れる流路壁40に固定され、インシュレータ21を保持すると共に、微粒子検出素子10の検出部11を被測定流路400内の所定の位置に保持するハウジング20と、ハウジング20の先端側に設けられ、微粒子検出素子10の検出部11を保護するカバー体30と、ハウジング20の基端側に設けられ、接続金具115、116、125、126を介して微粒子検出素子10の端子部112、122に接続され、検出部11に捕集・堆積されたPM量に応じて変化する検出電極110、120間の検出電気抵抗RSENを外部の抵抗測定手段60に伝達する一対の信号線117、127と、微粒子検出素子10に内蔵されたヒータ1141とヒータ端子部145a、145b、接続金具146a、146bを介して接続される一対の導通線147a、147bとを、封止部材220を介して基端側で固定する略筒状のケーシング22とによって構成されている。
カバー体30のカバー基体300には、PMを含む被測定ガスを検出部11に導入するための被測定ガス入出孔301、302が適宜穿設され、基端側に設けたフランジ部303がハウジング20の先端側に設けた加締め部203によって加締め固定されている。
本実施形態において、断線検出抵抗13aは、インシュレータ21内の比較的温度が安定した位置に配置してある。
被測定ガスとして、PMを含むディーゼル燃焼排気が、被測定ガス流路400内を流れ、カバー体30に設けられた被測定ガス入出孔301、302から導入され、被測定ガス中に検出部11を晒している微粒子検出素子10の検出部11の表面に接触し、検出電極110、120の間にPMが堆積し、検出電極110、120間に検出抵抗RSENが形成され、ガスセンサ1の外部に設けた抵抗測定手段60によって検出抵抗RSENとオフセット抵抗ROFFSETとの合成抵抗を検出し、PMの堆積量を算出することができる。
With reference to FIG. 3, a more specific configuration of the gas sensor 1 using the fine particle detection element 10a according to the first embodiment of the present invention will be described.
The gas sensor 1 is fixed to a substantially cylindrical insulator 21 that inserts and holds the particulate detection element 10 inside, and a flow path wall 40 through which the gas to be measured flows. The gas sensor 1 holds the insulator 21 and also detects the detection unit 11 of the particulate detection element 10. At a predetermined position in the measured channel 400, a cover body 30 provided at the distal end side of the housing 20 for protecting the detection unit 11 of the particulate detection element 10, and a proximal end side of the housing 20. A detection electrode 110 that is provided and connected to the terminal portions 112 and 122 of the particulate detection element 10 via the connection fittings 115, 116, 125, and 126, and changes according to the amount of PM collected and deposited on the detection unit 11; A pair of signal lines 117 and 127 that transmit the detection electric resistance R SEN between 120 to the external resistance measuring means 60, and a heat sensor built in the fine particle detection element 10. A substantially cylindrical casing 22 that fixes a pair of conducting wires 147a and 147b connected to each other via a sealing member 220 on the base end side via a sealing member 220, the heater terminal portions 145a and 145b, and the connection fittings 146a and 146b. And is composed of.
The cover base 300 of the cover body 30 is appropriately provided with measured gas inlet / outlet holes 301 and 302 for introducing a measured gas containing PM into the detection unit 11, and a flange portion 303 provided on the proximal end side is a housing. It is fixed by caulking by a caulking portion 203 provided on the front end side of 20.
In the present embodiment, the disconnection detection resistor 13a is disposed at a relatively stable temperature in the insulator 21.
Diesel combustion exhaust gas containing PM as the measurement gas flows through the measurement gas flow path 400 and is introduced from the measurement gas inlet / outlet holes 301 and 302 provided in the cover body 30, and the detection unit 11 is included in the measurement gas. , The PM is deposited between the detection electrodes 110 and 120, and the detection resistor R SEN is formed between the detection electrodes 110 and 120, so that the outside of the gas sensor 1 is exposed. The combined resistance of the detection resistor R SEN and the offset resistor R OFFSET can be detected by the resistance measuring means 60 provided in the above, and the amount of PM deposited can be calculated.

図4を参照して、本発明の第1の実施形態における微粒子検出素子10bとして他の変形例について説明する。上記実施形態においては、リード部111、121の反抵抗測定手段側の端部と断線検出抵抗13とを、電気絶縁性基板100に厚膜印刷等の方法により形成した断線検出抵抗リード部113、123を介して接続した例を示したが、本実施例における微粒子検出素子10bでは、断線線検出抵抗13bとして、電気絶縁性基板100の出力側に配置した、リード付き固定抵抗器を用い、リード線113b、123bを介してリード部111、121の反抵抗測定手段側の端部と接続してある。このような構成とすることにより、厚膜によって形成した場合に比べ、断線検出抵抗リード部113b、123bの内部抵抗を小さくでき、検出精度の向上を図ると共に、断線検出抵抗リード部113b、123bの耐久性の向上を図ることもできる。   With reference to FIG. 4, another modified example of the fine particle detection element 10b in the first embodiment of the present invention will be described. In the above-described embodiment, the breakage detection resistor lead portion 113 formed by forming the end portions of the lead portions 111 and 121 on the side of the anti-resistance measuring means and the breakage detection resistor 13 on the electrically insulating substrate 100 by a method such as thick film printing, In the fine particle detection element 10b according to the present embodiment, a fixed resistor with leads disposed on the output side of the electrically insulating substrate 100 is used as the disconnection wire detection resistor 13b. The lead portions 111 and 121 are connected to the end portions on the anti-resistance measuring means side via the wires 113b and 123b. By adopting such a configuration, the internal resistance of the disconnection detection resistance lead portions 113b and 123b can be reduced as compared with the case where the disconnection detection resistance lead portions 113b and 123b are formed. Durability can also be improved.

