JP5606356B2 - Particulate matter detector - Google Patents

Particulate matter detector Download PDF

Info

Publication number
JP5606356B2
JP5606356B2 JP2011031625A JP2011031625A JP5606356B2 JP 5606356 B2 JP5606356 B2 JP 5606356B2 JP 2011031625 A JP2011031625 A JP 2011031625A JP 2011031625 A JP2011031625 A JP 2011031625A JP 5606356 B2 JP5606356 B2 JP 5606356B2
Authority
JP
Japan
Prior art keywords
gas
measured
particulate matter
detection
matter detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011031625A
Other languages
Japanese (ja)
Other versions
JP2012168143A (en
Inventor
中村  聡
敏彦 原田
圭吾 水谷
岳人 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2011031625A priority Critical patent/JP5606356B2/en
Publication of JP2012168143A publication Critical patent/JP2012168143A/en
Application granted granted Critical
Publication of JP5606356B2 publication Critical patent/JP5606356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被測定ガス中に含まれる粒子状物質を検出する粒子状物質検出装置に関し、特に内燃機関の燃焼排気を浄化する排気浄化システムに好適に利用されるものである。   The present invention relates to a particulate matter detection device that detects particulate matter contained in a gas to be measured, and is particularly suitable for an exhaust purification system that purifies combustion exhaust of an internal combustion engine.

従来、自動車用ディーゼルエンジン等において、排気ガスに含まれる環境汚染物質、特に煤粒子(Soot)及び可溶性有機成分(SOF)を主体とする粒子状物質(Particulate Matter;以下、適宜PMと称する)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、適宜DPFと称する)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に排気ガスを通過させてPMを捕捉する。   2. Description of the Related Art Conventionally, in automobile diesel engines and the like, environmental pollutants contained in exhaust gas, particularly particulate matter (Particulate Matter; hereinafter referred to as PM as appropriate) mainly composed of soot particles and soluble organic components (SOF). In order to collect, a diesel particulate filter (hereinafter referred to as DPF as appropriate) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by passing exhaust gas through a partition wall having a large number of pores.

DPFは、PM捕集量が許容量を超えると、目詰まりが生じて負圧が増大したり、PMのすり抜けが増加したりするおそれがあり、定期的に再生処理を行って捕集能力を回復させている。再生時期は、一般的には、PM捕集量の増加により前後差圧が増大することを利用しており、このため、DPFの上流及び下流の圧力差を検出する差圧センサが設置される。再生処理は、ヒータ加熱あるいはポスト噴射等により高温の燃焼排気ガスをDPF内に導入し、PMを燃焼除去する。   If the amount of collected PM exceeds the allowable amount, DPF may cause clogging and increase the negative pressure or increase the slipping of PM. It is recovering. The regeneration period generally uses the fact that the differential pressure increases with the increase in the amount of PM collected. For this reason, a differential pressure sensor is installed to detect the pressure difference upstream and downstream of the DPF. . In the regeneration process, high-temperature combustion exhaust gas is introduced into the DPF by heater heating or post injection, and PM is burned and removed.

一方、排気ガス中のPMを直接検出可能なセンサとして、絶縁性を有する基板の表面に、一対の導電性電極を形成し、基板の裏面又は内部に発熱体を形成した電気抵抗式のセンサが提案されている。このセンサをDPFの下流に設置した場合は、DPFをすり抜けるPMを検出することになり、車載式故障診断装置(OBD;On Board Diagnosis)においてDPFの作動状態を監視し、例えば亀裂や破損といった異常の早期検出に利用可能である。
また、近年、DPFをすり抜ける50nm以下の極めて微細な粒子状物質が問題視されてきている。
On the other hand, as a sensor capable of directly detecting PM in exhaust gas, there is an electric resistance sensor in which a pair of conductive electrodes are formed on the surface of an insulating substrate and a heating element is formed on the back surface or inside of the substrate. Proposed. When this sensor is installed downstream of the DPF, PM passing through the DPF is detected, and the on-board diagnosis (OBD) monitors the operating state of the DPF to detect abnormalities such as cracks and breakage. It can be used for early detection.
In recent years, an extremely fine particulate material of 50 nm or less that passes through the DPF has been regarded as a problem.

特許文献1には、このような微細な粒子状物質を検出する粒子状物質検出装置として、粒子状物質検出素子本体に貫通孔を形成し、貫通孔を形成する壁面内部に、誘電体で覆われた一対の電極を埋設した構成が開示されている。この粒子状物質検出素子では、一対の電極間に電圧を印加して、貫通孔内に放電を生起させ、放電により貫通孔内を通過する粒子状物質に荷電して貫通孔の内壁面に電気的に吸着させ、静電容量等の貫通孔壁面の電気的特性の変化を測定することによって被測定ガス中の粒子状物質を検出しようとするものである。   In Patent Document 1, as a particulate matter detection device for detecting such a fine particulate matter, a through-hole is formed in the particulate matter detection element body, and the inside of the wall surface forming the through-hole is covered with a dielectric. A configuration in which a pair of broken electrodes is embedded is disclosed. In this particulate matter detection element, a voltage is applied between a pair of electrodes to cause a discharge in the through-hole, and the particulate matter passing through the through-hole is charged by the discharge to electrically charge the inner wall surface of the through-hole. The particulate matter in the gas to be measured is detected by measuring the change in the electrical characteristics of the wall surface of the through-hole such as capacitance.

ところが、特許文献1にあるように、粒子状物質検出素子の両側面を貫通するように貫通孔を設けた構成では、不可避的に、被測定ガスの流れ方向と粒子状物質検出素子との位置関係によって貫通孔に流入する被測定ガスの流量が大きく変動することが判明した。
例えば、被測定ガスの進行方向と粒子状物質検出素子に設けた貫通孔の開口方向とが直交し、貫通孔の両端に流れる被測定ガスの流速が略等しく、貫通孔内に圧力差が生じないような場合には、粒子状物質の荷電による粒子状物質の捕集を行おうにも貫通孔内に被測定ガスがほとんど流入しなくなる虞がある。
一方、被測定ガスの進行方向と粒子状物質検出素子に設けた貫通孔の開口方向とが一致する場合には、流速に比例した流量の被測定ガスが貫通孔内に流入する反面、流速が早い場合には、貫通孔内に捕集された粒子状物質が被測定ガスによって吹き飛ばされる虞もある。
However, as disclosed in Patent Document 1, in the configuration in which through holes are provided so as to penetrate both side surfaces of the particulate matter detection element, the flow direction of the gas to be measured and the position of the particulate matter detection element are unavoidable. It has been found that the flow rate of the gas to be measured flowing into the through hole varies greatly depending on the relationship.
For example, the traveling direction of the gas to be measured and the opening direction of the through hole provided in the particulate matter detection element are orthogonal to each other, the flow rates of the gas to be measured flowing at both ends of the through hole are substantially equal, and a pressure difference is generated in the through hole. In such a case, there is a possibility that the gas to be measured hardly flows into the through hole in order to collect the particulate matter due to the charge of the particulate matter.
On the other hand, when the direction of travel of the gas to be measured and the opening direction of the through hole provided in the particulate matter detection element coincide, the gas to be measured having a flow rate proportional to the flow rate flows into the through hole, but the flow rate is In an early case, there is a possibility that the particulate matter collected in the through hole is blown away by the gas to be measured.

一般に、粒子状物質検出装置では、粒子状物質検出素子保護のため、粒子状物質検出素子の被測定ガスに晒される部分は、開口を設けたカバー体で覆われている。
したがって、従来の粒子状物質検出装置では、被測定ガスの進行方向と貫通孔の開口方向とが所定の位置関係となるように、カバー体の開口方向と貫通孔の開口方向とを特定し、さらに、粒子状物質検出装置を被測定ガス流路に組み付ける際にも、被測定ガスの進行方向と貫通孔の開口方向とを特定しないと、粒子状物質を安定して検出することができなくなる虞がある。
In general, in a particulate matter detection device, a portion of the particulate matter detection element that is exposed to the gas to be measured is covered with a cover having an opening in order to protect the particulate matter detection element.
Therefore, in the conventional particulate matter detection device, the opening direction of the cover body and the opening direction of the through hole are specified so that the traveling direction of the gas to be measured and the opening direction of the through hole have a predetermined positional relationship, Furthermore, when assembling the particulate matter detection device into the gas flow path to be measured, the particulate matter cannot be detected stably unless the traveling direction of the gas to be measured and the opening direction of the through hole are specified. There is a fear.

また、内燃機関の燃焼排気を被測定ガスとした場合、機関の運転状況によって被測定ガスである燃焼排気の流速が変化する。
ところが、従来の粒子状物質検出装置では、被測定ガスの流速の変化と粒子状物質検出素子内に取り込まれる被測定ガスの流量の変化とが必ずしも一致せず、検出出力の変化が被測定ガス中の粒子状物質の変化によるものなのか、被測定ガスの流速の変化によるものなのか区別することが困難となる虞もある。
Further, when the combustion exhaust gas of the internal combustion engine is the gas to be measured, the flow velocity of the combustion exhaust gas that is the gas to be measured changes depending on the operating state of the engine.
However, in the conventional particulate matter detection device, the change in the flow rate of the gas to be measured and the change in the flow rate of the gas to be measured taken into the particulate matter detection element do not necessarily coincide with each other, and the change in the detection output is the gas to be measured. It may be difficult to distinguish whether it is due to a change in the particulate matter in it or due to a change in the flow rate of the gas to be measured.

さらに、従来の粒子状物質検出装置では、DPFをすり抜ける極めて微細な粒子状物質を検出可能なレベルに感度を高めると、比較的大きな粒径の粒子状物質やその凝集体等が偶発的に捕集された場合と微細な粒子状物質の堆積された場合とを区別して検出することができず、DPFの状態を誤判定する虞もある。   Furthermore, in the conventional particulate matter detection device, when the sensitivity is increased to a level at which extremely fine particulate matter that passes through the DPF can be detected, accidental trapping of particulate matter having a relatively large particle diameter, aggregates thereof, and the like. The case where the particles are collected and the case where the fine particulate matter is deposited cannot be detected separately, and the state of the DPF may be erroneously determined.

そこで、本発明は、かかる実情に鑑み、製造工程において検出素子の組み付け方向を考慮したり、被測定ガス流路への組み付け時の方向性を考慮したりする必要がなく、粒子状物質検出素子の周方向の組み付け角度に拘わらず安定した検出を実現すると共に、粗大粒子の誤検出を防ぎ、被測定ガス流路中の極めて微細な粒子状物質を安定して検出することが可能で、しかも、被測定ガスの流速変化に一致して検出素子内に取り込む被測定ガスの流量が線形に変化し、被測定ガスの流速の変化と被測定ガス中に含まれる粒子状物質の量の変化とを区別して検出できる信頼性の高い粒子状物質検出装置の提供を目的とする。   Therefore, in view of such a situation, the present invention does not need to consider the direction of assembly of the detection element in the manufacturing process or the direction during assembly to the gas flow path to be measured. In addition to realizing stable detection regardless of the circumferential assembly angle, it is possible to prevent erroneous detection of coarse particles and stably detect extremely fine particulate matter in the measured gas flow path. The flow rate of the measurement gas taken into the detection element changes linearly in accordance with the change in the flow rate of the measurement gas, the change in the flow rate of the measurement gas and the change in the amount of particulate matter contained in the measurement gas It is an object of the present invention to provide a highly reliable particulate matter detection device that can detect and distinguish the above.

