JP2011080926A - Particulate detecting element - Google Patents

Particulate detecting element Download PDF

Info

Publication number
JP2011080926A
JP2011080926A JP2009234880A JP2009234880A JP2011080926A JP 2011080926 A JP2011080926 A JP 2011080926A JP 2009234880 A JP2009234880 A JP 2009234880A JP 2009234880 A JP2009234880 A JP 2009234880A JP 2011080926 A JP2011080926 A JP 2011080926A
Authority
JP
Japan
Prior art keywords
detection
particulate
insulating heat
resistant substrate
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009234880A
Other languages
Japanese (ja)
Inventor
Takashi Sawada
高志 澤田
Hideaki Ito
英明 伊藤
Shinya Teranishi
真哉 寺西
Hiroshige Matsuoka
弘芝 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009234880A priority Critical patent/JP2011080926A/en
Publication of JP2011080926A publication Critical patent/JP2011080926A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate detecting element simply constituted so as to detect the amount of conductive fine particles (particulate PM) contained in gas to be measured, suppressing the elimination of PM collected in a detection part, shortened in insensitive time, and having a highly reliable structure. <P>SOLUTION: The particulate detecting element 10 is provided, wherein a pair of detection electrodes 11 and 12 opposed to each other with a predetermined interval D are provided on the surface of an electric insulating heat-resistant substrate 13 to constitute the detection part 100 and electric resistance R<SB>X</SB>changed by the amount of the conductive fine particles collected in the detection part 100 and deposited between the detection electrodes is detected to detect the conductive fine particles in the gas to be measured. The end edges of the detection electrodes 11 and 12 are formed into inclined surfaces having an acute angle taper shape wherein the angle θ formed by the inclined surface and the electric insulating heat-resistant substrate 13 is larger than 40° but smaller than 90°, or an obtuse angle taper shape wherein the angle θ formed by the inclined surface and the electric insulating heat-resistant substrate 13 is larger than 90° but smaller than 140°. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車用内燃機関の排気系等に使用され、被測定ガス中の炭素量の検知に適したパティキュレート検出センサに関するものである。   The present invention relates to a particulate detection sensor that is used in an exhaust system of an internal combustion engine for automobiles and is suitable for detecting the amount of carbon in a gas to be measured.

近年、コモンレール式燃料噴射システム、過給器システム、酸化触媒、ディーゼルパティキュレートフィルタDPF、選択触媒還元(SCR)システム、排気再循環(EGR)システム等を組み合わせて、ディーゼル機関やガソリンリーンバーン機関等の燃焼排気中に含まれる窒素酸化物NOx、粒状物質PM、未燃炭化水素HC等の環境負荷物質の低減が図られている。
このようなシステムに用いられるDPFは、一般に、耐熱性に優れ、かつ、無数の細孔を有する多孔質セラミックスを素材としたハニカム構造とされ、多孔質の隔壁に存在する細孔中にPMを捕捉し、PMが堆積して細孔に目詰まりを起こして圧力損失が高くなると、バーナやヒータ等で加熱したり、機関の燃焼爆発後に少量の燃料を噴射するポスト噴射等によりDPF内に高温の燃焼排気を導入したりして、DPFを加熱し、DPF内に捕集されたPMを燃焼除去して再生できる構成とされている。
内燃機関の燃焼効率をさらに向上すべく、このようなDPFの再生時期の判断や、DPFの劣化、破損等を検出するOBD(オンボードダイアグノーシス、車載式故障診断装置)や、内燃機関のフィードバック制御等において、燃焼排気中に含まれるPM量を高精度で連続的に検出できる検出手段が必要とされている。
In recent years, combined with common rail fuel injection system, supercharger system, oxidation catalyst, diesel particulate filter DPF, selective catalytic reduction (SCR) system, exhaust gas recirculation (EGR) system, diesel engine, gasoline lean burn engine, etc. Reduction of environmentally hazardous substances such as nitrogen oxides NOx, particulate matter PM, unburned hydrocarbons HC, etc. contained in the combustion exhaust gas.
The DPF used in such a system generally has a honeycomb structure made of porous ceramics having excellent heat resistance and countless pores, and PM is contained in the pores existing in the porous partition walls. When trapped, PM accumulates, clogs the pores and the pressure loss increases, it is heated in the DPF by heating with a burner or heater, or by post injection that injects a small amount of fuel after the combustion explosion of the engine. The combustion exhaust gas is introduced, the DPF is heated, and PM collected in the DPF is burned and removed to be regenerated.
In order to further improve the combustion efficiency of the internal combustion engine, determination of the DPF regeneration timing, OBD (on-board diagnosis, in-vehicle fault diagnosis device) for detecting deterioration, breakage, etc. of the DPF, feedback of the internal combustion engine In control and the like, there is a need for detection means that can continuously detect the amount of PM contained in combustion exhaust gas with high accuracy.

燃焼排気中のPM量の検出手段として、特許文献1には、耐熱性及び電気絶縁性を有する基板の表面に一対の電極を形成し、該電極間を検出部とし、前記基板の裏面及び/又は内部に発熱体を形成し、該基板上の検出部を形成する前記電極、検出部及び端子部を除く導電部を気密で電気絶縁物質よりなる保護層で被覆し、該検出部と保護層との境界付近の発熱体の発熱密度を該検出部の発熱密度より高くし、該検出部の温度を400℃以上で且つ600℃以下に加熱することを特徴とするスモーク濃度センサが開示されている。   As a means for detecting the amount of PM in combustion exhaust gas, Patent Document 1 discloses that a pair of electrodes is formed on the surface of a substrate having heat resistance and electrical insulation, and a gap between the electrodes is used as a detection unit. Alternatively, a heating element is formed inside, and the conductive part excluding the electrode, the detection part, and the terminal part that forms the detection part on the substrate is covered with a protective layer made of an airtight and electrically insulating material, and the detection part and the protective layer A smoke density sensor is disclosed in which a heat generation density of a heating element in the vicinity of the boundary is made higher than a heat generation density of the detection unit, and a temperature of the detection unit is heated to 400 ° C. or more and 600 ° C. or less. Yes.

ところが、特許文献1にあるような、従来のスモーク濃度センサでは、導電性のスモークの堆積により変化する一対の電極間の電気抵抗を電子回路により検出しているが、スモークが堆積していない状態では一対の電極間は絶縁状態であるので、スモークの堆積によって一対の電極間の電気抵抗が徐々に低下し電子回路によって電気抵抗が検出できるようになるまでに不感時間が存在する。
また、一対の電極間に堆積したスモークが検出部から脱離するとこの不感時間はさらに長くなる虞もある。
このようなスモーク濃度センサを、DPFの故障診断に利用したり、DPFの再生制御に利用したりするためには、この不感時間はできる限り短い方が望ましい。
However, in the conventional smoke concentration sensor as disclosed in Patent Document 1, the electrical resistance between the pair of electrodes that changes due to the deposition of conductive smoke is detected by an electronic circuit, but the smoke is not deposited. In this case, since the pair of electrodes is in an insulated state, there is a dead time until the electrical resistance between the pair of electrodes gradually decreases due to the deposition of smoke and the electrical resistance can be detected by the electronic circuit.
In addition, when the smoke accumulated between the pair of electrodes is detached from the detection unit, the dead time may be further increased.
In order to use such a smoke concentration sensor for DPF failure diagnosis or DPF regeneration control, it is desirable that this dead time be as short as possible.

そこで、かかる実情に鑑み、本願発明は、簡易な構成により被測定ガス中に含まれる導電性の微粒子(パティキュレートPM)の量を検出するパティキュレート検出素子であって、検出部に捕集されたPMの脱離を抑制して、不感時間が短く信頼性の高い構造のパティキュレート検出素子を提供することを目的とする。   Accordingly, in view of such circumstances, the present invention is a particulate detection element that detects the amount of conductive fine particles (particulate PM) contained in a gas to be measured with a simple configuration, and is collected by a detection unit. An object of the present invention is to provide a particulate detection element having a structure with a short dead time and high reliability by suppressing desorption of PM.