図5を参照して、本発明の第1の実施形態における微粒子検出素子10cとして他の変形例を説明する。
図5に示すように、断線検出抵抗13cとして、リード付き固定抵抗器を用い、さらに、断線検出抵抗リード部113c、123cを折り曲げ、検出部11の裏面側で断線検出抵抗13cが加熱部14に接するようにしても良い。
このような構成とすることによって、断線検出抵抗13cをヒータ141によって加熱可能とし熱的に安定させると共に、検出部11の裏面側に配設することにより、断線検出抵抗リード部113c、123cと電気絶縁性基板100とが立体的に離隔されるのでPMの堆積による導電パスが形成されがたくなり。断線検出抵抗13cへの影響を廃除できる。
With reference to FIG. 5, another modified example will be described as the fine particle detection element 10c in the first embodiment of the present invention.
As shown in FIG. 5, a fixed resistor with leads is used as the disconnection detection resistor 13 c, and the disconnection detection resistor leads 113 c and 123 c are bent, and the disconnection detection resistor 13 c is connected to the heating unit 14 on the back side of the detection unit 11. You may make it touch.
With this configuration, the disconnection detection resistor 13c can be heated by the heater 141 and is thermally stabilized, and disposed on the back surface side of the detection unit 11, so that the disconnection detection resistor lead portions 113c and 123c are electrically connected. Since the insulating substrate 100 is three-dimensionally separated, it is difficult to form a conductive path due to PM deposition. The influence on the disconnection detection resistor 13c can be eliminated.

図6を参照して、本発明の第1の実施形態における微粒子検出素子10dとして他の変形例を説明する。
上記実施形態においては、電気絶縁性基板10の表面に断線検出抵抗13を形成した例を示したが、本実施形態のように、電気絶縁性基板100dを検出部11と加熱部14との間に介挿し、その表面に断線検出抵抗リード部113d、123d及び断線検出抵抗13dを形成し、リード部111、121の反検出側の端部と電気絶縁性基板100dを貫通するスルーホール電極118、128を介して接続させても良い。
本実施形態においては、断線検出抵抗13dを非可熱領域に設けた例を示したが、ヒータ140によって加熱可能な位置に設けても良い。
With reference to FIG. 6, another modified example of the fine particle detection element 10d in the first embodiment of the present invention will be described.
In the above embodiment, the example in which the disconnection detection resistor 13 is formed on the surface of the electrically insulating substrate 10 has been shown. However, as in the present embodiment, the electrically insulating substrate 100d is disposed between the detecting unit 11 and the heating unit 14. Are formed on the surface thereof, and through-hole electrodes 118 penetrating through the ends of the lead portions 111 and 121 on the side opposite to the detection side and the electrically insulating substrate 100d, You may connect via 128.
Although the example in which the disconnection detection resistor 13d is provided in the non-heatable region has been described in the present embodiment, the disconnection detection resistor 13d may be provided in a position that can be heated by the heater 140.

図7を参照して、本発明の第2の実施形態における微粒子検出素子10eを用いたガスセンサ1eの概要について説明する。
上記実施形態においては、検出部11を構成する一対の検出電極110、120を、それぞれ、リード部111、121から直線的に伸びるように複数の検出電極110、120を引き出し、これらを対向せしめて櫛歯状に形成した例を示したが、本実施形態においては、リード部111、121に接続される一対の検出電極110e、120eの一部をクランク状に屈曲させて所定の間隙を設けて対向させ、これらの反抵抗測定部側の端部が断線検出抵抗リード部113e、123eを介して断線検出抵抗13に接続してある。
このような構成とすることによって、図7(b)に示すように、PMの堆積により検出部11eに形成される検出抵抗RSENと、断線検出抵抗13のオフセット抵抗ROFFSETとが並列に接続されるので合成抵抗が低下し、電源電圧VCCから合成抵抗によって降下する出力電圧VOUTを、抵抗測定手段60として設けた分圧抵抗Rによって検出するときに、微粒子検出素子10に流れる電流を分圧抵抗Rの検出限界以上に引上げ、不感期間を解消することができる。
With reference to FIG. 7, the outline of the gas sensor 1e using the fine particle detection element 10e in the second embodiment of the present invention will be described.
In the above-described embodiment, the plurality of detection electrodes 110 and 120 are drawn out so that the pair of detection electrodes 110 and 120 constituting the detection unit 11 extend linearly from the lead portions 111 and 121, respectively, and these are opposed to each other. Although an example in which the electrodes are formed in a comb-teeth shape is shown, in the present embodiment, a part of the pair of detection electrodes 110e and 120e connected to the lead portions 111 and 121 is bent in a crank shape to provide a predetermined gap. These end portions on the opposite resistance measuring portion side are connected to the disconnection detection resistor 13 via the disconnection detection resistor lead portions 113e and 123e.
With this configuration, as shown in FIG. 7B, the detection resistor R SEN formed in the detection unit 11e by PM deposition and the offset resistor R OFFSET of the disconnection detection resistor 13 are connected in parallel. As a result, the combined resistance decreases, and the current flowing through the particulate detection element 10 when the output voltage VOUT that drops due to the combined resistance from the power supply voltage VCC is detected by the voltage dividing resistor R 1 provided as the resistance measuring means 60. the pulled over the detection limit of the voltage dividing resistors R 1, it is possible to eliminate the dead time.

加えて、図7(c)に示すように、検出電極110e、120eを含め検出部11と抵抗測定手段60とを繋ぐ通電経路(111、112、113e、114〜117、121、122、123e、124〜127)の全てが、断線検出抵抗13を介して直列に接続された状態となるので、検出電極110e、120e及び通電経路(111、112、113e、114〜117、121、122、123e、124〜127)のいずれかに断線が発生した場合に、導通経路のみならず検出部11の如何なる場所で断線が発生しても、検出部11に堆積したPMを燃焼除去した直後には、出力電圧VOUTが0となるので、確実に断線を検出することが可能となり、速やかに異常を警告する等により異常解消のための対応を図ることができる。
上記第1の実施形態においては、導通経路における断線の有無の検出は可能でも、検出電極110、120自体の断線の検出ができなかったが、本実施形態においては、検出電極110e、120e自体の断線も検出することができる。
なお、本実施形態においては、分圧抵抗Rを検出抵抗RSENと接地との間に設けた例を示したが、電源電圧VCCと検出抵抗RSENとの間に設けた構成としても良い。
In addition, as shown in FIG. 7C, energization paths (111, 112, 113e, 114 to 117, 121, 122, 123e, which connect the detection unit 11 and the resistance measurement means 60 including the detection electrodes 110e and 120e, 124 to 127) are all connected in series via the disconnection detection resistor 13, so that the detection electrodes 110e and 120e and the energization paths (111, 112, 113e, 114 to 117, 121, 122, 123e, 124 to 127), when a disconnection occurs in any of the locations of the detection unit 11 as well as the conduction path, the output immediately after the PM deposited on the detection unit 11 is removed by combustion. Since the voltage VOUT is 0, it is possible to detect a disconnection with certainty, and it is possible to take measures to eliminate the abnormality by promptly warning the abnormality. .
In the first embodiment, the detection of the disconnection of the detection electrodes 110 and 120 itself could not be detected even though it was possible to detect the presence or absence of the disconnection in the conduction path. However, in this embodiment, the detection electrodes 110e and 120e themselves were not detected. Disconnection can also be detected.
In the present embodiment, the voltage dividing resistor R 1 is provided between the detection resistor R SEN and the ground. However, the voltage dividing resistor R 1 may be provided between the power supply voltage VCC and the detection resistor R SEN. good.

