JP2007224877A - Installation structure of exhaust sensor to exhaust pipe of internal combustion engine - Google Patents

Installation structure of exhaust sensor to exhaust pipe of internal combustion engine Download PDF

Info

Publication number
JP2007224877A
JP2007224877A JP2006049824A JP2006049824A JP2007224877A JP 2007224877 A JP2007224877 A JP 2007224877A JP 2006049824 A JP2006049824 A JP 2006049824A JP 2006049824 A JP2006049824 A JP 2006049824A JP 2007224877 A JP2007224877 A JP 2007224877A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust pipe
sensor
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049824A
Other languages
Japanese (ja)
Inventor
Shuichi Nakano
秀一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006049824A priority Critical patent/JP2007224877A/en
Priority to DE102007000112A priority patent/DE102007000112A1/en
Priority to US11/711,162 priority patent/US20070204597A1/en
Publication of JP2007224877A publication Critical patent/JP2007224877A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/22Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a condensation chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an exhaust sensor sensing part from getting wet by the splash of condensed water adhered to an exhaust pipe, and to start an engine normally even immediately after the formation of the condensed water. <P>SOLUTION: In the installation structure of the exhaust sensor to the exhaust pipe 11 of the internal combustion engine, an exhaust-emission control device 12 is provided in the exhaust pipe 11 of the internal combustion engine in order to remove a toxic substance in exhaust emission. The downstream part 11a of the exhaust-emission control device 12 in the exhaust pipe 11 is formed in a downstream tapered part 11b. The exhaust sensor 18 for sensing components in the exhaust emission is installed in the downstream of the exhaust-emission control device 12. In the exhaust pipe 11, a condensed water splash passage guide means 30 is provided so that the splash passage of the condensed water on the upstream side including the tapered part 11b of the exhaust pipe 11 is changed from an exhaust passing region W passing a component cover 47 covering the sensing part 45 of the exhaust sensor 18, and the passage is guided to a condensed water passing region Z. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンジン(内燃機関)の排気管への排気センサ取付け構造に関するもので、特にディーゼルエンジンの排気浄化システムにおける排気管への排気センサ取付け構造に好適なものである。   The present invention relates to an exhaust sensor mounting structure on an exhaust pipe of an engine (internal combustion engine), and is particularly suitable for an exhaust sensor mounting structure on an exhaust pipe in an exhaust purification system of a diesel engine.

近年、地球環境保護のためにディーゼルエンジン搭載車の排気規制が年々その厳しさを増している。その対応技術として排気中の酸素濃度を検知し、その情報をエンジンの制御にフィードバックして燃料の噴射量やEGR量のバラツキを補正し、排気中の窒素酸化物や煤などの微粒炭素を減少させている。排気中の酸素濃度を検知するセンサとして酸素イオンポンピングを利用するジルコニア固体電解質型の排気酸素濃度センサが適用されている。このジルコニア固体電解質型の排気酸素濃度センサは、検知部にジルコニア固体電解質を用いることから精度の良いセンサ出力を得るために約650℃以上に加熱する必要がある。通常、加熱はセンサの検知部に内蔵される電熱ヒータにより行われている。   In recent years, exhaust regulations for vehicles equipped with diesel engines have become increasingly severe year by year to protect the global environment. As a countermeasure, oxygen concentration in the exhaust gas is detected, and the information is fed back to the engine control to compensate for variations in the fuel injection amount and EGR amount, thereby reducing fine carbon such as nitrogen oxides and soot in the exhaust gas. I am letting. As a sensor for detecting the oxygen concentration in exhaust gas, a zirconia solid electrolyte type exhaust oxygen concentration sensor using oxygen ion pumping is applied. This zirconia solid electrolyte type exhaust oxygen concentration sensor needs to be heated to about 650 ° C. or more in order to obtain a highly accurate sensor output because a zirconia solid electrolyte is used for the detection part. Usually, heating is performed by an electric heater built in the detection unit of the sensor.

また、この種の排気酸素濃度を検知するセンサは、内燃機関の排気管内に取付けられることから次のような問題があり適用の妨げとなっている。即ち、エンジンが冷間状態で始動された時、排気管の壁面温度が低いため排気中の水蒸気が排気管壁面に触れて凝縮し排気管の内壁に凝縮水が付着し、この凝縮水が排気の流れにより飛散し、電熱ヒータが作動中にセンサ検知部にかかり過大な熱応力が発生して、センサ検知部を構成するジルコニア固体電解質を破損させる問題がある。センサ検知部が破損するとセンサ出力の精度が悪化するのみならず正常な出力が得られず、排気浄化システムが誤作動するなどの弊害が発生する。この弊害を回避するため、従来、エンジンの始動後排気系に生じた凝縮水が蒸発してからセンサに内蔵の電熱ヒータに通電を行っていたため、エンジン始動後長時間を経てからしかセンサを作動させることができなかった。   In addition, since this type of sensor for detecting the exhaust oxygen concentration is mounted in the exhaust pipe of an internal combustion engine, it has the following problems and hinders its application. That is, when the engine is started in a cold state, the exhaust pipe wall surface temperature is low, so the water vapor in the exhaust gas touches the exhaust pipe wall surface and condenses, and the condensed water adheres to the inner wall of the exhaust pipe. There is a problem that the zirconia solid electrolyte constituting the sensor detection unit is broken due to the excessive flow of heat stress generated on the sensor detection unit while the electric heater is in operation. If the sensor detection unit is damaged, not only the accuracy of the sensor output is deteriorated but also a normal output cannot be obtained, and there are problems such as malfunction of the exhaust purification system. In order to avoid this problem, the sensor was activated only after a long time since the engine was started because the electric heater built in the sensor was energized after the condensed water generated in the exhaust system after the engine started evaporating. I couldn't let you.

一方、排気管内部の凝縮水のセンサ検知部への被水を低減する構造は、下記特許文献1に、内燃機関の排気管の一部を、上流側より低く形成し、その低く形成された排気管の床部より高い位置にセンサを取付け、排気管の床部より低い位置に貯留部を設け、貯留部と排気管とをセンサ取付け位置の上流側と下流側の2箇所で連通したセンサ取付け構造が記載されている。しかし、この構造ではエンジンの停止時、排気管内部で生じた凝縮水を貯蓄部に溜めることはできるものの、全ての凝縮水を貯蓄部に溜めるには長時間を要し、未だ排気管内部に凝縮水が残留付着している間にエンジンを始動させた場合、残留の凝縮水が飛散しセンサ検知部が被水するという問題がある。また、下記特許文献2に、排気管の一部に、断面積の大きい拡張部を設け、拡張部の上流側端部から下流側に所定距離だけ隔たった位置で、かつ、拡張部の床部分よりも高い位置にセンサを取付けたセンサの取付け構造が記載されている。しかし、この構造は排気の流速を拡張部で低下させ凝縮水の飛散到達距離を短くする技術であるが、排気管の壁面周辺を流れる排気の流速を拡張部で低下させることができるものの、排気管の中心部を流れる排気の流速はほとんど低下せず、この流速の速い中心部を流れる排気に凝縮水が吸引されセンサ検知部が被水するという問題がある。
特開2004−124783号公報 特開2005−127214号公報
On the other hand, the structure for reducing the water exposure to the sensor detection part of the condensed water inside the exhaust pipe is formed in the following Patent Document 1 by forming a part of the exhaust pipe of the internal combustion engine lower than the upstream side and lowering it. A sensor is mounted at a position higher than the floor of the exhaust pipe, a storage section is provided at a position lower than the floor of the exhaust pipe, and the storage section and the exhaust pipe communicate with each other at two locations upstream and downstream of the sensor mounting position. The mounting structure is described. However, with this structure, when the engine is stopped, the condensed water generated inside the exhaust pipe can be stored in the storage section. However, it takes a long time to store all the condensed water in the storage section, and it still remains inside the exhaust pipe. When the engine is started while the condensed water remains attached, there is a problem that the remaining condensed water is scattered and the sensor detection unit gets wet. Further, in Patent Document 2 below, an extended portion having a large cross-sectional area is provided in a part of the exhaust pipe, and the floor portion of the expanded portion is located at a predetermined distance from the upstream end of the expanded portion to the downstream side. A sensor mounting structure in which the sensor is mounted at a higher position is described. However, this structure is a technology that reduces the exhaust flow velocity at the expansion part and shortens the condensate scattering reach distance, but although the exhaust flow rate around the wall surface of the exhaust pipe can be reduced by the expansion part, There is a problem in that the flow rate of the exhaust gas flowing through the central portion of the pipe hardly decreases, and condensed water is sucked into the exhaust gas flowing through the central portion where the flow rate is fast, so that the sensor detection unit gets wet.
JP 2004-124783 A JP 2005-127214 A

このように従来においては、排気管壁に生じた凝縮水の飛散によるセンサ検知部への被水を防止する技術は、凝縮水の貯留に長時間を要し、また、一部の凝縮水の飛散到達距離を短縮するだけであり、凝縮水の飛散によるセンサ検知部への被水を確実に防止できず、また、排気管壁に凝縮水が付着している状態でエンジンの正常な始動を行うことができない。そこで発明者は、排気管壁に付着している凝縮水が排気の流れによって飛散する経路を、センサの検知部を覆っている素子カバーの排気取入れ孔を通過しないよう強制的に変更させ、排気管の壁周辺を通過させることに着目した。   As described above, in the prior art, the technology for preventing the sensor detection unit from being wetted by the condensate scattered on the exhaust pipe wall takes a long time to store the condensate, and a part of the condensate It only shortens the splashing distance and cannot reliably prevent the sensor detection unit from getting wet due to the splashing of the condensed water, and the engine starts normally with the condensed water adhering to the exhaust pipe wall. I can't do it. Therefore, the inventor forcibly changes the path through which the condensed water adhering to the exhaust pipe wall scatters due to the exhaust flow so that it does not pass through the exhaust intake hole of the element cover that covers the sensor detection unit. We focused on passing around the wall of the tube.