請求項1の発明では、軸方向に伸びる略平板状に形成され、その先端側が被測定ガス中に配設された絶縁性基体に一対の検出用電極を設け、該検出用電極間に堆積する被測定ガス中の粒子状物質の量によって変化する電気的特性を測定して、被測定ガス中の粒子状物質を検出する粒子状物質検出素子を備える粒子状物質検出装置において、
被測定ガス導入孔として、上記粒子状物質検出素子を覆う略有底筒状に形成したカバー体の基端側外周に複数の貫通孔を穿設して、被測定ガス導出孔として、上記カバー体の底部に一、又は、複数の貫通孔を穿設して、上記カバー体内に導入された被測定ガスが上記検出素子の基端側から先端側に向かって長手軸方向に沿って移動する流れを形成すると共に、
上記粒子状物質検出素子の内側に、その軸方向に伸びる被測定ガス通気路を区画し、該被測定ガス通気路の基端側を被測定ガスの進行方向に直交する方向に向かって開孔せしめ、その先端側を上記被測定ガス導出孔に対向する方向に開孔せしめて、上記一対の検出用電極を上記被測定ガス通気路内に流れる被測定ガスの流速が安定する流速安定領域に対向する位置に配設する。
According to the first aspect of the present invention, a pair of detection electrodes are provided on an insulating substrate which is formed in a substantially flat plate shape extending in the axial direction and whose tip side is disposed in the gas to be measured, and is deposited between the detection electrodes. In a particulate matter detection device including a particulate matter detection element that measures an electrical property that varies depending on the amount of particulate matter in a measurement gas and detects the particulate matter in the measurement gas.
A plurality of through holes are formed in the outer periphery of the base end side of the cover body formed in a substantially bottomed cylindrical shape that covers the particulate matter detection element as the measurement gas introduction hole, and the cover as the measurement gas lead-out hole One or a plurality of through holes are formed in the bottom of the body, and the gas to be measured introduced into the cover body moves along the longitudinal axis direction from the proximal end side to the distal end side of the detection element. While forming the flow,
A gas flow passage to be measured extending in the axial direction is defined inside the particulate matter detection element, and a base end side of the gas flow passage to be measured is opened toward a direction orthogonal to the traveling direction of the gas to be measured. The tip end side is opened in a direction opposite to the measurement gas outlet hole, and the pair of detection electrodes is in a flow rate stable region where the flow rate of the measurement gas flowing in the measurement gas flow passage is stable. It arrange | positions in the position which opposes.

請求項1の発明によれば、上記カバー体が被測定ガス流路に対して如何なる回転方向で組み付けられていようとも、また、上記粒子状物質検出素子が上記カバー体の周方向に対して如何なる角度で組み付けられていようとも、上記粒子状物質検出素子の長手軸方向に沿って被測定ガスが流れたときに、上記粒子状物質検出素子の内側に区画した上記被測定ガス通気路の基端側開孔と先端側開孔との圧力差によって、必然的に被測定ガスが上記被測定ガス通気路内に引き込まれる。
また、本発明によれば、上記粒子状物質検出素子の周方向の組み付け角度の変化によって、上記被測定ガス通気路内に導入される被測定ガスの流量の変化が少ないことが判明した。
したがって、製造時や組み付け時に粒子状物質検出素子の方向性を考慮することなく粒子状物質検出素子の周方向の組み付け角度に拘わらず安定した検出を実現することができる。
しかも、本発明では、上記流速安定領域に対向する位置に上記一対の検出電極が形成されているので、極めて安定した条件で被測定ガス中に含まれる粒子状物質の検出を行うことができる。
さらに、本発明によれば、被測定ガスの流速の変化に対して、上記被測定ガス通気路内に導入される被測定ガスの流量がほぼ線形に変化することが判明した。
したがって、被測定ガスの流速の変化と被測定ガス中に含まれる粒子状物質の量の変化とを区別して検出することが可能となり、極めて信頼性の高い粒子状物質検出装置が実現できる。
According to the first aspect of the present invention, no matter what rotational direction the cover body is assembled with respect to the gas flow path to be measured, and what the particulate matter detection element is relative to the circumferential direction of the cover body. Even if assembled at an angle, when the gas to be measured flows along the longitudinal axis direction of the particulate matter detection element, the base end of the gas passage to be measured partitioned inside the particulate matter detection element The gas to be measured is inevitably drawn into the gas passage to be measured due to the pressure difference between the side opening and the tip side opening.
Further, according to the present invention, it has been found that the change in the flow rate of the measurement gas introduced into the measurement gas ventilation passage is small due to the change in the assembly angle in the circumferential direction of the particulate matter detection element.
Therefore, stable detection can be realized regardless of the assembly angle in the circumferential direction of the particulate matter detection element without considering the directionality of the particulate matter detection element during manufacture or assembly.
Moreover, in the present invention, since the pair of detection electrodes are formed at positions facing the flow velocity stabilization region, it is possible to detect the particulate matter contained in the measurement gas under extremely stable conditions.
Furthermore, according to the present invention, it has been found that the flow rate of the measurement gas introduced into the measurement gas ventilation passage changes substantially linearly with respect to the change in the flow rate of the measurement gas.
Therefore, it becomes possible to distinguish and detect the change in the flow rate of the gas to be measured and the change in the amount of the particulate matter contained in the gas to be measured, and an extremely reliable particulate matter detection device can be realized.

請求項2の発明では、上記被測定ガス通気路の基端側開孔に延設して、基端側開孔に対向する位置における上記絶縁性基体の表面を窪ませて粗大粒子捕集部とする。   In a second aspect of the present invention, the coarse particle collecting portion is formed by extending the base end side opening of the gas flow passage to be measured and recessing the surface of the insulating substrate at a position facing the base end side opening. And

請求項2の発明によれば、上記被測定ガス通気路内に導入された被測定ガス中に含まれる粒子状物質のうち、比較的粒径の大きな粗大粒子、又は、複数の粒子が集合した凝集粒子は、慣性により上記粗大粒捕集部に衝突し、上記一対の検出用電極の形成された上記流速安定領域に移動することなく捕集され、粒径の微細な粒子状物質が分級されて、被測定ガスと共に上記流速安定領域に移動し、上記一対の検出用電極によって検出される。   According to the invention of claim 2, coarse particles having a relatively large particle diameter or a plurality of particles gathered among the particulate matter contained in the gas to be measured introduced into the gas flow path to be measured. Aggregated particles collide with the coarse particle collecting portion due to inertia and are collected without moving to the flow velocity stable region where the pair of detection electrodes are formed, and fine particulate matter having a particle size is classified. Then, it moves to the flow velocity stable region together with the gas to be measured and is detected by the pair of detection electrodes.

また、具体的な検出用電極の形状として、請求項3の発明のように、上記一対の検出用電極が、上記被測定ガス通気路を区画する内壁の一の表面上に形成され、外部に設けた検出回路に接続する一対の検出用電極リード部に接続して複数の検出用電極検出部を一定の間隙を隔てて交互に引き出した櫛歯状電極でも良いし、請求項4の発明のように、上記一対の検出用電極が、上記絶縁性基体の内部に埋設され、上記被測定ガス通気路を挟んで対向する略平板状に形成された検出用電極検出部と、それぞれの検出用電極検出部と外部に設けた検出回路とを接続する一対の検出用電極リード部とで構成しても良い。
いずれの場合であっても、粒子状物質検出素子の配置方向に拘わらず、上記被測定ガス通気路内に導入される被測定ガスの流速が安定させることができるので、極めて容易に信頼性の高い粒子状物質検出装置が実現できる。
また、上記一対の電極間に電圧を印加して、粒子状物質の捕集性を高めることも可能である。
Further, as a specific shape of the detection electrode, as in the invention of claim 3, the pair of detection electrodes is formed on one surface of the inner wall defining the gas flow passage to be measured, and is formed outside. A comb-like electrode connected to a pair of detection electrode lead portions connected to the provided detection circuit and having a plurality of detection electrode detection portions alternately drawn with a certain gap may be used. As described above, the pair of detection electrodes are embedded in the insulating base and formed in a substantially flat plate shape facing each other with the gas flow passage to be measured interposed therebetween, and the respective detection electrodes You may comprise by a pair of electrode lead part for a detection which connects an electrode detection part and the detection circuit provided outside.
In any case, the flow rate of the gas to be measured introduced into the gas flow path to be measured can be stabilized regardless of the arrangement direction of the particulate matter detection element, so that the reliability is extremely easy. A high particulate matter detection device can be realized.
In addition, it is possible to improve the trapping property of the particulate matter by applying a voltage between the pair of electrodes.