図8を参照して、本発明の第2の実施形態における微粒子検出素子10f、10gとして変形例について説明する。
本実施形態においても上記実施形態と同様、断線検出抵抗リード部113、123を介して断線検出抵抗13f、13gの載置位置を検出部11f、11gの電気的に反出力側に載置するのであれば、断線検出抵抗13の載置位置を適宜変更することができる。
With reference to FIG. 8, a modified example will be described as the fine particle detection elements 10f and 10g in the second embodiment of the present invention.
Also in the present embodiment, as in the above embodiment, the mounting positions of the disconnection detection resistors 13f and 13g are mounted on the electrically opposite output side of the detectors 11f and 11g via the disconnection detection resistor lead portions 113 and 123. If there is, the mounting position of the disconnection detection resistor 13 can be changed as appropriate.

図9を参照して、本発明の第2の実施形態における検出部11の変形例について説明する。上記実施形態においては、断線検出抵抗ROFFSETと検出抵抗RSENの合成抵抗RSUMと分圧抵抗Rとによって電源電圧VCCを分圧して出力電圧VOUTを検出するように構成した例について説明したが、本図(a)に示すように、定電流電源60hを設け、オペアンプ601によって、出力電圧VOUTを検出するように構成しても良いし、本図(b)に示すように、定電圧電源80を用い、オペアンプ601iを用いて出力電圧VOUTを検出するように構成しても良い。
なお、これらの実施形態は、本発明の第1の実施形態にも適宜採用し得るものである。
With reference to FIG. 9, the modification of the detection part 11 in the 2nd Embodiment of this invention is demonstrated. In the above embodiment, an example that is configured to detect a disconnection detection resistor R OFFSET and the detection resistor R SEN output voltage V OUT combined resistance R SUM and by dividing resistors R 1 by applying a power supply voltage V CC min As described above, a constant current power supply 60h may be provided and the operational amplifier 601 may detect the output voltage VOUT as shown in FIG. 11A, or as shown in FIG. The output voltage VOUT may be detected using the constant voltage power supply 80 and the operational amplifier 601i.
Note that these embodiments can also be adopted as appropriate in the first embodiment of the present invention.

図10を参照して、本発明のガスセンサ1の基本的な断線検出方法について説明する。
本図(a)は、最も単純化した断線検出方法を示すものであり、ステップS100の出力電圧閾値判定手段では、出力電圧VOUTと所定の閾値VREFとの比較を行い、例えば閾値VREFとして、0vに近い値を設定すれば、出力電圧VOUTが限りなく0vに近ければ判定Yesとなり、断線が発生していると判断され、ステップS110の断線判定がなされ、出力電圧VOUTが所定の閾値VREF以上であれば、断線があるとは判定されず、見かけ上正常と判断し得るので、判定Noとなり、一応の正常判定とすることもできるが、より正確な判定をするために、後述するステップS200の正常判定手段に進む。
本実施形態によれば、断線を生じていなければ、少なくとも断線検出抵抗13によって導通が確保されているので、出力電圧VOUTが必ず発生し、誤差を考慮して、出力電圧VOUTが所定の閾値VREFより小さければ、確実に断線していると判断できる。
With reference to FIG. 10, the basic disconnection detection method of the gas sensor 1 of this invention is demonstrated.
This figure (a) shows the most simplified disconnection detection method, and the output voltage threshold value judging means in step S100 compares the output voltage VOUT with a predetermined threshold value VREF , for example, the threshold value VREF. If a value close to 0v is set, the determination is Yes if the output voltage VOUT is as close to 0v as possible, and it is determined that a disconnection has occurred, a disconnection determination is made in step S110, and the output voltage VOUT is a predetermined value. If it is equal to or greater than the threshold value V REF , it is not determined that there is a disconnection, and it can be determined that it is normal. Therefore, the determination is No and the normal determination can be made temporarily, but in order to make a more accurate determination Then, the process proceeds to a normality determination unit in step S200 described later.
According to the present embodiment, if disconnection does not occur, conduction is ensured by at least the disconnection detection resistor 13, so that the output voltage VOUT is always generated, and the output voltage VOUT is set to a predetermined value in consideration of an error. If it is smaller than the threshold value V REF , it can be determined that the wire is surely disconnected.

なお、本実施形態においては、出力電圧VOUTが所定の閾値VREF以下を断線と判断したが、所定の閾値VREF以上を断線と判断するように構成しても良い。 出力電圧VOUTが上定の閾値VREF以上を断線と判断するか、所定の閾値VREF以下を断線と判断するかは、、抵抗測定手段60を検出抵抗RSENに対してハイサイドに設けるかローサイドに設けるか、出力電圧VOUTを反転出力とするか非反転出力とするか、閾値VREFを形成する分圧抵抗Rを検出抵抗RSENに対して、ハイサイドに設けるかローサイドに設けるか等によって適宜変更可能である。 In the present embodiment, it is determined that the output voltage VOUT is equal to or lower than the predetermined threshold V REF as a disconnection. However, the output voltage VOUT may be determined to be higher than the predetermined threshold V REF as a disconnection. Whether the output voltage VOUT is determined to be a disconnection when the output voltage VOUT is equal to or higher than the upper threshold V REF or whether the output voltage VOUT is equal to or lower than the predetermined threshold V REF is determined as a disconnection is provided on the high side relative to the detection resistor R SEN whether low side to provide either a or a non-inverting output and inverting output an output voltage V OUT, the voltage dividing resistors R 1 to form a threshold value V REF to the detection resistor R SEN, on whether low side providing the high side It can be appropriately changed depending on whether it is provided.