第1の発明では、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けて検出部とし、該検出部に捕集され上記検出電極間に堆積する導電性微粒子の量によって変化する電気抵抗を検出して、被測定ガス中の導電性微粒子を検出するパティキュレート検出素子において、上記検出電極の端縁を傾斜面となし、該傾斜面と上記電気絶縁性耐熱基板とのなす角度を40°より大きく、90°より小さい鋭角テーパ状、若しくは、上記傾斜面と上記電気絶縁性耐熱基板とのなす角度を90°より大きく、140°より小さい鈍角テーパ状に形成する(請求項1)。   In the first aspect of the invention, a pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate is used as a detection unit, and the conductive fine particles collected by the detection unit and deposited between the detection electrodes In the particulate detection element that detects the conductive fine particles in the gas to be measured by detecting the electric resistance that varies depending on the amount of the gas, the edge of the detection electrode forms an inclined surface, and the inclined surface and the electrically insulating heat-resistant An acute angle taper with an angle greater than 40 ° and less than 90 °, or an obtuse angle taper with an angle between the inclined surface and the electrically insulating heat-resistant substrate greater than 90 ° and less than 140 °. (Claim 1).

本発明者等の鋭意試験により、第1の発明によれば、上記電極間にPMを捕集し易くなり、さらに、一旦検出部に捕集されたPMが、上記検出電極間から脱離し難くなる。このため、上記検出電極間に速やかにPMが堆積され、不感時間を短くできることが判明した。本発明の範囲をはずれ、上記角度を40°以下に形成した場合には、上記検出電極間にPMが堆積し難くなり、上記角度を140°以上に形成した場合には、上記検出電極端面と上記電気絶縁性耐熱基板との間にPMが捕集されない空間が形成され、いずれの場合も不感時間が長くなることが判明した。   According to the first invention by the present inventors, according to the first invention, it becomes easy to collect PM between the electrodes, and furthermore, the PM once collected by the detection unit is hardly separated from between the detection electrodes. Become. For this reason, it was found that PM was quickly deposited between the detection electrodes, and the dead time could be shortened. When the angle is set to 40 ° or less, the PM is difficult to deposit between the detection electrodes, and when the angle is set to 140 ° or more, the detection electrode end face is separated from the scope of the present invention. It has been found that a space in which PM is not collected is formed between the electrically insulating heat-resistant substrate and the dead time becomes longer in any case.

より望ましくは、第2の発明のように、上記傾斜面と上記電気絶縁性耐熱基板とのなす角度を100°以上125°以下の鈍角テーパ状に形成する(請求項2)。   More desirably, as in the second aspect of the invention, the angle formed by the inclined surface and the electrically insulating heat-resistant substrate is formed in an obtuse angle taper shape of 100 ° to 125 ° (claim 2).

第3の発明では、上記電気絶縁性耐熱基板の10点平均表面粗さをRZ1とし、上記検出電極の10点平均表面粗さをRZ2としたとき、上記電気絶縁性耐熱基板の表面粗さと上記検出電極の表面粗さとのコントラスト比RZ2/RZ1を3.5以下にする(請求項3)。 In 3rd invention, when the 10-point average surface roughness of the said electrically insulating heat-resistant board | substrate is set to RZ1, and the 10-point average surface roughness of the said detection electrode is set to RZ2 , the surface roughness of the said electrically insulating heat-resistant board | substrate. And the contrast ratio R Z2 / R Z1 of the surface roughness of the detection electrode is set to 3.5 or less (Claim 3).

本発明者等の鋭意試験により、第3の発明の範囲となるように上記電気絶縁性耐熱基板の表面粗さと上記検出電極の表面粗さとのコントラスト比を決定すれば、被測定ガス中に含まれるPMが、上記検出電極の表面よりも上記電気絶縁性耐熱基板の表面に付着し易くなり、また、上記電気絶縁性耐熱基板の表面から脱離し難くなり、PMが速やかに上記検出電極間に堆積するので、不感時間を短くできることが判明した。
本発明の範囲をはずれ、上記電気絶縁性耐熱基板の表面粗さと上記検出電極の表面粗さとのコントラスト比RZ2/RZ1が3.5より大きくなるほどに、上記検出電極の表面粗さが荒くなったり、上記電気絶縁性耐熱基板の表面粗さが滑らかであったりすると、PMは、上記検出電極間に堆積するよりも上記検出電極表面に堆積し易くなり、上記電気絶縁性耐熱基板の表面からは脱離し易くなるため、不感時間が長くなることが判明した。
If the contrast ratio between the surface roughness of the electrically insulating heat-resistant substrate and the surface roughness of the detection electrode is determined so as to be within the scope of the third invention by the inventors' extensive studies, it is included in the gas to be measured. PM is more likely to adhere to the surface of the electrically insulating heat-resistant substrate than the surface of the detection electrode, and it is difficult for the PM to be detached from the surface of the electrically insulating heat-resistant substrate, so that the PM is quickly removed between the detection electrodes. It was found that the dead time can be shortened because of the accumulation.
Out of the scope of the present invention, the surface roughness of the detection electrode becomes rough as the contrast ratio R Z2 / R Z1 between the surface roughness of the electrically insulating heat-resistant substrate and the surface roughness of the detection electrode is larger than 3.5. Or when the surface roughness of the electrically insulating heat-resistant substrate is smooth, PM becomes easier to deposit on the surface of the detection electrode than between the detection electrodes. It was found that the dead time becomes longer because it is easier to desorb from.

第4の発明では、上記検出電極の高さを、1μm以上、200μm以下に形成する(請求項4)。   In the fourth invention, the height of the detection electrode is 1 μm or more and 200 μm or less.

本発明者等の鋭意試験により、第4の発明の範囲となるように上記検出電極を形成すれば、上記電極間に取り込んだPMを立体的に保持できるようになり、上記電極間からのPMの脱離を抑制し、さらに不感時間を短くできることが判明した。
本発明の範囲をはずれ、上記検出電極の高さを1μmより低く形成した場合には、PMを上記検出電極間に保持できなくなり、また、上記検出電極の高さを200μmより高く形成した場合には、PMが上記検出電極間の奥まで侵入し難くなり、上記検出電極間から脱離し易くなるので、不感時間が長くなることが判明した。
If the detection electrode is formed so as to fall within the scope of the fourth invention by the present inventors' earnest test, PM captured between the electrodes can be held in three dimensions, and PM from between the electrodes can be held. It has been found that the desorption time can be suppressed and the dead time can be further shortened.
When the height of the detection electrode is formed lower than 1 μm outside the scope of the present invention, PM cannot be held between the detection electrodes, and when the height of the detection electrode is formed higher than 200 μm. Since it becomes difficult for PM to penetrate deeply between the detection electrodes and easily detaches from between the detection electrodes, it has been found that the dead time becomes long.

より望ましくは、第5の発明のように、上記検出電極の高さを、5μmより高く、150μmより低く形成する(請求項5)。   More preferably, as in the fifth invention, the height of the detection electrode is formed to be higher than 5 μm and lower than 150 μm.

本発明者等の鋭意試験により、上記検出電極の高さを第5の発明の範囲に設定することにより、PMを電極間に捕集し易くなり、さらに不感時間が短くなることが判明した。   It has been clarified by the inventors' diligent tests that the PM is easily collected between the electrodes and the dead time is shortened by setting the height of the detection electrode within the range of the fifth invention.

さらに望ましくは、第6の発明のように、上記検出電極の高さを、25μmより高く、100μmより低く形成する(請求項6)。   More preferably, as in the sixth invention, the height of the detection electrode is higher than 25 μm and lower than 100 μm.

本発明者等の鋭意試験により、上記検出電極の高さを第6の発明の範囲に設定することにより、PMを電極間に捕集し易くなり、さらに不感時間が短くなることが判明した。   As a result of diligent tests by the present inventors, it was found that by setting the height of the detection electrode within the range of the sixth invention, PM can be easily collected between the electrodes, and the dead time is further shortened.

