JP2012068148A - Particulate material detection sensor - Google Patents

Particulate material detection sensor Download PDF

Info

Publication number
JP2012068148A
JP2012068148A JP2010214021A JP2010214021A JP2012068148A JP 2012068148 A JP2012068148 A JP 2012068148A JP 2010214021 A JP2010214021 A JP 2010214021A JP 2010214021 A JP2010214021 A JP 2010214021A JP 2012068148 A JP2012068148 A JP 2012068148A
Authority
JP
Japan
Prior art keywords
cover body
particulate matter
hole
width
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010214021A
Other languages
Japanese (ja)
Inventor
Susumu Takenami
進 武並
Naohisa Oyama
尚久 大山
Takashi Sawada
高志 澤田
Takashi Araki
貴司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2010214021A priority Critical patent/JP2012068148A/en
Priority to DE201110083339 priority patent/DE102011083339A1/en
Publication of JP2012068148A publication Critical patent/JP2012068148A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particulate material detection sensor provided with a cover body capable of effectively collecting PM on a detector.SOLUTION: A cover body 20 includes: a measurement object gas inlet hole Hfor introducing a measurement object gas to a detector 11; a side face outlet hole Hfor deriving the gas in the side direction; and an underside outlet hole Hfor deriving the gas in the downward direction. The measurement object gas inlet hole H, the side face outlet hole H, and the underside outlet hole Hare regulated in a prescribed range, and at least a distance Lfrom the base end of the cover body 20 to the opening position of the measurement object gas inlet hole Hand a distance Lfrom the base end of the cover body 20 to the front end of the cover body 20 are regulated. The flow of the measurement object gas colliding against the detector 11 is separated in horizontal and vertical directions and the flow rate of the measurement object gas introduced into the cover body 20 is suppressed by an eddy current generated upstream of the detector 11 in the cover body 20, while deriving the measurement object gas from the side face outlet hole Hand the underside outlet hole Hto the outside of the cover body 20.

Description

本発明は、例えば、車両用内燃機関の排気浄化システムに好適に利用されて、排出ガス中に存在する粒子状物質の量を検出する、電気抵抗式の粒子状物質検出センサに関する。   The present invention relates to an electric resistance type particulate matter detection sensor that is suitably used in, for example, an exhaust purification system of an internal combustion engine for a vehicle and detects the amount of particulate matter present in exhaust gas.

自動車用ディーゼルエンジン等において、排気ガスに含まれる環境汚染物質、特に煤粒子(Soot)及び可溶性有機成分(SOF)を主体とする粒子状物質(Particulate Matter;以下、適宜PMと称する)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、適宜DPFと称する)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に排気ガスを通過させてPMを捕捉する。   Collects environmental pollutants contained in exhaust gas, especially particulate matter (Particulate Matter; hereinafter referred to as PM as appropriate) mainly composed of soot particles and soluble organic components (SOF) in automobile diesel engines, etc. In order to do this, a diesel particulate filter (hereinafter referred to as DPF as appropriate) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by passing exhaust gas through a partition wall having a large number of pores.

DPFは、PM捕集量が許容量を超えると、目詰まりが生じて圧力損失が増大したり、PMのすり抜けが増加したりする虞があり、定期的に再生処理を行って捕集能力を回復させている。
DPFの再生時期は、一般的には、PM捕集量の増加により前後差圧が増大することを利用して決定されている。このため、DPFの上流及び下流の圧力差を検出する差圧センサが設置される。再生処理は、ヒータ加熱あるいはポスト噴射等により高温の燃焼排気をDPF内に導入し、PMを燃焼除去することによって行われる。
If the amount of collected PM exceeds the allowable amount, DPF may cause clogging and increase pressure loss or increase of PM slipping. It is recovering.
The regeneration timing of the DPF is generally determined by utilizing the fact that the differential pressure across the front increases as the amount of collected PM increases. For this reason, a differential pressure sensor for detecting the pressure difference between the upstream and downstream of the DPF is installed. The regeneration process is performed by introducing high-temperature combustion exhaust gas into the DPF by heater heating or post-injection, and burning off PM.

一方、燃焼排気中のPMを直接検出可能な粒子状物質検出センサ(以下、適宜、PMセンサと称する。)について種々提案されている。このPMセンサを、例えばDPFの下流に設置して、DPFをすり抜けるPM量を測定し、車載式故障診断装置(OBD;On Board Diagnosis)において、DPFの作動状態の監視、例えば亀裂や破損といった異常の検出に利用することができる。
あるいは、DPFの上流に設置して、DPFに流入するPM量を測定し、差圧センサに代わる再生時期の判断に利用することも検討されている。
On the other hand, various types of particulate matter detection sensors that can directly detect PM in combustion exhaust (hereinafter referred to as PM sensors as appropriate) have been proposed. This PM sensor is installed downstream of the DPF, for example, and the amount of PM passing through the DPF is measured. In an on-board diagnosis (OBD), monitoring of the operating state of the DPF, for example, abnormalities such as cracks and breakage It can be used for detection.
Alternatively, it is also considered to install upstream of the DPF, measure the amount of PM flowing into the DPF, and use it to determine the regeneration time instead of the differential pressure sensor.

このようなPMセンサの基本的な構成として、特許文献1には、絶縁性を有する基板の表面に、一対の導電性電極を形成し、基板の裏面又は内部に発熱体を形成した電気抵抗式のスモークセンサが開示されている。このセンサは、スモーク(微粒炭素)が導電性を有することを利用したもので、検出部となる電極間に、スモークが堆積することで生じる抵抗値の変化を検出する。
発熱体は、検出部を所望の温度(例えば、400℃〜600℃)に加熱し、電極間抵抗を測定した後に、付着したスモークを焼き切って検出能力を回復させる。
また、この種のPMセンサでは、検出部以外の表面へのPMの堆積による導電経路の形成に伴う誤作動を防止すべく、検出部を除く基板の表面及び裏面を、気密な絶縁物質によって被覆して絶縁保護している。
さらに、この種のPMセンサでは、筒状のカバー体によって検出部が覆われており、被水や飛び石等によるセンサ素子の破損から保護されている。
As a basic configuration of such a PM sensor, Patent Document 1 discloses an electric resistance type in which a pair of conductive electrodes are formed on the surface of an insulating substrate and a heating element is formed on the back surface or inside of the substrate. A smoke sensor is disclosed. This sensor utilizes the fact that smoke (fine carbon) has electrical conductivity, and detects a change in resistance value caused by the deposition of smoke between electrodes serving as a detection unit.
The heating element heats the detection unit to a desired temperature (for example, 400 ° C. to 600 ° C.), measures the interelectrode resistance, burns off the attached smoke, and recovers the detection capability.
In addition, in this type of PM sensor, the front and back surfaces of the substrate excluding the detection unit are covered with an airtight insulating material in order to prevent a malfunction due to the formation of a conductive path due to PM deposition on the surface other than the detection unit. Insulation protection.
Furthermore, in this kind of PM sensor, the detection part is covered with the cylindrical cover body, and it is protected from damage to the sensor element due to water or flying stones.

従来、酸素センサや、NOxセンサ、空燃比センサ等の被測定ガス中の特定成分を検出するガスセンサについては、特許文献2にあるように、センサ素子を被水から保護しつつ、カバー体内外への被測定ガスの入れ換わりを良好にしてガスセンサの応答性を向上させる構造について種々検討されている。   Conventionally, gas sensors that detect specific components in a gas to be measured, such as an oxygen sensor, a NOx sensor, an air-fuel ratio sensor, and the like, as disclosed in Patent Document 2, are used to protect the sensor element from being exposed to water and to cover the inside and outside of the cover. Various structures for improving the response of the gas sensor by improving the exchange of the gas to be measured have been studied.

ところが酸素センサなどの被測定ガス中の特定成分の濃度を検出するガスセンサにおいては、測定対象が気体であるため、カバー体内外への被測定ガスの入れ換えを速やかに行って応答性に向上を図ることが望まれるが、PMセンサにおいては、被測定ガス中に含まれるPMをセンサ素子の検出部に如何にして早期に堆積させると共に、如何にして一旦検出部に堆積したPMを検出部から脱離させないようにするかが重要である。
このため、特許文献2にあるような従来のガスセンサと同様に被水から保護しつつ応答性を向上させるために流路方向を複雑に変化させたカバー体を用いたのでは、検出部に到達する前にPMがカバー体に付着し早期にPMを検出部に堆積させることができない虞がある。
しかしながら、被測定ガス中のPMを検出するPMセンサの検出素子を保護しつつ、検出部にPMを確実に捕集、堆積させることのできるカバー体についての検討は十分されていない。
However, in a gas sensor that detects the concentration of a specific component in a gas to be measured, such as an oxygen sensor, the measurement target is a gas. Therefore, the gas to be measured is quickly exchanged inside and outside the cover to improve responsiveness. However, in the PM sensor, the PM contained in the gas to be measured is deposited on the detection unit of the sensor element at an early stage, and the PM once deposited on the detection unit is removed from the detection unit. It is important not to leave them apart.
For this reason, in the same manner as in the conventional gas sensor disclosed in Patent Document 2, if the cover body in which the flow path direction is changed in a complicated manner is used in order to improve the response while protecting from moisture, the detection unit is reached. There is a possibility that PM adheres to the cover body and PM cannot be deposited on the detection part at an early stage.
However, the cover body that can reliably collect and deposit PM in the detection unit while protecting the detection element of the PM sensor that detects PM in the gas to be measured has not been sufficiently studied.

そこで、かかる実情に鑑み、本願発明は、被測定ガス中に含まれるPMを検出する粒子状物質検出センサであって、検出素子を保護しつつPMを効率的に検出部に捕集させることのできるカバー体を設けた粒子状物質検出センサを提供することを目的とする。   Accordingly, in view of such circumstances, the present invention is a particulate matter detection sensor for detecting PM contained in a gas to be measured, and is capable of efficiently collecting PM in a detection unit while protecting the detection element. An object of the present invention is to provide a particulate matter detection sensor provided with a cover body that can be used.

第1の発明では、所定の横幅と長さと厚さとを有する略平板状に形成した検出素子の先端を被測定ガス流路内に載置し、上記検出素子の先端側に設けた所定の横幅と縦幅とを有する検出部に堆積する粒子状物質の量によって変化する物理量を検出して被測定ガス中に含まれる粒子状物質の検出を行う粒子状物質検出センサであって、
上記検出部を被測定ガス流路の上流側に対向せしめると共に、上記検出部を含む上記検出素子の先端を覆う所定の内径と長さを有する略筒状のカバー体を設け、
該カバー体が、少なくとも、
上記検出部に対向しつつ、被測定ガスの上流側に向かって開口して、上記カバー体内に上記被測定ガスを導入する矩形、又は、円形の被測定ガス導入孔と、
上記検出部の両側に向かって開口して、上記カバー体内に導入された被測定ガスを側面方向に導出する矩形、又は、円形の側面導出孔と、
上記検出部の先端側下方に向かって開口して、上記カバー体内に導入された被測定ガスを先端側下方に導出する矩形、又は、円形の下面導出孔と、を具備し、
上記被測定ガス導入孔と上記側面導出孔と上記下面導出孔とのそれぞれの開口横幅及び開口縦幅、又は、開口径を所定の下限値から上限値までの範囲に規定すると共に、
少なくとも上記カバー体の基端から上記被測定ガス導入孔の開口位置までの距離と、上記被測定ガス導入孔の開口位置から上記カバー体の先端までの距離とを規定して、
上記検出部に衝突する上記被測定ガスの流れを上下左右に振り分けて、上記側面導出孔と上記下面導出孔から上記カバー体の外へ導出つつ、上記カバー体内において上記検出部の上流側に発生する渦流によって上記カバー体内に導入される被測定ガスの流速を抑制する(請求項1)。
In the first invention, the front end of the detection element formed in a substantially flat plate shape having a predetermined lateral width, length, and thickness is placed in the measured gas flow path, and the predetermined lateral width provided on the front end side of the detection element. And a particulate matter detection sensor for detecting particulate matter contained in the gas to be measured by detecting a physical quantity that varies depending on the amount of particulate matter deposited on the detection unit having a vertical width,
The detection unit is made to face the upstream side of the gas flow path to be measured, and a substantially cylindrical cover body having a predetermined inner diameter and length covering the tip of the detection element including the detection unit is provided,
The cover body is at least
While facing the detection unit, it opens toward the upstream side of the gas to be measured and introduces the gas to be measured into the cover body, or a circular gas to be measured introduction hole,
A rectangle that opens toward both sides of the detection unit and leads the measurement gas introduced into the cover body in a side surface direction, or a circular side surface lead-out hole;
A rectangular opening for opening the gas to be measured introduced into the cover body to the lower side of the distal end, or a circular lower surface outlet hole, which opens toward the lower side of the distal end of the detection unit,
The opening width and opening length of each of the measured gas introduction hole, the side surface outlet hole, and the lower surface outlet hole, or the opening diameter is defined in a range from a predetermined lower limit value to an upper limit value, and
Defining at least the distance from the base end of the cover body to the opening position of the gas inlet hole to be measured and the distance from the opening position of the gas inlet hole to be measured to the tip of the cover body;
The flow of the gas to be measured that collides with the detection unit is distributed to the top, bottom, left, and right, and is generated outside the cover body from the side surface extraction hole and the bottom surface extraction hole, and is generated upstream of the detection unit in the cover body. The flow velocity of the gas to be measured introduced into the cover body is suppressed by the eddy current that flows (claim 1).