本図(b)は、確実な断線の有無を判定するための判定方法を示すフローチャートである。
ステップS200のPM燃焼行程では、検出部11に堆積したPMを燃焼するためにヒータ部14へ通電がなされPMが燃焼除去される。
ステップS210のPM燃焼完了判定手段では、PMの燃焼が完了したか否かが判定される。具体的には、PM燃焼行程がスタートしてからの燃焼時間を計測したり、検出抵抗RSENの出力の有無を検出することによって判断したり、これらの両方を組み合わせてPM燃焼が完了したか否かを判定することができる。
ステップS210で、燃焼完了していないと判定された場合には、判定Noとなり、ステップS200のPM燃焼行程に戻り、完全にPMが燃焼されるまで繰り返される。
検出部11に堆積したPMが完全に燃焼されるとステップS210の燃焼完了判定手段で判定Yesとなり、ステップS220の閾値判定手段に進む。
ステップS220の閾値判定手段では、出力電圧VOUTが所定の閾値より小さいか否かが判定され、断線が発生している場合には、出力電圧VOUTは0又は限りなく0に近い値となり、判定Yesとなり、断線判定される。
検出部11にPMが完全に堆積していない状態で、出力電圧VOUTが所定の閾値VREF(例えば、断線検出抵抗ROFFSETと分圧抵抗Rとによって分圧されたオフセット電圧VOFFSET)以上であれば、判定Noとなり、ステップS230の正常判定に進む。
This figure (b) is a flowchart which shows the determination method for determining the presence or absence of a reliable disconnection.
In the PM combustion process in step S200, the heater unit 14 is energized to burn the PM accumulated in the detection unit 11, and the PM is burned and removed.
In the PM combustion completion determination means in step S210, it is determined whether or not PM combustion is completed. Specifically, whether the PM combustion is completed by measuring the combustion time from the start of the PM combustion stroke, judging by detecting the presence or absence of the output of the detection resistor R SEN , or combining these both It can be determined whether or not.
If it is determined in step S210 that the combustion is not completed, the determination is No, the process returns to the PM combustion process in step S200, and the process is repeated until PM is completely combusted.
When the PM deposited on the detection unit 11 is completely combusted, the combustion completion determination unit in Step S210 makes a determination Yes, and the process proceeds to the threshold determination unit in Step S220.
In the threshold value determination means in step S220, it is determined whether or not the output voltage VOUT is smaller than a predetermined threshold value. If a disconnection has occurred, the output voltage VOUT is 0 or a value close to 0 as much as possible. It becomes determination Yes and a disconnection determination is carried out.
In a state in which PM in the detection unit 11 is not completely deposited, the output voltage V OUT is a predetermined threshold value V REF (e.g., the offset voltage V OFFSET which is divided by the breakage detecting resistor R OFFSET dividing resistors R 1) If it is above, it will become determination No and will progress to the normal determination of step S230.