本発明は、上述の点に鑑みてなされたもので、排気の流れによって飛散する凝縮水の経路を、センサの検知部を覆っている素子カバー外周を通過する領域から変更させる凝縮水飛散経路誘導部材を排気管内に配置することにより、センサの検知部への凝縮水の被水を確実に防止し、排気管壁に凝縮水が付着している状態でもエンジンの正常な始動を行うことができる内燃機関の排気管への排気センサ取付け構造を提供することにある。   The present invention has been made in view of the above-described points. Condensed water scattering path guidance for changing the path of condensed water scattered by the flow of exhaust gas from an area passing through the outer periphery of the element cover covering the sensor detection unit. By disposing the member in the exhaust pipe, it is possible to reliably prevent the condensate from getting wet with the detection part of the sensor, and the engine can be started normally even when the condensed water adheres to the exhaust pipe wall. An object of the present invention is to provide an exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine.

請求項1に係る発明では、内燃機関の排気管内に、排気中の有害物質を除去するための排気浄化装置が搭載され、前記排気管における前記排気浄化装置の下流部が下流方向先細形状部に形成されると共に、前記排気浄化装置の下流側に、前記排気中の成分を検出する排気センサが取付けられた内燃機関の排気管への排気センサ取付け構造において、前記排気管内に、前記排気管の先細形状部を含む上流側に結露した凝縮水の飛散経路を、前記排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から変更させ、凝縮水通過領域へ導く凝縮水飛散経路誘導手段を設ける。   In the invention according to claim 1, an exhaust gas purification device for removing harmful substances in the exhaust gas is mounted in the exhaust pipe of the internal combustion engine, and the downstream portion of the exhaust gas purification device in the exhaust pipe is a downstream tapered portion. In the exhaust sensor mounting structure to the exhaust pipe of the internal combustion engine, the exhaust sensor being mounted on the downstream side of the exhaust purification device and detecting a component in the exhaust, the exhaust pipe Condensed water scattering path that condenses condensation on the upstream side including the tapered portion is changed from the exhaust passage area that passes through the outer periphery of the element cover that covers the detection section of the exhaust sensor, and leads to the condensed water passage area. Guiding means are provided.

上記構成によれば、従来では自然物理現象による凝縮水の滴下貯留や凝縮水の飛散速度の減速で凝縮水の被水を防止しているのに比べ、本案では、凝縮水の飛散経路を凝縮水飛散経路誘導手段で強制的に排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から確実に変更させ、凝縮水通過領域へ導いているので、素子カバーの排気取入れ孔からの凝縮水の侵入を阻止し、排気センサの検知部への凝縮水による被水を確実に防止することができる。従って、凝縮水が結露した直後であってもエンジンの正常な始動を行うことができる。   According to the above configuration, the condensate scattering path is condensed in this proposal compared to the conventional condensate dripping and storage caused by natural physics and the condensate splash rate being reduced by reducing the condensate splash rate. Because the water scattering path guiding means forcibly covers the exhaust sensor detection area, the exhaust passage area passing through the outer periphery of the element cover is surely changed and guided to the condensed water passage area. The condensate water can be prevented from entering, and the condensate water can be reliably prevented from entering the detection part of the exhaust sensor. Therefore, the engine can be normally started even immediately after the condensed water has condensed.

請求項2に係る発明では、前記凝縮水飛散経路誘導手段を、前記排気管内に沿って配置された筒状の誘導部材で構成し、前記排気通過領域内に前記排気センサの検知部を覆う素子カバーが配置され、かつ前記誘導部材の上流側端部は、前記排気管の先細形状部端部から排気管壁面に対して内側30°をなす面と前記誘導部材の内壁面との交叉位置より上流側に位置し、前記誘導部材の下流側端部は、該誘導部材の外壁下流側端部を基点とし排気管内側下流方向に30°をなす仮想面に対し前記素子カバーの排気取入れ孔が上流側に位置するように配置している。   In the invention according to claim 2, the condensate scattering path guiding means is constituted by a cylindrical guiding member arranged along the exhaust pipe, and the element that covers the detection part of the exhaust sensor in the exhaust passage region A cover is disposed, and the upstream end portion of the guide member is located at a crossing position between a surface forming an inner side of 30 ° from the tapered portion end portion of the exhaust pipe and the inner wall surface of the guide member. An exhaust intake hole of the element cover is located on the upstream side, and the downstream end of the guide member has a virtual plane that forms 30 ° in the downstream direction inside the exhaust pipe with the downstream end on the downstream side of the outer wall of the guide member as a base point. It arrange | positions so that it may be located in the upstream.

上記構成によれば、凝縮水飛散経路誘導手段を筒状の誘導部材にすることにより、排気管との間隙は全周に亘って一定であるため、凝縮水の飛散流れを全周に亘って良好にすることができる。また、誘導部材の全長が最短長であり製作コストを最小限することができる。   According to the above configuration, since the condensate scattering path guiding means is a cylindrical guiding member, the gap between the exhaust pipe and the exhaust pipe is constant over the entire circumference. Can be good. Further, the total length of the guide member is the shortest length, and the manufacturing cost can be minimized.

請求項3に係る発明では、前記誘導部材の上流側端部を、排気管の先細形状部端部より上流側に位置させる。   In the invention which concerns on Claim 3, the upstream edge part of the said guide member is located upstream from the taper-shaped part edge part of an exhaust pipe.

上記構成によれば、排気管の先細形状部に結露付着した凝縮水の飛散経路を確実に排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から変更し、凝縮水通過領域へ導くことができる。   According to the above configuration, the condensate scattering path that condenses and adheres to the tapered portion of the exhaust pipe is reliably changed from the exhaust passage area that passes the outer periphery of the element cover that covers the detection part of the exhaust sensor, and the condensed water passage area Can lead to.

請求項4に係る発明では、前記誘導筒の下流側端部を、前記排気センサの取付け位置より下流側に位置させる。   In the invention which concerns on Claim 4, the downstream edge part of the said guide cylinder is located downstream from the attachment position of the said exhaust sensor.

上記構成によれば、排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から変更され飛散する凝縮水の通過領域を、排気センサの取付け位置を越えた下流領域まで変更状態を保持しているので、更に確実に素子カバーの排気取入れ孔からの凝縮水の侵入を阻止し、凝縮水による排気センサの検知部への被水を防止できる。   According to the above configuration, the changed state of the condensed water passing area that is changed and scattered from the exhaust passing area passing through the outer periphery of the element cover that covers the detection part of the exhaust sensor is changed to the downstream area beyond the mounting position of the exhaust sensor. Since it is held, the intrusion of condensed water from the exhaust intake hole of the element cover can be more reliably prevented, and the condensate can prevent water from entering the detection part of the exhaust sensor.

請求項5に係る発明では、誘導部材の上流側端部に、排気管形状に相応し上流側に向かって外側に開く凝縮水飛散経路ガイド部を形成している。   In the invention which concerns on Claim 5, the condensed water scattering path | route guide part which opens outside toward the upstream corresponding to the shape of an exhaust pipe is formed in the upstream edge part of a guide member.

上記構成によれば、凝縮水飛散経路ガイド部で、排気管の先細形状部に結露し付着した凝縮水の飛散経路を更に確実に排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から変更し、凝縮水通過領域へ導くことができる。   According to the above configuration, the condensed water splashing path guide part further passes through the outer periphery of the element cover that covers the detection part of the exhaust sensor more reliably on the condensed water scattering path that has condensed and adhered to the tapered shape part of the exhaust pipe. It can change from a passage area and can be led to a condensed water passage area.

請求項6に係る発明では、誘導部材の上流側端部の外周部に、面取り部を形成している。   In the invention which concerns on Claim 6, the chamfering part is formed in the outer peripheral part of the upstream edge part of a guide member.

上記構成によれば、面取り部を形成することで、排気の流れ抵抗を減少できると共に、より一層凝縮水の飛散経路を確実に排気センサの検知部を覆っている素子カバー外周を通過する排気通過領域から変更し、凝縮水通過領域へ導くことができる。   According to the above configuration, by forming the chamfered portion, the exhaust flow resistance can be reduced, and the exhaust passage that passes through the outer periphery of the element cover that covers the detection portion of the exhaust sensor more reliably through the condensate scattering path. It can be changed from the area and led to the condensed water passage area.

請求項7に係る発明では、排気センサは、電熱ヒータを内蔵し、ジルコニア固体電解質型検知素子を具備した酸素濃度センサである。   In the invention according to claim 7, the exhaust sensor is an oxygen concentration sensor having a built-in electric heater and having a zirconia solid electrolyte type sensing element.

上記構成によれば、とりわけ、650℃以上の高温度で使用される酸素濃度センサの場合、凝縮水の被水による熱応力等の破損を防止でき、従って性能の良い排気浄化システムを提供できる。   According to the above configuration, in particular, in the case of an oxygen concentration sensor used at a high temperature of 650 ° C. or higher, it is possible to prevent breakage such as thermal stress due to exposure to condensed water, and thus provide an exhaust purification system with good performance.

請求項8に係る発明では、内燃機関の排気管への排気センサ取付け構造は、ディーゼルエンジンの排気浄化システムにおける内燃機関の排気管への排気センサ取付け構造に適用されている。   In the invention according to claim 8, the exhaust sensor mounting structure to the exhaust pipe of the internal combustion engine is applied to the exhaust sensor mounting structure to the exhaust pipe of the internal combustion engine in the exhaust purification system of the diesel engine.

上記構成によれば、排気センサ検知部への凝縮水の被水を確実に防止できる排気管への排気センサ取付け構造を搭載しているので、高品位なディーゼルエンジンの排気浄化システムを提供することができる。   According to the above configuration, since the exhaust sensor mounting structure to the exhaust pipe that can reliably prevent the condensate from being exposed to the exhaust sensor detection unit is mounted, a high-quality diesel engine exhaust purification system is provided. Can do.