第1の発明によれば、上記渦流の発生により、上記カバー体内に導入された被測定ガスの流速が抑制されるので、被測定ガスが上記検出部に衝突したときに、被測定ガス中に含まれる粒子状物質が上記検出部の表面に吸着、堆積した後、後続の被測定ガスの流れによって脱離し難くなる。このため、上記検出部に堆積する粒子状物質の量を増加させることができる。   According to the first invention, since the flow velocity of the gas to be measured introduced into the cover body is suppressed by the generation of the eddy current, when the gas to be measured collides with the detection unit, After the contained particulate matter is adsorbed and deposited on the surface of the detection unit, it becomes difficult to desorb by the subsequent flow of the gas to be measured. For this reason, the amount of particulate matter deposited on the detection unit can be increased.

第2の発明では、上記被測定ガス導入孔の開口横幅の上限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅よりも小さく、上記被測定ガス導入孔の開口横幅の下限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい(請求項2)。   In the second invention, the upper limit value of the opening width of the measured gas introduction hole is smaller than the width defined by the intersection with the straight line projected from the side edge of the detection element onto the cover body. The lower limit value of the opening width of the gas introduction hole is larger than ½ of the width defined by the intersection with the straight line projected from the side edge of the detection element onto the cover (claim 2).

上記被測定ガス導入孔の開口横幅が第2の発明の範囲に形成されていれば、上記カバー体内に導入された被測定ガスが、上記検出素子に衝突した後に左右に振り分けられる流れが形成され、その一部で上記検出素子に対して上流側となる方向に向かう渦流が発生し、上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流速を抑制して、上記検出部に堆積する粒子状物質の量を増加させることができる。
一方、第2の発明の範囲を外れ、上記被測定ガス導入孔の開口横幅が上記検出素子の横幅以上である場合には、カバー体内に導入された被測定ガスの流速が抑制されず、上記被測定ガス導入孔から直接的に上記側面導出孔に向かう流れが形成され、上記検出素子をカバー体によって覆っていない場合と同様に、検出部に粒子状物質が堆積し難くなる虞がある。
また、第2の発明の範囲を外れ、上記被測定ガス導入孔の開口横幅が上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2以下である場合には、カバー体内に導入される被測定ガスの量が過剰に抑制され、上記検出部に粒子状物質が堆積し難くなる虞がある。
If the opening lateral width of the measured gas introduction hole is formed within the range of the second invention, a flow is formed in which the measured gas introduced into the cover body is distributed to the left and right after colliding with the detection element. In addition, a vortex flowing toward the upstream side with respect to the detection element is generated in a part of the detection element, and the flow rate of the measurement gas introduced into the cover body from the measurement gas introduction hole is suppressed, and the detection unit The amount of particulate matter deposited on the substrate can be increased.
On the other hand, outside the scope of the second invention, when the opening width of the measurement gas introduction hole is equal to or greater than the width of the detection element, the flow rate of the measurement gas introduced into the cover body is not suppressed, As a flow is formed directly from the measurement gas introduction hole toward the side surface outlet hole, and the detection element is not covered with the cover body, there is a possibility that the particulate matter is difficult to deposit on the detection unit.
Further, outside the scope of the second invention, the opening width of the gas introduction hole to be measured is not more than ½ of the width defined by the intersection with the straight line projected from the side edge of the detection element onto the cover body. In some cases, the amount of gas to be measured introduced into the cover body is excessively suppressed, and it may be difficult for particulate matter to accumulate on the detection unit.

第3の発明では、上記被測定ガス導入孔の開口縦幅の上限値が、上記検出部の縦幅よりも小さく、上記被測定ガス導入孔の開口縦幅の下限値が上記検出部の縦幅の1/2よりも大きい(請求項3)。   In the third aspect of the invention, the upper limit value of the opening vertical width of the measurement gas introduction hole is smaller than the vertical width of the detection unit, and the lower limit value of the opening vertical width of the measurement gas introduction hole is the vertical value of the detection unit. It is larger than 1/2 of the width (claim 3).

上記被測定ガス導入孔の開口縦幅が、上記第3の発明の範囲に形成されていれば、上記カバー体内に導入された被測定ガスが、上記検出素子に衝突した後に上下に振り分けられる流れが形成され、その一部で上記検出素子に対して上流側となる方向に向かう渦流が発生し、上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流速を抑制して、上記検出部に堆積する粒子状物質の量を増加させることができる。
一方、第3の発明の範囲を外れ、上記被測定ガス導入孔の開口縦幅が上記検出部の縦幅以上である場合には、カバー体内に導入された被測定ガスの流速が十分に抑制されず、上記被測定ガス導入孔から直接的に上記下面導出孔に向かう流れが形成され、上記検出素子をカバー体によって覆っていない場合と同様に、検出部に粒子状物質が堆積し難くなる虞がある。
また、第3の発明の範囲を外れ、上記被測定ガス導入孔の開口縦幅が上記検出部の縦幅の1/2以下である場合には、カバー体内に導入される被測定ガスの量が過剰に抑制され、上記検出部に粒子状物質が堆積し難くなる虞がある。
If the opening length of the gas to be measured introduction hole is formed within the range of the third invention, the gas to be measured introduced into the cover body is flowed up and down after colliding with the detection element. Is formed, a vortex flowing toward the upstream side with respect to the detection element is generated in part, and the flow rate of the measurement gas introduced into the cover body from the measurement gas introduction hole is suppressed, The amount of particulate matter deposited on the detection unit can be increased.
On the other hand, if it is outside the scope of the third invention and the opening vertical width of the measurement gas introduction hole is equal to or greater than the vertical width of the detection section, the flow velocity of the measurement gas introduced into the cover body is sufficiently suppressed. Instead, a flow is formed directly from the measured gas introduction hole to the lower surface outlet hole, and the particulate matter is less likely to be deposited on the detection portion, as in the case where the detection element is not covered by the cover body. There is a fear.
Further, if it is outside the scope of the third invention and the opening vertical width of the measurement gas introduction hole is ½ or less of the vertical width of the detection section, the amount of the measurement gas introduced into the cover body May be excessively suppressed, and particulate matter may not easily accumulate on the detection unit.

第4の発明では、上記側面導出孔の開口横幅の上限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅よりも小さく、上記側面導出孔の開口横幅の下限値が検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい(請求項4)。   In the fourth invention, the upper limit value of the lateral width of the side surface outlet hole is smaller than the lateral width defined by the intersection with the straight line projected from the side edge of the detection element on the cover body, The lower limit of the lateral width of the opening is larger than ½ of the lateral width defined by the intersection with the straight line obtained by projecting the side edge of the detection element onto the cover body.

上記側面導出孔の開口横幅が、第4の発明の範囲に形成されていれば、上記カバー体の前面に衝突した後、上記カバー体の外周表面に沿って上記カバー体の外側を流れる被測定ガスの引込み力によって上記側面導出孔から導出される被測定ガスの流速が上記検出部の上流側に渦流を発生し得る範囲に調整され、上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流速を抑制して、上記検出部に堆積する粒子状物質の量を増加させることができる。
一方、第4の発明の範囲を外れ、上記側面導出孔の開口横幅が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅以上である場合には、上記被測定ガス導入孔から直接的に上記側面導出孔に向かう流れが形成され、上記検出素子をカバー体によって覆っていない場合と同様に、上記検出部に粒子状物質が堆積し難くなる虞がある。
また、第4の発明の範囲を外れ、上記側面導出孔の開口横幅の下限値が検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2以下である場合には、一旦、上記カバー体内に導入された被測定ガスが上記カバー体の外に導出され難くなり、結果的に上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流量が減少し、上記検出部に粒子状物質が堆積し難くなる虞がある。
If the lateral width of the side lead-out hole is formed within the range of the fourth invention, the object to be measured that flows outside the cover body along the outer peripheral surface of the cover body after colliding with the front surface of the cover body The flow velocity of the gas to be measured led out from the side lead-out hole is adjusted to a range in which a vortex can be generated on the upstream side of the detection unit by the gas drawing force, and is introduced into the cover body from the gas to be measured introduction hole. The flow rate of the gas to be measured can be suppressed, and the amount of particulate matter deposited on the detection unit can be increased.
On the other hand, outside the scope of the fourth invention, when the lateral width of the side lead-out hole is equal to or greater than the lateral width defined by the intersection with the straight line projected on the cover body at the side edge of the detection element, As in the case where a flow is formed directly from the measurement gas introduction hole toward the side lead-out hole, and the detection element is not covered by the cover body, there is a possibility that the particulate matter is difficult to deposit on the detection unit. is there.
Further, outside the scope of the fourth invention, the lower limit of the opening lateral width of the side surface lead-out hole is not more than ½ of the lateral width defined by the intersection with the straight line projected from the side edge of the detection element onto the cover body. In some cases, the measurement gas once introduced into the cover body is difficult to be led out of the cover body, and as a result, the measurement gas introduced into the cover body from the measurement gas introduction hole There is a possibility that the flow rate decreases and it becomes difficult to deposit particulate matter on the detection unit.

第5の発明では、上記側面導出孔の開口縦幅の下限値が上記検出部の縦幅の1/2よりも大きい(請求項5)。   In the fifth invention, the lower limit value of the opening vertical width of the side surface outlet hole is larger than ½ of the vertical width of the detection section.

上記側面導出孔の開口縦幅が第5の発明の範囲に形成されていれば、上記カバー体内に導入された被測定ガスが、上記検出素子に衝突した後に左右に振り分けられる流れが形成され、その一部で上記検出素子に対して上流側となる方向に向かう渦流が発生し、上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流速を抑制して、上記検出部に堆積する粒子状物質の量を増加させることができる。
一方、第5の発明の範囲を外れ、上記側面導出孔の開口縦幅が上記検出部の縦幅の1/2以下である場合には、上記カバー体内に導入された被測定ガスの導出が過剰に抑制され、カバー体内に滞留するため、被測定ガスの導入が過剰に抑制され、上記検出部に粒子状物質が堆積し難くなる虞がある。
If the opening vertical width of the side surface lead-out hole is formed within the range of the fifth invention, a flow in which the gas to be measured introduced into the cover body is distributed to the left and right after colliding with the detection element is formed, A vortex flowing toward the upstream side with respect to the detection element is generated in a part of the detection element, and the flow rate of the measurement gas introduced into the cover body from the measurement gas introduction hole is suppressed to the detection unit. The amount of particulate matter deposited can be increased.
On the other hand, when it is outside the scope of the fifth invention and the opening width of the side surface outlet hole is ½ or less of the vertical width of the detection portion, the measurement gas introduced into the cover body cannot be derived. Since it is excessively suppressed and stays in the cover body, the introduction of the gas to be measured is excessively suppressed, and it may be difficult to deposit particulate matter on the detection unit.