本発明の実施形態におけるパティキュレート検出素子全体の概要を示す展開斜視図。The expanded perspective view which shows the outline | summary of the whole particulate detection element in embodiment of this invention. 本発明の実施形態におけるパティキュレート検出素子の検出部における検出電極の配線例を示し、(a)は、櫛歯状の検出電極を素子の軸方向に対して直交する方向に形成した場合の平面図、(b)は、櫛歯状の検出電極を素子の軸方向に形成した場合の平面図、(c)は、略渦巻状に検出電極を形成した場合の平面図。The wiring example of the detection electrode in the detection part of the particulate detection element in embodiment of this invention is shown, (a) is a plane at the time of forming a comb-tooth shaped detection electrode in the direction orthogonal to the axial direction of an element FIG. 4B is a plan view when a comb-shaped detection electrode is formed in the axial direction of the element, and FIG. 4C is a plan view when the detection electrode is formed in a substantially spiral shape. 本発明の要部であるパティキュレート検出素子の特徴を示す断面図であり、(a)及び(b)は、本発明の要部である電極端面の絶縁性基材に対する角度の望ましい範囲を示し、(c)は、絶縁性基材の表面粗さに対する電極の表面粗さの望ましい範囲を示し、(d)は、電極の高さについて本発明を適用し得る範囲を示す。It is sectional drawing which shows the characteristic of the particulate detection element which is the principal part of this invention, (a) And (b) shows the desirable range of the angle with respect to the insulating base material of the electrode end surface which is the principal part of this invention. (C) shows the desirable range of the surface roughness of the electrode with respect to the surface roughness of the insulating substrate, and (d) shows the range in which the present invention can be applied to the height of the electrode. 本発明の実施形態におけるパティキュレート検出素子を有するパティキュレート検出センサの概要を示す半断面図。FIG. 2 is a half sectional view showing an outline of a particulate detection sensor having a particulate detection element according to an embodiment of the present invention. 本発明の実施形態におけるパティキュレート検出素子を有するパティキュレート検出センサをDPFの異常検出手段として用いた排ガス浄化装置の例を示す構成図。The block diagram which shows the example of the exhaust gas purification apparatus which used the particulate detection sensor which has a particulate detection element in embodiment of this invention as an abnormality detection means of DPF. 従来のパティキュレート検出素子の問題点を示す特性図。The characteristic view which shows the problem of the conventional particulate detection element. 本発明の実施形態におけるパティキュレート検出素子の不感時間に対する電極端面角度の効果を示す特性図。The characteristic view which shows the effect of the electrode end surface angle with respect to the dead time of the particulate detection element in the embodiment of the present invention. 本発明の実施形態におけるパティキュレート検出素子の不感時間に対する表面粗さ比の効果を示す特性図。The characteristic view which shows the effect of the surface roughness ratio with respect to the dead time of the particulate detection element in the embodiment of the present invention. 本発明の実施形態におけるパティキュレート検出素子の不感時間に対する電極高さの効果を示す特性図。The characteristic view which shows the effect of the electrode height with respect to the dead time of the particulate detection element in embodiment of this invention.

本発明の第1の実施形態におけるパティキュレート検出素子10は、例えば、ディーゼル内燃機関から排出される燃焼排気中に含まれる粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF)の故障診断(OBD)や、DPFの再生制御を行うべく、燃焼排気中のPM、特に、導電性微粒子を検出するパティキュレート検出センサ1に用いられる。
本発明のパティキュレート検出素子10の特徴は、所定の間隙を設けて対向する一対の検出電極間に堆積するPMの量によって変化する電気抵抗を検出して、被測定ガス中のPMを検出するパティキュレート検出素子において、検出電極の立体的形状を特定することによって、被測定ガス中に含まれるPMを捕集し易くして、パティキュレート検出センサの不感時間を短くするものである。
The particulate detection element 10 according to the first embodiment of the present invention is, for example, a failure of a diesel particulate filter (DPF) that collects particulate matter (PM) contained in combustion exhaust discharged from a diesel internal combustion engine. In order to perform diagnosis (OBD) and DPF regeneration control, it is used in a particulate detection sensor 1 for detecting PM in combustion exhaust gas, in particular, conductive fine particles.
A feature of the particulate detection element 10 of the present invention is that PM in the gas to be measured is detected by detecting an electrical resistance that varies depending on the amount of PM deposited between a pair of opposing detection electrodes provided with a predetermined gap. By specifying the three-dimensional shape of the detection electrode in the particulate detection element, PM contained in the gas to be measured is easily collected, and the dead time of the particulate detection sensor is shortened.

パティキュレート検出素子10及びこれを含むパティキュレート検出センサ1の概要について図1から図4を参照して説明する。
図1に示すように、パティキュレート検出素子10は、アルミナ等の電気絶縁性耐熱材料をドクターブレード法、プレス成形法、CIP、HIP等の公知の方法により平板状に形成した電気絶縁性耐熱基板13上に、所定の電極間距離Dを離隔して、設けた一対の検出電極11、12を形成した検出部100と、検出電極11、12と外部の電気抵抗計測手段とを導通させるリード部111、121及び端子部112、122と、検出部100と端子部112、122とを除くリード部111、112を覆う絶縁性保護層14とによって構成されている。
本発明の要部である検出電極11、12は、後述する立体的な形状に特徴があり、PMを検出電極間に捕集し易くすることによって不感時間tdの短縮を図っている。
また、検出電極11、12を所定の温度に加熱して、検出電気抵抗を安定化したり、検出部100に堆積したPMを加熱除去したりするために、電気絶縁性耐熱基板13の内部又は裏面に通電により発熱する図略のヒータを設けた構成としても良い。
The outline of the particulate detection element 10 and the particulate detection sensor 1 including the particulate detection element 10 will be described with reference to FIGS.
As shown in FIG. 1, the particulate detection element 10 is an electrically insulating heat-resistant substrate in which an electrically insulating heat-resistant material such as alumina is formed into a flat plate by a known method such as a doctor blade method, a press molding method, CIP, or HIP. 13, a detection unit 100 in which a predetermined pair of detection electrodes 11 and 12 are formed with a predetermined inter-electrode distance D therebetween, and a lead unit for electrically connecting the detection electrodes 11 and 12 to an external electrical resistance measurement unit 111 and 121 and terminal portions 112 and 122, and the insulating protective layer 14 covering the lead portions 111 and 112 excluding the detection portion 100 and the terminal portions 112 and 122.
The detection electrodes 11 and 12, which are the main part of the present invention, are characterized by a three-dimensional shape described later, and the dead time td is shortened by facilitating trapping of PM between the detection electrodes.
Further, in order to stabilize the detection electric resistance by heating the detection electrodes 11 and 12 to a predetermined temperature or to remove PM deposited on the detection unit 100 by heating, the inside or the back surface of the electrically insulating heat-resistant substrate 13 is used. It is good also as a structure which provided the heater of the omission of illustration which heats by electricity.

図2を参照して、本発明のパティキュレート検出素子10の検出部100を構成する検出電極11、12について詳述する。本図(a)は、検出電極11、12をパティキュレート検出素子10の長手軸方向に対して直交する方向に延びる櫛歯状に形成した場合の例を示し、本図(b)は、検出電極11、12を素子10の長手軸方向に延びる櫛歯状に形成した場合の例を示す。
いずれの場合においても、検出電極11の端縁と検出電極12の端縁とが所定の電極間距離Dだけ離隔して対向するように形成されている。
なお、電極間距離Dは、適用する被測定ガス中に存在するPM量の多寡に応じて40μm以上、300μm以下の範囲で適宜形成し得るものであり、この範囲において、後述する本発明の効果が発揮できる。
また、本発明において、検出電極11、12の幅Wは特に限定するものではなく、任意の幅で形成し得るものである。
With reference to FIG. 2, the detection electrodes 11 and 12 which comprise the detection part 100 of the particulate detection element 10 of this invention are explained in full detail. This figure (a) shows the example at the time of forming the detection electrodes 11 and 12 in the comb-tooth shape extended in the direction orthogonal to the longitudinal axis direction of the particulate detection element 10, This figure (b) shows detection. An example in which the electrodes 11 and 12 are formed in a comb shape extending in the longitudinal axis direction of the element 10 is shown.
In either case, the end edge of the detection electrode 11 and the end edge of the detection electrode 12 are formed so as to face each other with a predetermined distance D between the electrodes.
The inter-electrode distance D can be appropriately formed in the range of 40 μm or more and 300 μm or less depending on the amount of PM present in the measurement gas to be applied. Can be demonstrated.
In the present invention, the width W of the detection electrodes 11 and 12 is not particularly limited, and can be formed with an arbitrary width.