本発明の第1の実施形態における粒子状物質検出装置の概要を示し、(a)は、縦断面図、(b)は、本図(a)中A−Aに沿った断面における矢視平面図。The outline | summary of the particulate-material detection apparatus in the 1st Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is an arrow plane in the cross section along AA in this figure (a). Figure. 本発明の第1の実施形態における粒子状物質検出装置の要部である粒子状物質検出素子の概要を示す展開斜視図。FIG. 3 is a developed perspective view showing an outline of a particulate matter detection element that is a main part of the particulate matter detection device according to the first embodiment of the present invention. 比較例における従来の粒子状物質検出装置の概要を示し、(a)は、縦断面図、(b)は、本図(a)中A−Aに沿った断面における矢視平面図。The outline | summary of the conventional particulate-material detection apparatus in a comparative example is shown, (a) is a longitudinal cross-sectional view, (b) is an arrow top view in the cross section along AA in this figure (a). 比較例における粒子状物質検出装置の要部である粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element which is the principal part of the particulate matter detection apparatus in a comparative example. 本発明の第1の実施形態における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが直交する場合の位置関係を示す横断面図、(b)は、その時の粒子状物質検出装置内の被測定ガスの流れを示す流れ解析図。The effect of the particulate matter detection device in the first embodiment of the present invention is shown, (a) is a cross-sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are orthogonal, (B) is a flow analysis diagram showing the flow of the gas to be measured in the particulate matter detection device at that time. 本発明の第1の実施形態における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが平行となる場合の位置関係を示す横断面図、(b)は、その時の粒子状物質検出装置内の被測定ガスの流れを示す流れ解析図。The effect of the particulate matter detection device in the first embodiment of the present invention is shown, (a) is a cross-sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are parallel. (B) is a flow analysis figure which shows the flow of the to-be-measured gas in the particulate matter detection apparatus at that time. 本発明の第1の実施形態における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが直交する場合の位置関係を示す縦断面図、(b)は、本図(a)中A−Aに沿った横断面における流れ解析図、(c)は、本図(a)中B−Bに沿った横断面における流れ解析図、(d)は、本図(c)の要部拡大図。The effect of the particulate matter detection device in the first embodiment of the present invention is shown, (a) is a longitudinal sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are orthogonal, (B) is a flow analysis diagram in the cross section along AA in FIG. (A), (c) is a flow analysis diagram in the cross section along B-B in (a), (d) ) Is an enlarged view of the main part of FIG. 比較例における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが直交する場合の位置関係を示す横断面図、(b)は、その粒子状物質検出装置内における縦断面に沿った被測定ガスの流れを示す流れ解析図、(c)は、本図(b)の要部拡大図。The effect of the particulate matter detection device in the comparative example is shown, (a) is a cross-sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are orthogonal, (b) The flow analysis figure which shows the flow of the to-be-measured gas along the longitudinal cross-section in a particulate matter detection apparatus, (c) is a principal part enlarged view of this figure (b). 比較例における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが平行となる場合の位置関係を示す横断面図、(b)は、その粒子状物質検出装置内における縦断面に沿った被測定ガスの流れを示す流れ解析図、(c)は、本図(b)の要部拡大図。The effect of the particulate matter detection device in the comparative example is shown, (a) is a cross-sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are parallel, (b), The flow analysis figure which shows the flow of the to-be-measured gas along the longitudinal cross-section in the particulate matter detection apparatus, (c) is a principal part enlarged view of this figure (b). 比較例における粒子状物質検出装置の効果を示し、(a)は、粒子状物質検出素子と被測定ガスの流れ方向とが直交する場合の位置関係を示す縦断面図、(b)は、本図(a)中A−Aに沿った横断面における流れ解析図、(c)は、本図(a)中B−Bに沿った横断面における流れ解析図、(d)は、本図(c)の要部拡大図。The effect of the particulate matter detection device in the comparative example is shown, (a) is a longitudinal sectional view showing the positional relationship when the particulate matter detection element and the flow direction of the gas to be measured are orthogonal, and (b) FIG. 4A is a flow analysis diagram in a cross section along AA in FIG. 1A, FIG. 3C is a flow analysis diagram in a cross section along B-B in FIG. The principal part enlarged view of c). 比較例と共に、本発明の粒子状物質検出装置の効果を示し、(a)は、被測定ガスの流速変化に対する効果を示す特性図、(b)は、検出素子の周方向の載置角度変化に対する効果を示す特性図。Together with the comparative example, the effect of the particulate matter detection device of the present invention is shown, (a) is a characteristic diagram showing the effect on the flow velocity change of the gas to be measured, (b) is the change in the mounting angle in the circumferential direction of the detection element The characteristic view which shows the effect with respect to. 本発明の第2の実施形態における粒子状物質検出装置の概要を示し、(a)は、縦断面図、(b)は、本図(a)中A−Aに沿った断面における矢視平面図。The outline | summary of the particulate-material detection apparatus in the 2nd Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is an arrow plane in the cross section along AA in this figure (a). Figure. 本発明の第2の実施形態における粒子状物質検出装置の要部である粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element which is the principal part of the particulate matter detection apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施形態における粒子状物質検出装置の概要を示し、(a)は、縦断面図、(b)は、本図(a)中A−Aに沿った断面における矢視平面図。The outline | summary of the particulate-material detection apparatus in the 3rd Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is an arrow plane in the cross section along AA in this figure (a). Figure. 本発明の第3の実施形態における粒子状物質検出装置の要部である粒子状物質検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate matter detection element which is the principal part of the particulate matter detection apparatus in the 3rd Embodiment of this invention.

図1を参照して、本発明の第1の実施形態における粒子状物質検出装置6の概要について説明する。
本発明の粒子状物質検出装置6は、内燃機関の燃焼排気流路に配設され、燃焼排気を被測定ガスとして、被測定ガス中に含まれる粒子状物質を粒子状物質検出素子1の先端に設けた一対の検出用電極12、13に捕集し、検出用電極間(12、13)に堆積する被測定ガス中に含まれる粒子状物質の量に応じて変化する検出用電極間(12、13)の抵抗値や静電容量等の電気的特性を検出して、被測定ガス中の粒子状物質の量を検出するものであり、特に、粒径が50nm以下の極めて微細な、粒子状物質を検出するのに好適なものである。
With reference to FIG. 1, the outline | summary of the particulate matter detection apparatus 6 in the 1st Embodiment of this invention is demonstrated.
The particulate matter detection device 6 of the present invention is disposed in a combustion exhaust passage of an internal combustion engine, and uses the combustion exhaust as a measurement gas, and the particulate matter contained in the measurement gas is the tip of the particulate matter detection element 1. Between the detection electrodes 12 and 13 that change in accordance with the amount of particulate matter contained in the gas to be measured that is collected by the pair of detection electrodes 12 and 13 provided between the electrodes and deposited between the detection electrodes (12 and 13). 12, 13) by detecting the electrical characteristics such as resistance value and capacitance, and detecting the amount of particulate matter in the gas to be measured. Particularly, the particle size is very fine with a particle size of 50 nm or less. It is suitable for detecting particulate matter.

本実施形態における粒子状物質検出装置6は、図略の被測定ガス流路に固定される略筒状のハウジング5の内側に、インシュレータ4及び封止部材40を介して固定される粒子状物質検出素子1と、その被測定ガスに晒される部分を覆う2重筒構造のカバー体2、3とによって構成され、図略の通電制御装置及び検出回路に接続されている。   The particulate matter detection device 6 according to the present embodiment is a particulate matter fixed inside the substantially cylindrical housing 5 fixed to a gas flow path to be measured (not shown) via an insulator 4 and a sealing member 40. The detection element 1 and the cover bodies 2 and 3 having a double cylinder structure that covers the portion exposed to the gas to be measured are connected to an energization control device and a detection circuit (not shown).

粒子状物質検出素子1を覆う最も内側のカバー体内筒3は、略有底筒状に形成され、被測定ガス導入孔として、側面部300の基端側外周に複数の内筒側面貫通孔301が等間隔に穿設され、被測定ガス導出孔として、内筒底部310には一、又は、複数の内筒底部貫通孔311が穿設されている。
なお、本実施形態において、内筒側面貫通孔301は、周方向に等間隔で6カ所に穿設されている。
このため、カバー体内筒3内に導入された被測定ガスは粒子状物質検出素子1の基端側から先端側に向かって長手軸方向に沿って移動する流れを形成する。
このとき、内筒側面貫通孔301が複数設けてあるので、周方向に回転して組み付けられても、カバー体内筒3内を流れる被測定ガスの流れ方向への影響は小さい。
The innermost cover body cylinder 3 that covers the particulate matter detection element 1 is formed in a substantially bottomed cylinder shape, and has a plurality of inner cylinder side surface through-holes 301 at the outer periphery on the proximal end side of the side surface 300 as a gas to be measured. Are bored at equal intervals, and one or a plurality of inner cylinder bottom through-holes 311 are drilled in the inner cylinder bottom portion 310 as the measurement gas outlet holes.
In the present embodiment, the inner cylinder side surface through-holes 301 are drilled at six locations at equal intervals in the circumferential direction.
Therefore, the gas to be measured introduced into the cover body cylinder 3 forms a flow that moves along the longitudinal axis direction from the proximal end side to the distal end side of the particulate matter detection element 1.
At this time, since a plurality of inner cylinder side surface through-holes 301 are provided, even if rotated and assembled in the circumferential direction, the influence on the flow direction of the gas to be measured flowing in the cover body cylinder 3 is small.

さらに、カバー体内筒3を覆うように略有底筒状に形成されたカバー体外筒2が同心に設けられており、カバー体外筒2の側面部200の先端側外周に複数の外筒側面貫通孔201が穿設され、外筒底部210には、一、又は、複数の外筒底部貫通孔211が穿設されている。
カバー体外筒2は、被測定ガスを直接的にカバー体内筒3内に導入するのではなく、被測定ガスの流速を制限して、カバー体内筒3内に導入させることができ、内燃機関の運転状況に応じて変化する被測定ガスの流速の影響を小さくすることができる。
Furthermore, a cover body outer cylinder 2 formed in a substantially bottomed cylinder shape so as to cover the cover body cylinder 3 is provided concentrically, and a plurality of outer cylinder side-surface penetrations are provided on the outer periphery of the side surface portion 200 of the cover body outer cylinder 2. A hole 201 is formed, and one or a plurality of outer cylinder bottom through holes 211 are formed in the outer cylinder bottom 210.
The cover body outer cylinder 2 does not directly introduce the gas to be measured into the cover body cylinder 3, but can introduce the gas to be measured into the cover body cylinder 3 by limiting the flow rate of the gas to be measured. It is possible to reduce the influence of the flow velocity of the gas to be measured, which changes according to the operating condition.

また、外筒側面貫通孔201を先端側に設け、内筒側面貫通孔301を基端側に設けてあるので、外筒側面貫通孔201から導入された被測定ガスが内筒側面貫通孔301に導入されるときに、被測定ガスの進行方向が変化するので、被測定ガス中に含まれる粒子状物質のうち、比較的大きな粒径の粗大粒子の一部は、カバー体外筒2とカバー体内筒3との間に捕集され、カバー体内筒3の内側に導入される粒子状物質を分級する効果も発揮される。   In addition, since the outer cylinder side surface through hole 201 is provided on the distal end side and the inner cylinder side surface through hole 301 is provided on the proximal end side, the gas to be measured introduced from the outer cylinder side surface through hole 201 is transferred to the inner cylinder side surface through hole 301. Since the traveling direction of the gas to be measured changes when introduced into the gas, a part of the coarse particles having a relatively large particle size among the particulate matter contained in the gas to be measured is covered with the cover body outer cylinder 2 and the cover. The effect of classifying the particulate matter collected between the body cylinder 3 and introduced inside the cover body cylinder 3 is also exhibited.

本発明の要部である粒子状物質検出素子1は、アルミナ等の絶縁性耐熱材料を用いて略軸方向に伸びる略平板状に形成された絶縁基体10、11、14、15の内側に被測定ガスを導入する被測定ガス通気路141が区画されている。
被測定ガス通気路141の基端側開孔部152は、粒子状物質検出素子1の被測定ガスに晒される部分の基端側に位置する一方の表面側に引き出され被測定ガスの進行方向に対して直交するような方向に開孔している。
The particulate matter detection element 1, which is the main part of the present invention, is covered on the inner side of insulating bases 10, 11, 14, and 15 formed in a substantially flat plate shape extending in a substantially axial direction using an insulating heat-resistant material such as alumina. A measurement gas ventilation path 141 for introducing measurement gas is defined.
The base end side opening 152 of the gas flow passage 141 to be measured is drawn out to one surface side located on the base end side of the portion of the particulate matter detection element 1 exposed to the gas to be measured, and the traveling direction of the gas to be measured The holes are opened in a direction orthogonal to the direction.