第6の発明では、上記下面導出孔の開口径上限値が、上記カバー体の内径以下で、上記下面導出孔の開口径の下限値が上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい(請求項6)。   In the sixth invention, the upper limit value of the opening diameter of the lower surface lead-out hole is equal to or smaller than the inner diameter of the cover body, and the lower limit value of the opening diameter of the lower surface lead-out hole projects the side edge of the detection element onto the cover body. It is larger than 1/2 of the lateral width defined by the intersection with the straight line.

上記下面導出孔の開口径が第6の発明の範囲に形成されていれば、上記被測定ガス導入孔から上記カバー体内に導入された被測定ガスが上記検出部に衝突した後、上記下面導出孔から導出される際に、上記カバー体の下端部周辺を流れる被測定ガスの引込み力によって上記下面導出孔から導出される被測定ガスの流速が上記検出部の上流側に渦流を発生し得る範囲に調整され、上記被測定ガス導入孔から上記カバー体内に導入される被測定ガスの流速を抑制して、上記検出部に堆積する粒子状物質の量を増加させることができる。
一方、第6の発明の範囲を外れ、上記下面導出孔の開口径が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2以下である場合には、上記下面導出孔から被測定ガスが導出され難くなり、カバー体内に滞留するため、被想定ガスの導入が過剰に抑制され、上記検出部に粒子状物質が堆積し難くなる虞がある。
If the opening diameter of the lower surface lead-out hole is formed within the range of the sixth invention, the lower surface lead-out is performed after the gas to be measured introduced into the cover body from the measured gas introduction hole collides with the detection unit. When derived from the hole, the flow velocity of the measurement gas derived from the lower surface extraction hole can generate a vortex on the upstream side of the detection unit due to the drawing force of the measurement gas flowing around the lower end of the cover body. The amount of particulate matter deposited on the detection unit can be increased by adjusting the flow rate and suppressing the flow rate of the measurement gas introduced into the cover body from the measurement gas introduction hole.
On the other hand, outside the range of the sixth invention, the opening diameter of the lower surface lead-out hole is ½ or less of the lateral width defined by the intersection with the straight line projected on the side edge of the detection element on the cover body. In this case, the gas to be measured is difficult to be led out from the lower surface lead-out hole and stays in the cover body, so that the introduction of the gas to be assumed is excessively suppressed and the particulate matter may not be easily deposited on the detection unit. is there.

また、第7の発明のように、上記側面導出孔を上記カバー体の軸方向に対して複数並べて穿設しても良い(請求項7)。   Further, as in the seventh invention, a plurality of the side surface lead-out holes may be formed side by side with respect to the axial direction of the cover body.

また、第8の発明のように、上記側面導出孔を上記カバー体の軸方向に伸びる長孔状に穿設しても良い(請求項8)。   Further, as in the eighth invention, the side surface lead-out hole may be formed in a long hole shape extending in the axial direction of the cover body.

第7の発明、又は、第8の発明によれば、上記カバー体内に導入された被測定ガスが上記検出部に衝突した後、上下左右に振り分けられる際に、上記側面導出孔に向かう流れが相対的に増加され、上記下面導出孔に向かう流れが相対的に抑制される。この結果、上記検出部の上方へ向かう渦流を相対的に増加させ、上記検出部に堆積する粒子状物質の量を増加できると期待される。   According to the seventh invention or the eighth invention, when the gas to be measured introduced into the cover body collides with the detection unit and then is distributed vertically and horizontally, the flow toward the side lead-out hole is generated. The flow is relatively increased, and the flow toward the lower surface outlet hole is relatively suppressed. As a result, it is expected that the amount of particulate matter deposited on the detection unit can be increased by relatively increasing the upward vortex flow of the detection unit.

第9の発明では、上記カバー体の内径が上記検出素子の横幅の2倍以下である(請求項9)。   In the ninth invention, the inner diameter of the cover body is not more than twice the lateral width of the detection element.

第9の発明によれば、上記カバー体内の流速を抑制することにより、上記検出部に堆積した粒子状物質の脱離を起こり難くして、上記検出部への堆積量を増加した応答性の良い粒子状物質検出センサが実現できる。
一方、上記カバー体の内径が第8の発明の範囲を外れ、上記検出素子の横幅の2倍を超える場合には、カバー体が設けられていない場合の流速に近づくため、上記検出部に粒子状物質が堆積し難くなる虞がある。
According to the ninth aspect of the present invention, by suppressing the flow velocity in the cover body, the detachment of the particulate matter deposited on the detection unit is made difficult to occur, and the responsiveness is increased by increasing the deposition amount on the detection unit. A good particulate matter detection sensor can be realized.
On the other hand, when the inner diameter of the cover body is out of the range of the eighth invention and exceeds twice the lateral width of the detection element, it approaches the flow velocity when the cover body is not provided. There is a risk that the particulate matter will be difficult to deposit.

第10の発明では、上記カバー体の基端から上記被測定ガス導入孔の開口位置までに所定の渦流形成距離を設ける(請求項10)。   In a tenth aspect of the invention, a predetermined eddy current formation distance is provided from the base end of the cover body to the opening position of the measurement gas introduction hole.

第11の発明では、上記被測定ガス導入孔の開口位置から上記カバー体の先端までに所定の渦流形成距離を設ける(請求項11)。   In an eleventh aspect of the invention, a predetermined eddy current forming distance is provided from the opening position of the measurement target gas introduction hole to the tip of the cover body.

第10の発明、又は、第11の発明によれば、上記カバー体内の流速を抑制することにより、上記検出部に堆積した粒子状物質の脱離を起こり難くして、上記検出部への堆積量を増加した応答性の良い粒子状物質検出センサが実現できる。   According to the tenth invention or the eleventh invention, by suppressing the flow rate in the cover body, it is difficult for the particulate matter deposited on the detection unit to be detached, and the deposition on the detection unit is performed. A responsive particulate matter detection sensor with an increased amount can be realized.

より具体的には、第12の発明のように、上記検出部の横幅が2mm以上10mm以下、縦幅が2mm以上10mm以下であるときには、上記被測定ガス導入孔の開口横幅が1mm以上10mm以下であるのが望ましい(請求項12)。 More specifically, as in the twelfth aspect, when the horizontal width of the detection section is 2 mm or more and 10 mm or less and the vertical width is 2 mm or more and 10 mm or less, the opening horizontal width of the measured gas introduction hole is 1 mm or more and 10 mm or less. (Claim 12).

第13の発明のように、上記検出部の横幅が2mm以上10mm以下、縦幅が2mm以上10mm以下であるときには、上記被測定ガス導入孔の開口縦幅が1mm以上10mm以下であるのが望ましい(請求項13)。   As in the thirteenth invention, when the horizontal width of the detection unit is 2 mm or more and 10 mm or less and the vertical width is 2 mm or more and 10 mm or less, the opening vertical width of the measured gas introduction hole is desirably 1 mm or more and 10 mm or less. (Claim 13).

第14の発明のように、上記検出素子の横幅が10mmであるときには、上記側面導出孔の開口横幅が5mm以上10mm以下であるのが望ましい(請求項14)。   As in the fourteenth aspect, when the lateral width of the detection element is 10 mm, it is desirable that the lateral lateral opening opening has an opening lateral width of 5 mm to 10 mm.

第15の発明のように、上記側面導出孔の開口横幅が10mmであるときには、上記側面導出孔の縦幅が5mm以上10mm以下であるのが望ましい(請求項15)。   As in the fifteenth aspect of the invention, when the lateral width of the side lead-out hole is 10 mm, the vertical width of the side lead-out hole is preferably 5 mm or more and 10 mm or less.

第16の発明のように、上記検出素子の横幅が10mmであるときには、上記下面導出孔の開口径が5mm以上であるのが望ましい(請求項16)。   As in the sixteenth aspect of the invention, when the width of the detection element is 10 mm, it is desirable that the opening diameter of the lower surface outlet hole is 5 mm or more.

第17の発明のように、上記カバー体の基端から上記被測定ガス導入孔の開口位置までの距離が10mm以上30mm以下であるのが望ましい(請求項17)。   As in the seventeenth aspect of the invention, it is desirable that the distance from the base end of the cover body to the opening position of the measured gas introduction hole is 10 mm or more and 30 mm or less.

第18の発明のように、上記被測定ガス導入孔の開口位置から上記カバー体の先端までの距離が5mm以上15mm以下であるのが望ましい(請求項18)。   As in the eighteenth aspect of the invention, it is desirable that the distance from the opening position of the measured gas introduction hole to the tip of the cover body is 5 mm or more and 15 mm or less.

第12〜第18の発明によれば、上記カバー体内の流速を抑制することにより、上記検出部に堆積した粒子状物質の脱離を起こり難くして、上記検出部への堆積量を増加した応答性の良い粒子状物質検出センサが実現できる。   According to the twelfth to eighteenth inventions, by suppressing the flow velocity in the cover body, it is difficult for the particulate matter deposited on the detection unit to be detached, and the amount deposited on the detection unit is increased. A responsive particulate matter detection sensor can be realized.

第19の発明では、上記物理量は、上記検出部に堆積する粒子状物質の量によって変化する抵抗値、静電容量、インピーダンス、酸化還元電位のいずれか、又は、これらから選択された物理量の組合せである(請求項19)。   In a nineteenth aspect, the physical quantity is any one of a resistance value, capacitance, impedance, oxidation-reduction potential, or a combination of physical quantities selected from these, which varies depending on the amount of particulate matter deposited on the detection unit. (Claim 19).

第19の発明のいずれの物理量を測定する場合においても、上記カバー体内の流速を抑制することにより、上記検出部に堆積した粒子状物質の脱離が起こり難くなるので、結果として得られる上記物理量が安定し、粒子状物質検出センサとしての信頼性が高くなる。   In any of the nineteenth inventions, the physical quantity obtained as a result can be reduced because the particulate matter deposited on the detection part is less likely to be detached by suppressing the flow rate in the cover body. Becomes stable and the reliability as a particulate matter detection sensor is increased.

本発明の第1の実施形態における粒子状物質検出装置の概要を示し、(a)は、縦断面図、(b)本図(a)中10−10に沿った半断面図、(c)は、本図(a)中C−Cに沿った横断面図、(d)は、本図(a)中D−Dにおける下面図。BRIEF DESCRIPTION OF THE DRAWINGS The outline | summary of the particulate-material detection apparatus in the 1st Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) The half cross-sectional view along 10-10 in this figure (a), (c). (A) is a cross-sectional view along CC in the figure (a), (d) is a bottom view in DD in the figure (a). 本発明の第1の実施形態における粒子状物質検出装置に用いられる検出素子の一例を示す展開斜視図。FIG. 3 is a developed perspective view illustrating an example of a detection element used in the particulate matter detection device according to the first embodiment of the present invention. 本発明の第1の実施形態における粒子状物質検出装置の効果を説明するための横断面図。The cross-sectional view for demonstrating the effect of the particulate matter detection apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における粒子状物質検出装置の効果を説明するための縦断面図。The longitudinal cross-sectional view for demonstrating the effect of the particulate matter detection apparatus in the 1st Embodiment of this invention. 本発明の効果を発揮し得ない構成について説明するための説明図であって、(a)は、比較例1に係る横断面図、(b)は、比較例2に係る横断面図。It is explanatory drawing for demonstrating the structure which cannot exhibit the effect of this invention, Comprising: (a) is a cross-sectional view which concerns on the comparative example 1, (b) is a cross-sectional view which concerns on the comparative example 2. FIG. 本発明の効果を発揮し得ない構成について説明するための説明図であって、(a)は、比較例3に係る縦断面図、(b)は、比較例4に係る縦断面図。It is explanatory drawing for demonstrating the structure which cannot exhibit the effect of this invention, Comprising: (a) is a longitudinal cross-sectional view concerning the comparative example 3, (b) is a longitudinal cross-sectional view concerning the comparative example 4. FIG. 本発明の効果を発揮し得ない構成について説明するための説明図であって、(a)は、比較例5に係る横断面図、(b)は、比較例6に係る横断面図。It is explanatory drawing for demonstrating the structure which cannot exhibit the effect of this invention, Comprising: (a) is a cross-sectional view concerning the comparative example 5, (b) is a cross-sectional view concerning the comparative example 6. FIG. 本発明の効果を発揮し得ない構成について説明するための説明図であって、(a)は、比較例7に係る横断面図、(b)は、比較例8に係る縦断面図。It is explanatory drawing for demonstrating the structure which cannot demonstrate the effect of this invention, Comprising: (a) is a cross-sectional view which concerns on the comparative example 7, (b) is a longitudinal cross-sectional view which concerns on the comparative example 8. FIG. 本発明の効果を発揮し得ない構成について説明するための説明図であって、(a)は、比較例9に係る縦断面図、(b)は、比較例10に係る縦断面図。It is explanatory drawing for demonstrating the structure which cannot exhibit the effect of this invention, Comprising: (a) is a longitudinal cross-sectional view which concerns on the comparative example 9, (b) is a longitudinal cross-sectional view which concerns on the comparative example 10. FIG. 本発明の効果を示し、(a)は、検出部におけるPMの捕集状態を示す図面代用写真、(b)は、比較例として示すカバー体が設けられていない場合のPMの捕集状態を示す図面代用写真。The effect of this invention is shown, (a) is drawing substitute photograph which shows the collection state of PM in a detection part, (b) is the collection state of PM when the cover body shown as a comparative example is not provided. Drawing substitute photo shown. 本発明の要部であるカバー体の変形例を(a)〜(f)に示す斜視図。The perspective view which shows the modification of the cover body which is the principal part of this invention to (a)-(f). 本発明の第1の実施形態における変形例を示し、(a)は、実施例2に係る横断面図、(b)は、実施例3に係る縦断面図。The modification in the 1st Embodiment of this invention is shown, (a) is a cross-sectional view concerning Example 2, (b) is a longitudinal cross-sectional view concerning Example 3. FIG. 本発明の実施例4に係る横断面図。The cross-sectional view which concerns on Example 4 of this invention. 本発明の効果を示し、(a)は、導入孔開口横幅に係る特性図、(b)は導入孔開口縦幅に係る特性図。The effect of this invention is shown, (a) is the characteristic view which concerns on introduction hole opening lateral width, (b) is the characteristic view which concerns on introduction hole opening vertical width. 本発明の効果を示し、(a)は側面導出孔開口横幅に係る特性図、(b)は、側面導出孔開口縦幅に係る特性図。The effect figure of this invention is shown, (a) is the characteristic view which concerns on the side surface lead-out hole opening width, (b) is the characteristic view which concerns on the side surface lead-out hole opening width. 本発明の効果を示し、(a)は、下面導出孔開口径に係る特性図、(b)は、圧力調整孔に係る特性図。The effect of this invention is shown, (a) is a characteristic view which concerns on a lower surface outlet hole opening diameter, (b) is a characteristic view which concerns on a pressure adjustment hole.

図1を参照して、本発明の第1の実施形態における粒子状物質検出センサ1の概要について説明する。粒子状物質検出センサ1は、内燃機関の排気流路に設けられ、被測定ガス中に含まれる粒子状物質(PM)を検出し、内燃機関の燃焼制御や、DPFの故障診断等に利用されるものである。   With reference to FIG. 1, the outline | summary of the particulate matter detection sensor 1 in the 1st Embodiment of this invention is demonstrated. The particulate matter detection sensor 1 is provided in the exhaust passage of the internal combustion engine, detects particulate matter (PM) contained in the gas to be measured, and is used for combustion control of the internal combustion engine, DPF failure diagnosis, and the like. Is.

粒子状物質検出センサ1は、インシュレータ30を介してハウジング40によって被測定ガス流路に固定され、検出部11を被測定ガスの上流側に向けて配設される検出素子10と、本発明の要部であり、ハウジング40に固定され、検出素子10の先端を覆う略筒状のカバー体20とによって構成されている。
カバー体20は、検出素子10の外周を覆うように略筒状に形成され、その基端側には、外径方向に向かって張り出す鍔部21が設けられハウジング40の先端に設けられた加締め部41によって加締め固定されている。
カバー体20の周壁部22には、検出素子10の検出部11に対向する位置において、被測定ガスの上流側に向かって開口し、カバー体20の内側に被測定ガスを導入する導入孔Hと、検出素子10の両側面に対向する位置において、被測定ガスの流れ方向に直交し、カバー体20の両側面方向に向かって開口し、検出素子10の側面方向にカバー体20内に導入した被測定ガスを導出する側面導出孔Hと、被測定ガスの下流側に向かって開口し、カバー体20内に導入され検出素子10の裏面側に存在する被測定ガスの圧力をバランスし、被測定ガスの導入又は導出をする調圧孔Hと、が穿設され、カバー体20の底部22には、検出素子10の長手軸方向に向かって開口し、カバー体20内に導入された被測定ガスを先端側下方に向かって導出する底部導出孔Hが穿設されている。
なお、カバー体20の内径φD20は、検出素子10の横幅W10の2倍以下に形成されている。
The particulate matter detection sensor 1 is fixed to a measurement gas flow path by a housing 40 via an insulator 30, and has a detection element 10 disposed with the detection unit 11 facing the upstream side of the measurement gas. It is a main part, and is constituted by a substantially cylindrical cover body 20 that is fixed to the housing 40 and covers the tip of the detection element 10.
The cover body 20 is formed in a substantially cylindrical shape so as to cover the outer periphery of the detection element 10, and a flange portion 21 that protrudes toward the outer diameter direction is provided on the proximal end side, and is provided at the distal end of the housing 40. It is fixed by caulking by the caulking portion 41.
In the peripheral wall portion 22 of the cover body 20, an introduction hole H that opens toward the upstream side of the gas to be measured at a position facing the detection portion 11 of the detection element 10 and introduces the gas to be measured inside the cover body 20. 1 and at positions opposite to both side surfaces of the detection element 10, perpendicular to the flow direction of the gas to be measured, open toward both side surfaces of the cover body 20, and into the cover body 20 in the side surface direction of the detection element 10. The side surface outlet hole H 2 for leading the introduced measurement gas and the pressure of the measurement gas that opens toward the downstream side of the measurement gas and that is introduced into the cover body 20 and exists on the back side of the detection element 10 are balanced. And a pressure adjusting hole H 4 for introducing or deriving the gas to be measured, and the bottom 22 of the cover body 20 opens toward the longitudinal axis of the detection element 10. Lower the tip of the introduced gas to be measured Bottom out hole H 3 which headed derived is bored.
Note that the inner diameter φD 20 of the cover body 20 is formed to be not more than twice the lateral width W 10 of the detection element 10.

本発明は、被測定ガス導入孔Hと側面導出孔Hと下面導出孔Hとは、それぞれの開口横幅W、W、及び/又は開口径W、又は、開口縦幅T、Tを所定の開口横幅上限値W1HL、W2HL、及び/又は開口径上限値W3HL、開口横幅下限値W1LL、W2LL、及び/又は開口径下限値W3LL並びに開口縦幅上限値T1HL、開口縦幅下限値T1LL、T2LL内となるように形成してあり、これらを所定の下限値から上限値までの範囲に規定すると共に、少なくともカバー体20の基端から被測定ガス導入孔Hの開口位置までの距離Lと、被測定ガス導入孔の開口位置から上記カバー体の先端までの距離Lと、を規定し、検出部11に衝突する被測定ガスの流れを上下左右に振り分けて、側面導出孔Hと下面導出孔Hからカバー体20の外へ導出つつ、カバー体20内において検出部11の上流側に発生する渦流によってカバー体20内に導入される被測定ガスの流速を抑制して、検出部11に堆積した粒子状物質の脱離を防止することを特徴としている。 In the present invention, the measured gas introduction hole H 1 , the side surface outlet hole H 2, and the lower surface outlet hole H 3 are each of the opening lateral width W 1 , W 2 , and / or the opening diameter W 3 , or the opening longitudinal width T. 1 , T 2 is a predetermined opening width upper limit value W 1HL , W 2HL and / or opening diameter upper limit value W 3HL , opening width lower limit value W 1LL , W 2LL , and / or opening diameter lower limit value W 3LL and opening length The upper limit value T 1HL , the opening vertical width lower limit value T 1LL , and T 2LL are formed so as to be within a range from a predetermined lower limit value to an upper limit value, and at least from the base end of the cover body 20. and the distance L to the open position of the measurement gas introducing hole H 1, a distance L 1 from the open position of the measurement gas introducing hole to the tip of the cover member to define a measurement gas impinging on the detection unit 11 The flow is divided into up, down, left and right sides While derived from the outlet hole H 2 and the lower surface outlet hole H 3 to the outside of the cover body 20, the flow rate of the measurement gas introduced into the upstream-side cover body 20 by a vortex generated in the detecting section 11 in the cover body 20 This is characterized in that the particulate matter deposited on the detection unit 11 is prevented from being detached.

ここで、本発明の粒子状物質検出センサ1に用いられる検出素子10の具体的な構成の一例について図2を参照して説明する。
本実施形態においては、検出素子10は、カバー体20内に露出する部分の大きさが所定の横幅W10と長さL10と厚さt10とを有する略平板状に形成され、先端には、検出部11が設けられ、検出部11は被測定ガス流路の上流側に対向するように被測定ガス流路内に載置されている。
検出素子10の検出部11に堆積するPMの量によって変化する物理量として、一対の電極間に堆積したPMによって形成される電導パスの抵抗値を検出している。
検出部11は、絶縁性耐熱基板100と、絶縁性耐熱基板100上の被測定ガスに晒される表面に所定の距離を離隔して設けた一対の検出電極110と検出電極120とによって構成されている。
Here, an example of a specific configuration of the detection element 10 used in the particulate matter detection sensor 1 of the present invention will be described with reference to FIG.
In the present embodiment, the detecting element 10 has a substantially flat plate shape the size of the portion exposed to the cover body 20 has a predetermined width W 10 and the length L 10 and the thickness t 10, the distal end The detector 11 is provided, and the detector 11 is placed in the measured gas flow path so as to face the upstream side of the measured gas flow path.
The resistance value of the conduction path formed by the PM deposited between the pair of electrodes is detected as a physical quantity that varies depending on the amount of PM deposited on the detection unit 11 of the detection element 10.
The detection unit 11 includes an insulating heat-resistant substrate 100 and a pair of detection electrodes 110 and a detection electrode 120 provided on the surface of the insulating heat-resistant substrate 100 exposed to the gas to be measured at a predetermined distance. Yes.

本実施形態において、検出電極110と検出電極120とは、外部に設けた図略の抵抗測定手段との導通を図るリード部111、121に接続されており、複数の検出電極110と検出電極120とが交互に対向するように櫛歯状に形成されている。
さらに、リード部111、121の絶縁性を確保するために、検出部11を除く絶縁性耐熱基板100の表面及びリード部111、121を覆うように絶縁性耐熱材料を用いて絶縁性耐熱保護層103が形成されている。
絶縁性耐熱基板100の裏面側に積層して、絶縁性耐熱基板101、102に挟持され、通電により発熱するヒータ130と、ヒータ130と外部に設けた図略の通電制御装置とを接続する一対のヒータリード部131、132とが形成されている。
絶縁性耐熱基板100、101、102は、アルミナ等の電気絶縁性耐熱材料をドクターブレード法、プレス成形法、CIP、HIP等の公知の方法により平板状に形成されている。なお、絶縁性耐熱基板100の厚みの如何によっては、中間設けられた絶縁性基板101を廃しても良い。
検出電極110、120、リード部111、121、ヒータ130、ヒータリード部131、132は、厚膜印刷、メッキ、蒸着等の公知の方法により形成され、これらが一体的に積層、焼成され検出素子10が形成されている。
一対の検出電極110、120間に堆積した導電性のPMの量によって変化する検出電極110、120間に電気抵抗を計測することによって、被測定ガス中に含まれるPMを検出することができる。
In this embodiment, the detection electrode 110 and the detection electrode 120 are connected to lead portions 111 and 121 that are connected to a resistance measurement unit (not shown) provided outside, and the plurality of detection electrodes 110 and the detection electrodes 120 are connected. Are formed in a comb shape so as to alternately face each other.
Furthermore, in order to ensure the insulation of the lead portions 111 and 121, an insulating heat-resistant protective layer is formed using an insulating heat-resistant material so as to cover the surface of the insulating heat-resistant substrate 100 excluding the detection portion 11 and the lead portions 111 and 121. 103 is formed.
A pair which is laminated on the back side of the insulating heat-resistant substrate 100 and is sandwiched between the insulating heat-resistant substrates 101 and 102 and generates heat when energized, and connects the heater 130 and an energization control device (not shown) provided outside. Heater lead portions 131 and 132 are formed.
The insulative heat resistant substrates 100, 101, 102 are formed in a flat plate shape by using an electrically insulative heat resistant material such as alumina by a known method such as a doctor blade method, a press molding method, CIP, or HIP. Depending on the thickness of the insulating heat-resistant substrate 100, the insulating substrate 101 provided in the middle may be discarded.
The detection electrodes 110 and 120, the lead portions 111 and 121, the heater 130, and the heater lead portions 131 and 132 are formed by a known method such as thick film printing, plating, vapor deposition, and the like, and these are integrally laminated and baked to detect elements. 10 is formed.
By measuring the electrical resistance between the detection electrodes 110 and 120 that varies depending on the amount of conductive PM deposited between the pair of detection electrodes 110 and 120, the PM contained in the gas to be measured can be detected.

なお、本発明の粒子状物質検出センサ1において、カバー体20に穿設する導入孔H、導出孔H、H、圧力調整孔Hの位置、大きさを規定して、検出部11に堆積するPM量を最大にした点を特徴とするものであり、これに用いられる検出素子10は、略平板状に形成された検出素子10の検出部11を被測定ガス中に配設して検出部11に捕集されたPM量によって変化する物理量を検出するものであれば、物理量として、本実施形態のように検出部11に堆積したPM量によって変化する抵抗値を計測するものに限定されるものではなく、検出部11に堆積するPM量によって変化する静電容量を計測するものでも、検出部11に堆積するPM量によって変化するインピーダンスを計測するものでも、検出部11に堆積したPMを酸化除去したときに発生する酸化還元電位のいずれか、又は、これらから選択された物理量を計測するものの組合せでも良い。
また、本実施形態のように一対の検出電極110、120を櫛歯状に形成して抵抗値を計測するものだけでなく、検出部に多孔質電極を形成して、PMの堆積に伴う抵抗値変化を検出するものでも良い。
In the particulate matter detection sensor 1 of the present invention, the position and size of the introduction hole H 1 , the lead-out holes H 2 and H 3 , and the pressure adjustment hole H 4 formed in the cover body 20 are defined, and the detection unit 11 is characterized by maximizing the amount of PM deposited on the sensor 11, and the detection element 10 used for this is provided with the detection part 11 of the detection element 10 formed in a substantially flat plate shape in the gas to be measured. If a physical quantity that changes depending on the amount of PM collected by the detection unit 11 is detected, a resistance value that changes according to the amount of PM deposited on the detection unit 11 as in this embodiment is measured as the physical quantity. However, the detection unit 11 may measure the capacitance that varies depending on the amount of PM deposited on the detection unit 11 or the impedance that varies depending on the amount of PM deposited on the detection unit 11. Accumulated Any of redox potentials generated when PM is oxidized and removed, or a combination of those that measure physical quantities selected from these may be used.
Further, not only the pair of detection electrodes 110 and 120 are formed in a comb-like shape and the resistance value is measured as in the present embodiment, but a porous electrode is formed in the detection portion, and resistance caused by PM deposition It may be one that detects a change in value.

被測定ガス導入孔Hの水平方向の横幅Wは、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10の1/2以上の所定の導入孔横幅下限値W1LL以上に設定され、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10以下の所定の導入孔横幅上限値W1HL以下に設定されている。
被測定ガス導入孔Hの軸方向の縦幅Tは、検出部11の縦幅T11の1/2以上の所定の導入孔縦幅下限値T1LL以上に設定され、検出部11の縦幅T11以下の所定の導入孔縦幅上限値T1HL以下に設定されている。
また、被測定ガス導入孔Hは、検出部11の中心からカバー体20の基端までの間に検出部11へ衝突した被測定ガスが上方へ向かった後、上流側で下方に向かって環流する渦流を発生する空間を形成すべく、カバー体20の基端からの渦流形成距離Lを隔てた位置に穿設されている。
また、検出部11の中心からカバー体20の先端までの間に、検出部11に衝突した被測定ガスの一部が下方に向かった後、上流側に向かって環流する渦流を発生する空間を形成すべく、検出部11の中心からカバー体20の先端までの渦流形成距離Lが設けられている。
Width W 1 horizontal measurement gas introducing hole H 1 is less than 1/2 of the predetermined introduction of width W 10 that is defined by the intersection of the projection of the side edges of the detection element 10 to the cover body 20 linearly The hole width lower limit W 1LL is set to be equal to or greater than a predetermined introduction hole width upper limit W 1HL equal to or less than the width W 10 defined by the intersection with the straight line projected on the cover body 20 at the side edge of the detection element 10. Has been.
Longitudinal width T 1 of the axial direction of the measuring gas introducing hole H 1 is set to 1/2 or more than a predetermined inlet hole vertical width lower limit T 1LL of longitudinal width T 11 of the detection unit 11, the detector 11 It is set to a predetermined introduction hole vertical width upper limit value T 1HL or less which is a vertical width T 11 or less.
Also, the measurement gas introducing hole H 1, after the measurement gas impinging on the detection unit 11 between the center to the base end of the cover member 20 of the detection unit 11 is upward, in the upstream side to the lower side In order to form a space for generating a circulating vortex, it is drilled at a position separated by a vortex formation distance L 1 from the base end of the cover body 20.
Further, between the center of the detection unit 11 and the tip of the cover body 20, after a part of the gas to be measured colliding with the detection unit 11 heads downward, a space for generating a vortex that circulates upstream is generated. to form, the swirl distance L 2 from the center of the detector 11 to the tip of the cover member 20 is provided.

側面導出孔Hの水平方向の横幅Wは、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wよりも小さい側面導出孔開口横幅上限値W2HL以下に設定され、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wの1/2よりも大きい側面導出孔開口横幅下限値W2LL以上に設定されている。
側面導出孔Hの開口縦幅Tは、検出部11の縦幅の1/2よりも大きい側面導出孔縦幅下限値T2LL以上に設定されている。
Width W 2 horizontal side outlet hole H 2 is the horizontal width W smaller side outlet hole opening width upper limit W than E which is defined by the intersection of the straight line obtained by projecting the side edge on the cover member 20 of the detection element 10 2HL set below, set over larger side outlet hole opening width lower limit W 2LL than 1/2 of the width W E which is defined by the intersection of the straight line obtained by projecting the side edge on the cover member 20 of the detection element 10 Has been.
Opening height of side outlet holes H 2 T 2 is set to 1/2 larger side outlet hole vertical width than the lower limit value T 2LL than the vertical width of the detection unit 11.

下面導出孔Hの開口径φDは、カバー体20の内径φD20以下の下面導出孔開口横幅上限値H3HL以下で、検出素子10の厚さt10よりも大きい下面導出孔開口横幅下限H3LL以上に設定されている。
また、下面導出孔Hは、本実施形態に示すように、単孔で形成しても良いが、複数孔で構成しても良い。
The opening diameter φD 3 of the lower surface outlet hole H 3 is equal to or lower than the lower surface outlet hole opening lateral width upper limit value H 3HL of the inner diameter φD 20 of the cover body 20 and is larger than the thickness t 10 of the detecting element 10. H 3LL or more is set.
The lower surface outlet hole H 3 is, as shown in this embodiment, may be formed by a single hole, but may be constituted by a plurality holes.

具体的には、例えば、検出部11の横幅W11が2mm以上10mm以下、縦幅T11が2mm以上10mm以下であるときに、被測定ガス導入孔Hの開口横幅Wが1mm以上10mm以下、被測定ガス導入孔Hの開口縦幅Tが1mm以上10mm以下、側面導出孔Hの開口横幅Wが5mm以上10mm以下、側面導出孔Hの開口縦幅T2が10mm以上、下面導出孔H3の開口径φD3が5mm以上、カバー体20の基端から被測定ガス導入孔Hの開口位置までの距離Lが10mm以上30mm以下、被測定ガス導入孔Hの開口位置からカバー体20の先端までの距離Lが5mm以上15mm以下に設定してある。 Specifically, for example, the width W 11 of the detector 11 2mm 10mm or more or less, when the longitudinal width T 11 is 2mm or more 10mm or less, the opening width W 1 of the measurement gas introducing hole H 1 is 1mm or more 10mm hereinafter, the opening longitudinal width T 1 of the measurement gas introducing hole H 1 is 1mm or more 10mm or less, a side outlet opening width W 2 of the hole H 2 is 5mm or more 10mm or less, an opening longitudinal width T2 of the side outlet hole H 2 is 10mm or more opening diameter φD3 the lower surface lead-out hole and H3 5mm or more, a distance L 1 from the proximal end of the cover body 20 to the opening position of the measurement gas introducing hole H 1 is 10mm or more 30mm or less, the measurement gas introducing hole H 1 opening distance L 2 to the tip of the cover body 20 is set to 5mm or more 15mm or less from the position.

図3、図4を参照して本発明の効果について説明する。
被測定ガス導入孔Hからカバー体20内に導入された被測定ガスは、検出部11に衝突して被測定ガス中に含まれるPMを検出部11の表面に堆積させる。
このとき、カバー体20内に導入された被測定ガスは、上下左右に振り分けられて、側面導出孔Hと下面導出孔Hとからカバー体20の外へ導出されるが、カバー体20の周囲に流れる被測定ガスと衝突して、あるいは、被測定ガスに引き込まれて、流れ方向が下流側に変わる。
さらに、カバー体20内を流れる被測定ガスの一部は、被測定ガス導入孔Hからカバー体20内に導入されるときの流速と側面導出孔Hと下面導出孔Hとからカバー体20の外へ導出されるときの流速との差、あるいは、カバー体20内に発生する圧力分布によって、検出部11の上流側に向かって環流する渦流が発生するため、カバー体20内に導入される被測定ガスの流速が抑制される。
このため、検出部11の表面に堆積したPMがカバー体20内に導入された被測定ガスによって流されることなく検出部11に堆積した状態を留めることができる。
The effects of the present invention will be described with reference to FIGS.
The measured gas introduced into the cover body 20 from the measured gas introduction hole H 1 collides with the detection unit 11 and deposits PM contained in the measured gas on the surface of the detection unit 11.
In this case, the measurement gas introduced into the cover body 20 is distributed vertically and horizontally, but is derived from the side outlet hole H 2 and the lower surface outlet hole H 3 Metropolitan out of the cover body 20, the cover body 20 It collides with the gas to be measured flowing around or drawn into the gas to be measured, and the flow direction changes to the downstream side.
Furthermore, some of the measurement gas flowing cover body 20, cover the flow rate and the side lead-out hole H 2 and the lower surface outlet hole H 3 Metropolitan when introduced into the cover body 20 from the gas introduction hole H 1 to be measured A vortex that circulates toward the upstream side of the detection unit 11 is generated due to a difference from the flow velocity when being led out of the body 20 or a pressure distribution generated in the cover body 20. The flow rate of the gas to be measured introduced is suppressed.
For this reason, it is possible to keep the PM deposited on the surface of the detection unit 11 from being deposited on the detection unit 11 without being caused to flow by the gas to be measured introduced into the cover body 20.

図5から図9を参照して本発明の効果を発揮し得ない構成について説明する。
図5(a)に比較例1として示す、カバー体20のように、被測定ガス導入孔H1Zの開口横幅W1Zが検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10以上である場合には、カバー体20内に導入された被測定ガスの流速が抑制されず、被測定ガス導入孔H1Zから直接的に側面導出孔Hに向かう流れが形成され、検出素子10をカバー体によって覆っていない場合と同様に、検出部11に粒子状物質が堆積し難くなる虞がある。
また、本図(b)に比較例2として示す、被測定ガス導入孔H1Yの開口横幅W1Yが検出部11の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10の1/2より小さい所定の導入孔開口横幅下限値W1LL以下である場合には、カバー体20内に導入される被測定ガスの量の絶対量が少なくなる上に、被測定ガスの流速が過剰に抑制され、検出部11にPMが堆積し難くなる虞がある。
With reference to FIG. 5 to FIG. 9, a configuration in which the effect of the present invention cannot be exhibited will be described.
Like the cover body 20 Z shown in FIG. 5A as the comparative example 1, the opening lateral width W 1Z of the gas introduction hole H 1Z to be measured is a straight line obtained by projecting the side edge of the detection element 10 onto the cover body 20. If it is the width W 10 or more which is defined by intersection, the cover member 20 the flow velocity of the measurement gas introduced into the Z is not suppressed, directly side derived from the measurement gas introducing hole H 1Z hole H 2 As in the case where the detection element 10 is not covered with the cover body, the particulate matter may not easily accumulate on the detection unit 11.
Further, the horizontal width defined by the intersection of the opening horizontal width W 1Y of the measured gas introduction hole H 1Y and the straight line projected from the side edge of the detection unit 11 on the cover body 20 shown as Comparative Example 2 in FIG. when W is 10 less than half the predetermined introduction hole opening width lower limit W 1LL following is on the absolute amount of the amount of the measurement gas introduced into the cover body 20 in Y is reduced, the measured There is a possibility that the gas flow rate is excessively suppressed and PM is difficult to deposit on the detection unit 11.

図6(a)に比較例3として示す、被測定ガス導入孔H1Xの開口縦幅T1Xが検出部11の縦幅T11より大きい所定の導入孔開口縦幅上限値T1HL以上である場合には、カバー体内に導入された被測定ガスの流速が十分に抑制されず、上記被測定ガス導入孔から直接的に下面導出孔Hに向かう流れが形成され、検出素子10をカバー体20によって覆っていない場合と同様に、検出部11にPMが堆積し難くなる虞がある。
また、本図(b)に比較例4として示す、被測定ガス導入孔H1Wの開口縦幅T1Wが検出部11の縦幅T11の1/2より小さい導入孔縦幅下限値T1L以下である場合には、カバー体20内に導入される被測定ガスの絶対量が少なくなる上に、被測定ガスの流速が過剰に抑制され、検出部11にPMが堆積し難くなる虞がある。
The opening vertical width T 1X of the measured gas introduction hole H 1X shown in FIG. 6A as Comparative Example 3 is equal to or larger than a predetermined introduction hole opening vertical width upper limit T 1HL larger than the vertical width T 11 of the detection unit 11. in this case, the flow velocity of the measurement gas introduced into the cover body is not sufficiently suppressed, the flow directed directly to the lower surface outlet hole H 3 from the measurement gas introducing hole is formed, the cover body detection element 10 As in the case where it is not covered by 20, there is a risk that PM will not easily accumulate on the detection unit 11.
In addition, an introduction hole longitudinal width lower limit T 1L in which the opening longitudinal width T 1W of the measured gas introduction hole H 1W is smaller than ½ of the longitudinal width T 11 of the detection unit 11 shown as Comparative Example 4 in FIG. the case is less, on the absolute amount of the measurement gas introduced into the cover body 20 W is reduced, a possibility that the flow rate of the measurement gas is excessively suppressed, and it becomes difficult PM is deposited in the detection unit 11 There is.

図7(a)に比較例5として示す、側面導出孔H2Vの横幅W2Vが、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wより大きい所定の側面導出孔横幅上限値W2HL以上である場合には、被測定ガス導入孔Hから直接的に側面導出孔H2Vに向かう流れが形成され、検出素子10をカバー体20によって覆っていない場合と同様に、検出部11にPMが堆積し難くなる虞がある。
また、図7(b)に比較例6として示す、側面導出孔H2Uの開口横幅W2Uが検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wの1/2以下である場合には、一旦、カバー体20内に導入された被測定ガスがカバー体20の外に導出され難くなり、結果的に被測定ガス導入孔Hからカバー体20内に導入される被測定ガスの流量が減少し、検出部11に衝突する被測定ガスの流れが形成されず、PMが堆積し難くなる虞がある。
As a comparative example 5 in FIG. 7 (a), the width W 2V aspect lead hole H 2V is than the width W E which is defined by the intersection of the projection of the side edges of the detection element 10 to the cover body 20 V linear When the large predetermined side surface outlet hole width upper limit W 2HL is exceeded, a flow is formed directly from the measured gas introduction hole H 1 toward the side surface outlet hole H 2 V , and the detection element 10 is covered by the cover body 20. Similarly to the case where the PM is not present, there is a possibility that PM is difficult to deposit on the detection unit 11.
Further, the width W which is defined by the intersection of the straight line as a comparative example 6, the opening width W 2U side outlet hole H 2U obtained by projecting the side edge of the detection element 10 to the cover body 20 V in FIG. 7 (b) If E is less than 1/2 of the once from the cover body 20 U the measurement gas introduced into the not easily derived to the outside of the cover body 20 U, resulting in the measurement gas introducing hole H 1 the flow rate of the measurement gas is reduced to be introduced into the cover member 20 within U, not formed the flow of the measurement gas impinging on the detection unit 11, there is a possibility that PM is hardly deposited.

図8(a)に比較例7として示す側面導出孔Hの開口縦幅Tが検出部11の縦幅の1/2以下である場合には、カバー体20内に導入された被測定ガスの導出が過剰に抑制され、カバー体20内に滞留するため、被想定ガスの導入が過剰に抑制され、検出部11にPMが堆積し難くなる虞がある。 If 8 opening longitudinal width T 2 of the side outlet holes H 2 as a comparative example 7 (a) is less than half the height of detector 11, the introduced into the cover body 20 T is derived is excessively suppressed measurement gas, for staying in the cover body 20 T, the introduction of the assumed gas is excessively suppressed, there is a possibility that PM in the detection unit 11 is less likely to deposit.

図8(b)に比較例8として示す、下面導出孔H3Sの開口径φD3Sが、検出素子10の厚さT10以下である場合には、下面導出孔H3Sから被測定ガスが導出され難くなり、カバー体20内に滞留するため、被想定ガスの導入が過剰に抑制され、検出部11に粒子状物質が堆積し難くなる虞がある。 As a comparative example 8 in FIG. 8 (b), the opening diameter [phi] D 3S lower surface lead-out hole H 3S is equal to or less than the thickness T 10 of the detecting element 10, the measurement gas derived from the lower surface outlet hole H 3S are less likely, since the staying in the cover body 20 in the S, introduction of the assumed gas is excessively suppressed, there is a possibility that the particulate matter hardly deposits on the detector 11.

図9(a)に比較例9として示す、被測定ガス導入孔H1Rの開口位置が検出素子10の検出部11に対向する位置になく、カバー体20の基端からの距離L1Rが、10mmより短い場合には、カバー体20R内に渦流が発生せず、下面導出孔Hに一方的に向かう強い流れが形成され、検出部11に堆積したPMが脱離され易くなる虞がある。
図9(b)に比較例10として示す、被測定ガス導入孔H1Qの開口位置が、検出素子10の検出部11に対向する位置になく、カバー体20の基端からの距離L1Qが、30mmより長い場合には、被測定ガス導入孔H1Qから下面導出孔Hに直接的に向かう流れが形成され、検出部11の表面にPMが到達せず、堆積し難くなる虞がある。
As a comparative example 9 in FIG. 9 (a), without the position opposite to the detection portion 11 of the opening position detecting element 10 of the measurement gas introducing hole H 1R, the distance L 1R from the proximal end of the cover body 20 R , is shorter than 10mm, the vortex is not generated in the cover member 20R, a strong flow of unilaterally directed is formed on the lower surface outlet hole H 3, is a possibility that PM accumulated in the detecting section 11 is easily desorbed is there.
As a comparative example 10 in FIG. 9 (b), the opening position of the measurement gas introducing hole H 1Q is not in a position facing the detecting unit 11 of the detecting element 10, the distance from the proximal end of the cover body 20 Q L 1Q However, if it is longer than 30 mm, a flow directed directly from the measured gas introduction hole H 1Q to the lower surface outlet hole H 3 is formed, and PM does not reach the surface of the detection unit 11 and may not be easily deposited. is there.

図10に本発明の効果の一例を比較例と共に示す。
本図(a)は、本発明の第1の実施形態における粒子状物質検出センサ1の検出部11にPMが堆積した様子を示す写真で、本図(b)は、比較例として、カバー体20によって検出素子10が覆われていない場合のPMの堆積状態を示す写真である。
本図(a)に示すように、本発明の要部であるカバー体20によって検出素子10を覆った場合には、検出部11の表面の特定の範囲に集中的にPMが堆積していることが分かる。
一方、本図(b)に示すように、本発明の要部であるカバー体20を設けていない場合には、検出素子10の表面全体にPMが僅かに堆積する。
FIG. 10 shows an example of the effect of the present invention together with a comparative example.
This figure (a) is a photograph which shows a mode that PM deposited on the detection part 11 of the particulate matter detection sensor 1 in the 1st Embodiment of this invention, and this figure (b) is a cover body as a comparative example. 20 is a photograph showing a PM deposition state when the detection element 10 is not covered by the sensor 20.
As shown in FIG. 4A, when the detection element 10 is covered with the cover body 20 that is the main part of the present invention, PM is concentrated in a specific range on the surface of the detection unit 11. I understand that.
On the other hand, as shown in this figure (b), when the cover body 20 which is the principal part of this invention is not provided, PM accumulates slightly on the whole surface of the detection element 10.

図11を参照して本発明の要部であるカバー体20の変形例について説明する。
本図(a)は、本発明の第1の実施形態におけるカバー体20を示す斜視図である。
本図(b)に示すように、側面導出孔Hをカバー体20の軸方向に対して複数並べて穿設しても良い。また、上記実施形態に示すように、側面導出孔Hは、円形に形成しても良いし、本図(c)に示すように、側面導出孔H2bを矩形に形成しても良い。さらに、本図(d)示すように、側面導出孔H2cをカバー体20cの軸方向に伸びる長孔状に穿設しても良い。この場合において、側面導出孔H、H2b、H2cの横幅Wが上述の範囲に設定されていれば、カバー体20、20a、20b、20c内に導入される被測定ガスの流速が適度に抑制され、検出部11にPMが堆積し易くなる。
さらに、本図(e)に示すように、下面導出孔H3dを複数の開口によって構成しても良い。この場合、検出素子10よりも上流側に位置する下面導出孔H3dがカバー体20dから被測定ガスを先端方向に導出する導出孔として機能し、検出素子10よりも下流側に位置する下面導出孔H3dは、カバー体20d内において検出素子10の背面側におけるカバー体20dの内外の圧力の均衡を図る導入孔として機能する。
また、本図(f)に示すように、カバー体20eの先端側の下半部をテーパ状に形成しても良い。
With reference to FIG. 11, the modification of the cover body 20 which is the principal part of this invention is demonstrated.
This figure (a) is a perspective view which shows the cover body 20 in the 1st Embodiment of this invention.
As shown in this figure (b), a plurality of side surface outlet holes H 2 may be formed side by side in the axial direction of the cover body 20. Further, as shown in the above embodiment, a side outlet hole H 2 may be formed in a circular shape, as shown in the figure (c), may be formed side outlet hole H 2b rectangular. Furthermore, as shown the figure (d), it may be formed in a long hole shape extending side outlet hole H 2c in the axial direction of the cover body 20c. In this case, if the lateral width W 2 of the side surface outlet holes H 2 , H 2b , H 2c is set in the above range, the flow velocity of the gas to be measured introduced into the cover bodies 20, 20a, 20b, 20c is It is suppressed moderately, and PM is easily deposited on the detection unit 11.
Furthermore, as shown in FIG. 4E, the lower surface outlet hole H 3d may be configured by a plurality of openings. In this case, the lower surface lead-out hole H 3d located upstream of the detection element 10 functions as a lead-out hole for leading the gas to be measured from the cover body 20d in the distal direction, and the lower surface lead-out located downstream of the detection element 10 is derived. The hole H 3d functions as an introduction hole that balances the pressure inside and outside the cover body 20d on the back side of the detection element 10 in the cover body 20d.
Moreover, as shown in this figure (f), you may form the lower half part of the front end side of the cover body 20e in a taper shape.