図3を参照して本発明の要部である検出電極11、12の立体的形状の特徴について説明する。本発明の第1の実施形態として、図3(a)に示すように、検出電極11、12の端縁と電気絶縁性耐熱基板13の上面とのなす角度θが40°より大きく、90°より小さくなるように鋭角テーパ状の傾斜面をなすように形成されている。このような角度となるように検出電極11、12を形成すると、従来のように検出電極11、12の端縁に傾斜面を形成しない場合と比較して不感時間を短くできることが判明した。検出電極11、12間に浮遊するPMが、検出電極11、12の端縁を転がり、電気絶縁性耐熱基板13の表面に付着し易くなり、より早く電極間距離Dの間を埋めるようにPMが堆積するためと推察される。
なお、本発明において、検出電極11、12の端縁に電気絶縁性耐熱基板13の上面とのなす角度θが40°より大きく、90°より小さい鋭角テーパ状の傾斜面を設けるための具体的な方法は、特に限定するものではないが、以下に示す方法によって実現可能である。
(1)スクリーン印刷によって検出電極11、12を形成する場合、電極形成用ペーストの固形分率を低くしたり、動的粘度を低くしたり、印刷乾燥時の蒸気圧を低くしたりする等の印刷条件を調整して、電気絶縁性基板13に対する濡れ性を高くしたり、乾燥条件を緩やかにしたりする。
(2)スクリーン印刷以外にも、フィルム転写法、フォトリソグラフィ法、マイクロコンタクトプリンティング法等の方法により検出電極11、12を形成することができる。この場合、検出電極11、12を形成した後、レーザエッチング、サンドブラスト等の加工を施すことにより、端縁に鋭角テーパ状の傾斜面を設けることができる。
With reference to FIG. 3, the feature of the three-dimensional shape of the detection electrodes 11 and 12 which are the principal part of this invention is demonstrated. As a first embodiment of the present invention, as shown in FIG. 3A, an angle θ formed by the edges of the detection electrodes 11 and 12 and the upper surface of the electrically insulating heat-resistant substrate 13 is larger than 40 ° and 90 °. It is formed so as to form an acute angle tapered inclined surface so as to be smaller. It has been found that when the detection electrodes 11 and 12 are formed so as to have such an angle, the dead time can be shortened as compared with the case where the inclined surfaces are not formed on the edges of the detection electrodes 11 and 12 as in the prior art. The PM floating between the detection electrodes 11 and 12 rolls around the edges of the detection electrodes 11 and 12 and easily adheres to the surface of the electrically insulating heat-resistant substrate 13, so that the gap between the electrodes D can be filled more quickly. It is presumed to be accumulated.
In the present invention, the angle θ formed with the upper surface of the electrically insulating heat-resistant substrate 13 at the edges of the detection electrodes 11 and 12 is specifically provided for providing an acutely tapered inclined surface that is larger than 40 ° and smaller than 90 °. Such a method is not particularly limited, but can be realized by the following method.
(1) When the detection electrodes 11 and 12 are formed by screen printing, the solid content ratio of the electrode forming paste is lowered, the dynamic viscosity is lowered, the vapor pressure during printing and drying is lowered, etc. By adjusting the printing conditions, the wettability with respect to the electrically insulating substrate 13 is increased, or the drying conditions are reduced.
(2) In addition to screen printing, the detection electrodes 11 and 12 can be formed by a method such as a film transfer method, a photolithography method, or a micro contact printing method. In this case, after forming the detection electrodes 11 and 12, by performing processing such as laser etching and sandblasting, an inclined surface having an acute tapered shape can be provided at the edge.

また、本発明の第2の実施形態として、図3(b)に示すように、検出電極11、12の端縁と電気絶縁性耐熱基板13の上面とのなす角度θが90°より大きく、140°より小さくなるように鈍角テーパ状の傾斜面をなすように形成されている。このような角度となるように検出電極11、12を形成すると、従来のように検出電極11、12の端縁に傾斜面を形成しない場合と比較してさらに不感時間を短くできることが判明した。電気絶縁性耐熱基板13の表面上に捕集され堆積したPMが脱離し難くなるためと推察される。
また、検出電極11、12の端縁に形成した傾斜面の角度を100°以上、125°以下とするとさらに効果的にPMを検出電極間に捕集し、不感時間を短くできることが判明した。
なお、検出電極11、12の端縁に電気絶縁性耐熱基板13の上面とのなす角度θが90°より大きく140°より小さい鈍角テーパ状の傾斜面を設けるためには、上記の場合と同様、本発明において具体的な方法を特に限定するものではないが、以下に示す方法によって実現可能である。
(1)スクリーン印刷によって検出電極11、12を形成する場合、鋭角テーパ状の傾斜面を設ける場合とは逆に、印刷用ペーストに無機フィラーを固形分率で数〜数10%添加したり、電気絶縁性基板13に対する濡れ性を低くしたり、乾燥速度を速くしたりして、印刷、乾燥時の流動性を極端に低くすることによって実現できる。
また、(2)スクリーン印刷以外にも、フィルム転写法、フォトリソグラフィ法、マイクロコンタクトプリンティング法等の方法により検出電極11、12を形成することができる。この場合、検出電極11、12を形成した後、レーザエッチング、サンドブラスト、ケミカルエッチング等の加工を施すことにより、端縁に鈍角テーパ状の傾斜面を設けることができる。
なお、フォトリソグラフィ法において、電極ペーストに無機フィラーを添加し、過現像処理を施すことによっても端縁に鈍角テーパ状の傾斜面を実現できる。
Further, as a second embodiment of the present invention, as shown in FIG. 3B, the angle θ formed between the edges of the detection electrodes 11 and 12 and the upper surface of the electrically insulating heat-resistant substrate 13 is larger than 90 °. It is formed so as to form an obtuse angle tapered inclined surface so as to be smaller than 140 °. It has been found that when the detection electrodes 11 and 12 are formed so as to have such an angle, the dead time can be further shortened as compared with the case where the inclined surfaces are not formed on the edges of the detection electrodes 11 and 12 as in the prior art. It is presumed that PM collected and deposited on the surface of the electrically insulating heat-resistant substrate 13 is difficult to desorb.
Further, it has been found that when the angle of the inclined surface formed on the edge of the detection electrodes 11 and 12 is set to 100 ° or more and 125 ° or less, PM can be more effectively collected between the detection electrodes and the dead time can be shortened.
In addition, in order to provide an obtuse angle tapered surface having an angle θ with the upper surface of the electrically insulating heat-resistant substrate 13 larger than 90 ° and smaller than 140 ° at the edge of the detection electrodes 11 and 12, as in the above case. The specific method in the present invention is not particularly limited, but can be realized by the following method.
(1) When forming the detection electrodes 11 and 12 by screen printing, contrary to the case of providing an acutely tapered inclined surface, an inorganic filler is added to the printing paste in a solid content ratio of several to several tens%, This can be realized by reducing the wettability with respect to the electrically insulating substrate 13 or increasing the drying speed to extremely reduce the fluidity during printing and drying.
In addition to (2) screen printing, the detection electrodes 11 and 12 can be formed by a method such as a film transfer method, a photolithography method, or a microcontact printing method. In this case, after forming the detection electrodes 11 and 12, by performing processing such as laser etching, sand blasting, and chemical etching, an inclined surface having an obtuse angle tapered shape can be provided at the edge.
In addition, in the photolithography method, an obtuse angle tapered inclined surface can be realized at the edge by adding an inorganic filler to the electrode paste and subjecting it to overdevelopment.

さらに、本発明の第3の実施形態として、図3(c)に示すように、電気絶縁性耐熱基板13の10点平均表面粗さRZ1と、検出電極11、12の10点平均表面粗さRZ2との関係において、RZ2/RZ1を3.5以下となるように形成するのが望ましい。なお、電気絶縁性耐熱基板13の10点平均表面粗さRZ1は、PMを表面に吸着させるために100nm以上であることが望ましい。一般的には、電気絶縁性基板13の10点平均表面粗さRZ1が1.0μmが用いられる。
電気絶縁性耐熱基板13の10点平均表面粗さRZ1がより荒くなるように、ケミカルエッチング等の化学的処理、又は、サーマルエッチング、ホーニング、サンドブラスト等の物理的処理によって電気絶縁性耐熱基板13の表面を加工するか、検出電極11、12の10点平均表面粗さRZ2がより滑らかとなるように、ケミカルエッチング等の化学的処理、又は、鏡面ラップ等の物理的処理により検出電極11、12の表面を加工することにより、所望の関係を満たすようにできる。
Further, as a third embodiment of the present invention, as shown in FIG. 3C, the 10-point average surface roughness R Z1 of the electrically insulating heat-resistant substrate 13 and the 10-point average surface roughness of the detection electrodes 11 and 12 are set. In relation to the thickness R Z2, it is desirable that R Z2 / R Z1 be 3.5 or less. The 10-point average surface roughness R Z1 of the electrically insulating heat-resistant substrate 13 is desirably 100 nm or more in order to adsorb PM on the surface. In general, the 10-point average surface roughness R Z1 of the electrically insulating substrate 13 is 1.0 μm.
As electrically insulating 10-point average surface roughness R Z1 heat the substrate 13 becomes more rough, chemical treatment such as chemical etching or thermal etching, honing, electrically insulating heat substrate 13 by a physical treatment such as sand blasting The detection electrode 11 is processed by chemical processing such as chemical etching or physical processing such as mirror lapping so that the surface of the detection electrode 11 or 12 is processed or the 10-point average surface roughness R Z2 of the detection electrodes 11 and 12 becomes smoother. , 12 can be processed to satisfy a desired relationship.

さらに、本発明の第4の実施形態として、図3(d)に示すように、検出電極11、12の膜厚Hは、1μm以上、200μm以下に形成するのが望ましい。後述する試験によって、検出電極11、12の膜厚高さHは、5μmより高く、150μmより低く形成するのがさらに望ましく、検出電極11、12の膜厚高さHを、25μmより高く、100μmより低く形成することによって、さらに不感時間tdを短くできることが判明した。   Furthermore, as a fourth embodiment of the present invention, as shown in FIG. 3D, it is desirable that the film thickness H of the detection electrodes 11 and 12 is 1 μm or more and 200 μm or less. According to the test described later, it is more preferable that the film thickness height H of the detection electrodes 11 and 12 is higher than 5 μm and lower than 150 μm, and the film thickness height H of the detection electrodes 11 and 12 is higher than 25 μm and 100 μm. It was found that the dead time td can be further shortened by forming it lower.

本発明は上記実施形態に限定するものではなく、上記実施形態を組み合わせることによって、本発明の効果を向上させることができる。例えば、検出電極11、12の一方の検出電極の端縁の傾斜面と電気絶縁性耐熱基板13の上面とのなす角度θを40°より大きく、90°より小さい鋭角テーパ状に形成し、他方の検出電極の端縁の傾斜面と電気絶縁性耐熱基板13の上面とのなす角度θを90°より大きく、140°より小さい鈍角テーパ状に形成しても良い。   The present invention is not limited to the above embodiment, and the effect of the present invention can be improved by combining the above embodiment. For example, the angle θ formed by the inclined surface of the edge of one of the detection electrodes 11 and 12 and the upper surface of the electrically insulating heat-resistant substrate 13 is formed in an acute taper shape that is larger than 40 ° and smaller than 90 °. The angle θ between the inclined surface of the edge of the detection electrode and the upper surface of the electrically insulating heat-resistant substrate 13 may be formed in an obtuse angle taper shape that is larger than 90 ° and smaller than 140 °.

図4を参照して、本発明のパティキュレート検出素子10を有するパティキュレート検出センサ1について説明する。
パティキュレート検出センサ1は、略筒状のインシュレータ20内に挿入固定されたパティキュレート検出素子10と、被測定ガス流路700を形成する流路壁70に固定され、インシュレータ20を保持すると共に、パティキュレート検出素子10の検出部100を比測定ガス中に保持するハウジング30と、ハウジング30の先端側に設けられ、パティキュレート検出素子10の測定部100を保護するカバー体40と、ハウジング30の基端側に設けられ、接続金具113、123を介してパティキュレート検出素子10の端子部112、122に接続され、測定部100に捕集・堆積されたPM量に応じて変化する検出電極11、12間の検出電気抵抗Rを外部の電気抵抗検出手段に伝達する一対の信号線114、124と、これらを覆いつつ、封止部材60を介して基端側で固定する略筒状のケーシング50によって構成されている。検出部100を加熱するヒータが設けられている場合には、外部の通電制御装置に接続される一対の通電線が接続されている。カバー体40には、PMを含む被測定ガスを検出部100に導入・導出するための被測定ガス入出孔410、411が適宜穿設されている。
With reference to FIG. 4, the particulate detection sensor 1 which has the particulate detection element 10 of this invention is demonstrated.
The particulate detection sensor 1 is fixed to the particulate detection element 10 inserted and fixed in the substantially cylindrical insulator 20 and the flow path wall 70 forming the gas flow path 700 to be measured, and holds the insulator 20. A housing 30 that holds the detection unit 100 of the particulate detection element 10 in a specific measurement gas, a cover body 40 that is provided on the distal end side of the housing 30 and protects the measurement unit 100 of the particulate detection element 10, A detection electrode 11 provided on the base end side, connected to the terminal portions 112 and 122 of the particulate detection element 10 via the connection fittings 113 and 123, and changes according to the amount of PM collected and deposited on the measurement unit 100. a pair of signal lines 114 and 124 for transmitting the detected electrical resistance R X between 12 to the outside of the electrical resistance detecting means, which And a substantially cylindrical casing 50 that is fixed on the base end side through a sealing member 60. When a heater for heating the detection unit 100 is provided, a pair of energization lines connected to an external energization control device is connected. The cover body 40 is appropriately provided with measured gas inlet / outlet holes 410 and 411 for introducing / extracting the measured gas containing PM to / from the detection unit 100.