以下、本発明を図に基づき説明する。図8は、本発明になる排気センサ取付け構造を付設したディーゼルエンジンの全体概略構成図である。ディーゼルエンジン1は4気筒のエンジンであり、各気筒に共通のコモンレール2と、該コモンレール2に連結されて各気筒の燃焼室にそれぞれ燃料を噴射する4つのインジェクタ3を有している。エンジン1の吸気マニホールド4は、吸気管5に連結しており、連結部に設けられる吸気スロットル弁6によって、吸気流量が調整されるようになっている。吸気管5を流通する吸気はエアクリーナ7で濾過されエアフローメター8により検出されるようになっている。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 8 is an overall schematic configuration diagram of a diesel engine provided with an exhaust sensor mounting structure according to the present invention. The diesel engine 1 is a four-cylinder engine, and includes a common rail 2 common to each cylinder, and four injectors 3 that are connected to the common rail 2 and inject fuel into the combustion chamber of each cylinder. An intake manifold 4 of the engine 1 is connected to an intake pipe 5, and an intake air flow rate is adjusted by an intake throttle valve 6 provided at the connection portion. The intake air flowing through the intake pipe 5 is filtered by an air cleaner 7 and detected by an air flow meter 8.

エンジン1からの排気は排気通路9により排出されるようになっている。排気通路9は、上流側より排気マニホールド10及び排気管11からなり、排気管11の途中には排気浄化装置としてのパティキュレートフィルタ(DPF)12が搭載されている。DPF12は公知の構成で、例えば、シリコンカーバイドやコージェライトなどの耐熱性多孔質セラミックスを排気の出入り口が交互に閉塞するよう成型加工されている。排気は入口が開口しているセルからDPF12内に入り、多孔性の隔壁を通過する際にパティキュレート(PM)が捕集される。排気と接触するDPF12の内表面は、PMの酸化を促進する触媒を担持した構造とすることもでき、DPF12の低温度域で安定的のPMを燃焼除去することができる。   Exhaust gas from the engine 1 is discharged through an exhaust passage 9. The exhaust passage 9 includes an exhaust manifold 10 and an exhaust pipe 11 from the upstream side, and a particulate filter (DPF) 12 as an exhaust purification device is mounted in the middle of the exhaust pipe 11. The DPF 12 has a known configuration and is molded by heat-resistant porous ceramics such as silicon carbide and cordierite so that the exhaust outlets are alternately closed. The exhaust gas enters the DPF 12 from a cell having an opening at the inlet, and particulates (PM) are collected when passing through the porous partition wall. The inner surface of the DPF 12 that is in contact with the exhaust gas may have a structure that supports a catalyst that promotes the oxidation of PM, and stable PM can be burned and removed in a low temperature range of the DPF 12.

排気管11には、DPF12の上流側にターボチャージャー13のタービン14が設けられ、吸気管5に設けられるコンプレッサ15とタービン軸を介して連結されている。これにより、排気の運動エネルギーを利用してコンプレッサ15を回転作動させて吸気管5に導入される吸気をコンプレッサ15内で圧縮する。吸気スロットル弁6よりも上流の吸気管5内には、インタクーラ17が設けられ、コンプレッサ15で圧縮されて高温となった吸気がここで冷却される。また、排気管11には、DPF12の下流側に排気中の酸素の濃度を検出するジルコニア個体電解質型の酸素濃度センサ18が取付けられている。この酸素濃度センサ18の構造、作用については後述する。   The exhaust pipe 11 is provided with a turbine 14 of a turbocharger 13 on the upstream side of the DPF 12 and is connected to a compressor 15 provided in the intake pipe 5 via a turbine shaft. Thus, the compressor 15 is rotated using the kinetic energy of the exhaust, and the intake air introduced into the intake pipe 5 is compressed in the compressor 15. An intercooler 17 is provided in the intake pipe 5 upstream from the intake throttle valve 6, and the intake air that has been compressed by the compressor 15 to a high temperature is cooled here. In addition, a zirconia solid electrolyte type oxygen concentration sensor 18 for detecting the concentration of oxygen in the exhaust gas is attached to the exhaust pipe 11 on the downstream side of the DPF 12. The structure and operation of the oxygen concentration sensor 18 will be described later.

排気マニホールド10は、EGR通路19によって吸気マニホールド4と連結されており、排気の一部がEGR通路19を経て吸気に戻されるようになっている。EGR通路19の吸気マニホールド4への出口部には、EGR弁20が設けられ、その開度を調整することにより、吸気に還流される排気の量を調整できるようになっている。EGR通路19の途中には、還流されるEGRガスを冷却するためのEGRクーラ21が設けられる。22は吸気マニホールド4内の吸気の圧力を検出する吸気圧センサである。   The exhaust manifold 10 is connected to the intake manifold 4 by an EGR passage 19 so that a part of the exhaust is returned to the intake air through the EGR passage 19. An EGR valve 20 is provided at an outlet portion of the EGR passage 19 to the intake manifold 4, and the amount of exhaust gas recirculated to the intake air can be adjusted by adjusting the opening degree thereof. An EGR cooler 21 for cooling the refluxed EGR gas is provided in the middle of the EGR passage 19. An intake pressure sensor 22 detects the pressure of intake air in the intake manifold 4.

ECU23には、前記エアフローメータ8、吸気圧センサ22、酸素濃度センサ18などの出力信号や、EGR弁20の開度、エンジン回転数、車速、冷却水温、アクセル開度、クランク位置、燃料圧などを検出する各種センサからの出力信号が入力し、エンジン1各部の状態(運転状態)が知られるようになっている。そしてECU23は、これら各種センサの出力信号から知られるエンジン1の運転状態に基づいて運転状態に応じた最適な燃料噴射量、EGR量を算出して、吸気スロットル弁6、インジェクタ3、EGR弁20、ターボチャージャー13などをフィードバック制御する。なお、本発明排気センサ取付け構造は排気管11において排気浄化装置12から下流側の排気センサ18までの範囲の構造に関する。   The ECU 23 includes output signals from the air flow meter 8, the intake pressure sensor 22, the oxygen concentration sensor 18, the opening degree of the EGR valve 20, the engine speed, the vehicle speed, the coolant temperature, the accelerator opening degree, the crank position, the fuel pressure, and the like. Output signals from various sensors for detecting the engine are input, and the state (operating state) of each part of the engine 1 is known. The ECU 23 calculates the optimum fuel injection amount and EGR amount according to the operating state based on the operating state of the engine 1 known from the output signals of these various sensors, and the intake throttle valve 6, the injector 3, and the EGR valve 20 The turbocharger 13 and the like are feedback-controlled. The exhaust sensor mounting structure of the present invention relates to a structure in the exhaust pipe 11 ranging from the exhaust purification device 12 to the downstream exhaust sensor 18.

次に図9、図10により本発明における排気センサ18の構造、作用を説明する。図9は排気センサ18の縦断面図、図10は図9のA−A線矢視拡大断面図である。本発明に適用している排気センサ18は、通常使用されている公知のジルコニア固体電解質型酸素濃度センサである。金属製の筒状ハウジング40内には絶縁部材41に中間部外周を保持してジルコニア固体電解質シート42を有する検知素子43が収納されている。絶縁部材41の中心部の凹み部には絶縁シール材44が充填され、この部分で排気管11内の排気と大気とを遮断している。   Next, the structure and operation of the exhaust sensor 18 according to the present invention will be described with reference to FIGS. 9 is a longitudinal sectional view of the exhaust sensor 18, and FIG. 10 is an enlarged sectional view taken along line AA in FIG. The exhaust sensor 18 applied to the present invention is a known zirconia solid electrolyte type oxygen concentration sensor that is normally used. A detection element 43 having a zirconia solid electrolyte sheet 42 is housed in a metal cylindrical housing 40 while holding an outer periphery of an intermediate portion on an insulating member 41. An insulative sealing material 44 is filled in the recess at the center of the insulating member 41, and the exhaust in the exhaust pipe 11 and the atmosphere are blocked at this portion.

酸素検知部45となる検知素子43の先端部(図の下端部)は、ハウジング40より突出して図の下方に延び、ハウジング40の下端に固定された容器状の素子カバー46、47内に収納されている。素子カバーは2重になっており、内側カバー46の外側に外側カバー47が配設され、それぞれのカバー46、47には排気管11内を流れる排気を取入れる排気取入れ孔46a、47aが複数形成してある。排気取入れ孔46a、47aは、排気の流れが直接検知部45に当たらないよう、その中心を不一致にして配置し、外側カバー47の排気取入れ孔47aの位置は、内側カバー46の排気取入れ孔46aの位置より先端側に配置(排気管11に取付けたとき、管壁から半径のほぼ7/10の位置)してある。   The front end portion (lower end portion in the figure) of the detection element 43 serving as the oxygen detection portion 45 protrudes from the housing 40 and extends downward in the figure, and is housed in container-like element covers 46 and 47 fixed to the lower end of the housing 40. Has been. The element covers are doubled, and an outer cover 47 is disposed outside the inner cover 46. Each of the covers 46, 47 has a plurality of exhaust intake holes 46a, 47a for taking in the exhaust flowing in the exhaust pipe 11. It is formed. The exhaust intake holes 46a and 47a are arranged with their centers inconsistent so that the flow of exhaust does not directly hit the detection unit 45, and the position of the exhaust intake hole 47a of the outer cover 47 is the exhaust intake hole 46a of the inner cover 46. It is arranged on the tip side from the position (when attached to the exhaust pipe 11, the position is approximately 7/10 of the radius from the pipe wall).