図12、13を参照して、本発明の他の実施例について説明する。
図12(a)に実施例2として示すように、背面側圧力調整孔H4gの横幅W4gを検出素子10に横幅W10より大きく穿設した場合でも、側面導出孔Hから導出した被測定ガスの一部が検出素子10の背面側に環流する渦流が形成されるが、被測定ガス導入孔Hから導入され検出部11に向かう被測定ガスの流れには何ら影響を与えず、上述した第1の実施形態における粒子状物質検出センサと同様の効果を発揮することができる。また、本図(b)に実施例3として示すように、背面側圧力調整孔H4hの縦幅T4hを検出部11に縦幅T11より大きく穿設した場合でも、下面導出孔Hから導出した被測定ガスの一部が検出素子10の背面側に環流する渦流が形成されるが、被測定ガス導入孔Hから導入され検出部11に向かう被測定ガスの流れには何ら影響を与えず、上述した第1の実施形態における粒子状物質検出センサと同様の効果を発揮することができる。
Another embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 12A as Example 2, even when the lateral width W 4g of the back side pressure adjustment hole H 4g is drilled larger than the lateral width W 10 in the detection element 10, the measurement target derived from the side surface outlet hole H 2 Although some of the gas vortex to reflux on the back side of the detecting element 10 is formed, any not affect the flow of the measurement gas towards the detection unit 11 is introduced from the gas introduction hole H 1 to be measured, above The same effect as that of the particulate matter detection sensor according to the first embodiment can be exhibited. Further, as shown in the figure (b) Example 3, backside pressure adjusting hole in the detecting unit 11 a longitudinal width T 4h of H 4h even when the larger bored than the vertical width T 11, the lower surface outlet hole H 3 A vortex flow is formed in which part of the measured gas derived from circulates to the back side of the detection element 10, but has no effect on the flow of the measured gas introduced from the measured gas introduction hole H 1 toward the detection unit 11. The same effects as those of the particulate matter detection sensor in the first embodiment described above can be exhibited.

さらに、図13に示すように、下面導出孔H3iの開口径φD3iをカバー体20の内径φD20に等しく形成しても良い。
下面導出孔H、H3iは、検出素子10の板厚t10以上の開口径を有していれば、下面導出孔H、H3iから導出される被測定ガスの流れとカバー体20、20iの先端部の下方に流れる被測定ガスの流れとがバランスし、下面導出孔Hの開口径の如何に拘わらず、被測定ガス導入孔Hと側面導出孔Hとの関係によって決まる流れが維持される。
Further, as shown in FIG. 13, the opening diameter φD 3i of the lower surface outlet hole H 3i may be formed equal to the inner diameter φD 20 of the cover body 20 i .
If the lower surface outlet holes H 3 and H 3i have an opening diameter equal to or larger than the plate thickness t 10 of the detection element 10, the flow of the gas to be measured and the cover body 20 derived from the lower surface outlet holes H 3 and H 3i. , and balance the flow of the measurement gas flowing beneath the tip of the 20i, regardless of the opening diameter of the lower surface outlet hole H 3, the relationship between the gas introduction hole H 1 and side outlet hole H 2 to be measured The determined flow is maintained.

本発明の効果について、図14から図16に、上述の実施例1、2、3及び比較例1〜10のPM捕集量を示す。
図14(a)に示すように、被測定ガス導入孔Hの開口横幅Wが、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10の1/2以上の所定の導入孔横幅下限値W1LL以上に設定され、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅W10以下の所定の導入孔横幅上限値W1HL以下に設定されている場合に比較例として示したカバー体なしの場合よりもPM捕集量が多くなっている。
図14(b)に示すように、被測定ガス導入孔Hの開口縦幅Tが、検出部11の縦幅T11の1/2以上の所定の導入孔縦幅下限値T1LL以上に設定され、検出部11の縦幅T11以下の所定の導入孔縦幅上限値T1HL以下に設定されている場合に比較例として示したカバー体なしの場合よりもPM捕集量が多くなっている。
About the effect of this invention, FIGS. 14-16 shows the PM collection amount of the above-mentioned Example 1, 2, 3 and Comparative Examples 1-10.
As shown in FIG. 14 (a), the opening width W 1 of the measurement gas introducing hole H 1 is the width W 10 that is defined by the intersection of the projection of the side edges of the detection element 10 to the cover body 20 linearly Predetermined introduction hole having a lateral width W 10 or less, which is set to be equal to or more than a predetermined introduction hole lateral width lower limit W 1LL of ½ or more and defined by the intersection with the straight line projected on the cover body 20 at the side edge of the detection element 10 When the lateral width upper limit value W is set to 1 HHL or less, the amount of collected PM is larger than that of the case without the cover body shown as the comparative example.
As shown in FIG. 14B, the opening vertical width T 1 of the measured gas introduction hole H 1 is equal to or greater than a predetermined introduction hole vertical width lower limit T 1LL that is 1/2 or more of the vertical width T 11 of the detection unit 11. is set to, the amount of the trapped PM than without the cover member shown as a comparative example when the vertical width T 11 is set to be less than the following predetermined introduction hole vertical width upper limit T 1HL detection unit 11 more It has become.

図15(a)に示すように、側面導出孔Hの水平方向の横幅Wが、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wよりも小さい側面導出孔開口横幅上限値W2HL以下に設定され、検出素子10の側端縁をカバー体20に投影した直線との交点によって区画される横幅Wの1/2よりも大きい側面導出孔開口横幅下限値W2LL以上に設定されている場合に比較例として示したカバー体なしの場合よりもPM捕集量が多くなっている。
図15(b)に示すように、側面導出孔Hの開口縦幅Tが、検出部11の縦幅の1/2よりも大きい側面導出孔縦幅下限値T2LL以上に設定されている場合に比較例として示したカバー体なしの場合よりもPM捕集量が多くなっている。
図16(a)に示すように、下面導出孔Hの開口径φDが、カバー体20の内径φD20以下の下面導出孔開口横幅上限値H3HL以下で、検出素子10の厚さt10よりも大きい下面導出孔開口横幅下限H3LL以上に設定されている場合に比較例として示したカバー体なしの場合よりもPM捕集量が多くなっている。
図16(b)に示すように、調圧孔Hの大きさは、特にPM捕集量に影響せず、カバー体20内の圧力バランスによって被測定ガスの導入又は導出を行っている。
As shown in FIG. 15 (a), the width W 2 horizontal side outlet hole H 2 is than the width W E which is defined by the intersection of the projection of the side edges of the detection element 10 to the cover body 20 linearly is set in the following also small side outlet hole opening width upper limit W 2HL, larger side value than 1/2 of the width W E which is defined by the intersection of the straight line obtained by projecting the side edge of the detection element 10 to the cover body 20 When the hole opening lateral width lower limit value W 2LL is set, the amount of PM trapped is larger than that in the case of no cover body shown as a comparative example.
As shown in FIG. 15B, the opening length T 2 of the side surface outlet hole H 2 is set to be equal to or larger than the side surface outlet hole vertical width lower limit value T 2LL which is larger than ½ of the vertical width of the detection unit 11. In this case, the amount of collected PM is larger than the case without the cover body shown as the comparative example.
As shown in FIG. 16A, the opening diameter φD 3 of the lower surface outlet hole H 3 is equal to or lower than the lower surface outlet hole opening lateral width upper limit value H 3HL of the inner diameter φD 20 of the cover body 20, and the thickness t of the detection element 10 When the lower surface outlet hole opening lateral width lower limit H 3LL is larger than 10, the amount of collected PM is larger than that in the case of no cover body shown as a comparative example.
As shown in FIG. 16 (b), the size of the pressure adjusting hole H 4 does not particularly affect the amount of PM trapped, and the gas to be measured is introduced or led out by the pressure balance in the cover body 20.

本発明は上記実施形態に限定するものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態においては、自動車エンジン等の内燃機関に搭載される粒子状物質検出センサを例に説明したが、本発明の粒子状物質検出センサは、車載用に限定されるものではなく、火力発電所等の大規模プラントにおける粒子状物質検出の用途にも利用可能である。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the particulate matter detection sensor mounted on an internal combustion engine such as an automobile engine has been described as an example, but the particulate matter detection sensor of the present invention is not limited to being mounted on a vehicle, It can also be used for particulate matter detection in large-scale plants such as thermal power plants.

1 粒子状物質検出装置
10 検出素子
11 検出部
20 カバー体
21 フランジ部
22 周壁部
23 底部
被測定ガス導入孔
側面導出孔
底面導出孔
背面側圧力調整孔
検出部カバー体基端間距離
検出部カバー体先端間距離
+L カバー体長さ
導入孔横幅
1LL 導入孔横幅下限値
1HL 導入孔横幅上限値
側面導出孔横幅
導入孔縦幅
1LL 導入孔縦幅下限
1HL 導入孔縦幅上限
30 インシュレータ
40 ハウジング
41 ねじ部
42 加締め部
DESCRIPTION OF SYMBOLS 1 Particulate matter detection apparatus 10 Detection element 11 Detection part 20 Cover body 21 Flange part 22 Perimeter wall part 23 Bottom part H 1 Gas introduction hole H 2 Side surface extraction hole H 3 Bottom surface extraction hole H 4 Back side pressure adjustment hole L 1 detection Cover body base end distance L 2 detection unit cover end distance L 1 + L 2 cover body length W 1 introduction hole lateral width W 1LL introduction hole lateral width lower limit value W 1HL introduction hole lateral width upper limit value W 2 side surface outlet hole lateral width T 1 Introduction hole vertical width T 1LL Introduction hole vertical width lower limit T 1HL introduction hole vertical width upper limit 30 Insulator 40 Housing 41 Screw part 42 Clamping part

特開昭59−197847号公報JP 59-197847 A 特開2009−97868号公報JP 2009-97868 A

Claims (19)