図5を参照して、本発明のパティキュレート検出センサ1を設けたディーゼルエンジンE/Gの排ガス浄化システムの概要について説明する。ディーゼルエンジンE/Gは高圧ポンプPMPFLによって高圧に昇圧され、コモンレールR内に蓄圧された高圧燃料がインジェクタINJによって燃焼室内に直接噴射される直設噴射式ディーゼルエンジンである。
ディーゼルエンジンE/Gの排気マニホールドMHEXには、排気を利用して回転するタービンTRBが設けられ、吸気マニホールドMHINには、タービンにTRBに連動して回転する過給器TRBCGRが設けられている。
過給器TRBCGRによって圧縮され、インタクーラCLINTを介して冷却された空気が吸気マニホールドMHINに送られる。排気マニホールドMHEXから排出される燃焼排気の一部はEGRクーラCLEGRを介して冷却され、EGRバルブVEGRを介して吸気マニホールドMHINに還流し、燃焼効率を向上させている。
排気マニホールドMHEXから排出された燃焼排気は、酸化触媒DOCを通過することにより未燃焼の炭化水素HC、一酸化炭素CO及び一酸化窒素NOが酸化され、ディーゼルパティキュレートフィルタDPFを通過することにより粒状物質PMが除去され、さらに、図略の選択触媒還元SCRを通過することによってNOxが無害のNとHOとに還元され排出される。
少なくともDPFの出口には、排気流路700に本発明のパティキュレート検出素子10の検出部100が露出するようにパティキュレートセンサ1が載置され、エンジンE/Dから排出された燃焼排気中に含まれるPM量を常時監視し、その検出結果を、DPFの再生制御やOBD(車載式故障自己診断装置)に利用している。
With reference to FIG. 5, the outline | summary of the exhaust gas purification system of the diesel engine E / G which provided the particulate detection sensor 1 of this invention is demonstrated. The diesel engine E / G is a direct injection diesel engine that is pressurized to a high pressure by a high pressure pump PMP FL , and high pressure fuel accumulated in the common rail R is directly injected into a combustion chamber by an injector INJ.
The exhaust manifold MH EX of the diesel engine E / G is provided with a turbine TRB that rotates using exhaust gas, and the intake manifold MH IN is provided with a turbocharger TRB CGR that rotates in conjunction with TRB in the turbine. ing.
The air compressed by the supercharger TRB CGR and cooled via the intercooler CL INT is sent to the intake manifold MH IN . A part of the combustion exhaust discharged from the exhaust manifold MH EX is cooled via the EGR cooler CL EGR , and returned to the intake manifold MH IN via the EGR valve V EGR to improve the combustion efficiency.
The combustion exhaust discharged from the exhaust manifold MH EX passes through the oxidation catalyst DOC to oxidize unburned hydrocarbons HC, carbon monoxide CO, and nitrogen monoxide NO, and passes through the diesel particulate filter DPF. The particulate matter PM is removed, and further, NOx is reduced to harmless N 2 and H 2 O by passing through a selective catalytic reduction SCR (not shown), and discharged.
At least at the outlet of the DPF, the particulate sensor 1 is mounted so that the detection unit 100 of the particulate detection element 10 of the present invention is exposed to the exhaust passage 700, and the exhaust gas is discharged into the combustion exhaust discharged from the engine E / D. The amount of PM contained is constantly monitored, and the detection result is used for DPF regeneration control and OBD (vehicle-mounted fault self-diagnosis device).

ここで、図6を参照して、従来のパティキュレート検出素子の問題点について説明する。従来のパティキュレート検出素子は、電気絶縁性耐熱基板の表面に所定の間隙を隔てて形成した一対の検出電極間に被測定ガス中に含まれる導電性のカーボンなどからなるPMが堆積していくと、PMによって検出電極間に導通経路が形成され、電極間の電気抵抗値が徐々に低下していくので、これを計測することによってPM量を算出しようとするものである。図6は、一定速度でPM量を増加したときの、検出電極間の電気抵抗値の変化を示すものである。
ところが、図6に示すように、検出電極間にPMが堆積していないときには、略絶縁状態であるので、検出電極間の電気抵抗は、数10MΩ以上となっており、PMの堆積にともなって、徐々に電気抵抗値が下がるが、数MΩ以下となるまでは、検出用の電流がほとんど流れず、電気抵抗値を測定することができない不感時間tdが存在する。この不感時間tdが長いと、パティキュレート検出素子を上述のようにOBDに使用しようとしたときに、異常の検出までに時間が掛かかる虞があり、センサとしての信頼性が劣る。また、一旦検出電極間に付着したPMが脱離すると電気抵抗値が上がりさらに不感時間tdが長くなる虞もある。
Here, with reference to FIG. 6, the problem of the conventional particulate detection element will be described. In the conventional particulate detection element, PM made of conductive carbon or the like contained in the gas to be measured is deposited between a pair of detection electrodes formed on the surface of the electrically insulating heat-resistant substrate with a predetermined gap therebetween. Then, a conduction path is formed between the detection electrodes by PM, and the electric resistance value between the electrodes gradually decreases. Therefore, the amount of PM is calculated by measuring this. FIG. 6 shows changes in the electrical resistance value between the detection electrodes when the PM amount is increased at a constant speed.
However, as shown in FIG. 6, when PM is not deposited between the detection electrodes, it is in a substantially insulated state, so the electrical resistance between the detection electrodes is several tens of MΩ or more, and accompanies PM deposition. The electric resistance value gradually decreases, but until the value becomes several MΩ or less, a detection current hardly flows and there is a dead time td in which the electric resistance value cannot be measured. If the dead time td is long, when the particulate detection element is used for OBD as described above, it may take time to detect an abnormality, and the reliability as a sensor is poor. Further, once the PM adhering between the detection electrodes is desorbed, there is a possibility that the electric resistance value increases and the dead time td becomes longer.

図7を参照して、本発明のパティキュレート検出素子10の検出電極11、12の端面と電気絶縁性耐熱基板13とのなすテーパ角度θの不感時間tdに対する効果について調査した試験結果を説明する。
本試験においては、電極間距離Dを40μm、100μm、300μmとし、電極高さHを5μm、電気絶縁性耐熱基板13の10点平均表面粗さRZ1を1.0μm、検出電極11、12の10点平均表面粗さRZ2を3.5μmとして、テーパ角度θを変化させて検出電極11、12を形成したときの不感時間tdを計測しその結果を図7に示す。
従来のパティキュレート検出素子では、検出電極の端縁にテーパは形成されていない。したがって、テーパ角度θを90°としたものを比較例とし、これよりも不感時間tdの短くなる範囲を本発明の効果が発揮できる範囲と判断した。
With reference to FIG. 7, the test result which investigated the effect with respect to dead time td of taper angle (theta) which the end surface of the detection electrodes 11 and 12 of the particulate detection element 10 of this invention and the electrically insulating heat-resistant board | substrate 13 demonstrates is demonstrated. .
In this test, the inter-electrode distance D is 40 μm, 100 μm, and 300 μm, the electrode height H is 5 μm, the 10-point average surface roughness R Z1 of the electrically insulating heat-resistant substrate 13 is 1.0 μm, and the detection electrodes 11 and 12 The dead time td when the 10-point average surface roughness RZ2 is 3.5 μm and the detection electrodes 11 and 12 are formed by changing the taper angle θ is measured and the result is shown in FIG.
In the conventional particulate detection element, no taper is formed on the edge of the detection electrode. Therefore, a taper angle θ of 90 ° was used as a comparative example, and a range in which the dead time td was shorter than this was determined as a range in which the effect of the present invention could be exhibited.

図7に示すように、電極端縁テーパ角θを鋭角に形成した場合には、40°よりも大きく、90°よりも小さい範囲に設定したときに従来よりも不感時間tdが短くなり、電極端縁テーパ角θを鈍角に形成した場合には、90°よりも大きく、140°よりも小さい範囲に設定したときに従来よりも不感時間tdが短くなることが判明した。
特に、電極端縁テーパ角θを95°〜135°の範囲に形成した場合の不感時間tdは、電極端縁テーパ角θを鋭角に形成した場合よりもさらに短くできることが判明した。
なお、電極端縁テーパ角θを40°以下とすると不感時間tdが従来より長くなり、特に30°以下に形成すると著しくPMの保持力が低下し、不感時間tdが極めて長くなってしまい、また、電極端縁テーパ角θを140°以上に形成すると、検出電極11、12の端縁と電気絶縁性耐熱基板13との間に、PMが入り込めない空間が形成され、電極間の電気抵抗値検出が困難となることが判明した。
As shown in FIG. 7, when the electrode edge taper angle θ is formed at an acute angle, the dead time td becomes shorter than the conventional case when set in a range larger than 40 ° and smaller than 90 °. When the extreme edge taper angle θ is formed to be an obtuse angle, it has been found that the dead time td is shorter than the conventional case when it is set in a range larger than 90 ° and smaller than 140 °.
In particular, it has been found that the dead time td when the electrode edge taper angle θ is formed in the range of 95 ° to 135 ° can be made shorter than when the electrode edge taper angle θ is formed at an acute angle.
If the electrode edge taper angle θ is 40 ° or less, the dead time td becomes longer than that of the conventional case. Particularly, if the electrode edge taper angle θ is formed to be 30 ° or less, the PM holding power is remarkably lowered, and the dead time td becomes extremely long. When the electrode edge taper angle θ is formed to be 140 ° or more, a space into which PM cannot enter is formed between the edge of the detection electrodes 11 and 12 and the electrically insulating heat-resistant substrate 13, and the electric resistance between the electrodes. It was found that value detection was difficult.

図8を参照して、本発明のパティキュレート検出素子10の検出電極11、12の10点平均表面粗さRZ2と電気絶縁性耐熱基板13の10点平均表面粗さRZ1との関係を規制した場合の不感時間tdに対する効果について調査した試験結果を説明する。
本試験においては、電極間距離Dを40μm、100μm、300μmとし、電極高さHを5μm、テーパ角度θを85°として、検出電極11、12の10点平均表面粗さRZ2の電気絶縁性耐熱基板13の10点平均表面粗さRZ1に対するコントラスト比RZ2/RZ1を変化させて検出電極11、12を形成したときの不感時間tdを計測し、その結果を図8に示す。
具体的には、表面粗さの異なる電気絶縁性耐熱基板13を複数用意して、検出電極11、12の10点平均表面粗さRZ2を3.5μmとなるように検出電極11、12を形成して試験を行った。
従来のパティキュレート検出素子では、特に電気絶縁性耐熱基板の表面粗さ及び検出電極の表面粗さ規定されていないので、このときのコントラスト比RZ2/RZ1(3.5)を比較例とし、比較例よりも不感時間tdの短くなった範囲を本実施例とした。
図8に示すように、コントラスト比RZ2/RZ1を3.5以下にするのが望ましいことが判明した。
電気絶縁性耐熱基板13の表面粗さを検出電極11、12の表面粗さよりも荒く、即ち、コントラスト比RZ2/RZ1を1以下とすると、電気絶縁性耐熱基板13表面に優先的にPMが捕集され易くなるが、電気絶縁性耐熱基板13の表面粗さを荒くしすぎると検出電極11、12の密着強度が弱くなる虞もある。
コントラスト比RZ2/RZ1が3.5より大きくなるように電気絶縁性耐熱基板13の表面粗さを滑らかにすると、PMが、検出電極11、12の表面により付着しやすくなる一方、電気絶縁性耐熱基板13の表面からは脱離し易くなるので、不感時間tdは大幅に長くなってしまう。
Referring to FIG. 8, the relationship between the 10-point average surface roughness R Z2 of the detection electrodes 11 and 12 of the particulate detection element 10 of the present invention and the 10-point average surface roughness R Z1 of the electrically insulating heat-resistant substrate 13 is shown. A test result of investigating the effect on the dead time td when the regulation is performed will be described.
In this test, the inter-electrode distance D is 40 μm, 100 μm, and 300 μm, the electrode height H is 5 μm, the taper angle θ is 85 °, and the 10-point average surface roughness R Z2 of the detection electrodes 11 and 12 is electrically insulative. The dead time td when the detection electrodes 11 and 12 are formed by changing the contrast ratio R Z2 / R Z1 with respect to the 10-point average surface roughness R Z1 of the heat-resistant substrate 13 is measured, and the result is shown in FIG.
Specifically, a plurality of electrically insulating heat-resistant substrates 13 having different surface roughnesses are prepared, and the detection electrodes 11 and 12 are arranged so that the 10-point average surface roughness R Z2 of the detection electrodes 11 and 12 is 3.5 μm. Formed and tested.
In the conventional particulate detection element, since the surface roughness of the electrically insulating heat-resistant substrate and the surface roughness of the detection electrode are not specified, the contrast ratio R Z2 / R Z1 (3.5) at this time is used as a comparative example. The range in which the dead time td was shorter than that of the comparative example was defined as the present example.
As shown in FIG. 8, it was found that the contrast ratio R Z2 / R Z1 is preferably 3.5 or less.
When the surface roughness of the electrically insulating heat-resistant substrate 13 is rougher than the surface roughness of the detection electrodes 11 and 12, that is, when the contrast ratio R Z2 / R Z1 is 1 or less, PM is preferentially applied to the surface of the electrically insulating heat-resistant substrate 13. However, if the surface roughness of the electrically insulating heat-resistant substrate 13 is too rough, the adhesion strength between the detection electrodes 11 and 12 may be weakened.
When the surface roughness of the electrically insulating heat-resistant substrate 13 is made smooth so that the contrast ratio R Z2 / R Z1 is larger than 3.5, the PM is more likely to adhere to the surface of the detection electrodes 11, 12, while the electrical insulation Since it becomes easy to detach | desorb from the surface of the heat resistant board | substrate 13, the dead time td will become long significantly.

図9を参照して、本発明のパティキュレート検出素子10の検出電極11、12の高さ(膜厚)Hの不感時間tdに対する効果について調査した試験結果を説明する。
本試験においては、電極間距離Dを40μm、100μm、300μmとし、テーパ角度θを85°として、検出電極11、12の10点平均表面粗さRZ2の電気絶縁性耐熱基板13の10点平均表面粗さRZ1に対するコントラスト比RZ2/RZ1を3.5として、検出電極11、12を形成したときの不感時間tdを計測し、その結果を図9に示す。
図9に示すように、検出電極11、12の高さを1μm以上、200μm以下にするのが望ましいことが判明した。
With reference to FIG. 9, the test result investigated about the effect with respect to the dead time td of the height (film thickness) H of the detection electrodes 11 and 12 of the particulate detection element 10 of this invention is demonstrated.
In this test, the interelectrode distance D is 40 μm, 100 μm, 300 μm, the taper angle θ is 85 °, and the 10-point average surface roughness R Z2 of the electrically insulating heat-resistant substrate 13 of the detection electrodes 11, 12 is 10-point average. the contrast ratio R Z2 / R Z1 with respect to the surface roughness R Z1 as 3.5, and measures the dead time td when forming the detection electrodes 11 and 12, the results are shown in Figure 9.
As shown in FIG. 9, it has been found that the height of the detection electrodes 11 and 12 is preferably 1 μm or more and 200 μm or less.

本発明は上記実施形態に限定するものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態においては、自動車エンジン等の内燃機関に搭載されるパティキュレート検出センサを例に説明したが、本発明のパティキュレート検出センサは、車載用に限定されるものではなく、火力発電所等の大規模プラントにおけるパティキュレート検出の用途にも利用可能である。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the particulate detection sensor mounted on an internal combustion engine such as an automobile engine has been described as an example. However, the particulate detection sensor of the present invention is not limited to being mounted on a vehicle. It can also be used for particulate detection in large-scale plants such as plants.

1 パティキュレート検出センサ
10 パティキュレート検出素子
100 検出部
11、12 検出電極
111、121 リード部
112、122 端子部
113、113 接続金具
114、114 信号線
13 電気絶縁性耐熱基板
14 絶縁性保護層
θ 検出電極端縁テーパ角度
D 検出電極間距離
W 検出電極幅
Z1 電気絶縁性耐熱基板10点平均表面粗さ
Z2 検出電極10点平均表面粗さ
H 検出電極高さ
td 不感時間
20 インシュレータ
30 ハウジング
40 カバー体
50 ケーシング
60 封止部材
70 被測定ガス流路壁
700 被測定ガス流路
DESCRIPTION OF SYMBOLS 1 Particulate detection sensor 10 Particulate detection element 100 Detection part 11, 12 Detection electrode 111, 121 Lead part 112, 122 Terminal part 113, 113 Connection metal fitting 114, 114 Signal line 13 Electrically insulating heat-resistant board 14 Insulating protective layer θ Detecting electrode edge taper angle D Detecting electrode distance W Detecting electrode width R Z1 Electrical insulating heat resistant substrate 10 point average surface roughness R Z2 Detecting electrode 10 point average surface roughness H Detecting electrode height td Dead time 20 Insulator 30 Housing 40 Cover body 50 Casing 60 Sealing member 70 Gas channel wall to be measured 700 Gas channel to be measured

特開昭59−197847号公報JP 59-197847 A

Claims (6)