さらに基端側開孔部152に延設して、被測定ガスの進行方向が急峻に変化するように屈曲して粒子状物質検出素子1内を軸方向に伸びる被測定ガス通気路141が形成されている。
被測定ガス通気路141の先端側開孔部142は、内筒底部開孔311に対向する方向に開孔している。
また、基端側開孔部152の反開孔方向には、反開孔方向に窪んだ粗大粒子捕集部111が形成されている。
Further, a gas flow passage 141 to be measured is formed so as to extend to the base end side opening 152 and bend so that the traveling direction of the gas to be measured changes steeply and extends in the particulate matter detection element 1 in the axial direction. Has been.
The tip side opening 142 of the gas flow passage 141 to be measured is opened in a direction facing the inner cylinder bottom opening 311.
In addition, a coarse particle collecting portion 111 that is recessed in the counter-opening direction is formed in the counter-opening direction of the base end side opening 152.

被測定ガス通気路141を区画する内壁の一の表面上には、一対の検出用電極12、13が形成されている。
本実施形態においては、本図(b)に示すように、検出用電極12、13は、略短冊状に形成された複数の検出用電極検出部120、130が交互に配設され、それぞれの検出用電極検出部120、130が検出用電極リード部121、131に接続された櫛歯状に形成されている。
さらに検出用電極リード部121、131は、外部に設けた図略の検出回路に接続されている。
また、検出用電極検出部120、130と検出用電極リード部121、131とが接続された部分、検出用電極131、121に対向する検出用電極検出部120、130の先端部分、及び、検出用電極リード部121、131は、絶縁性基体14によって覆われ、検出用電極検出部120、130が平行に並べられた部分のみが被測定ガス通気路141に露出している。
なお、検出用電極検出部120、130は、被測定ガス通気路141内を流れる被測定ガスの流速が安定する流速安定領域に対向する位置に設けられている。
A pair of detection electrodes 12 and 13 are formed on one surface of the inner wall that defines the gas flow passage 141 to be measured.
In the present embodiment, as shown in FIG. 4B, the detection electrodes 12 and 13 are provided with a plurality of detection electrode detection units 120 and 130 formed in a substantially strip shape, and each of them is arranged in an alternating manner. The detection electrode detection parts 120 and 130 are formed in a comb-like shape connected to the detection electrode lead parts 121 and 131.
Furthermore, the detection electrode lead parts 121 and 131 are connected to a detection circuit (not shown) provided outside.
Further, a portion where the detection electrode detection portions 120 and 130 and the detection electrode lead portions 121 and 131 are connected, a tip portion of the detection electrode detection portions 120 and 130 facing the detection electrodes 131 and 121, and detection The electrode lead portions 121 and 131 are covered with the insulating substrate 14, and only the portion where the detection electrode detection portions 120 and 130 are arranged in parallel is exposed to the gas passage 141 to be measured.
The detection electrode detectors 120 and 130 are provided at positions facing the flow rate stabilization region where the flow rate of the gas to be measured flowing through the gas flow path 141 to be measured is stable.

図2を参照して、本発明の要部である粒子状物質検出素子1のより具体的な構成並びに製造方法について説明する。
本実施形態において、絶縁性基体10、11、14、15は、アルミナ等の絶縁性耐熱素材をドクターブレード法、プレス等の公知の方法により、略平板状に形成されている。
絶縁性基体15は基端側開孔部形成層を構成し、略平板状の基体部150の被測定ガスに晒される部分の基端となる位置に基端側開孔部151を構成する貫通孔が穿設され、基端側に一対の検出用電極端子部123、133を露出するための切り欠き部152、153が形成されている。
With reference to FIG. 2, the more specific structure and manufacturing method of the particulate matter detection element 1 which is the principal part of this invention are demonstrated.
In the present embodiment, the insulating bases 10, 11, 14, and 15 are formed in a substantially flat plate shape by a known method such as a doctor blade method or a press using an insulating heat-resistant material such as alumina.
The insulative base 15 forms a base end side opening portion forming layer, and the base end side opening portion 151 is formed at a position that becomes the base end of the portion of the substantially flat base portion 150 exposed to the gas to be measured. A hole is formed, and notches 152 and 153 for exposing the pair of detection electrode terminal portions 123 and 133 are formed on the proximal end side.

絶縁性基体14は、被測定ガス通気路形成層を構成し、被測定ガス通気孔141及び先端側開孔部142を区画するために、先端側から被測定ガス導入孔151に対向する位置まで略コ字形に切り欠かれ、さらに、基端側に一対の検出用電極端子部123、133を露出するための切り欠き部143、144が形成されている。
絶縁性基体11は捕集部形成層を構成し、平板状の基体部110の被測定ガス導入孔151に対向する位置に粗大粒子捕集部111として矩形の貫通孔が穿設してある。
本実施形態においては、絶縁性基体11の表面にPt等の導体材料を用いて、スクリーン印刷、メッキ、蒸着等の公知の方法によって、一対の検出用電極12、13が形成されている。
The insulating substrate 14 constitutes a measured gas ventilation path forming layer, and in order to partition the measured gas ventilation hole 141 and the distal end side opening 142, from the front end side to a position facing the measured gas introduction hole 151. Cut-out portions 143 and 144 are formed on the base end side so as to expose the pair of detection electrode terminal portions 123 and 133.
The insulating substrate 11 constitutes a collection portion forming layer, and a rectangular through hole is formed as a coarse particle collection portion 111 at a position facing the measured gas introduction hole 151 of the flat substrate portion 110.
In the present embodiment, a pair of detection electrodes 12 and 13 are formed on the surface of the insulating substrate 11 by a known method such as screen printing, plating or vapor deposition using a conductive material such as Pt.

また、本実施形態においては、一対の検出用電極12、13は、複数の略平板状に形成された検出用電極検出部120、130が一定の間隙を隔てて交互に配設され、それぞれの検出用電極検出部120、130の一端が検出用電極リード部121、131に接続された櫛歯状に形成されている。
さらに、検出用電極リード部121、131の基端側には、検出電極用端子部123、133が形成されている。
絶縁性基体10、11、14、15及び一対の検出用電極12、13が一体的に積層されセンサ部(10〜15)を構成している。
In the present embodiment, the pair of detection electrodes 12 and 13 includes a plurality of detection electrode detectors 120 and 130 formed in a substantially flat plate shape alternately with a certain gap therebetween. One ends of the detection electrode detection portions 120 and 130 are formed in a comb-like shape connected to the detection electrode lead portions 121 and 131.
Further, detection electrode terminal portions 123 and 133 are formed on the base end sides of the detection electrode lead portions 121 and 131.
The insulating bases 10, 11, 14, 15 and the pair of detection electrodes 12, 13 are integrally laminated to constitute a sensor unit (10-15).

さらに、絶縁性基体10に積層して、ヒータ部16及び絶縁性基体17が形成されている。
ヒータ部16は、通電により発熱する発熱体160と発熱体リード部161、162と発熱体端子部163、164とによって構成され、厚膜印刷、メッキ。蒸着等の公知の方法で絶縁性基体17と絶縁性基体16との間に形成されている。
絶縁性基体17は、アルミナ等の絶縁性耐熱材料を用いて、ドクターブレード法、プレス等の公知の方法を略平板状に形成され、基端側に、発熱体端子部163、164を露出させるための切り欠き部171、172が形成されている。
Further, the heater portion 16 and the insulating substrate 17 are formed by being laminated on the insulating substrate 10.
The heater section 16 includes a heating element 160 that generates heat when energized, heating element lead sections 161 and 162, and heating element terminal sections 163 and 164, and is used for thick film printing and plating. It is formed between the insulating substrate 17 and the insulating substrate 16 by a known method such as vapor deposition.
The insulating substrate 17 is formed in a substantially flat plate shape using a heat-resistant insulating material such as alumina by a known method such as a doctor blade method or pressing, and the heating element terminal portions 163 and 164 are exposed on the base end side. Notches 171 and 172 for the purpose are formed.

上述のセンサ部(10〜15)と、ヒータ部16、絶縁性基体17と積層し、一体的に焼結することにより、本発明の要部である絶縁性基体の内部に基端側が被測定ガスの進行方向に対して直交する方向に開口する基端側開孔部151となり、先端側が底部開孔311に対向する先端側開孔部142となった被測定ガス通気路141を区画した粒子状検出素子1が完成する。
なお、本実施形態において、捕集部形成層11を廃して、絶縁性基体10の表面に一対の検出用電極12、13を形成した構成としても良い。この場合、絶縁性基体10の被測定ガス導入孔151に対向する位置における表面に粗大粒子が衝突して捕集されることになる。
The sensor unit (10 to 15), the heater unit 16, and the insulating substrate 17 are laminated and sintered integrally, so that the base end side is measured inside the insulating substrate which is the main part of the present invention. Particles that define a gas flow path 141 to be measured in which a base end opening 151 that opens in a direction perpendicular to the gas traveling direction and a tip end opening 142 that faces the bottom opening 311 at the tip end are formed. The shape detection element 1 is completed.
In addition, in this embodiment, it is good also as a structure which abolished the collection part formation layer 11 and formed a pair of detection electrodes 12 and 13 in the surface of the insulating base | substrate 10. FIG. In this case, coarse particles collide with the surface of the insulating substrate 10 at the position facing the measured gas introduction hole 151 and are collected.

さらに、上記実施形態においては、絶縁性基体14、15、17に切り欠き部143,144、152、153、171、172を設けることによって、検出用電極端子部123、133、発熱体端子部163、164を露出させるようにした構成を示したが、スルーホール電極を介して、絶縁性基体15、17の表面にそれぞれの電極端子部を引き出すような構成としても良い。
なお、ヒータ部16は、通電により発熱体160が発熱し、検出用電極12,13の温度を一定とし、検出条件を安定化したり、検出用電極12、13間に堆積した粒子状物質を加熱除去したりすることに用いられる。
Furthermore, in the above-described embodiment, the notched portions 143, 144, 152, 153, 171, and 172 are provided in the insulating bases 14, 15, and 17, so that the detection electrode terminal portions 123 and 133 and the heating element terminal portion 163 are provided. However, it is also possible to adopt a configuration in which the respective electrode terminal portions are drawn out on the surfaces of the insulating bases 15 and 17 through the through-hole electrodes.
The heater section 16 generates heat when energized, the temperature of the detection electrodes 12 and 13 is kept constant, the detection conditions are stabilized, and the particulate matter deposited between the detection electrodes 12 and 13 is heated. It is used for removing.