検知素子43の後端部(図の上端部)は、ハウジング40より突出して図の上方に延び、ハウジング40の上端に固定される筒状の大気カバー48内に収納されている。大気カバー48の上半部は二重筒状としてあり、その内外筒48c、48dの対向位置に大気導入口48a、48bを有し、これら大気導入口48a、48bより基準電極42bのための大気を大気カバー48内に取込むようにしてある。これら大気導入口48a、48bの形成位置において、大気カバー48の内外筒48c、48d間には、防水のために撥水性のフィルタ49が配設してある。従って、センサ内部に水分は入らず、大気のみが導入される。   A rear end portion (upper end portion in the drawing) of the detection element 43 protrudes from the housing 40 and extends upward in the drawing, and is housed in a cylindrical atmospheric cover 48 fixed to the upper end of the housing 40. The upper half of the atmospheric cover 48 is formed in a double cylinder shape, and has atmospheric introduction ports 48a and 48b at positions opposed to the inner and outer cylinders 48c and 48d, and the atmospheric air for the reference electrode 42b from these atmospheric introduction ports 48a and 48b. Is taken into the atmosphere cover 48. A water-repellent filter 49 is disposed between the inner and outer cylinders 48c and 48d of the atmospheric cover 48 at the positions where the atmospheric introduction ports 48a and 48b are formed for waterproofing. Accordingly, moisture does not enter the sensor and only the atmosphere is introduced.

大気カバー48の中央内部にはほぼリング状の絶縁保持部材50が配設され、絶縁保持部材50の内部には、一端が検知素子43の後端部のリード部51と、他端が外部リード線54、55と電気的に接続する板バネ状の金属端子52、53が配設してある。また、絶縁保持部材50の上部には、大気導入口48a、48bより導入された大気をセンサ素子セル43内に設けられた大気通路57(図10)と連通させるための連通口50aが形成されている。   A substantially ring-shaped insulating holding member 50 is disposed in the center of the atmospheric cover 48, and one end of the insulating holding member 50 has a lead portion 51 at the rear end of the detection element 43 and the other end has an external lead. Plate spring-like metal terminals 52 and 53 electrically connected to the wires 54 and 55 are provided. In addition, a communication port 50 a is formed in the upper part of the insulating holding member 50 to allow the air introduced from the air introduction ports 48 a and 48 b to communicate with the atmospheric passage 57 (FIG. 10) provided in the sensor element cell 43. ing.

外部リード線54、55及び金属端子52、53は、図9が断面を表しているため、外部リード線が2本、金属端子が2本しか図示されていないが、実際は図面の垂直方向に外部リード線が2本、金属端子が2本存在する。即ち、外部リード線が4本、金属端子が4本存在する。そして、左側に図示された外部リード線55と金属端子53(実際は各1対存在)が、後述する作用電極と基準電極に電気的に接続され、右側に図示された外部リード線54と金属端子52(実際は各1対存在)が、後述する電熱ヒータの1対のリード線と電気的に接続されている。   Since the external lead wires 54 and 55 and the metal terminals 52 and 53 are shown in cross-section in FIG. 9, only two external lead wires and two metal terminals are shown, but in reality, the external lead wires 54 and 55 are external in the vertical direction There are two lead wires and two metal terminals. That is, there are four external lead wires and four metal terminals. Then, the external lead wire 55 and the metal terminal 53 (in fact, one pair each) illustrated on the left side are electrically connected to a working electrode and a reference electrode, which will be described later, and the external lead wire 54 and the metal terminal illustrated on the right side. 52 (actually one pair exists) is electrically connected to a pair of lead wires of an electric heater described later.

検知素子43には、図10に示すように板状のジルコニア固体電解質シート42が配設され、その外側に排気に晒される作用電極42aと、内部側に基準電極42bが配設され、上述のごとく検知素子42のリード部51で金属端子53(もう1つの金属端子は図示されていない)と電気的に接続されている。そして、基準電極42bは、大気が導入される大気導入用ダクト56によって形成される大気通路57に晒されている。   As shown in FIG. 10, the detection element 43 is provided with a plate-like zirconia solid electrolyte sheet 42, a working electrode 42 a that is exposed to exhaust gas on the outside thereof, and a reference electrode 42 b that is provided on the inner side. Thus, the lead 51 of the detection element 42 is electrically connected to the metal terminal 53 (the other metal terminal is not shown). The reference electrode 42b is exposed to an air passage 57 formed by an air introduction duct 56 into which air is introduced.

前記ジルコニア固体電解質シート42の両面には電極42a並びに42bが対向するよう配置され、電気化学的セルを形成している。検知素子43を構成する電気化学的セルは、正確な出力を得るために十分に内部抵抗を下げる必要があり、それゆえ650℃以上に加熱されなければならない。そのため、検知素子43の検知部45を加熱する電熱ヒータ58が設けられ絶縁シート59内に埋設されている。なお、電熱ヒータ58の断面部位は通常2つのところ4つ図示されているが、これは切断面(A−A線)において電熱ヒータ58が折返し屈曲しているためである。また、電熱ヒータ58への通電は、上述のごとく、1対の外部リード線54(もう1つの外部リード線は図示されていない)及び1対の金属端子52(もう1つの金属端子は図示されていない)を通して行われる。   Electrodes 42a and 42b are arranged on both sides of the zirconia solid electrolyte sheet 42 so as to face each other to form an electrochemical cell. The electrochemical cell constituting the sensing element 43 needs to have a sufficiently low internal resistance in order to obtain an accurate output, and therefore must be heated to 650 ° C. or higher. Therefore, an electric heater 58 for heating the detection unit 45 of the detection element 43 is provided and embedded in the insulating sheet 59. It should be noted that the cross section of the electric heater 58 is usually shown in four places, but this is because the electric heater 58 is bent and bent at the cut surface (AA line). In addition, as described above, the electric heater 58 is energized with a pair of external lead wires 54 (the other external lead wire is not shown) and a pair of metal terminals 52 (the other metal terminal is shown). Not through).

検知素子43を構成するジルコニア固体電解質シート42の排気に晒される面側には、作用電極42aの他に、排気透過層60と排気遮蔽層61とが順次積層されている。排気透過層60は、作用電極42aへ排気を導入するための多孔質シートであり、アルミナ、スピネル、ジルコニア等のセラミックスをシート成形したものである。そして、検知素子43全体を高比表面積アルミナの保護層62で覆い、排気中の被毒成分により排気透過層60が目詰まりするのを防止している。   In addition to the working electrode 42a, an exhaust transmission layer 60 and an exhaust shielding layer 61 are sequentially stacked on the surface exposed to the exhaust of the zirconia solid electrolyte sheet 42 constituting the detection element 43. The exhaust permeable layer 60 is a porous sheet for introducing exhaust into the working electrode 42a, and is formed by sheet-forming ceramics such as alumina, spinel, zirconia. The entire sensing element 43 is covered with a protective layer 62 of high specific surface area alumina to prevent the exhaust transmission layer 60 from being clogged by poisoning components in the exhaust.

上記の排気センサ18は、素子カバー46、47及び検知部45を排気管11内に突出して、ハウジング40の下端に形成されたネジ部40aを排気管11に設けたメネジ座11cにネジ込み固定される。そして、排気センサ18が振動等でネジ部40aとメネジ座11cとの螺着の緩みと排気洩れをガスケット63で防止している。   In the exhaust sensor 18, the element covers 46 and 47 and the detection portion 45 protrude into the exhaust pipe 11, and a screw portion 40 a formed at the lower end of the housing 40 is screwed and fixed to a female screw seat 11 c provided in the exhaust pipe 11. Is done. The exhaust sensor 18 prevents the looseness of the screwing between the screw portion 40a and the female screw seat 11c and the exhaust leakage by the gasket 63 due to vibration or the like.

上記構成の排気センサ18において、排気が外側カバー47の排気取入れ孔47aから入り、内側カバー46の排気取入れ孔46aを通り、更に検知素子43内の排気透過層60を通りジルコニア固体電解質シート42に触れる。大気通路57中の大気に晒されている基準電極42bと排気に晒される作用電極42a間に、所定の電圧を印加すると排気中の酸素濃度に応じて両電極42a、42b間に限界電流が現れ、この限界電流を出力電流として上記1対の外部リード線55で(もう1つの外部リード線は図示されていない)取出し、排気管11内の酸素濃度の情報としてECU23(図8)に入力する。   In the exhaust sensor 18 having the above-described configuration, exhaust gas enters from the exhaust intake hole 47a of the outer cover 47, passes through the exhaust intake hole 46a of the inner cover 46, and further passes through the exhaust transmission layer 60 in the detection element 43 to the zirconia solid electrolyte sheet 42. touch. When a predetermined voltage is applied between the reference electrode 42b exposed to the atmosphere in the atmosphere passage 57 and the working electrode 42a exposed to the exhaust, a limit current appears between the electrodes 42a and 42b according to the oxygen concentration in the exhaust. The limit current is output as an output current through the pair of external lead wires 55 (the other external lead wire is not shown), and is input to the ECU 23 (FIG. 8) as oxygen concentration information in the exhaust pipe 11. .

次に本発明の実施形態を図1、図2、図3、図4に基づき説明する。図1は、本発明になる内燃機関の排気管への排気センサ取付け構造の正面断面図、図2は、図1のA−A線矢視断面図、図3は、図1のB部拡大図、図4は、図1のC部拡大図である。ほぼ円筒形の金属製の排気管11内には、排気浄化装置12をなすDPFが搭載されている。この排気浄化装置12が搭載れている位置の排気管11の径は、排気浄化装置12が排気通過有効面積を得るために外径が大きくなっている関係上、他の部分より大きくなっている。従って、排気管11における排気浄化装置12の下流部11aは、下流に続く排気管11と接続させるため、下流方向に先細形成部11bが形成されている。そして排気浄化装置12の下流側の排気管11に溶接によって取付けられたメネジ座11cを介して排気センサとしてジルコニア固体電解質型酸素濃度センサ18がネジ締め固定される。そして排気センサ18を排気管11に固定したとき、外側の素子カバー47の排気取入れ孔47aは、排気管11の管壁から半径のほぼ7/10のところに位置する。   Next, an embodiment of the present invention will be described based on FIG. 1, FIG. 2, FIG. 3, and FIG. FIG. 1 is a front sectional view of an exhaust sensor mounting structure to an exhaust pipe of an internal combustion engine according to the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 4 and 4 are enlarged views of a portion C in FIG. In the substantially cylindrical metal exhaust pipe 11, a DPF constituting an exhaust purification device 12 is mounted. The diameter of the exhaust pipe 11 at the position where the exhaust purification device 12 is mounted is larger than the other parts because the exhaust purification device 12 has a larger outer diameter in order to obtain an exhaust passage effective area. . Therefore, the downstream portion 11a of the exhaust gas purification device 12 in the exhaust pipe 11 is connected to the exhaust pipe 11 that continues downstream, so that a tapered forming portion 11b is formed in the downstream direction. A zirconia solid electrolyte type oxygen concentration sensor 18 is screwed and fixed as an exhaust sensor through a female screw seat 11c attached to the exhaust pipe 11 on the downstream side of the exhaust purification device 12 by welding. When the exhaust sensor 18 is fixed to the exhaust pipe 11, the exhaust intake hole 47 a of the outer element cover 47 is located at a radius of about 7/10 from the tube wall of the exhaust pipe 11.