図11を参照して本発明のガスセンサ1の断線検出方法の他の具体例について説明する。電子制御装置70に設けられた断線検出手段では、図11に示したフローチャートに従って、ガスセンサ1の断線判定が開始される。なお、本断線検出方法は、断線検出手段であると同時に、ガスセンサの再生手段でもある。
ステップS300の第1の出力判定手段では、微粒子検出素子10の出力電圧VOUTの有無が判定され、出力電圧VOUTが0vより大きければ、判定Yesとなり、ステップS310に進み、出力電圧VOUTが0v、即ち、出力がなければ、判定にNoとなり、ステップS370の断線判定手段に進む。
ステップS310の第2の出力判定手段では、出力電圧VOUTが所定の第1の閾値Vref1より大きいか否かが判定される。出力電圧VOUTが第1の閾値Vref1以下である場合には、微粒子検出素子10の検出部11に堆積したPMの量が飽和状態となっておらず、PM量を検出可能であるため、判定Noとなる。PMの堆積量が所定量以上となり、検出電圧VOUTが第1の閾値Vref1以上となり、判定Yesとなるまで、ステップS300とステップS310とを繰り返す。
PMの堆積量が飽和量に近づき、ステップS310で判定Yesとなると、ステップS320の微粒子燃焼行程に進む。
ステップS320の微粒子燃焼行程では、検出部11に堆積したPM量が所定量以上となっているため、ヒータ140へ通電を開始し、検出部11に堆積したPMを燃焼除去させる。
微粒子燃焼行程が開始されると、出力電圧VOUTがモニタされ、ステップ130の微粒子燃焼完了判定手段において、PMの燃焼が完了されたかどうかを、出力電圧VOUTと第2の閾値Vref2との比較によって判定される。
PMの燃焼により、検出電極110、120間の検出抵抗RSENが上がり、出力電圧VOUTが第2の閾値Vref2以下となるまで、判定Noとなり、ステップS320とステップS330とを繰り返し、PMの燃焼のためにヒータ140への通電が維持される。
ステップS330で出力電圧VOUTが第2の閾値Vref2以下となり、判定YesとなるとステップS340の微粒子燃焼確認タイマtがスタートする。
次いでステップS350の微粒子燃焼確認判定手段では、微粒子燃焼確認タイマtが所定の閾値trefを経過したかどうかが判定される。
微粒子燃焼確認タイマtが閾値tref経過するまでは、出力電圧VOUTが所定の閾値Vref2以下となってもPMを確実に燃焼させるため、ヒータ140への通電が維持される。
所定時間が経過し、ステップS350で判定Yesとなるとステップ160の微粒子燃焼停止行程に進み、PMの燃焼のためのヒータ140への通電が停止される。
次いでステップS370の断線判定手段では、出力電圧VOUTが0vであるか否かによって、断線判定を行う。
ステップS340からステップS360によって確実にPMが燃焼された状態であるにも拘わらず、ステップS370において出力電圧VOUTが0vである場合には、断線していることが確実であるので、判定Yesとなり、ステップS380の断線判定を行う。
ステップS340からステップS360によって確実にPMが燃焼された状態であり、かつ、ステップS370において出力電圧VOUTが0v出ない場合には、正常であることが確実であるので、判定Noとなり、ステップS390の正常判定を行う。
ステップS300で出力電圧VOUTが0vであれば、断線しており、必然的にステップS370においても、出力電圧VOUTが0vとなり、判定Yesとなり、ステップS380の断線判定を行う。
スッテプS180及びステップS390では、断線の有無の判定結果をダイアグ出力等により外部に伝達し、断線判定を終了する。
なお、PMの堆積によって出力電圧VOUTが0vのままである場合には、検出部11以外の導通経路における断線であり、PMの堆積によって出力電圧VOUTが変化し、PMの燃焼後の出力電圧VOUTが0となる場合には、検出部11における断線であることと判断できるので、ステップ180における断線判定において、検出部11における断線であるか、検出部11以外の通電経路における断線であるかを判定してダイアグ出力を分けて行うこともできる。
Another specific example of the disconnection detection method of the gas sensor 1 of the present invention will be described with reference to FIG. In the disconnection detecting means provided in the electronic control unit 70, the disconnection determination of the gas sensor 1 is started according to the flowchart shown in FIG. The disconnection detection method is not only a disconnection detection means but also a gas sensor regeneration means.
In the first output determination means in step S300, the presence or absence of the output voltage VOUT of the particulate detection element 10 is determined. If the output voltage VOUT is greater than 0 v, the determination is Yes, and the process proceeds to step S310, where the output voltage VOUT is If it is 0v, that is, if there is no output, the determination is no and the process proceeds to the disconnection determination means in step S370.
In the second output determination means in step S310, it is determined whether or not the output voltage VOUT is greater than a predetermined first threshold value Vref1 . When the output voltage VOUT is equal to or lower than the first threshold value V ref1 , the amount of PM deposited on the detection unit 11 of the particulate detection element 10 is not saturated, and the amount of PM can be detected. It becomes determination No. Steps S300 and S310 are repeated until the PM deposition amount is equal to or greater than a predetermined amount, and the detection voltage VOUT is equal to or greater than the first threshold value Vref1 and the determination is Yes.
When the PM accumulation amount approaches the saturation amount and the determination is YES in step S310, the process proceeds to the particulate combustion process in step S320.
In the particulate combustion process in step S320, since the amount of PM deposited on the detection unit 11 is equal to or greater than a predetermined amount, energization of the heater 140 is started and the PM deposited on the detection unit 11 is burned and removed.
When the particulate combustion stroke is started, the output voltage VOUT is monitored, and in the particulate combustion completion determination means in step 130, whether or not PM combustion has been completed is determined between the output voltage VOUT and the second threshold value Vref2 . Determined by comparison.
Due to the combustion of PM, the detection resistance R SEN between the detection electrodes 110 and 120 is increased, and determination No is made until the output voltage VOUT becomes equal to or lower than the second threshold value V ref2 , and steps S320 and S330 are repeated. Energization of the heater 140 is maintained for combustion.
In step S330, when the output voltage VOUT becomes equal to or lower than the second threshold value Vref2 and the determination becomes Yes, the particulate combustion confirmation timer t in step S340 starts.
Next, the particulate combustion confirmation determining means in step S350 determines whether or not the particulate combustion confirmation timer t has passed a predetermined threshold value t ref .
Until the particulate combustion confirmation timer t elapses the threshold value t ref , even if the output voltage V OUT becomes equal to or lower than the predetermined threshold value V ref2, the PM is reliably burned, so that the energization of the heater 140 is maintained.
When the predetermined time has elapsed and the determination is YES in step S350, the process proceeds to the particulate combustion stop process in step 160, and energization of the heater 140 for PM combustion is stopped.
Next, the disconnection determination means in step S370 performs disconnection determination depending on whether or not the output voltage VOUT is 0v.
If the output voltage VOUT is 0v in step S370 despite the fact that PM has been reliably burned in steps S340 to S360, it is certain that the wire is disconnected, and therefore the determination is Yes. In step S380, disconnection determination is performed.
If PM is reliably combusted from step S340 to step S360, and if the output voltage VOUT is not 0v in step S370, it is certain that the output is normal, so determination No is made, and step S390 Make a normal judgment.
If the output voltage V OUT is 0v in step S300, it is disconnected, and in step S370, the output voltage V OUT is also 0v, the determination is Yes, and the disconnection determination in step S380 is performed.
In step S180 and step S390, the determination result of the presence or absence of disconnection is transmitted to the outside by a diagnostic output or the like, and the disconnection determination is terminated.
When the output voltage VOUT remains at 0v due to PM accumulation, it is a disconnection in the conduction path other than the detection unit 11, and the output voltage VOUT changes due to PM accumulation, and the output after combustion of PM When the voltage VOUT is 0, it can be determined that the detection unit 11 is disconnected. Therefore, in the disconnection determination in step 180, the detection unit 11 is disconnected or a disconnection in the energization path other than the detection unit 11 is performed. It is also possible to determine whether there is a separate diagnosis output.

図12を参照して、本発明の微粒子検出素子10を用いたガスセンサ1の正常時における本発明の効果について、比較例と共に説明する。
本発明の断線検出抵抗13を備えていない微粒子検出素子を用いたガスセンサの出力変化を比較例として示す。
比較例では、一対の検出電極間にPMが堆積し始める時期においては、1MΩから10MΩ程度の極めて高い抵抗値であるため、出力電圧VOUTは、ほとんど0vで推移し、検出することができない不感期間tdが存在する。
このため、不感期間tdにおいて、ガスセンサ1に断線異常が発生していても異常かどうかの判断をすることができず、排気浄化装置の故障によるPMの流出等の異常を阻止できない虞がある。
一方、本発明の断線検出抵抗13を備えた微粒子検出素子10を用いたガスセンサ1では、断線検出抵抗13が、検出部11に堆積するPMによって形成される出力電極110、120間に検出抵抗RSENを形成したときに、検出抵抗RSENに対して、断線検出抵抗13のオフセット抵抗ROFSETが並列となるので、合成抵抗が下がり、PM堆積初期においても、出力電圧VOUTの検出が可能となる。
PMの堆積量が少ない場合、検出電極110、120間に形成される検出抵抗RSENが大きく、出力電圧VOUTは、オフセット抵抗ROFFSETと分圧抵抗R1とによって決まり、オフセット電圧VOFFSETにほぼ等しくなる。
さらに、PMの堆積が進み、出力電圧VOUTが第1の閾値Vref1以上となると、上述の断線判定手段に従って、PMの燃焼が開始され、出力電圧VOUTがオフセット電圧VOFFSETの近傍の第2の閾値VREF2以下となってから所定時間trefだけPMの燃焼が維持され確実にPMが除去された状態で、断線の有無が判定され、PM燃焼停止後の出力電圧VOUTが0v以上のオフセット電圧VOFFSETとなっていれば、正常判定され、そのままPMが堆積し、出力電圧VOUTが第1の閾値以上となると再びPMの燃焼が開始される。
With reference to FIG. 12, the effect of this invention in the normal time of the gas sensor 1 using the microparticle detection element 10 of this invention is demonstrated with a comparative example.
The output change of the gas sensor using the fine particle detection element not provided with the disconnection detection resistor 13 of the present invention is shown as a comparative example.
In the comparative example, at the time when PM begins to deposit between the pair of detection electrodes, the output voltage VOUT is almost 0 V and cannot be detected because it has an extremely high resistance value of about 1 MΩ to 10 MΩ. There is a period td.
For this reason, even if a disconnection abnormality has occurred in the gas sensor 1 during the dead period td, it cannot be determined whether or not it is abnormal, and there is a possibility that abnormalities such as PM outflow due to failure of the exhaust purification device cannot be prevented.
On the other hand, in the gas sensor 1 using the particulate detection element 10 having the disconnection detection resistor 13 of the present invention, the disconnection detection resistor 13 is detected between the output electrodes 110 and 120 formed by PM deposited on the detection unit 11. When the SEN is formed, the offset resistance R OFSET of the disconnection detection resistor 13 is in parallel with the detection resistor R SEN , so that the combined resistance is lowered and the output voltage VOUT can be detected even in the early stage of PM deposition. Become.
When the amount of accumulated PM is small, the detection resistor R SEN formed between the detection electrodes 110 and 120 is large, and the output voltage VOUT is determined by the offset resistor R OFFSET and the voltage dividing resistor R1, and is almost equal to the offset voltage V OFFSET . Will be equal.
Moreover, PM deposition proceeds and the output voltage V OUT becomes the first threshold value V ref1 or more, according to the above disconnection determination means, combustion of the PM is started, the output voltage V OUT is in the vicinity of the offset voltage V OFFSET In the state where PM combustion is maintained for a predetermined time t ref after the threshold value V REF2 of 2 or less and PM is reliably removed, the presence or absence of disconnection is determined, and the output voltage VOUT after PM combustion stop is 0 v or more. If the offset voltage is V OFFSET , normality is determined, PM is deposited as it is, and combustion of PM is started again when the output voltage VOUT becomes equal to or higher than the first threshold value.