ここで、図3、図4を参照して、比較例とした、従来の絶縁性基体14zの側面方向を貫通する被測定ガス通気孔141zを区画した粒子状物質検出素子1z及びそれを備えた粒子状物質検出装置6zについて説明する。
なお、比較例の粒子状物質検出装置6zにおいては、粒子状物質検出素子1z以外は、本発明の第1の実施形態における粒子状物質検出装置6と同じ構成としてあり、本発明との相違点を明らかにするために、同一の構成については同じ符号を付し、相違する構成については、類似する部分に対応する符号にzの符号を付してある。
比較例における粒子状物質検出素子1zでは、図3(a)に示すように、絶縁性基体10z、14z、15の両側側面を貫通する方向に被測定ガス通気孔141zが穿設してあり、図3(b)に示すように、一対の検出用電極検出部120z、130zと検出用電極リード部121z、131zとの接続部122z、132z、検出用電極リード部121z、131zの一部、及び、他方の検出用電極リード部131z、121zに対向する検出用電極検出部120z、130zの先端が被測定ガス通気路141zに露出している。
Here, with reference to FIG. 3 and FIG. 4, as a comparative example, a particulate matter detection element 1 z having a measured gas vent hole 141 z penetrating the side surface direction of a conventional insulating substrate 14 z and the same are provided. The particulate matter detection device 6z will be described.
The particulate matter detection device 6z of the comparative example has the same configuration as that of the particulate matter detection device 6 in the first embodiment of the present invention except for the particulate matter detection element 1z, and is different from the present invention. For the sake of clarity, the same reference numerals are assigned to the same components, and the different reference symbols are assigned to the reference symbols corresponding to similar parts.
In the particulate matter detection element 1z in the comparative example, as shown in FIG. 3A, the measured gas vent hole 141z is formed in a direction penetrating both side surfaces of the insulating bases 10z, 14z, 15; As shown in FIG. 3 (b), a pair of detection electrode detection portions 120z, 130z and detection electrode lead portions 121z, 131z connecting portions 122z, 132z, a part of detection electrode lead portions 121z, 131z, and The tips of the detection electrode detection portions 120z and 130z facing the other detection electrode lead portions 131z and 121z are exposed to the gas flow path 141z to be measured.

図5〜図10を参照して、本発明の第1の実施形態における粒子状物質検出装置6の効果と比較例における粒子状物質検出装置6zの効果の違いについて説明する。
本発明の実施例1として、本発明の粒子状物質検出装置6において、粒子状物質検出素子1の組み付け方向が、カバー体外筒2の外側を流れる被測定ガスの流れ方向に対して、90°となった場合、即ち、基端側開孔部152が、被測定ガスの下流方向に向かって開孔する位置となった場合の横断面を図5(a)に示し、そのA−Aに沿った縦断面における流れ解析結果を図5(b)に示す。
A difference between the effect of the particulate matter detection device 6 in the first embodiment of the present invention and the effect of the particulate matter detection device 6z in the comparative example will be described with reference to FIGS.
As Example 1 of the present invention, in the particulate matter detection device 6 of the present invention, the assembly direction of the particulate matter detection element 1 is 90 ° with respect to the flow direction of the gas to be measured flowing outside the cover body outer cylinder 2. FIG. 5A shows a cross section when the base end side opening portion 152 is located at a position where the measurement target gas opens toward the downstream direction of the gas to be measured. FIG. 5B shows the flow analysis result in the longitudinal section along the line.

図5(b)に示すように、外筒側面開孔201を被測定ガス導入孔としてカバー体外筒2内に導入され、外筒側面開孔201から導入された被測定ガスは、カバー体内筒3との間隙を上昇し、基端側に設けられた内筒側面開孔301からカバー体内筒3の内側に導入され、さらに、粒子状物質検出素子1の長手軸方向に沿うように下降し、内筒底部開孔311及び外筒底部開孔211を介して、外部に排出される。
このとき、粒子状物質検出素子1の基端側で粒子状物質検出素子1の長手軸に対して直交する方向に開孔する基端側開孔部151の周囲を流れる被測定ガスと、内筒底部開孔311に対向する方向に開口する先端側開孔部142の周囲を流れる被測定ガスとの圧力差によって、図5(b)に示すように、基端側開孔部151から取り込まれた被測定ガスが、被測定ガス通気路141内を通過し、先端側開孔部142に向かう流れが形成される。
As shown in FIG. 5B, the gas to be measured introduced into the outer cylinder 2 through the outer cylinder side surface opening 201 is introduced into the cover body outer cylinder 2 using the outer cylinder side hole 201 as the measured gas introduction hole. 3 is introduced into the inside of the cover body cylinder 3 from the inner cylinder side surface opening 301 provided on the base end side, and further lowered along the longitudinal axis direction of the particulate matter detection element 1. Then, it is discharged to the outside through the inner cylinder bottom part opening 311 and the outer cylinder bottom part opening 211.
At this time, the gas to be measured flowing around the base end side opening portion 151 that opens in the direction orthogonal to the longitudinal axis of the particulate matter detection element 1 on the base end side of the particulate matter detection element 1, As shown in FIG. 5 (b), the gas is taken in from the proximal-side opening 151 by the pressure difference with the gas to be measured flowing around the distal-side opening 142 that opens in the direction opposite to the cylinder bottom opening 311. The gas to be measured passes through the gas flow passage 141 to be measured, and a flow toward the distal end opening 142 is formed.

被測定ガス通気路141の基端側では、被測定ガスの進行方向が大きく屈曲するため、被測定ガス中に含まれる粒径の大きな粗大粒子状物質は、慣性により、捕集部111に衝突し捕集され、粒径が50nm以下の、極めて微細な粒子状物質は、被測定ガスの流れに沿って被測定ガス通気路141内を移動する。
被測定ガス通気路141の先端側に向かうにつれて、被測定ガスの流速は安定し、被測定ガス安定領域においては、ほぼ一定の流速となっている。
On the base end side of the gas flow path 141 to be measured, the traveling direction of the gas to be measured is greatly bent, so that the coarse particulate matter having a large particle size contained in the gas to be measured collides with the collection unit 111 due to inertia. The very fine particulate matter having a particle diameter of 50 nm or less that has been collected moves in the measured gas ventilation path 141 along the flow of the measured gas.
As the gas flow path 141 to be measured moves toward the tip side, the flow velocity of the gas to be measured becomes stable, and the flow velocity is almost constant in the gas measurement stable region.

本発明の実施例2として、本発明の粒子状物質検出装置6において、粒子状物質検出素子1の組み付け方向が、カバー体外筒2の外側を流れる被測定ガスの流れ方向に対して、0°となった場合、即ち、基端側開孔部152が、被測定ガスの流れ方向に対して直交方向に開孔する位置となった場合の横断面を図6(a)に示し、そのA−Aに沿った縦断面における流れ解析結果を図6(b)に示す。
図6(b)に示すように、実施例2においても、被測定ガス通気路141内には、基端側開孔部151から、先端側開孔部142に向かう流れが形成されており、実施例1と同様に、被測定ガス通気路141の先端側に向かうにつれて、被測定ガスの流速は安定し、被測定ガス安定領域においては、ほぼ一定の流速となっている。
As Example 2 of the present invention, in the particulate matter detection device 6 of the present invention, the assembly direction of the particulate matter detection element 1 is 0 ° with respect to the flow direction of the gas to be measured flowing outside the cover body outer cylinder 2. FIG. 6A shows a cross section when the base end side opening portion 152 becomes a position where the base end side opening portion 152 is opened in a direction perpendicular to the flow direction of the gas to be measured. FIG. 6B shows the flow analysis result in the longitudinal section along -A.
As shown in FIG. 6B, also in Example 2, a flow from the proximal end side opening 151 toward the distal end side opening 142 is formed in the gas passage 141 to be measured. As in the first embodiment, the flow velocity of the gas to be measured is stabilized toward the tip side of the gas flow passage 141 to be measured, and the flow velocity is almost constant in the gas measurement stable region.

図7を参照して、実施例2における断面方向の流れ解析結果について説明する。
図7(a)は、流れ解析位置を示す縦断面図であり、図7(b)、(c)は、それぞれ、図7(a)中A−A及びB−Bに沿った断面における流れ解析結果を示し、図7(d)は、図7(c)の要部拡大図である。
図7(b)に示すように、内筒側面貫通孔301から導入された被測定ガスは、粒子状物質検出素子1の基端側では、流速が早く、カバー体外筒2の周囲を流れる被測定ガスの上流側となる図の左側から下流側となる右側に向かう流れが形成されている。これは、外筒側面貫通孔201から導入された被測定ガスの流速及び圧力が被測定ガスの上流側ほど高いため、その影響が残っているものと考えられる。
しかし、カバー体内筒3の内側を流れる被測定ガスは、カバー体内筒3の内周壁と粒子状物質検出素子1の表面とによって整流され、図7(c)に示すように、カバー体内筒3内を流れる被測定ガスは、基端側から先端側に向かう均一な流速分布を示す流れとなっている。
さらに、図7(c)及び(d)に示すように、被測定ガス通気路141内の尾流れは、基端側から先端側に向かう極めて均一な流れとなっていることが分かる。
With reference to FIG. 7, the flow analysis result of the cross-sectional direction in Example 2 is demonstrated.
Fig.7 (a) is a longitudinal cross-sectional view which shows a flow analysis position, FIG.7 (b), (c) is the flow in the cross section along AA and BB in Fig.7 (a), respectively. An analysis result is shown and FIG.7 (d) is a principal part enlarged view of FIG.7 (c).
As shown in FIG. 7 (b), the gas to be measured introduced from the inner cylinder side surface through-hole 301 has a high flow velocity on the base end side of the particulate matter detection element 1 and flows around the cover body outer cylinder 2. A flow from the left side of the drawing, which is the upstream side of the measurement gas, to the right side, which is the downstream side, is formed. This is probably because the flow velocity and pressure of the gas to be measured introduced from the outer cylinder side surface through-hole 201 are higher toward the upstream side of the gas to be measured, so that the influence remains.
However, the gas to be measured flowing inside the cover body cylinder 3 is rectified by the inner peripheral wall of the cover body cylinder 3 and the surface of the particulate matter detection element 1, and as shown in FIG. The gas to be measured flowing inside has a flow showing a uniform flow velocity distribution from the proximal end side toward the distal end side.
Furthermore, as shown in FIGS. 7C and 7D, it can be seen that the tail flow in the measured gas ventilation path 141 is a very uniform flow from the base end side to the tip end side.