また、排気浄化装置12で浄化(煤などの微粒炭素の除去)された高温の排気が排気管11内を下流方向(図1の右方向)に流通する。冬期などの外気温度が低い時期にエンジンを停止すると排気管11内に滞留している排気中の水蒸気が、低温の外気により低温になった排気管11の壁に触れて凝縮し、排気管11の内壁11dに結露し付着する現象が生じる。また、冷間状態のエンジンを始動した時にも、低温の排気管11に水蒸気が触れて凝縮し排気管11の内壁11dに付着する。この凝縮水は排気管11の先細形成部11bにも結露し付着する。そしてこの先細形成部11bに結露し付着した凝縮水は、高速の排気の流れにより先細形成部11bの壁面に沿って飛散し、下流方向の排気管11へ飛散する。特に先細形成部11bから排気管11bへ接続される領域は、排気が先細形成部11bに沿った方向から、排気管11の中心方向へ徐々に向かって流れ、凝縮水もこの排気の流れと共に破線矢印で示すように飛散する。そのため排気センサ18の取付け位置では、凝縮水が排気管11の中心領域を通過し、排気センサ18の検知部45は素子カバー47の排気取入れ孔47aから侵入する凝縮水の被水を受けやすい。   Further, high-temperature exhaust gas purified (removal of particulate carbon such as soot) by the exhaust gas purification device 12 flows in the exhaust pipe 11 in the downstream direction (right direction in FIG. 1). When the engine is stopped at a time when the outside air temperature is low, such as in winter, the water vapor in the exhaust gas staying in the exhaust pipe 11 touches the wall of the exhaust pipe 11 which has become low temperature due to the low temperature outside air and condenses. Phenomenon of condensation on the inner wall 11d occurs. Further, when the engine in the cold state is started, water vapor touches the low temperature exhaust pipe 11 to condense and adhere to the inner wall 11 d of the exhaust pipe 11. This condensed water is also condensed and attached to the tapered forming portion 11b of the exhaust pipe 11. And the condensed water which has condensed and adhered to the taper forming portion 11b is scattered along the wall surface of the taper forming portion 11b by the flow of high-speed exhaust gas, and is scattered to the exhaust pipe 11 in the downstream direction. In particular, in the region where the taper forming portion 11b is connected to the exhaust pipe 11b, the exhaust gas gradually flows from the direction along the taper forming portion 11b toward the center of the exhaust pipe 11, and the condensed water is broken along with the flow of the exhaust gas. Spatter as shown by the arrows. Therefore, at the position where the exhaust sensor 18 is attached, the condensed water passes through the central region of the exhaust pipe 11, and the detection unit 45 of the exhaust sensor 18 is likely to receive water from the condensed water entering from the exhaust intake hole 47 a of the element cover 47.

30は凝縮水飛散経路誘導手段をなし耐熱、耐腐食性金属部材からなる薄板状で断面円形の誘導部材である。この誘導部材30は、排気浄化装置12の下流側の排気管11内に沿ってその軸心を一致して配置され、周方向3箇所で固定部材31により排気管11に溶接固定されている。従って、排気管11と誘導部材30は側面から見ると図2に示すように同芯円状になっており、両者の間隙tは全周に亘って一定となっている。なお、固定部材31も誘導部材30と同様の材質で形成されている。また、誘導部材30の排気管11への保持は、両者の間隙t内に通気性のあるメタルウールを充填して保持するようにしてもよい。さらに誘導部材30の材質は、金属メッシュ、パンチングメタルでもよい。更に前記排気浄化装置12はDPFであったが、触媒コンバータであってもよい。   Reference numeral 30 denotes a thin plate-shaped guide member having a circular cross-section, which is a heat-resistant and corrosion-resistant metal member and serves as a condensed water scattering path guiding means. The guide member 30 is arranged along the exhaust pipe 11 on the downstream side of the exhaust purification device 12 so that the axes thereof coincide with each other, and is fixed to the exhaust pipe 11 by fixing members 31 at three locations in the circumferential direction. Therefore, when viewed from the side, the exhaust pipe 11 and the guide member 30 are concentric circles as shown in FIG. 2, and the gap t between them is constant over the entire circumference. Note that the fixing member 31 is also formed of the same material as that of the guide member 30. Further, the guide member 30 may be held in the exhaust pipe 11 by filling the gap t between the two with a metal wool having air permeability. Furthermore, the material of the guide member 30 may be a metal mesh or a punching metal. Furthermore, although the exhaust purification device 12 is a DPF, it may be a catalytic converter.

誘導部材30の上流側の端部30a及び下流側の端部30bの位置について、発明者は実験により以下のような結果を得た。誘導部材30の上流側の端部30aの位置については、図3に示すように、誘導部材30の径を変えたとき、凝縮水が誘導部材30内に入り込まない端部30aの位置をプロットすると、そのプロット面Xが排気管内壁11fに対して30°をなし、その延長が排気管11の先細形状部11bの端部11eに至ることが判明した。即ち、誘導部材30の上流側の端部30aの位置は、排気管11の先細形状部11bの端部11eから排気管内壁11fに対して内側方向に30°を成す面Xと誘導部材30の内壁30bとの交叉位置Mであり、誘導部材30の径を定めたとき、この交叉位置Mより上流側に位置していることが必要である。この場合、排気管11の先細形状部11bの傾斜度が大きい場合と小さい場合でも、凝縮水が排気管11の先細形状部11bから排気管11に飛散して行く経路は、排気の流速が速いため凝縮水の飛散経路はほとんど同じ経路を辿ることが実験観察で確認できた。   With respect to the positions of the upstream end 30a and the downstream end 30b of the guide member 30, the inventors have obtained the following results through experiments. As shown in FIG. 3, when the diameter of the guide member 30 is changed, the position of the end 30a where the condensed water does not enter the guide member 30 is plotted. It has been found that the plot surface X forms 30 ° with respect to the exhaust pipe inner wall 11f, and the extension reaches the end portion 11e of the tapered portion 11b of the exhaust pipe 11. That is, the position of the upstream end 30a of the guide member 30 is such that the end X of the tapered portion 11b of the exhaust pipe 11 and the surface X that forms 30 ° inward with respect to the exhaust pipe inner wall 11f and the guide member 30 It is a crossing position M with the inner wall 30b, and when the diameter of the guide member 30 is determined, it is necessary to be located upstream from the crossing position M. In this case, even when the inclination of the tapered portion 11b of the exhaust pipe 11 is large or small, the path through which the condensed water scatters from the tapered portion 11b of the exhaust pipe 11 to the exhaust pipe 11 has a high exhaust flow velocity. Therefore, it was confirmed by experimental observation that the condensate scattering path follows almost the same path.

一方、誘導部材30の下流側の端部30bの位置については、図4に示すように、誘導部材30の径を変えたとき、誘導部材30により飛散経路を変更され誘導部材30を通過した凝縮水が排気センサ18の素子カバー47の排気取入れ孔47aに入り込まない下流側端部30bの境界位置をプロットすると、そのプロット面Yが誘導部材30の外壁面30cに対して30°をなし、その延長が素子カバー47の排気取入れ孔47aの位置に至ることが判明した。即ち、誘導部材30の下流側端部30bの位置は、該誘導部材30の外壁面下流側端部30bを基点として該外壁面の延長線30cに対し、排気管内側下流方向に30°を成す仮想面Yに対し前記素子カバー47の排気取入れ孔47aが排気上流側に位置することが必要である。 なお、上述の誘導部材30の上流側端部30a及び下流側端部30bの位置に関し、排気管内壁11fに対して内側方向に成すプロット面X及び外壁面の延長線30cに対し排気管内側下流方向に成す仮想面Yの角度について更に実験を重ねた結果、プロット面X及び仮想面Yのなす角度が30°の範囲で効果が得られることが確認できた。   On the other hand, as to the position of the downstream end 30b of the guide member 30, as shown in FIG. 4, when the diameter of the guide member 30 is changed, the scattering path is changed by the guide member 30 and the condensation has passed through the guide member 30. When the boundary position of the downstream end 30b where water does not enter the exhaust intake hole 47a of the element cover 47 of the exhaust sensor 18 is plotted, the plot surface Y forms 30 ° with respect to the outer wall surface 30c of the guide member 30, It has been found that the extension reaches the position of the exhaust intake hole 47 a of the element cover 47. That is, the position of the downstream end portion 30b of the guide member 30 is 30 ° in the exhaust pipe inner downstream direction with respect to the extension line 30c of the outer wall surface with the outer wall downstream end portion 30b of the guide member 30 as a base point. It is necessary that the exhaust intake hole 47a of the element cover 47 is positioned on the exhaust upstream side with respect to the virtual plane Y. In addition, regarding the positions of the upstream end portion 30a and the downstream end portion 30b of the guide member 30, the plot pipe X formed in the inner side with respect to the exhaust pipe inner wall 11f and the extension line 30c of the outer wall surface on the exhaust pipe inner downstream side. As a result of further experiments regarding the angle of the virtual plane Y formed in the direction, it was confirmed that the effect was obtained when the angle formed by the plot plane X and the virtual plane Y was 30 °.