図13を参照して、断線異常が発生した場合の効果について説明する。
図13(a)に示すように、正常であれば、出力電圧VOUTは、PMの堆積によって出力電圧VOUTが上昇し、PMの燃焼によってもオフセット電圧VOFFSET以下とはならず、検出部11にPMが堆積している途中で検出部11以外の通電経路に断線が発生した場合には、PMの燃焼の有無に関わらず出力電圧VOUTが0となったまま継続されるので容易に断線が生じていることが分かる。
本発明の第1の実施形態における微粒子検出素子10、10a、10b、10c、10dと第2の実施形態における微粒子検出素子10e、10f、10gのいずれを用いてもこのような断線を検出することができる。
図13(b)に示すように、検出部11eに断線が発生した場合、PMの堆積途中では、断線部分にPMが堆積して導電パスを形成すると、出力電圧VOUTは、断線が生じていても0とならず、この状態では断線の有無が検出されず、ガスセンサ1は、一見正常なように機能する。
PMの堆積が進み出力電圧VOUTが第1の閾値Vref1以上となり、PMの燃焼が開始され、断線部分に堆積したPMが除去されると、検出部11の断線部以外にPMが残存していても、急激に抵抗値が高くなり、出力電圧VOUTは、第2の閾値Vref2以下となる。しかし、本発明では、出力電圧VOUTが第2の閾値となっても直ちにPMの燃焼を停止するのではなく、所定の時間trefだけ、PMの燃焼を維持し、完全に検出部11に堆積したPMを除去した後、断線判定を行う。
このため、検出部11に断線が生じている場合には、PM燃焼確認後に、出力電圧VOUTが0となっているので検出部11に断線が生じていることが解り、確実に断線判定をすることができる。
なお、検出部11に断線が生じている場合、このままガスセンサ1を作動させると、断線部にPMが堆積し、断線部をバイパスして一見正常なように作動するが、PM燃焼後には、出力電圧VOUTが0となり、断線異常であることが分かる。
With reference to FIG. 13, the effect when a disconnection abnormality occurs will be described.
As shown in FIG. 13A, when the output voltage VOUT is normal, the output voltage VOUT rises due to the accumulation of PM, and does not become lower than the offset voltage V OFFSET by PM combustion. When a disconnection occurs in the energization path other than the detection unit 11 while PM is being deposited on 11, the output voltage VOUT continues to be 0 regardless of the presence or absence of PM combustion, so that it is easy. It turns out that the disconnection has arisen.
Such disconnection can be detected by using any one of the fine particle detection elements 10, 10a, 10b, 10c, and 10d in the first embodiment of the present invention and the fine particle detection elements 10e, 10f, and 10g in the second embodiment. Can do.
As shown in FIG. 13B, when the disconnection occurs in the detection unit 11e, the output voltage VOUT is disconnected when the PM is deposited in the disconnection portion to form a conductive path. Even in this state, the presence or absence of disconnection is not detected, and the gas sensor 1 functions as if it is normal.
When PM accumulation progresses and the output voltage VOUT becomes equal to or higher than the first threshold value V ref1 , PM combustion starts, and when PM deposited on the disconnected portion is removed, PM remains other than the disconnected portion of the detection unit 11. However, the resistance value suddenly increases, and the output voltage V OUT becomes equal to or lower than the second threshold value V ref2 . However, in the present invention, even if the output voltage VOUT becomes the second threshold value, the combustion of PM is not stopped immediately, but the combustion of PM is maintained for a predetermined time t ref and completely detected by the detection unit 11. After removing the deposited PM, disconnection determination is performed.
For this reason, when the disconnection has occurred in the detection unit 11, it is understood that the disconnection has occurred in the detection unit 11 because the output voltage VOUT is 0 after the PM combustion confirmation, and the disconnection determination is surely performed. can do.
In addition, when the disconnection has occurred in the detection unit 11, if the gas sensor 1 is operated as it is, PM accumulates in the disconnection part, and the disconnection part is bypassed to operate normally. However, after PM combustion, The voltage VOUT becomes 0, indicating that the disconnection is abnormal.

本発明は上記実施形態に限定するものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態においては、自動車エンジン等の内燃機関に搭載される粒子状物質検出センサを例に説明したが、本発明の粒子状物質検出センサは、車載用に限定されるものではなく、火力発電所等の大規模プラントにおける粒子状物質検出の用途にも利用可能である。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the particulate matter detection sensor mounted on an internal combustion engine such as an automobile engine has been described as an example, but the particulate matter detection sensor of the present invention is not limited to being mounted on a vehicle, It can also be used for particulate matter detection in large-scale plants such as thermal power plants.

1 ガスセンサ
10 微粒子検出素子
11 検出部
110、120 検出電極
111、121 リード部
112、122 端子部
113、123 断線検出抵抗リード部
114、124 断線検出抵抗端子部
115、116、125、126 接続金具
117、127 信号線
100、140 電気絶縁性耐熱基板
13 断線検出抵抗
141 ヒータ
142a、142b ヒータリード部
143a、143b スルーホール電極
144a、144b ヒータ端子部
145a、145b、146a、146b 接続金具
147a、147b 通電線20 ハウジング
21 インシュレータ
22 ケーシング
220 封止部材
30 カバー体
301、302 被測定ガス入出孔
40 被測定ガス流路壁
400 被測定ガス流路
60 抵抗測定手段
61 加熱制御手段
70 電子制御装置
DESCRIPTION OF SYMBOLS 1 Gas sensor 10 Particulate detection element 11 Detection part 110,120 Detection electrode 111,121 Lead part 112,122 Terminal part 113,123 Disconnection detection resistance lead part 114,124 Disconnection detection resistance terminal part 115,116,125,126 Connection metal fitting 117 127 Signal lines 100, 140 Electrical insulating heat-resistant substrate 13 Disconnection detection resistor 141 Heater 142a, 142b Heater lead part 143a, 143b Through-hole electrode 144a, 144b Heater terminal part 145a, 145b, 146a, 146b Connecting bracket 147a, 147b 20 Housing 21 Insulator 22 Casing 220 Sealing member 30 Cover body 301, 302 Measured gas inlet / outlet hole 40 Measured gas channel wall 400 Measured gas channel 60 Resistance measuring unit 61 Heating control unit 70 Electronic control unit

特開昭59−197847号公報JP 59-197847 A 国際公開第2008/138661号International Publication No. 2008/138661 欧州特許出願公開第1925926号明細書European Patent Application No. 1925926

Claims (7)

少なくとも、被測定ガスに晒され、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と該検出部を加熱する加熱部とを有する微粒子検出素子と、該微粒子検出素子によって検出された導電性微粒子の量に応じて変化する上記検出電極間の電気抵抗を測定する抵抗測定手段とを具備して、被測定ガス中の導電性微粒子の濃度を検出するガスセンサにおいて、
上記検出部と上記抵抗測定手段との間を繋ぐ導通経路の断線の有無を検出する断線検出手段として、所定の抵抗値を有する断線検出抵抗を上記一対の検出電極を導通すると共に、該検出電極間に形成される検出抵抗に対して並列となるように反抵抗測定手段側に設けたことを特徴とするガスセンサ。
A fine particle detection element having at least a detection unit that is exposed to a gas to be measured and has a pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate, and a heating unit that heats the detection unit; And a resistance measuring means for measuring the electrical resistance between the detection electrodes, which varies depending on the amount of the conductive fine particles detected by the fine particle detection element, to detect the concentration of the conductive fine particles in the gas to be measured. In the gas sensor
As a disconnection detection means for detecting the presence or absence of disconnection of a conduction path connecting the detection unit and the resistance measurement means, the disconnection detection resistor having a predetermined resistance value is electrically connected to the pair of detection electrodes, and the detection electrode A gas sensor, which is provided on the side of the anti-resistance measuring means so as to be in parallel with a detection resistor formed therebetween.
上記一対の検出電極を複数の電極が突出する櫛歯形状に形成し、これらを対向せしめた請求項1に記載のガスセンサ。   The gas sensor according to claim 1, wherein the pair of detection electrodes are formed in a comb-teeth shape in which a plurality of electrodes protrude and face each other. 上記一対の検出電極の一部をクランク状に屈曲させて、これらを対向せしめた請求項1に記載のガスセンサ。   The gas sensor according to claim 1, wherein a part of the pair of detection electrodes is bent in a crank shape so as to face each other. 上記断線検出抵抗を熱的に安定した位置に載置した1ないし3のいずれか1項に記載のガスセンサ。   The gas sensor according to any one of 1 to 3, wherein the disconnection detection resistor is placed at a thermally stable position. 上記断線検出抵抗として感温特性を有するサーミスタを用いると共に、上記検出部側に設けた請求項1ないし3のいずれか1項に記載のガスセンサ。   The gas sensor according to any one of claims 1 to 3, wherein a thermistor having a temperature-sensitive characteristic is used as the disconnection detection resistor, and provided on the detection unit side. 少なくとも、被測定ガスに晒され、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と該検出部を加熱する加熱部とを有する微粒子検出素子と、該微粒子検出素子によって検出された導電性微粒子の量に応じて変化する上記検出電極間の電気抵抗を測定する抵抗測定手段とを具備して、被測定ガス中の導電性微粒子の濃度を検出するガスセンサの断線検出方法であって、
上記ガスセンサが、上記検出部と上記抵抗測定手段との間を繋ぐ導通経路の断線の有無を検出する断線検出手段として、上記一対の検出電極を導通すると共に、該検出電極間に形成される検出抵抗に対して並列となるように設けた、所定の抵抗値を有する断線検出抵抗を具備し、
少なくとも、上記検出抵抗と上記断線検出抵抗との合成抵抗によって検出される出力電圧と所定の閾値との比較によって断線の有無を検出する断線判定手段を有し、上記出力電圧が所定の閾値を越えた場合に断線と判定することを特徴とするガスセンサの断線検出方法。
A fine particle detection element having at least a detection unit that is exposed to a gas to be measured and has a pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate, and a heating unit that heats the detection unit; And a resistance measuring means for measuring the electrical resistance between the detection electrodes, which varies depending on the amount of the conductive fine particles detected by the fine particle detection element, to detect the concentration of the conductive fine particles in the gas to be measured. A disconnection detection method for a gas sensor,
As the disconnection detecting means for detecting the presence or absence of disconnection of the conduction path connecting the detection section and the resistance measuring means, the gas sensor conducts the pair of detection electrodes and detects formed between the detection electrodes. Provided with a disconnection detection resistor having a predetermined resistance value provided in parallel with the resistor,
At least disconnection determination means for detecting the presence or absence of disconnection by comparing an output voltage detected by a combined resistance of the detection resistor and the disconnection detection resistor with a predetermined threshold value, and the output voltage exceeds the predetermined threshold value. A disconnection detection method for a gas sensor, characterized in that it is determined that a disconnection occurs.
上記加熱部の作動により上記検出部に堆積した微粒子を燃焼除去する燃焼行程と、燃焼時間及び微粒子検出素子の出力のいずれか1つ若しくは両方を用いて微粒子の燃焼完了を判定する微粒子燃焼完了判定手段と、微粒子の燃焼確認後における微粒子検出素子の出力の有無によって断線の有無を判定する断線判定手段とを具備し、微粒子を完全に除去した状態で断線の有無を判定する請求項6に記載のガスセンサの断線検出方法。   Particulate combustion completion determination for determining the completion of combustion of particulates using one or both of a combustion process for burning and removing particulates accumulated on the detection part by the operation of the heating part and the output of the combustion time and particulate detection element 7. A disconnection determining means for determining the presence or absence of disconnection based on the presence or absence of an output of the particulate detection element after confirming combustion of the particulates, and determining whether or not there is a disconnection with the particulates completely removed. Method for detecting disconnection of gas sensor.
JP2010070221A 2010-03-25 2010-03-25 Gas sensor, and disconnection detection method thereof Pending JP2011203093A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010070221A JP2011203093A (en) 2010-03-25 2010-03-25 Gas sensor, and disconnection detection method thereof
DE201110006167 DE102011006167A1 (en) 2010-03-25 2011-03-25 Gas sensor and method for detecting the interruption in a gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070221A JP2011203093A (en) 2010-03-25 2010-03-25 Gas sensor, and disconnection detection method thereof

Publications (1)

Publication Number Publication Date
JP2011203093A true JP2011203093A (en) 2011-10-13

Family

ID=44730887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070221A Pending JP2011203093A (en) 2010-03-25 2010-03-25 Gas sensor, and disconnection detection method thereof

Country Status (2)

Country Link
JP (1) JP2011203093A (en)
DE (1) DE102011006167A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013058A (en) * 2010-07-05 2012-01-19 Toyota Motor Corp Failure detecting device for pm sensor
JP2013122439A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Particulate matter sensor unit and method for manufacturing the same
DE102013215123A1 (en) 2012-08-02 2014-02-06 Denso Corporation PARTICULATE MATERIAL DETECTION ELEMENT, DETECTOR SENSOR FOR PARTICULAR MATERIAL THEREFORE EQUIPPED, AND METHOD OF MANUFACTURING THEREOF
CN106644869A (en) * 2017-03-03 2017-05-10 广州飒括科技有限公司 Infrared sensor and detection method for concentration of PM2.5
KR101860455B1 (en) 2016-10-25 2018-05-23 세종공업 주식회사 Particulater matter detection sensor
KR101860817B1 (en) 2016-10-25 2018-05-25 세종공업 주식회사 Particulater matter detection sensor using porous substrate
WO2020217508A1 (en) * 2019-04-26 2020-10-29 ナブテスコ株式会社 Sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220832A1 (en) * 2016-10-24 2018-04-26 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102016225420A1 (en) * 2016-12-19 2018-06-21 Robert Bosch Gmbh Sensor for detecting at least one property of a sample gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197847A (en) 1983-04-25 1984-11-09 Ngk Spark Plug Co Ltd Smoke sensor
DE102006055520A1 (en) 2006-11-24 2008-05-29 Robert Bosch Gmbh Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use
DE102007021910A1 (en) 2007-05-10 2008-11-20 Robert Bosch Gmbh Sensor for detecting particles in a gas stream

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013058A (en) * 2010-07-05 2012-01-19 Toyota Motor Corp Failure detecting device for pm sensor
JP2013122439A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Particulate matter sensor unit and method for manufacturing the same
US9759675B2 (en) 2011-12-09 2017-09-12 Hyundai Motor Company Particulate matter sensor unit
DE102013215123A1 (en) 2012-08-02 2014-02-06 Denso Corporation PARTICULATE MATERIAL DETECTION ELEMENT, DETECTOR SENSOR FOR PARTICULAR MATERIAL THEREFORE EQUIPPED, AND METHOD OF MANUFACTURING THEREOF
CN103575628A (en) * 2012-08-02 2014-02-12 株式会社电装 Particle material detection element, particle material detection sensor having the element, and method making the element
JP2014032063A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Method of manufacturing particulate matter detection element, and particulate matter detection sensor
KR101860455B1 (en) 2016-10-25 2018-05-23 세종공업 주식회사 Particulater matter detection sensor
KR101860817B1 (en) 2016-10-25 2018-05-25 세종공업 주식회사 Particulater matter detection sensor using porous substrate
CN106644869A (en) * 2017-03-03 2017-05-10 广州飒括科技有限公司 Infrared sensor and detection method for concentration of PM2.5
WO2020217508A1 (en) * 2019-04-26 2020-10-29 ナブテスコ株式会社 Sensor
CN113728225A (en) * 2019-04-26 2021-11-30 纳博特斯克有限公司 Sensor with a sensor element
US20220178857A1 (en) * 2019-04-26 2022-06-09 Nabtesco Corporation Sensor

Also Published As

Publication number Publication date
DE102011006167A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP5223905B2 (en) Particulate matter detection element
KR101701536B1 (en) Method and device for monitoring a component arranged in an exhaust gas region of an internal combustion engine
JP6563840B2 (en) Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system
US9134216B2 (en) Soot sensor system
JP6563839B2 (en) Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system
JP2006266961A (en) Soot sensor
JP2012127907A (en) Particulate matter detection sensor
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
US8578756B2 (en) Particulate matter detection sensor and particulate matter detection sensor unit
JP6408363B2 (en) Catalyst deterioration diagnosis method
JP6374780B2 (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
JP2009144577A (en) Failure determination device for particulate filter
JP2011080942A (en) Particulate detection sensor
US20120085146A1 (en) Particulate matter detection sensor
JP6401595B2 (en) Catalyst deterioration diagnosis method
JP2018119408A (en) Catalyst deterioration diagnostic method and catalyst deterioration diagnostic system
JP2012012960A (en) Particulate matter detection sensor
JP2011080780A (en) Particulate detection element
JP2011080439A (en) Device for detecting abnormality of particulate filter
US20180010506A1 (en) Method for diagnosing degradation in catalyst
JP5606356B2 (en) Particulate matter detector
US20110081276A1 (en) Particulate sensing element and particulate sensor having the particulate sensing element
JP6107768B2 (en) Failure diagnosis device for exhaust purification system
JP2006267021A (en) Soot sensor and soot detecting method