ここで、比較例における流れ解析結果について説明する。
比較例1として、従来の粒子状物質検出装置6zにおいて、粒子状物質検出素子1zの組み付け方向が、カバー体外筒2の外側を流れる被測定ガスの流れ方向に対して、90°となった場合、即ち、被測定ガス通気孔141zが被測定ガスの流れ方向に対して直交するように開孔する位置となった場合の横断面を、図8(a)に示し、そのA−Aに沿った縦断面における流れ解析結果を図8(b)に示す。
図8(b)に示すように、粒子状物質検出素子1zの周囲に形成される被測定ガスの流れは、カバー体2、3が同じであるため、当然のことながら、実施例1と同様の流れを形成している。
しかし、比較例1においては、被測定ガス通気孔141zが、側面方向に開孔している。このため、開口の両側の流速がほぼ均等となり、図8(c)に示すように、被測定ガス通気孔141z内には、基端側から先端側に向かう小さな流れが形成されるものの、被測定ガス通気孔141zの両側の開孔を横断する流れはほとんど形成されない。
このため、比較例1においては、被測定ガスの流れ方向と粒子状物質検出素子1zの幅方向が直交するように載置された場合には、被測定ガス通気孔141z内に被測定ガスがほとんど取り込まれない虞があることが判明した。
Here, the flow analysis result in the comparative example will be described.
As Comparative Example 1, in the conventional particulate matter detection device 6z, the assembly direction of the particulate matter detection element 1z is 90 ° with respect to the flow direction of the gas to be measured flowing outside the cover body outer cylinder 2. That is, FIG. 8 (a) shows a cross section when the measured gas vent hole 141z is at a position where the measured gas vent hole 141z is opened perpendicularly to the flow direction of the measured gas. FIG. 8B shows the flow analysis result in the vertical section.
As shown in FIG. 8B, the flow of the gas to be measured formed around the particulate matter detection element 1z is the same in the cover bodies 2 and 3, so that it is naturally the same as in the first embodiment. The flow of is formed.
However, in Comparative Example 1, the measured gas vent hole 141z is open in the side surface direction. For this reason, the flow speeds on both sides of the opening are almost equal, and as shown in FIG. 8C, a small flow from the base end side to the tip end side is formed in the measured gas vent hole 141z. A flow crossing the openings on both sides of the measurement gas vent 141z is hardly formed.
Therefore, in Comparative Example 1, when the gas to be measured is placed so that the flow direction of the gas to be measured and the width direction of the particulate matter detection element 1z are orthogonal to each other, the gas to be measured is in the gas to be measured vent hole 141z. It turned out that there was a possibility that it was hardly taken in.

比較例2として、従来の粒子状物質検出装置6zにおいて、粒子状物質検出素子1zの組み付け方向が、カバー体外筒2の外側を流れる被測定ガスの流れ方向に対して、0°となった場合、即ち、被測定ガス通気孔141zが、被測定ガスの流れ方向に対して平行となる方向に開孔する位置となった場合の横断面を図9(a)に示し、そのA−Aに沿った縦断面における流れ解析結果を図9(b)に示す。
図9(b)、(c)に示すように、比較例2においては、被測定ガス通気路141z内に、一方の開孔から被測定ガス通気孔141zに斜めに侵入した被測定ガスが、他方の開孔から排出され、図の左側から右側に向かう流れ、即ち、被測定ガスの上流側から下流側に向かう流れと一致する方向の大きな流れが形成されているのが分かる。
As Comparative Example 2, in the conventional particulate matter detection device 6z, the assembly direction of the particulate matter detection element 1z is 0 ° with respect to the flow direction of the gas to be measured flowing outside the cover body outer cylinder 2. That is, FIG. 9A shows a cross section when the measured gas vent hole 141z is in a position opened in a direction parallel to the flow direction of the measured gas. FIG. 9B shows the flow analysis result in the longitudinal section along the line.
As shown in FIGS. 9B and 9C, in Comparative Example 2, the gas to be measured that has entered the gas gas passage 141z to be measured obliquely from one opening into the gas gas hole 141z to be measured, It can be seen that a large flow is formed in a direction that coincides with the flow from the other opening to the right side of the drawing, that is, the flow from the upstream side to the downstream side of the gas to be measured.

比較例2における。断面方向の流れ解析結果を図10に示す。
本図(c)、(d)に示すように、被測定ガス通気孔141z内に被測定ガスの上流側から下流側に向かう流れと一致する方向の大きな流れが形成されているのが分かる。
このため、比較例2においては、被測定ガスの流れ方向と粒子状物質検出素子1zの幅方向が平行となるように載置された場合には、被測定ガス通気孔141z内に極めて早い流速で被測定ガスが流入することが判明した。
In Comparative Example 2. FIG. 10 shows the flow analysis result in the cross-sectional direction.
As shown in FIGS. 4C and 4D, it can be seen that a large flow is formed in the measured gas vent hole 141z in a direction coinciding with the flow of the measured gas from the upstream side to the downstream side.
For this reason, in Comparative Example 2, when the gas to be measured is placed so that the flow direction of the gas to be measured and the width direction of the particulate matter detection element 1z are parallel to each other, an extremely high flow velocity is generated in the gas to be measured gas vent 141z. The gas to be measured was found to flow in.

図11(a)は、被測定ガスの流速の変化に対する本発明の粒子状物質検出装置6の被測定ガス通気路141内に流れる被測定ガスの流量変化と比較例の粒子状物質検出装置6zの被測定ガス通気路141z内を流れる被測定ガスの流量変化との相違を示すものである。なお、粒子状物質検出素子1及び粒子状物質検出素子1zは、被測定ガスの流れ方向に対して、幅方向が直交するように載置された条件で測定した結果を示す。
本図(a)に実施例1として示すように、本発明の粒子状物質検出装置6においては、内燃機関の運転状況に応じて被測定ガスの流速V(m/s)が変化したとき、それに追従して、ほぼ直線的に被測定ガス通気路1内に導入される被測定ガスの流入量Q(mm/s)も変化し、線形性が保たれていることが分かる。
一方、本図(a)に比較例1として示すように、従来の粒子状物質検出装置6zにおいては、流速が遅い場合には、ほとんど被測定ガス通気路141z内に被測定ガスが流入せず、流速が早い場合には、急激に被測定ガス通気路141z内に導入される被測定ガスの流量が多くなり、線形性が保たれていないことが分かる。
FIG. 11A shows a change in the flow rate of the gas to be measured flowing in the gas flow passage 141 to be measured of the particulate matter detection device 6 of the present invention with respect to a change in the flow rate of the gas to be measured, and the particulate matter detection device 6z of the comparative example. This shows the difference from the change in the flow rate of the gas to be measured flowing in the gas flow path 141z to be measured. In addition, the particulate matter detection element 1 and the particulate matter detection element 1z show the results of measurement under the condition that the width direction is perpendicular to the flow direction of the gas to be measured.
As shown in FIG. 1A as Example 1, in the particulate matter detection device 6 according to the present invention, when the flow velocity V (m / s) of the gas to be measured changes according to the operation state of the internal combustion engine, Following this, the inflow amount Q (mm 3 / s) of the gas to be measured introduced into the gas flow path 1 to be measured almost linearly changes, indicating that the linearity is maintained.
On the other hand, as shown in Comparative Example 1 in FIG. 6A, in the conventional particulate matter detection device 6z, when the flow rate is slow, the measurement gas hardly flows into the measurement gas vent passage 141z. When the flow rate is high, it can be seen that the flow rate of the gas to be measured introduced into the gas flow path 141z to be measured increases rapidly, and the linearity is not maintained.

図11(b)を参照して、一定の流速の被測定ガスの流れ方向に対して、周方向に粒子状物質検出素子1、1zの角度を変化させたときの影響について説明する。
図11(b)に実施例2として示すように、本発明の粒子状物質検出装置6においては、粒子状物質検出素子1の載置された位置が周方向に回転した場合でも、ほぼ一定の流量となることが判明した。
これは、上述の如く、本発明によれば、粒子状物質検出素子1の周囲を流れる被測定ガスの基端側開口部151における圧力と先端側開口部142における圧力との圧力差によって被測定ガス通気路141内の流速が決定されるためと思料する。
一方、図11(b)に比較例2として示すように、従来の粒子状物質検出装置6zにおいては、粒子状物質検出素子1の載置された位置が周方向に回転した場合に、被測定ガス通気孔1z内に導入される被測定ガスの流量が大きく変化することが判明した。
被測定ガスの流れ方向と粒子状物質検出素子1zの幅方向とが直交する場合には、被測定ガス通気路141z内にほとんど被測定ガスが流入せず、被測定ガスの流れ方向と粒子状物質検出素子1zの幅方向とが平行となる場合には、被測定ガス通気路141z内に多くの被測定ガスが導入されることになる。
したがって、従来の粒子状物質検出装置6zでは、被測定ガスの流れ方向と、粒子状物質検出素子1zの載置方向とを特定の条件としなければ、検出結果が全く信頼できないものとなる虞がある。
With reference to FIG. 11B, the influence when the angle of the particulate matter detection element 1, 1z is changed in the circumferential direction with respect to the flow direction of the gas to be measured having a constant flow rate will be described.
As shown in FIG. 11B as Example 2, in the particulate matter detection device 6 of the present invention, even when the position where the particulate matter detection element 1 is placed rotates in the circumferential direction, the particulate matter detection device 6 is substantially constant. It turned out to be a flow rate.
As described above, according to the present invention, this is due to the difference in pressure between the pressure at the proximal end opening 151 and the pressure at the distal end opening 142 of the gas to be measured flowing around the particulate matter detection element 1. This is probably because the flow velocity in the gas passage 141 is determined.
On the other hand, as shown as Comparative Example 2 in FIG. 11B, in the conventional particulate matter detection device 6z, when the position where the particulate matter detection element 1 is placed rotates in the circumferential direction, the measurement target It was found that the flow rate of the gas to be measured introduced into the gas vent 1z changes greatly.
When the flow direction of the gas to be measured and the width direction of the particulate matter detection element 1z are orthogonal to each other, the gas to be measured hardly flows into the gas flow path 141z to be measured, and the flow direction of the gas to be measured and the particulate shape When the width direction of the substance detection element 1z is parallel, a large amount of gas to be measured is introduced into the gas flow path 141z to be measured.
Therefore, in the conventional particulate matter detection device 6z, the detection result may be unreliable at all unless the flow direction of the gas to be measured and the placement direction of the particulate matter detection element 1z are set as specific conditions. is there.

また、本実施形態によれば、図1(b)に示したように、櫛歯状に形成された検出用電極12、13の複数の検出用電極検出部120、130が平行に並べられた部分のみが被測定ガス通気路141に露出しているので、検出用電極12、13間に電圧を印加し、被測定ガス通気路141内を通過する被測定ガス中に含まれる粒子状物質を荷電して検出用電極12、13間に捕集させようとした場合、検出用電極12、13間の電界強度が均一な領域のみが、被測定ガス通気路141に露出しているので、粒子状物質の偏在を防ぎ、安定して出力することができる。   In addition, according to the present embodiment, as shown in FIG. 1B, the plurality of detection electrode detection units 120 and 130 of the detection electrodes 12 and 13 formed in a comb shape are arranged in parallel. Since only the portion is exposed to the measured gas ventilation path 141, a voltage is applied between the detection electrodes 12 and 13, and the particulate matter contained in the measured gas passing through the measured gas ventilation path 141 is removed. When charging and collecting between the detection electrodes 12 and 13, only the region where the electric field strength between the detection electrodes 12 and 13 is uniform is exposed to the gas flow path 141 to be measured. It is possible to prevent uneven distribution of the substance and to output stably.