このように誘導部材30の上流側の端部30a及び下流側の端部30bの位置を設定することにより、上流側の端部30a側においては、排気管11における排気浄化装置12の下流部11aの先細形状部11bに結露した凝縮水が上述のごとく排気の流れによって下流側に飛散するが、凝縮水の飛散経路を、排気センサ18の検知部45を覆う素子カバー47を通過する排気通過領域W(図1)から誘導部材30によって強制的に変更させ、凝縮水を実線矢印で示すように凝縮水通過領域Z(図1)、即ち、排気管11と誘導部材30との間隙t内を飛散通過させることができる。凝縮水通過領域Zを通過し誘導部材30の下流側の端部30bを経た凝縮水は、排気センサ18の検知部45を覆う素子カバー47を通過する排気通過領域W内に吸引されるが、誘導部材30の下流側端部30bの位置が素子カバー47の排気取入れ孔47a位置に対して上述のように設定されているので、凝縮水が排気取入れ孔47aから入り込むことはない。   In this way, by setting the positions of the upstream end 30a and the downstream end 30b of the guide member 30, the downstream end 11a of the exhaust purification device 12 in the exhaust pipe 11 is formed on the upstream end 30a side. The condensed water condensed on the tapered portion 11b is scattered downstream by the flow of exhaust as described above, but the exhaust passage region through which the condensed water scatters through the element cover 47 covering the detection unit 45 of the exhaust sensor 18. W (FIG. 1) is forcibly changed by the guide member 30, and the condensed water passes through the condensed water passage region Z (FIG. 1), that is, in the gap t between the exhaust pipe 11 and the guide member 30, as indicated by the solid arrow. It can be scattered and passed. The condensed water that has passed through the condensed water passage area Z and passed through the downstream end 30b of the guide member 30 is sucked into the exhaust passage area W that passes through the element cover 47 that covers the detection part 45 of the exhaust sensor 18, Since the position of the downstream end 30b of the guide member 30 is set as described above with respect to the position of the exhaust intake hole 47a of the element cover 47, condensed water does not enter from the exhaust intake hole 47a.

このように、従来では自然物理現象による凝縮水の滴下貯留や凝縮水の飛散速度の減速によって凝縮水の被水を防止しているのに比べ、本案では、凝縮水の飛散経路を、誘導部材30で強制的に排気センサ18の検知部45を覆う素子カバー47外周を通過する排気通過領域Wから完全に変更させ、凝縮水通過領域Zを通過させているので、排気カバー47の排気取入れ孔47aから凝縮水が侵入するのを阻止し、排気センサ18の検知部45への凝縮水の被水を確実に防止することができる。とりわけ、排気センサ18の検知部45が内蔵電熱ヒータによって650℃以上に加熱して使用されるジルコニア固体電解質型酸素濃度センサである場合は、凝縮水被水による熱応力破損を防止でき、性能の良好な排気浄化システムを提供できる。従って、排気中の水蒸気が結露した直後であってもエンジンの正常な始動を行うことができる。また、誘導部材30は排気管11と共通の中心線を有するので、両者間の間隙tは全周に亘って一定であり、凝縮水の飛散流れを全周に亘って良好にすることができる。更に、本実施形態で説明した誘導部材30は、発明効果が得られる形状において、全長が最短長であり製作コストを最小限することができる。   Thus, compared to the conventional condensate water dripping and storage due to natural physics and the condensate splash rate being reduced, the condensate splash path is defined as a guide member. Since the exhaust passage region W passing through the outer periphery of the element cover 47 forcibly covering the detection unit 45 of the exhaust sensor 18 at 30 is completely changed to pass the condensed water passage region Z, the exhaust intake hole of the exhaust cover 47 is It is possible to prevent the condensed water from entering from 47a, and to reliably prevent the condensed water from entering the detection unit 45 of the exhaust sensor 18. In particular, in the case where the detection unit 45 of the exhaust sensor 18 is a zirconia solid electrolyte type oxygen concentration sensor that is used by being heated to 650 ° C. or more by a built-in electric heater, it is possible to prevent thermal stress damage due to condensate water exposure, A good exhaust purification system can be provided. Therefore, the engine can be normally started even immediately after the water vapor in the exhaust gas is condensed. Further, since the guide member 30 has a common center line with the exhaust pipe 11, the gap t between them is constant over the entire circumference, and the flow of condensed water can be made favorable over the entire circumference. . Furthermore, the guide member 30 described in the present embodiment has the shortest overall length in the shape that can achieve the invention effect, and can minimize the manufacturing cost.

なお、凝縮水通過領域Zの幅、即ち、排気管11と誘導部材30との間隙tは、実験によれば凝縮水が通過できる最小限0.5mmを必要とする。一方、間隙tの上限は、上述の誘導部材30の上流側の端部30a及び下流側の端部30bの位置の設定要領に従って大きく(誘導部材30の径を小さく)することができる。即ち、図2に示す状態から見て誘導部材30の内径領域内に素子カバー47の排気取入れ孔47aが存在する位置まで、誘導部材30の径を小さくして間隙tを大きくすることができる。   In addition, the width of the condensed water passage area Z, that is, the gap t between the exhaust pipe 11 and the guide member 30 requires a minimum of 0.5 mm through which condensed water can pass according to experiments. On the other hand, the upper limit of the gap t can be increased (the diameter of the guide member 30 is reduced) according to the setting procedure of the positions of the upstream end 30a and the downstream end 30b of the guide member 30 described above. That is, the diameter of the guide member 30 can be reduced and the gap t can be increased to a position where the exhaust intake hole 47a of the element cover 47 exists in the inner diameter region of the guide member 30 when viewed from the state shown in FIG.

図5は、本発明の他の実施形態を示すもので、誘導部材30の上流側端部30a及び下流側端部30bをそれぞれ上流側及び下流側へ延伸させた例であり、他の部位、構造については図1に示すものと同じである。誘導部材30の上流側端部30aは先細形状部11bの下流側端部11eの位置より上流側に延伸させる。一方、下流側端部30bは排気センサ18の取付け位置を越えて下流側に延伸させる。この場合、誘導部材30の排気センサ18の取付け位置の部位に孔30cを形成し、この孔30cから排気センサ18の検知部45及び素子カバー47を誘導部材30内に配置させる。   FIG. 5 shows another embodiment of the present invention, which is an example in which the upstream end 30a and the downstream end 30b of the guide member 30 are extended to the upstream side and the downstream side, respectively. The structure is the same as that shown in FIG. The upstream end 30a of the guide member 30 is extended upstream from the position of the downstream end 11e of the tapered portion 11b. On the other hand, the downstream end 30b extends to the downstream side beyond the attachment position of the exhaust sensor 18. In this case, a hole 30 c is formed at a position where the exhaust sensor 18 is attached to the guide member 30, and the detection unit 45 and the element cover 47 of the exhaust sensor 18 are disposed in the guide member 30 through the hole 30 c.

このように誘導部材30の上流側端部30aを、先細形状部11bの下流側端部11eの位置より上流側に延伸させ、下流側端部30bを排気センサ18の取付け位置を越えて下流側に延伸させることにより、凝縮水の飛散経路を、排気センサ18の検知部45を覆う素子カバー47外周を通過する排気通過領域Wから変更し、排気センサ18の取付け位置を越えた下流領域まで誘導状態を保持しているので、図1、図2で示した実施形態より、更に確実に凝縮水の排気センサ18の検知部45への被水を防止できる。なお、凝縮水は通常、排気管11の下部(図面の下方)に沿い流れて多く付着するため、孔30cに代わって、誘導部材30の全長に亘って長手方向のスリットを形成し、このスリットを通して排気センサ18の検知部45及び素子カバー47を誘導部材30内に配置してもよく、同様の効果が得られる。なお、誘導部材30の上流側端部30aを仮想線で示すように、排気浄化装置12の近傍まで延伸させれば、凝縮水の飛散経路を排気通過領域Wから完全に変更することができる。誘導部材30の上流側端部30aの延伸長さは排気流速等に応じて適宜設定すればよい。   In this way, the upstream end 30a of the guide member 30 extends upstream from the position of the downstream end 11e of the tapered portion 11b, and the downstream end 30b extends downstream from the position where the exhaust sensor 18 is attached. The condensate scattering path is changed from the exhaust passage region W passing through the outer periphery of the element cover 47 covering the detection unit 45 of the exhaust sensor 18 to the downstream region beyond the mounting position of the exhaust sensor 18. Since the state is maintained, the detection unit 45 of the exhaust sensor 18 of the condensed water can be prevented more reliably than the embodiment shown in FIGS. 1 and 2. In addition, since condensed water usually flows along the lower part of the exhaust pipe 11 (lower part of the drawing) and adheres, a slit in the longitudinal direction is formed over the entire length of the guide member 30 instead of the hole 30c. The detection unit 45 and the element cover 47 of the exhaust sensor 18 may be disposed in the guide member 30 through the same effect, and the same effect can be obtained. In addition, if the upstream end 30a of the guide member 30 is extended to the vicinity of the exhaust purification device 12 as indicated by a virtual line, the condensate scattering path can be completely changed from the exhaust passage region W. What is necessary is just to set suitably the extending | stretching length of the upstream edge part 30a of the guide member 30 according to an exhaust flow velocity etc. FIG.

図6は、本発明の更に他の実施形態を示すもので、誘導部材30の上流側端部30aを先細形状部11bの下流側端部11eの位置に設定し、この上流側端部30aに、上流側に向かって外側に開く凝縮水飛散経路ガイド部30dを形成した例である。このガイド部30dの傾斜度は先細形状部11bの傾斜度と同じ、即ち両者は平行になっており、材質も誘導部材30と同様の材質である。また、ガイド部30dは誘導部材30と一体形成、或いは別体形成後溶接等接続して形成してもよい。他の部位、構造は図5に示したものと同じである。   FIG. 6 shows still another embodiment of the present invention. The upstream end 30a of the guide member 30 is set at the position of the downstream end 11e of the tapered portion 11b, and the upstream end 30a This is an example in which the condensed water scattering path guide portion 30d that opens outward toward the upstream side is formed. The inclination of the guide portion 30d is the same as the inclination of the tapered portion 11b, that is, both are parallel and the material is the same as that of the guide member 30. Further, the guide portion 30d may be formed integrally with the guide member 30, or connected by welding after forming a separate body. Other parts and structures are the same as those shown in FIG.

このように構成すれば、ガイド部30dの傾斜面に沿って排気の流れが整流され、凝縮水の飛散を凝縮水通過領域Zに通過させることができる。なお、ガイド部30dの延伸長さは排気流速等に応じて適宜設定すればよい。   If comprised in this way, the flow of exhaust_gas | exhaustion will be rectified along the inclined surface of the guide part 30d, and the scattering of condensed water can be passed through the condensed water passage area | region Z. FIG. The extension length of the guide portion 30d may be set as appropriate according to the exhaust flow velocity or the like.

図7は、本発明の更に他の実施形態を示すもので、誘導部材30の上流側端部30aの拡大断面図である。図7(a)は、誘導部材30の上流側端部30aの外周部に45°の面取り30eを切削或いは押当て加工で形成した例を示す。図7は(b)は、誘導部材30の上流側端部30aの外周部にR状の面取り30fを切削或いは押当て加工で形成した例である。図7(c)は、誘導部材30の上流側端部30aの外周部にR状の面取り30fと内周部にR状の突出し部30gを形成した例である。このR状の面取り30fとR状の突出し部30gは、誘導部材30の端部30aの位置を外周から突切りローラで切断する際、同時に成形される。   FIG. 7 shows still another embodiment of the present invention, and is an enlarged cross-sectional view of the upstream end 30 a of the guide member 30. FIG. 7A shows an example in which a 45 ° chamfer 30e is formed on the outer peripheral portion of the upstream end 30a of the guide member 30 by cutting or pressing. FIG. 7B is an example in which an R-shaped chamfer 30 f is formed on the outer peripheral portion of the upstream end 30 a of the guide member 30 by cutting or pressing. FIG. 7C is an example in which an R-shaped chamfer 30 f is formed on the outer peripheral portion of the upstream end 30 a of the guide member 30 and an R-shaped protruding portion 30 g is formed on the inner peripheral portion. The R-shaped chamfer 30f and the R-shaped protruding portion 30g are simultaneously formed when the position of the end portion 30a of the guide member 30 is cut from the outer periphery with a parting roller.

このように誘導部材30の上流側端部30aの外周に面取り30e、30fを形成しているので、この面取り30e、30fで、排気の流れ抵抗を減少させることができると共に、凝縮水の飛散経路を確実に凝縮水通過領域Zに導くことができる。また、上述のR状の突出し部30gを形成することにより、この突出し部30gで凝縮水が排気通過領域W内に入り込むのを防止することができる。なお、この面取り30e、30fは、図6で説明したガイド部30dの外周に形成してもよい。なお、誘導部材30の上流側端部30aには、このガイド部30dの上流側端部も含まれる。   Since the chamfers 30e and 30f are formed on the outer periphery of the upstream end 30a of the guide member 30 in this way, the chamfers 30e and 30f can reduce the flow resistance of the exhaust gas, and the condensed water scattering path. Can be reliably guided to the condensed water passage region Z. Further, by forming the above-described R-shaped protruding portion 30g, it is possible to prevent the condensed water from entering the exhaust passage region W by the protruding portion 30g. The chamfers 30e and 30f may be formed on the outer periphery of the guide part 30d described with reference to FIG. The upstream end portion 30a of the guide member 30 includes the upstream end portion of the guide portion 30d.

なお、上述の排気通過領域W及び凝縮水通過領域Zについて、排気通過領域Wとは凝縮水は飛散通過せず、排気センサ18の検知部45を覆う素子カバー47外周を通過する領域を意味し、凝縮水通過領域Zとは凝縮水と排気が一緒に通過する誘導部材30と排気管11との間隙tを意味する。また、上記実施形態では、排気センサ18はジルコニア固体電解質型酸素濃度センサであったが、これに限定されず排気管11における排気浄化装置12下流側11aの先細形状部11bより下流側に取付けられるセンサ例えば窒素酸化物濃度センサ、炭化水素濃度センサ、一酸化炭素濃度センサ等であってもよい。また、上記実施形態では、本案をディーゼルエンジンの排気浄化システムに適用した例であったが、ガソリンエンジンの排気浄化システムに適用してもよい。   Note that, regarding the exhaust passage region W and the condensed water passage region Z described above, the exhaust passage region W means a region where the condensed water does not scatter and passes through the outer periphery of the element cover 47 that covers the detection unit 45 of the exhaust sensor 18. The condensed water passage area Z means a gap t between the guide member 30 and the exhaust pipe 11 through which condensed water and exhaust gas pass together. In the above embodiment, the exhaust sensor 18 is a zirconia solid electrolyte type oxygen concentration sensor. However, the exhaust sensor 18 is not limited to this, and is attached to the exhaust pipe 11 downstream of the tapered portion 11b of the exhaust purification device 12 downstream side 11a. The sensor may be a nitrogen oxide concentration sensor, a hydrocarbon concentration sensor, a carbon monoxide concentration sensor, or the like. In the above embodiment, the present example is applied to an exhaust gas purification system for a diesel engine, but may be applied to an exhaust gas purification system for a gasoline engine.

本発明の実施形態を示す内燃機関の排気管への排気センサ取付け構造の正面断面図。1 is a front sectional view of an exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine showing an embodiment of the present invention. 図1のA−A線矢視断面図。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 図1のB部拡大図。The B section enlarged view of FIG. 図1のC部拡大図である。It is the C section enlarged view of FIG. 本発明の他の実施形態を示す内燃機関の排気管への排気センサ取付け構造の正面断面図。The front sectional view of the exhaust sensor attachment structure to the exhaust pipe of the internal combustion engine which shows other embodiments of the present invention. 本発明の更に他の実施形態を示す内燃機関の排気管への排気センサ取付け構造の正面断面図。The front sectional view of the exhaust sensor attachment structure to the exhaust pipe of the internal combustion engine which shows further another embodiment of the present invention. (a)、(b)、(c)は、それぞれ本発明における誘導筒の上流側端部の実施形態を示し、図3のD部拡大図である。(A), (b), (c) shows the embodiment of the upstream edge part of the guide tube in this invention, respectively, and is the D section enlarged view of FIG. 本発明になる内燃機関の排気管への排気センサ取付け構造を付設したディーゼルエンジンの全体概略構成図である。1 is an overall schematic configuration diagram of a diesel engine provided with an exhaust sensor mounting structure to an exhaust pipe of an internal combustion engine according to the present invention. 本発明における排気センサとしてのジルコニア固体電解質型酸素濃度センサの縦断面図。The longitudinal section of the zirconia solid electrolyte type oxygen concentration sensor as an exhaust sensor in the present invention. 図9のA−A線矢視断面図である。FIG. 10 is a cross-sectional view taken along line AA in FIG. 9.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
11 排気管
11a 排気管11における排気浄化装置12の下流部
11b 排気管11の先細形状部
11e 先細形状部11bの端部
12 排気浄化装置
18 排気センサとしての酸素濃度センサ
30 凝縮水飛散経路分離手段をなす誘導部材
30a 誘導部材30の上流側端部
30b 誘導部材30の下流側端部
45 検知部
47 素子カバー
47a 排気取入れ孔
W 排気通過領域
Z 凝縮水通過領域
1 engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Exhaust pipe 11a The downstream part of the exhaust gas purification apparatus 12 in the exhaust pipe 11 11b The taper-shaped part 11e of the exhaust pipe 11 11e End part of the taper-shaped part 11b 12 Exhaust gas purification apparatus 18 Oxygen concentration sensor as an exhaust sensor 30 Condensate scattering path separation means Inducting member 30a Upstream end 30b of guiding member 30 Downstream end 45 of guiding member 45 Detection unit 47 Element cover 47a Exhaust intake hole W Exhaust passage region Z Condensate passage region

Claims (8)

内燃機関の排気管内に、排気中の有害物質を除去するための排気浄化装置が搭載され、前記排気管における前記排気浄化装置の下流部が下流方向先細形状に形成されると共に、前記排気浄化装置の下流側に、前記排気中の成分を検出する排気センサが取付けられた内燃機関の排気管への排気センサ取付け構造において、
前記排気管内に、前記排気管の先細形状部を含む上流側に結露した凝縮水の飛散経路を、前記排気センサの検知部を覆う素子カバー外周を通過する排気通過領域から変更させ、凝縮水通過領域へ導く凝縮水飛散経路誘導手段を設けたことを特徴とする内燃機関の排気管への排気センサ取付け構造。
An exhaust purification device for removing harmful substances in exhaust gas is mounted in an exhaust pipe of an internal combustion engine, and a downstream portion of the exhaust purification device in the exhaust pipe is formed in a tapered shape in the downstream direction, and the exhaust purification device In the exhaust sensor mounting structure to the exhaust pipe of the internal combustion engine in which the exhaust sensor for detecting the component in the exhaust is mounted on the downstream side of the exhaust gas,
In the exhaust pipe, the condensed water splashing path condensed on the upstream side including the tapered portion of the exhaust pipe is changed from the exhaust passage area passing through the outer periphery of the element cover covering the detection part of the exhaust sensor, and the condensed water passes An exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine, characterized in that a condensed water scattering path guiding means for leading to an area is provided.
前記凝縮水飛散経路誘導手段は、前記排気管内に沿って配置された筒状の誘導部材であって、前記排気通過領域内に前記排気センサの検知部を覆う素子カバーが配置され、かつ前記誘導筒の上流側端部は、前記排気管の先細形状部端部から下流側排気管壁面に対して内側30°をなす面と前記誘導部材の内壁面との交叉位置より上流側に位置し、前記誘導部材の下流側端部は、該誘導部材の外壁下流側端部を基点とし排気管内側下流方向に30°をなす仮想面に対し前記素子カバーの排気取入れ孔が上流側に位置するように配置されている請求項1記載の内燃機関の排気管への排気センサ取付け構造。   The condensed water scattering path guiding means is a cylindrical guiding member disposed along the exhaust pipe, and an element cover that covers a detection part of the exhaust sensor is disposed in the exhaust passage region, and the guidance The upstream end portion of the cylinder is located upstream from the crossing position of the inner wall surface of the guide member and the surface that forms 30 ° inside the downstream exhaust pipe wall surface from the tapered shape end portion of the exhaust pipe, The downstream end of the guide member is arranged such that the exhaust intake hole of the element cover is located on the upstream side with respect to a virtual plane that forms 30 ° in the downstream direction inside the exhaust pipe with the downstream end on the downstream side of the guide member as a base point. 2. An exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine according to claim 1, wherein the exhaust sensor is mounted on the exhaust pipe. 前記誘導部材の上流側端部は、前記排気管の先細形状部端部より上流側に位置している請求項2記載の内燃機関の排気管への排気センサ取付け構造。   The exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine according to claim 2, wherein the upstream end portion of the guide member is located upstream of the tapered portion end portion of the exhaust pipe. 前記誘導部材の下流側端部は、前記排気センサの取付け位置より下流側に位置している請求項2又は3記載の内燃機関の排気管への排気センサ取付け構造。   The exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine according to claim 2 or 3, wherein the downstream end portion of the guide member is positioned downstream of the exhaust sensor mounting position. 前記誘導部材の上流側端部に、排気管形状に相応し上流側に向かって外側に開く凝縮水飛散経路ガイド部が形成されている請求項3に記載の内燃機関の排気管への排気センサ取付け構造。   The exhaust sensor to the exhaust pipe of the internal combustion engine according to claim 3, wherein a condensate scattering path guide portion corresponding to the shape of the exhaust pipe and opening outward toward the upstream side is formed at an upstream end portion of the guide member. Mounting structure. 前記誘導部材の上流側端部の外周部に、面取り部が形成されている請求項2〜5のいずれか一つに記載の内燃機関の排気管への排気センサ取付け構造。   The exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine according to any one of claims 2 to 5, wherein a chamfered portion is formed on an outer peripheral portion of an upstream end portion of the guide member. 前記排気センサは、電熱ヒータを内蔵し、ジルコニア固体電解質型検知素子を具備した酸素濃度センサである請求項1〜6のいずれか一つに記載の内燃機関の排気管への排気センサ取付け構造。   The exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine according to any one of claims 1 to 6, wherein the exhaust sensor is an oxygen concentration sensor including an electric heater and having a zirconia solid electrolyte type sensing element. 前記内燃機関の排気管への排気センサ取付け構造は、ディーゼルエンジンの排気浄化システムにおける内燃機関の排気管への排気センサ取付け構造に適用されている請求項1〜7のいずれか一つに記載の内燃機関の排気管への排気センサ取付け構造。

The exhaust sensor attachment structure to the exhaust pipe of the internal combustion engine is applied to an exhaust sensor attachment structure to the exhaust pipe of the internal combustion engine in an exhaust purification system of a diesel engine. An exhaust sensor mounting structure for an exhaust pipe of an internal combustion engine.

JP2006049824A 2006-02-27 2006-02-27 Installation structure of exhaust sensor to exhaust pipe of internal combustion engine Pending JP2007224877A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006049824A JP2007224877A (en) 2006-02-27 2006-02-27 Installation structure of exhaust sensor to exhaust pipe of internal combustion engine
DE102007000112A DE102007000112A1 (en) 2006-02-27 2007-02-23 Exhaust gas sensor mounting structure
US11/711,162 US20070204597A1 (en) 2006-02-27 2007-02-27 Exhaust sensor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049824A JP2007224877A (en) 2006-02-27 2006-02-27 Installation structure of exhaust sensor to exhaust pipe of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007224877A true JP2007224877A (en) 2007-09-06

Family

ID=38470292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049824A Pending JP2007224877A (en) 2006-02-27 2006-02-27 Installation structure of exhaust sensor to exhaust pipe of internal combustion engine

Country Status (3)

Country Link
US (1) US20070204597A1 (en)
JP (1) JP2007224877A (en)
DE (1) DE102007000112A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174466A (en) * 2010-02-24 2011-09-08 J Eberspecher Gmbh & Co Kg Exhaust gas treatment device
JP2015014264A (en) * 2013-07-08 2015-01-22 スズキ株式会社 Exhaust system of engine
KR20150066232A (en) * 2013-12-06 2015-06-16 대우조선해양 주식회사 Abnormality detecting device of gas extractin fan at gas valve unit room for offshore carrier and abnormality detecting method thereof
JP2017025814A (en) * 2015-07-23 2017-02-02 日野自動車株式会社 Exhaust emission control device
US9977329B2 (en) 2014-01-24 2018-05-22 Toray Industries, Inc. Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated CMOS image sensor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438813B2 (en) * 2007-03-30 2010-03-24 トヨタ自動車株式会社 Power storage device
DE102009007126A1 (en) * 2009-02-02 2010-08-12 Continental Automotive Gmbh Method and apparatus for measuring soot loading in exhaust systems of diesel engines
US20120110982A1 (en) * 2010-11-10 2012-05-10 Mcmackin Mark E Sampling tube for improved exhaust gas flow to exhaust sensor
US8800264B2 (en) * 2010-11-10 2014-08-12 Chrysler Group Llc Sampling tube for improved exhaust gas flow to exhaust sensor
DE102013204780A1 (en) * 2013-03-19 2014-09-25 Robert Bosch Gmbh Exhaust guide element, exhaust gas measuring device for a vehicle and method for producing an exhaust gas guide element
US20150165377A1 (en) * 2013-12-12 2015-06-18 Caterpillar Inc. Nox sensor with amox catalyst
JP6364895B2 (en) * 2014-04-02 2018-08-01 株式会社デンソー EGR system for internal combustion engine
WO2016016936A1 (en) * 2014-07-29 2016-02-04 ニチユ三菱フォークリフト株式会社 Industrial vehicle
US9995720B2 (en) 2015-05-27 2018-06-12 GM Global Technology Operations LLC Plug-in NOx sensor snorkel for reading optimization under packaging constraints
CN114718710A (en) * 2021-01-04 2022-07-08 佛吉亚排气控制技术开发(上海)有限公司 Sensor mount, sensor assembly and exhaust system
DE102021113203A1 (en) * 2021-05-20 2022-11-24 Volkswagen Aktiengesellschaft Exhaust system of an internal combustion engine
US11629623B2 (en) * 2021-05-27 2023-04-18 Deere & Company Exhaust gas sample collector and mixer for aftertreatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577560U (en) * 1991-10-23 1993-10-22 大阪瓦斯株式会社 Flue of internal combustion engine with exhaust gas purification device
JPH08254522A (en) * 1995-03-16 1996-10-01 Toyota Motor Corp Arrangement structure of oxygen concentration sensor of internal combustion engine
JPH1023517A (en) * 1996-06-28 1998-01-23 Fujitsu Ltd Mobile communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055214Y2 (en) * 1986-08-20 1993-02-10
JP3706075B2 (en) * 2002-02-15 2005-10-12 本田技研工業株式会社 O2 sensor and air-fuel ratio control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577560U (en) * 1991-10-23 1993-10-22 大阪瓦斯株式会社 Flue of internal combustion engine with exhaust gas purification device
JPH08254522A (en) * 1995-03-16 1996-10-01 Toyota Motor Corp Arrangement structure of oxygen concentration sensor of internal combustion engine
JPH1023517A (en) * 1996-06-28 1998-01-23 Fujitsu Ltd Mobile communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174466A (en) * 2010-02-24 2011-09-08 J Eberspecher Gmbh & Co Kg Exhaust gas treatment device
JP2015014264A (en) * 2013-07-08 2015-01-22 スズキ株式会社 Exhaust system of engine
KR20150066232A (en) * 2013-12-06 2015-06-16 대우조선해양 주식회사 Abnormality detecting device of gas extractin fan at gas valve unit room for offshore carrier and abnormality detecting method thereof
KR102165067B1 (en) * 2013-12-06 2020-10-13 대우조선해양 주식회사 Abnormality detecting device of gas extractin fan at gas valve unit room for offshore carrier and abnormality detecting method thereof
US9977329B2 (en) 2014-01-24 2018-05-22 Toray Industries, Inc. Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated CMOS image sensor
JP2017025814A (en) * 2015-07-23 2017-02-02 日野自動車株式会社 Exhaust emission control device

Also Published As

Publication number Publication date
US20070204597A1 (en) 2007-09-06
DE102007000112A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP2007224877A (en) Installation structure of exhaust sensor to exhaust pipe of internal combustion engine
US10753262B2 (en) Control system of exhaust sensor
RU2704382C9 (en) System (embodiments) and method of detecting solid particles
US20120085146A1 (en) Particulate matter detection sensor
JP6589944B2 (en) Exhaust system for internal combustion engine
KR102048779B1 (en) Exhaust system for an internal combustion engine, and method for operating such an exhaust system
WO2006059219A1 (en) Exhaust gas control apparatus
WO2018110318A1 (en) Engine exhaust device
JP2010001869A (en) Exhaust system of internal combustion engine
JP2011021595A (en) Intake system for internal combustion engine
JP2011080926A (en) Particulate detecting element
CN108571354B (en) Exhaust device of engine
JP5494068B2 (en) Engine exhaust system
JPH09222416A (en) Air-fuel ratio sensor
JP4240056B2 (en) Exhaust gas purification device
EP2612700B1 (en) Electrically heated catalyst
US10180098B2 (en) Control device of exhaust sensor
JP3257432B2 (en) Oxygen sensor
JP2011226824A (en) Exhaust sensor
CN108571404B (en) Exhaust device of engine
JP2009074425A (en) Exhaust emission control device of internal combustion engine
JP2006299967A (en) Exhaust emission control system for internal combustion engine
JPH10141113A (en) Intake pipe structure for internal combustion engine
JP7183875B2 (en) internal combustion engine
JP2015007386A (en) Abnormality detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111