電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けて検出部とし、該検出部に捕集され上記検出電極間に堆積する導電性微粒子の量によって変化する電気抵抗を検出して、被測定ガス中の導電性微粒子を検出するパティキュレート検出素子において、
上記検出電極の端縁を傾斜面となし、該傾斜面と上記電気絶縁性耐熱基板とのなす角度を40°より大きく、90°より小さい鋭角テーパ状、若しくは、上記傾斜面と上記電気絶縁性耐熱基板とのなす角度を90°より大きく、140°より小さい鈍角テーパ状に形成することを特徴とするパティキュレート検出素子。
A pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate is used as a detection unit, and the electricity varies depending on the amount of conductive fine particles collected by the detection unit and deposited between the detection electrodes. In a particulate detection element that detects resistance and detects conductive fine particles in a gas to be measured.
An edge of the detection electrode is an inclined surface, and an angle formed by the inclined surface and the electrically insulating heat-resistant substrate is greater than 40 ° and smaller than 90 °, or the inclined surface and the electrical insulating property A particulate detection element characterized in that it forms an obtuse angle taper with an angle with the heat-resistant substrate larger than 90 ° and smaller than 140 °.
上記傾斜面と上記電気絶縁性耐熱基板とのなす角度を100°以上、125°以下の鈍角テーパ状に形成する請求項1に記載のパティキュレート検出素子。   The particulate detection element according to claim 1, wherein an angle formed between the inclined surface and the electrically insulating heat-resistant substrate is an obtuse angle taper of 100 ° or more and 125 ° or less. 上記電気絶縁性耐熱基板の10点平均表面粗さをRZ1とし、上記検出電極の10点平均表面粗さをRZ2としたとき、上記電気絶縁性耐熱基板の表面粗さと上記検出電極の表面粗さとのコントラスト比RZ2/RZ1を3.5以下にする請求項1又は2に記載のパティキュレート検出素子。 When the 10-point average surface roughness of the electrically insulating heat-resistant substrate is RZ1, and the 10-point average surface roughness of the detection electrode is RZ2 , the surface roughness of the electrically insulating heat-resistant substrate and the surface of the detection electrode The particulate detection element according to claim 1 or 2, wherein a contrast ratio R Z2 / R Z1 with roughness is 3.5 or less. 上記検出電極の高さを、1μm以上、200μm以下に形成する請求項1ないし3のいずれかに記載のパティキュレート検出素子。   The particulate detection element according to claim 1, wherein a height of the detection electrode is 1 μm or more and 200 μm or less. 上記検出電極の高さを、5μmより高く、150μmより低く形成する請求項4記載のパティキュレート検出素子。   The particulate detection element according to claim 4, wherein the height of the detection electrode is higher than 5 μm and lower than 150 μm. 上記検出電極の高さを、25μmより高く、100μmより低く形成する請求項5に記載のパティキュレート検出素子。   The particulate detection element according to claim 5, wherein the height of the detection electrode is higher than 25 μm and lower than 100 μm.
JP2009234880A 2009-10-09 2009-10-09 Particulate detecting element Withdrawn JP2011080926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234880A JP2011080926A (en) 2009-10-09 2009-10-09 Particulate detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234880A JP2011080926A (en) 2009-10-09 2009-10-09 Particulate detecting element

Publications (1)

Publication Number Publication Date
JP2011080926A true JP2011080926A (en) 2011-04-21

Family

ID=44075113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234880A Withdrawn JP2011080926A (en) 2009-10-09 2009-10-09 Particulate detecting element

Country Status (1)

Country Link
JP (1) JP2011080926A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030930A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Microparticle sensor and method for manufacturing microparticle sensor
CN103776752A (en) * 2012-10-25 2014-05-07 现代自动车株式会社 Particulate matter sensor unit
WO2015105182A1 (en) * 2014-01-10 2015-07-16 株式会社デンソー Particulate substance detection element, particulate substance detection sensor, and method for manufacturing particulate substance detection element
EP2759682A4 (en) * 2011-09-20 2015-10-21 Toyota Motor Co Ltd Exhaust purification device for internal combustion engine
WO2015194468A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection device
CN105452843A (en) * 2013-08-14 2016-03-30 罗伯特·博世有限公司 Particle sensor and method for producing a particle sensor
WO2016072146A1 (en) * 2014-11-06 2016-05-12 株式会社デンソー Granular substance detecting element and granular substance detecting method
JP2016125961A (en) * 2015-01-07 2016-07-11 株式会社日本自動車部品総合研究所 Particulate material detection sensor
JP2018025564A (en) * 2017-10-12 2018-02-15 株式会社Soken Particulate substance detection element

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013030930A1 (en) * 2011-08-29 2015-03-23 トヨタ自動車株式会社 Fine particle sensor and method for producing fine particle sensor
WO2013030930A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Microparticle sensor and method for manufacturing microparticle sensor
US9523632B2 (en) 2011-08-29 2016-12-20 Toyota Jidosha Kabushiki Kaisha Particulate matter sensor and method for manufacturing particulate matter sensor
EP2759682A4 (en) * 2011-09-20 2015-10-21 Toyota Motor Co Ltd Exhaust purification device for internal combustion engine
CN103776752A (en) * 2012-10-25 2014-05-07 现代自动车株式会社 Particulate matter sensor unit
JP2016530513A (en) * 2013-08-14 2016-09-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Particle sensor and method for manufacturing particle sensor
CN105452843B (en) * 2013-08-14 2019-11-26 罗伯特·博世有限公司 Particle sensor and method for manufacturing particle sensor
US10126224B2 (en) 2013-08-14 2018-11-13 Robert Bosch Gmbh Particle sensor and method for manufacturing a particle sensor
CN105452843A (en) * 2013-08-14 2016-03-30 罗伯特·博世有限公司 Particle sensor and method for producing a particle sensor
WO2015105182A1 (en) * 2014-01-10 2015-07-16 株式会社デンソー Particulate substance detection element, particulate substance detection sensor, and method for manufacturing particulate substance detection element
CN106460601A (en) * 2014-06-16 2017-02-22 株式会社电装 Particulate matter detection device
US20170122179A1 (en) * 2014-06-16 2017-05-04 Denso Corporation Particulate matter detection apparatus
JP2016020683A (en) * 2014-06-16 2016-02-04 株式会社デンソー Particulate matter detector
US10208643B2 (en) 2014-06-16 2019-02-19 Denso Corporation Particulate matter detection apparatus
WO2015194468A1 (en) * 2014-06-16 2015-12-23 株式会社デンソー Particulate matter detection device
WO2016072146A1 (en) * 2014-11-06 2016-05-12 株式会社デンソー Granular substance detecting element and granular substance detecting method
US10352842B2 (en) 2014-11-06 2019-07-16 Denso Corporation Particulate matter detection element and particulate matter detection sensor
JP2016125961A (en) * 2015-01-07 2016-07-11 株式会社日本自動車部品総合研究所 Particulate material detection sensor
JP2018025564A (en) * 2017-10-12 2018-02-15 株式会社Soken Particulate substance detection element

Similar Documents

Publication Publication Date Title
JP2011080926A (en) Particulate detecting element
US20120085146A1 (en) Particulate matter detection sensor
JP5500028B2 (en) Method for manufacturing particulate matter detection sensor
US20120151992A1 (en) Particulate matter detection sensor
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
US10473573B2 (en) Particulate matter sensor and exhaust gas purification system using the same
JP2011080439A (en) Device for detecting abnormality of particulate filter
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
US20110259079A1 (en) Gas sensor
JP2006266961A (en) Soot sensor
JP2011080942A (en) Particulate detection sensor
US20110081276A1 (en) Particulate sensing element and particulate sensor having the particulate sensing element
JP2007224877A (en) Installation structure of exhaust sensor to exhaust pipe of internal combustion engine
US9011659B2 (en) Sensor apparatus for detecting a gas concentration and a particle concentration of an exhaust gas
JP2011080780A (en) Particulate detection element
JP4574411B2 (en) Wrinkle detection sensor and wrinkle detection method
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
WO2016147711A1 (en) Particulate matter detection system
KR101593670B1 (en) Particular Matter Sensor and exhaust gas purification system using the same
JP6671318B2 (en) Failure detection device and failure detection method for particulate filter
KR101593669B1 (en) Particular Matter Sensor and exhaust gas purification system using the same
JP2010285917A (en) Particulate matter detection device and state determination device for exhaust emission control device
JP2015075007A (en) Exhaust emission control system
KR101860455B1 (en) Particulater matter detection sensor
US20180355779A1 (en) Particulate matter sensor and exhaust gas purification system having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108