一方、図3(b)に示したように、比較例においては、櫛歯状に形成された一対の検出用電極検出部120z、130zと検出用電極リード部121z、131zとの接続部122z、132z、検出用電極リード部121z、131zの一部、及び、他方の検出用電極リード部131z、121zに対向する検出用電極検出部120z、130zの先端が被測定ガス通気路141zに露出している。
このため、検出用電極検出部120z、130z間に電圧を印加し、被測定ガス通気路141z内を通過する被測定ガス中に含まれる粒子状物質を荷電して検出用電極12z、13z間に捕集させようとした場合、検出用電極接続部122z、132zや、検出用電極検出部120z、130zの先端に不可避的に電界集中する部分が表れる。このため、電界強度の高い部分への被測定ガス中に含まれる粒子状物質の偏在を招く虞があり、出力結果の信頼性をさらに下げることになる。
On the other hand, as shown in FIG. 3B, in the comparative example, a connection part 122z between a pair of detection electrode detection parts 120z and 130z formed in a comb shape and detection electrode lead parts 121z and 131z, 132z, a part of the detection electrode lead parts 121z and 131z, and the tips of the detection electrode detection parts 120z and 130z facing the other detection electrode lead parts 131z and 121z are exposed to the gas flow path 141z to be measured. Yes.
For this reason, a voltage is applied between the detection electrode detectors 120z and 130z, and the particulate matter contained in the gas to be measured passing through the gas flow path 141z to be measured is charged between the detection electrodes 12z and 13z. When it is attempted to collect, portions where the electric field concentration inevitably appears at the tips of the detection electrode connection portions 122z and 132z and the detection electrode detection portions 120z and 130z. For this reason, there is a possibility that the particulate matter contained in the gas to be measured is unevenly distributed to the portion where the electric field strength is high, and the reliability of the output result is further lowered.

以上のことから、本発明の粒子状物質検出装置6を用いれば、被測定ガスの流れ方向と粒子状物質検出素子1の周方向の角度が変化しても、ほぼ一定の条件で、被測定ガス通気孔141内に被測定ガスが導入される。
したがって、比較例として示した従来の粒子状物質検出装置6zのように、製造時や、被測定ガス流路へ組み付ける際に、粒子状物質検出素子1zの方向性を考慮する必要がなく、極めて容易に、信頼性の高い粒子状物質検出装置が実現できる。
また、本発明の粒子状物質検出装置6によれば、内燃機関の運転状況の変化によって、被測定ガスとして排出される燃焼排気の排出量が変化したときに、被測定ガス通気孔141内に導入される被測定ガスの流量は、ほぼ線形に変化するので、検出された被測定ガス中の粒子状物質の量の変化が、燃焼条件の変化によるものなのか、DPF等の異常によるものかを判断することも容易となる。
From the above, when the particulate matter detection device 6 of the present invention is used, even if the angle between the flow direction of the gas to be measured and the circumferential direction of the particulate matter detection element 1 changes, the measurement is performed under almost constant conditions. A gas to be measured is introduced into the gas vent hole 141.
Therefore, unlike the conventional particulate matter detection device 6z shown as the comparative example, it is not necessary to consider the directionality of the particulate matter detection element 1z at the time of manufacture or when assembling to the measurement gas flow path. A highly reliable particulate matter detection device can be easily realized.
Further, according to the particulate matter detection device 6 of the present invention, when the amount of combustion exhaust discharged as the gas to be measured changes due to a change in the operating condition of the internal combustion engine, the particulate matter detection device 6 enters the gas to be measured gas vent 141. Since the flow rate of the measured gas to be introduced changes almost linearly, whether the detected change in the amount of particulate matter in the measured gas is due to changes in combustion conditions or abnormalities such as DPF It is also easy to judge.

なお、上記実施形態において、図1等には、外筒底部開孔211、内筒底部開孔311をそれぞれ、1個のみ穿設した例を示したが、カバー体2、3の底部210、310に底部開孔211、311が複数設けられている場合には、その一部は被測定ガスを被測定ガス流路側に排出する導出孔として機能し、他の一部は被測定ガスをカバー体2、3の内側に取り込む導入孔として機能し、カバー体内に導入された被測定ガスの交換が容易となる。
加えて、外筒底部開孔211、内筒底部開孔311が複数の場合、カバー体2、3の横断面方向の流れが変化する可能性があるが、カバー体2、3の内側に流れる被測定ガスの流速に比べ、カバー体2、3の外側の被測定ガス流路を流れる被測定ガスの流速は遥かに早いので、カバー体2、3の底部に穿設した孔の数に拘わらず、カバー体内筒3の内側に形成される被測定ガスの流れは、全体としてカバー体3の基端側から先端側に向かうこととになる。
したがって、基端側開孔部152における圧力と先端側開孔部142における圧力差によって、被測定ガス通気路141内には、必然的に基端側開孔部152から先端側開孔部142に向かう流れが形成されることになる。
このため、カバー体の底部に設けた開孔の数に拘わらず、上記実施形態と同様の効果が発揮されるものと思料する。また、以下に示す実施形態においても同様である。
In the above embodiment, FIG. 1 and the like show an example in which only one outer cylinder bottom opening 211 and one inner cylinder bottom opening 311 are formed, but the bottom 210 of the cover bodies 2 and 3, When a plurality of bottom openings 211 and 311 are provided in 310, a part of them functions as a lead-out hole for discharging the gas to be measured to the gas flow path to be measured, and the other part covers the gas to be measured. It functions as an introduction hole for taking in the inside of the bodies 2 and 3 and facilitates exchange of the gas to be measured introduced into the cover body.
In addition, when there are a plurality of outer cylinder bottom part openings 211 and inner cylinder bottom part openings 311, the flow in the cross-sectional direction of the cover bodies 2 and 3 may change, but it flows inside the cover bodies 2 and 3. Compared to the flow rate of the gas to be measured, the flow rate of the gas to be measured flowing through the gas flow path to be measured outside the covers 2 and 3 is much faster, and therefore, regardless of the number of holes drilled in the bottom of the covers 2 and 3. First, the flow of the gas to be measured formed inside the cover body cylinder 3 is directed from the proximal end side to the distal end side of the cover body 3 as a whole.
Therefore, due to the pressure difference between the proximal end opening 152 and the distal end opening 142, the measured gas ventilation path 141 inevitably enters from the proximal opening 152 to the distal opening 142. A flow toward will be formed.
For this reason, it is thought that the same effect as the said embodiment is exhibited irrespective of the number of the holes provided in the bottom part of the cover body. The same applies to the embodiments described below.

図12、図13を参照して、本発明の第2の実施形態における粒子状物質検出装置6aについて説明する。
上記第1の実施形態においては、絶縁性基体10、又は、捕集部形成層11の表面に一対の検出用電極12、13を形成し、これに、通気路形成層14を積層した例を示したが、本実施形態においては、絶縁性基体15の裏面側の表面に、一対の検出用電極12a、13aを櫛歯状に形成し、これに積層して、通気路形成層として、絶縁性基体14aを形成した点が相違する。このような構成としても上記実施形態と同様の効果を発揮できる。
また、本実施形態によれば、構造が簡素化され、絶縁性基体の積層数を削減でき、製造コストの削減を図ることも可能となる。
With reference to FIG. 12, FIG. 13, the particulate matter detection apparatus 6a in the 2nd Embodiment of this invention is demonstrated.
In the first embodiment, an example in which the pair of detection electrodes 12 and 13 are formed on the surface of the insulating substrate 10 or the collecting portion forming layer 11 and the air passage forming layer 14 is laminated thereon. As shown, in the present embodiment, a pair of detection electrodes 12a and 13a are formed in a comb-like shape on the surface on the back surface side of the insulating substrate 15 and laminated on the insulating base 15 as a ventilation path forming layer. The difference is that the conductive substrate 14a is formed. Even in such a configuration, the same effect as the above embodiment can be exhibited.
Further, according to the present embodiment, the structure is simplified, the number of laminated insulating bases can be reduced, and the manufacturing cost can be reduced.

図14、図15を参照して、本発明の第3の実施形態における粒子状物質検出装置6bについて説明する。
上記実施形態においては、一対の検出用電極12、13として、被測定ガス通気路141を区画する内周壁の一の表面上にいわゆる櫛歯状電極を形成した例を示したが、本実施形態においては、一対の検出用電極12b、13bを、絶縁性基体10、11b、14b、15の内部に埋設され、被測定ガス通気路141を挟んで対向する略平板状に形成した検出用電極検出部120b、130bによって構成した点が相違する。
本実施形態によれば、上記実施形態と同様、被測定ガス通気路141bの基端側開口部152bと先端側開口部142bとの圧力差によって、被測定ガス通気路141b内に安定した流速で被測定ガスが導入される。
本実施形態においては、検出用電極検出部120b、130b間に電圧を印加し、被測定ガス通気路141b内を通過する粒子状物質を荷電し、絶縁性基体11b、14bの表面に付着させ、その堆積量に応じて変化する検出用電極検出部120b、130b間の静電容量を電気的特性として検出したり、検出用電極検出部120b、130b間に交流電流を印加し、検出用電極検出部120b、130b間の交流インピーダンスの変化を検出することによって、被測定ガス中の粒子状物質検出の量を検知することができる。
なお、検出用電極検出部120b、130bの表面はそれぞれ、絶縁性基体11b、14bによって覆われており、絶縁性基体11b、14bとして、上記実施形態と同様のアルミナ等を緻密に焼結した絶縁性材料を用いても良いし、多孔質に形成し、捕集性を高めた構成としても良い。
また、絶縁性基体11b、14bを誘電体によって形成して、電気的特性として静電容量を計測しても良い。
さらに、絶縁性基体11b、14bに換えて、ジルコニア等の導電性材料を用いて、電気的特性として粒子状物質の堆積量に応じて変化する導電性を検出するようにしても良い。
With reference to FIG. 14 and FIG. 15, the particulate matter detection device 6b in the third embodiment of the present invention will be described.
In the above-described embodiment, an example in which a so-called comb-like electrode is formed on one surface of the inner peripheral wall defining the measurement gas ventilation path 141 as the pair of detection electrodes 12 and 13 has been described. , A pair of detection electrodes 12b, 13b are embedded in the insulating bases 10, 11b, 14b, 15 and are formed in a substantially flat plate shape opposed to each other with the gas passage 141 to be measured interposed therebetween. The point which comprised by part 120b, 130b is different.
According to the present embodiment, as in the above embodiment, a stable flow rate in the measured gas ventilation path 141b is obtained due to the pressure difference between the proximal end opening 152b and the distal end opening 142b of the measured gas ventilation path 141b. A gas to be measured is introduced.
In the present embodiment, a voltage is applied between the detection electrode detectors 120b and 130b, the particulate matter passing through the gas flow path 141b to be measured is charged, and adhered to the surfaces of the insulating bases 11b and 14b. Detecting the detection electrode by detecting the capacitance between the detection electrode detectors 120b and 130b, which changes according to the amount of deposition, as an electrical characteristic, or applying an alternating current between the detection electrode detectors 120b and 130b. By detecting the change in AC impedance between the parts 120b and 130b, the amount of particulate matter detected in the gas to be measured can be detected.
The surfaces of the detection electrode detectors 120b and 130b are covered with the insulating bases 11b and 14b, respectively, and the insulating bases 11b and 14b are insulated by densely sintering alumina or the like as in the above embodiment. Alternatively, the material may be made of a porous material, or may be formed to be porous so as to improve the collection property.
Alternatively, the insulating bases 11b and 14b may be formed of a dielectric, and the capacitance may be measured as an electrical characteristic.
Furthermore, instead of the insulating bases 11b and 14b, a conductive material such as zirconia may be used to detect conductivity that changes in accordance with the amount of particulate matter deposited as electrical characteristics.