所定の横幅と長さと厚さとを有する略平板状に形成した検出素子の先端を被測定ガス流路内に載置し、上記検出素子の先端側に設けた所定の横幅と縦幅とを有する検出部に堆積する粒子状物質の量によって変化する物理量を検出して被測定ガス中に含まれる粒子状物質の検出を行う粒子状物質検出センサであって、
上記検出部を被測定ガス流路の上流側に対向せしめると共に、上記検出部を含む上記検出素子の先端を覆う所定の内径と長さを有する略筒状のカバー体を設け、
該カバー体が、少なくとも、
上記検出部に対向しつつ、被測定ガスの上流側に向かって開口して、上記カバー体内に上記被測定ガスを導入する矩形、又は、円形の被測定ガス導入孔と、
上記検出部の両側に向かって開口して、上記カバー体内に導入された被測定ガスを側面方向に導出する矩形、又は、円形の側面導出孔と、
上記検出部の先端側下方に向かって開口して、上記カバー体内に導入された被測定ガスを先端側下方に導出する矩形、又は、円形の下面導出孔と、を具備し、
上記被測定ガス導入孔と上記側面導出孔と上記下面導出孔とのそれぞれの開口横幅及び開口縦幅、又は、開口径を所定の下限値から上限値までの範囲に規定すると共に、
少なくとも上記カバー体の基端から上記被測定ガス導入孔の開口位置までの距離と、上記被測定ガス導入孔の開口位置から上記カバー体の先端までの距離とを規定して、
上記検出部に衝突する上記被測定ガスの流れを上下左右に振り分けて、上記側面導出孔と上記下面導出孔から上記カバー体の外へ導出つつ、上記カバー体内において上記検出部の上流側に発生する渦流によって上記カバー体内に導入される被測定ガスの流速を抑制することを特徴とする粒子状物質検出センサ。
A front end of a detection element formed in a substantially flat plate shape having a predetermined horizontal width, length, and thickness is placed in a gas flow path to be measured, and has a predetermined horizontal width and vertical width provided on the front end side of the detection element. A particulate matter detection sensor for detecting a particulate matter contained in a gas to be measured by detecting a physical quantity that varies depending on the amount of particulate matter deposited on a detection unit,
The detection unit is made to face the upstream side of the gas flow path to be measured, and a substantially cylindrical cover body having a predetermined inner diameter and length covering the tip of the detection element including the detection unit is provided,
The cover body is at least
While facing the detection unit, it opens toward the upstream side of the gas to be measured and introduces the gas to be measured into the cover body, or a circular gas to be measured introduction hole,
A rectangle that opens toward both sides of the detection unit and leads the measurement gas introduced into the cover body in a side surface direction, or a circular side surface lead-out hole;
A rectangular opening for opening the gas to be measured introduced into the cover body to the lower side of the distal end, or a circular lower surface outlet hole, which opens toward the lower side of the distal end of the detection unit,
The opening width and opening length of each of the measured gas introduction hole, the side surface outlet hole, and the lower surface outlet hole, or the opening diameter is defined in a range from a predetermined lower limit value to an upper limit value, and
Defining at least the distance from the base end of the cover body to the opening position of the gas inlet hole to be measured and the distance from the opening position of the gas inlet hole to be measured to the tip of the cover body;
The flow of the gas to be measured that collides with the detection unit is distributed to the top, bottom, left, and right, and is generated outside the cover body from the side surface extraction hole and the bottom surface extraction hole, and is generated upstream of the detection unit in the cover body. A particulate matter detection sensor, characterized in that the flow velocity of the gas to be measured introduced into the cover body is suppressed by eddy currents.
上記被測定ガス導入孔の開口横幅の上限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅よりも小さく、上記被測定ガス導入孔の開口横幅の下限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい請求項1に記載の粒子状物質検出センサ。   The upper limit value of the opening width of the measured gas introduction hole is smaller than the width defined by the intersection with the straight line obtained by projecting the side edge of the detection element onto the cover body, and the opening width of the measured gas introduction hole 2. The particulate matter detection sensor according to claim 1, wherein a lower limit value of the particulate matter is larger than ½ of a lateral width defined by an intersection with a straight line obtained by projecting a side edge of the detection element onto the cover body. 上記被測定ガス導入孔の開口縦幅の上限値が、上記検出部の縦幅よりも小さく、上記被測定ガス導入孔の開口縦幅の下限値が上記検出部の縦幅の1/2よりも大きい請求項1、又は、2に記載の粒子状物質検出センサ。   The upper limit of the opening vertical width of the measurement gas introduction hole is smaller than the vertical width of the detection part, and the lower limit of the opening vertical width of the measurement gas introduction hole is less than 1/2 of the vertical width of the detection part. The particulate matter detection sensor according to claim 1 or 2, wherein the particulate matter detection sensor is larger. 上記側面導出孔の開口横幅の上限値が、上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅よりも小さく、上記側面導出孔の開口横幅の下限値が検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい請求項1ないし3のいずれかに記載の粒子状物質検出センサ。   The upper limit value of the lateral width of the side surface outlet hole is smaller than the lateral width defined by the intersection with the straight line obtained by projecting the side edge of the detection element onto the cover body, and the lower limit value of the lateral width of the side surface outlet hole is The particulate matter detection sensor according to any one of claims 1 to 3, wherein a side edge of the detection element is larger than ½ of a lateral width defined by an intersection with a straight line projected onto the cover body. 上記側面導出孔の開口縦幅の下限値が上記検出部の縦幅の1/2よりも大きい請求項1ないし4のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 4, wherein a lower limit value of an opening vertical width of the side surface lead-out hole is larger than ½ of a vertical width of the detection unit. 上記下面導出孔の開口径上限値が、上記カバー体の内径以下で、上記下面導出孔の開口径の下限値が上記検出素子の側端縁を上記カバー体に投影した直線との交点によって区画される横幅の1/2よりも大きい請求項1ないし5のいずれかに記載のいずれかに記載の粒子状物質検出センサ。   An upper limit value of the opening diameter of the lower surface outlet hole is equal to or smaller than an inner diameter of the cover body, and a lower limit value of the opening diameter of the lower surface outlet hole is defined by an intersection with a straight line projected on the side edge of the detection element on the cover body. The particulate matter detection sensor according to any one of claims 1 to 5, wherein the particulate matter detection sensor is larger than ½ of a lateral width of the particulate matter. 上記側面導出孔を上記カバー体の軸方向に対して複数並べて穿設した請求項1ないし6のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 6, wherein a plurality of the side lead-out holes are formed side by side in the axial direction of the cover body. 上記側面導出孔を上記カバー体の軸方向に伸びる長孔状に穿設した請求項1ないし6のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 6, wherein the side surface outlet hole is formed in a long hole shape extending in the axial direction of the cover body. 上記カバー体の内径が上記検出素子の横幅の2倍以下である請求項1ないし8のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 8, wherein an inner diameter of the cover body is not more than twice a lateral width of the detection element. 上記カバー体の基端から上記被測定ガス導入孔の開口位置までに所定の渦流形成距離を設けた請求項1ないし9のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 9, wherein a predetermined vortex formation distance is provided from a base end of the cover body to an opening position of the measurement gas introduction hole. 上記被測定ガス導入孔の開口位置から上記カバー体の先端までに所定の渦流形成距離を設けた請求項1ないし10のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 10, wherein a predetermined vortex forming distance is provided from an opening position of the measurement gas introduction hole to a tip of the cover body. 上記検出部の横幅が2mm以上10mm以下、縦幅が2mm以上10mm以下であるときには、上記被測定ガス導入孔の開口横幅が1mm以上10mm以下である請求項1ないし11のいずれかに記載の粒子状物質検出センサ。   The particle according to any one of claims 1 to 11, wherein when the horizontal width of the detection section is 2 mm or more and 10 mm or less and the vertical width is 2 mm or more and 10 mm or less, the opening horizontal width of the measurement gas introduction hole is 1 mm or more and 10 mm or less. A substance detection sensor. 上記検出部の横幅が2mm以上10mm以下、縦幅が2mm以上10mm以下であるときには、上記被測定ガス導入孔の開口縦幅が1mm以上10mm以下である請求項1ないし12のいずれかに記載の粒子状物質検出センサ。   The opening vertical width of the measurement gas introduction hole is 1 mm or more and 10 mm or less when the horizontal width of the detection unit is 2 mm or more and 10 mm or less and the vertical width is 2 mm or more and 10 mm or less. Particulate matter detection sensor. 上記検出素子の横幅が10mm以下であるときには、上記側面導出孔の開口横幅が5mm以上10mm以下であるである請求項1ないし13のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 13, wherein when the lateral width of the detection element is 10 mm or less, the lateral width of the side lead-out hole is 5 mm or more and 10 mm or less. 上記側面導出孔の開口横幅が10mm以下であるときには、上記側面導出孔の縦幅が5mm以上10mm以下である請求項1ないし14のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 14, wherein when the lateral width of the side surface outlet hole is 10 mm or less, the vertical width of the side surface outlet hole is 5 mm or more and 10 mm or less. 上記検出素子の横幅が10mm以下であるときには、上記下面導出孔の開口径が5mm以上である請求項1ないし15のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 15, wherein when the lateral width of the detection element is 10 mm or less, the opening diameter of the lower surface lead-out hole is 5 mm or more. 上記カバー体の基端から上記被測定ガス導入孔の開口位置までの距離が10mm以上30mm以下である請求項1ないし16のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 16, wherein a distance from a base end of the cover body to an opening position of the measurement gas introduction hole is 10 mm or more and 30 mm or less. 上記被測定ガス導入孔の開口位置から上記カバー体の先端までの距離が5mm以上15mm以下である請求項1ないし17のいずれかに記載の粒子状物質検出センサ。   The particulate matter detection sensor according to any one of claims 1 to 17, wherein a distance from an opening position of the measurement gas introduction hole to a tip of the cover body is 5 mm or more and 15 mm or less. 上記物理量は、上記検出部に堆積する粒子状物質の量によって変化する抵抗値、静電容量、インピーダンス、酸化還元電位のいずれか、又は、これらから選択された物理量の組合せである請求項1ないし18のいずれかに記載の粒子状物質検出センサ。   The physical quantity is any one of a resistance value, capacitance, impedance, oxidation-reduction potential, or a combination of physical quantities selected from these, which varies depending on the amount of particulate matter deposited on the detection unit. The particulate matter detection sensor according to any one of 18.
JP2010214021A 2010-09-24 2010-09-24 Particulate material detection sensor Withdrawn JP2012068148A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010214021A JP2012068148A (en) 2010-09-24 2010-09-24 Particulate material detection sensor
DE201110083339 DE102011083339A1 (en) 2010-09-24 2011-09-23 Particulate matter detection sensor i.e. electrical resistance type particulate matter detection sensor in motor vehicle internal combustion engines, has detection part placed opposite upstream of to be measured gas flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214021A JP2012068148A (en) 2010-09-24 2010-09-24 Particulate material detection sensor

Publications (1)

Publication Number Publication Date
JP2012068148A true JP2012068148A (en) 2012-04-05

Family

ID=45935821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214021A Withdrawn JP2012068148A (en) 2010-09-24 2010-09-24 Particulate material detection sensor

Country Status (2)

Country Link
JP (1) JP2012068148A (en)
DE (1) DE102011083339A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145681A (en) * 2013-01-29 2014-08-14 Mitsubishi Heavy Ind Ltd Droplet capture device
WO2015194363A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection sensor
CN107305180A (en) * 2016-04-18 2017-10-31 现代自动车株式会社 Particulate matter sensor unit
CN117214393A (en) * 2023-11-07 2023-12-12 大唐东营发电有限公司 Detection device for boiler flue gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214581A1 (en) * 2013-07-25 2015-01-29 Continental Automotive Gmbh Rußsensorelement
DE102015209262A1 (en) * 2015-05-21 2016-11-24 Bayerische Motoren Werke Aktiengesellschaft Exhaust system with a gas sensor, in particular with a particle sensor
RU2017105125A (en) * 2016-03-07 2018-08-16 Форд Глобал Текнолоджиз, Ллк METHOD AND SYSTEM FOR DETERMINING THE NUMBER OF SOLID PARTICLES IN EXHAUST GASES

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197847A (en) 1983-04-25 1984-11-09 Ngk Spark Plug Co Ltd Smoke sensor
JP5022170B2 (en) 2007-10-12 2012-09-12 日本特殊陶業株式会社 Gas sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145681A (en) * 2013-01-29 2014-08-14 Mitsubishi Heavy Ind Ltd Droplet capture device
WO2015194363A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection sensor
JP2016003927A (en) * 2014-06-16 2016-01-12 株式会社日本自動車部品総合研究所 Particulate matter detection sensor
CN106461529A (en) * 2014-06-16 2017-02-22 株式会社电装 Particulate matter detection sensor
CN106461529B (en) * 2014-06-16 2020-06-26 株式会社电装 Granular substance detection sensor
US10837878B2 (en) 2014-06-16 2020-11-17 Denso Corporation Particulate matter detection sensor
DE112015002835B4 (en) * 2014-06-16 2021-04-15 Denso Corporation Solid particle detection sensor
CN107305180A (en) * 2016-04-18 2017-10-31 现代自动车株式会社 Particulate matter sensor unit
CN107305180B (en) * 2016-04-18 2020-11-06 现代自动车株式会社 Particulate matter sensor unit
CN117214393A (en) * 2023-11-07 2023-12-12 大唐东营发电有限公司 Detection device for boiler flue gas
CN117214393B (en) * 2023-11-07 2024-02-02 大唐东营发电有限公司 Detection device for boiler flue gas

Also Published As

Publication number Publication date
DE102011083339A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
JP2012068148A (en) Particulate material detection sensor
JP5223905B2 (en) Particulate matter detection element
JP5201193B2 (en) Particulate matter detection sensor
JP6608819B2 (en) 煤 Sensor system
JP6346560B2 (en) 煤 Sensor system
JP2006266961A (en) Soot sensor
JP2012168143A (en) Particulate matter detector
JP2012083210A (en) Particulate substance detection sensor
US20110203348A1 (en) Soot sensor system
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
US9933352B2 (en) Sensor for detecting particles
US11441993B2 (en) Method and system for exhaust particulate matter sensing
JP2011080942A (en) Particulate detection sensor
JP4574411B2 (en) Wrinkle detection sensor and wrinkle detection method
JPS59196453A (en) Particulate detecting element
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP6421617B2 (en) Particulate matter detection sensor and particulate matter detection device
JP2011080926A (en) Particulate detecting element
WO2015198884A1 (en) Sensor
JP2011033577A (en) Fine particle sensor
KR20190141995A (en) Particulater matter detection sensor
JP2018021889A (en) Particulate substance detection sensor and particulate substance detector
JP6552444B2 (en) Particulate matter detection device and exhaust gas purification device for internal combustion engine
KR101683467B1 (en) Particular matter sensor and exhaust gas purification system using the same
KR101610167B1 (en) Particulate matter sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203