1 粒子状物質検出素子
10、11、14、15 絶縁性基体
12、13 検出用電極
120、130 検出用電極検出部
121、131 検出用電極リード部
122、132 検出用電極接続部
123、133 検出用電極端子部
111 粗大粒捕集部
141 被測定ガス通気路
142 底部開孔
151 側面開孔
16 ヒータ
160 発熱体
161、162 発熱体リード部
2 カバー体外筒
200 外筒周壁部
201 外筒周壁開孔
210 外筒底部
211 外筒底部開孔
3 カバー体内筒
300 内筒周壁部
301 内筒周壁開孔
310 内筒底部
311 内筒底部開孔
4 インシュレータ
40 封止部材
5 ハウジング
6 ガスセンサ
DESCRIPTION OF SYMBOLS 1 Particulate matter detection element 10, 11, 14, 15 Insulating base | substrate 12, 13 Detection electrode 120, 130 Detection electrode detection part 121, 131 Detection electrode lead part 122, 132 Detection electrode connection part 123, 133 Detection Electrode terminal part 111 Coarse-grain collecting part 141 Gas passage 142 to be measured Bottom opening 151 Side opening 16 Heater 160 Heating element 161, 162 Heating element lead part 2 Cover body outer cylinder 200 Outer cylinder peripheral wall part 201 Outer cylinder peripheral wall opening Hole 210 Outer cylinder bottom part 211 Outer cylinder bottom part opening 3 Cover body cylinder 300 Inner cylinder peripheral wall part 301 Inner cylinder peripheral wall opening 310 Inner cylinder bottom part 311 Inner cylinder bottom part opening 4 Insulator 40 Sealing member 5 Housing 6 Gas sensor

特開2009−186278号公報JP 2009-186278 A

Claims (4)

軸方向に伸びる略平板状に形成され、その先端側が被測定ガス中に配設された絶縁性基体に一対の検出用電極を設け、該検出用電極間に堆積する被測定ガス中の粒子状物質の量によって変化する電気的特性を測定して、被測定ガス中の粒子状物質を検出する粒子状物質検出素子を備える粒子状物質検出装置において、
被測定ガス導入孔として、上記粒子状物質検出素子を覆う略有底筒状に形成したカバー体の基端側外周に複数の貫通孔を穿設して、
被測定ガス導出孔として、上記カバー体の底部に一、又は、複数の貫通孔を穿設して、
上記カバー体内に導入された被測定ガスが上記検出素子の基端側から先端側に向かって長手軸方向に沿って移動する流れを形成すると共に、
上記粒子状物質検出素子の内側に、その軸方向に伸びる被測定ガス通気路を区画し、
該被測定ガス通気路の基端側を被測定ガスの進行方向に直交する方向に向かって開孔せしめ、
その先端側を上記被測定ガス導出孔に対向する方向に開孔せしめて、
上記一対の検出用電極を上記被測定ガス通気路内に流れる被測定ガスの流速が安定する流速安定領域に対向する位置に配設したことを特徴とする粒子状物質検出装置。
A pair of detection electrodes is provided on an insulating substrate formed in a substantially flat plate shape extending in the axial direction, and the tip side thereof is disposed in the measurement gas, and particles in the measurement gas deposited between the detection electrodes In a particulate matter detection device comprising a particulate matter detection element that measures electrical characteristics that change depending on the amount of a substance and detects particulate matter in a gas to be measured.
As the measurement gas introduction hole, a plurality of through holes are formed in the outer periphery on the proximal end side of the cover body formed in a substantially bottomed cylindrical shape covering the particulate matter detection element,
As the measurement gas outlet hole, one or a plurality of through holes are formed in the bottom of the cover body,
The gas to be measured introduced into the cover body forms a flow that moves along the longitudinal axis direction from the proximal end side to the distal end side of the detection element, and
A gas flow path to be measured extending in the axial direction is defined inside the particulate matter detection element,
The base end side of the gas flow path to be measured is opened toward the direction orthogonal to the traveling direction of the gas to be measured,
Open the tip side in the direction facing the measured gas outlet hole,
The particulate matter detection device, wherein the pair of detection electrodes are arranged at positions facing a flow velocity stabilization region where the flow velocity of the gas to be measured flowing in the gas passage to be measured is stable.
上記被測定ガス通気路の基端側開孔に延設して、基端側開孔に対向する位置における上記絶縁性基体の表面を窪ませて粗大粒子捕集部とした請求項1に記載の粒子状物質検出装置。   2. The coarse particle collecting unit according to claim 1, wherein the coarse particle collecting unit is formed by extending the surface of the insulating base at a position facing the base end opening, extending to the base end opening of the gas passage to be measured. Particulate matter detection device. 上記一対の検出用電極が、上記被測定ガス通気路を区画する内壁の一の表面上に形成され、外部に設けた検出回路に接続する一対の検出用電極リード部に接続して複数の検出用電極検出部を一定の間隙を隔てて交互に引き出した櫛歯状電極である請求項1又は2に記載の粒子状物質検出装置。   The pair of detection electrodes are formed on one surface of an inner wall that defines the gas flow path to be measured, and are connected to a pair of detection electrode lead portions that are connected to a detection circuit provided outside. The particulate matter detection device according to claim 1 or 2, wherein the electrode detection unit is a comb-like electrode in which the electrode detection unit is alternately drawn with a certain gap. 上記一対の検出用電極が、上記絶縁性基体の内部に埋設され、上記被測定ガス通気路を挟んで対向する略平板状に形成された検出用電極検出部と、それぞれの検出用電極検出部と外部に設けた検出回路とを接続する一対の検出用電極リード部とで構成した請求項1又は2に記載の粒子状物質検出装置。   The pair of detection electrodes is embedded in the insulating base and formed in a substantially flat plate shape opposed to each other with the gas flow passage to be measured interposed therebetween, and each detection electrode detection unit The particulate matter detection device according to claim 1 or 2, comprising a pair of detection electrode lead portions for connecting a detection circuit provided outside and a detection circuit.
JP2011031625A 2011-02-17 2011-02-17 Particulate matter detector Expired - Fee Related JP5606356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031625A JP5606356B2 (en) 2011-02-17 2011-02-17 Particulate matter detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031625A JP5606356B2 (en) 2011-02-17 2011-02-17 Particulate matter detector

Publications (2)

Publication Number Publication Date
JP2012168143A JP2012168143A (en) 2012-09-06
JP5606356B2 true JP5606356B2 (en) 2014-10-15

Family

ID=46972431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031625A Expired - Fee Related JP5606356B2 (en) 2011-02-17 2011-02-17 Particulate matter detector

Country Status (1)

Country Link
JP (1) JP5606356B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355897B2 (en) * 2013-05-14 2018-07-11 ホシデン株式会社 Gas measuring device and gas detecting device
JP6329820B2 (en) 2014-06-16 2018-05-23 株式会社Soken Particulate matter detection sensor
JP2016038351A (en) * 2014-08-11 2016-03-22 ナブテスコ株式会社 Sensor
JP6409452B2 (en) * 2014-09-26 2018-10-24 いすゞ自動車株式会社 Diagnostic equipment
JP6451179B2 (en) * 2014-09-26 2019-01-16 いすゞ自動車株式会社 Diagnostic equipment
JP6501672B2 (en) * 2015-08-20 2019-04-17 株式会社デンソー Particulate matter detection system
WO2017047606A1 (en) * 2015-09-15 2017-03-23 株式会社デンソー Particulate matter detection sensor
JP6536507B2 (en) * 2015-09-15 2019-07-03 株式会社デンソー Particulate matter detection sensor
KR102022996B1 (en) * 2017-12-22 2019-09-20 세종공업 주식회사 Particulater matter detection sensor for enhancing deposition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197415A (en) * 1996-12-27 1998-07-31 Noritz Corp Apparatus for discharging combustion exhaust gas of burning apparatus
JP3380713B2 (en) * 1997-07-15 2003-02-24 トヨタ自動車株式会社 Fluid sensor
DE102004027528A1 (en) * 2004-06-03 2005-12-22 Robert Bosch Gmbh Gas sensor
JP5010494B2 (en) * 2008-02-05 2012-08-29 日本碍子株式会社 Particulate matter detector
KR101472839B1 (en) * 2008-05-13 2014-12-17 삼성전자주식회사 A device for detecting micro particles in gas and a method for fabricating the device

Also Published As

Publication number Publication date
JP2012168143A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5606356B2 (en) Particulate matter detector
US10364717B2 (en) Methods and systems for increasing particulate matter deposition in an exhaust particulate matter sensor
JP5201193B2 (en) Particulate matter detection sensor
JP5223905B2 (en) Particulate matter detection element
KR101862417B1 (en) Soot sensor system
US7770432B2 (en) Sensor element for particle sensors and method for operating same
JP2012127907A (en) Particulate matter detection sensor
JP2006266961A (en) Soot sensor
JP5418611B2 (en) Method for correcting particulate matter detection device
JP2012083210A (en) Particulate substance detection sensor
CN107167402A (en) The method and system sensed for exhaust particulate matter
US9933352B2 (en) Sensor for detecting particles
US20190293541A1 (en) Particulate matter detection apparatus
US11441993B2 (en) Method and system for exhaust particulate matter sensing
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP2012037504A (en) Particulate substance detector and particulate substance detection method
JP2011080780A (en) Particulate detection element
JP2012068148A (en) Particulate material detection sensor
JP2011033577A (en) Fine particle sensor
JP6421617B2 (en) Particulate matter detection sensor and particulate matter detection device
KR102418081B1 (en) Sensor element for determining particles in a fluid medium
US10267204B2 (en) Method and system for exhaust particulate matter sensing
CN109891211B (en) Sensor element for sensing particles of a measurement gas in a measurement gas chamber
KR102394808B1 (en) Particulate matter sensor
JP2016173251A (en) Particulate matter detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees