JP2016173251A - Particulate matter detection sensor - Google Patents

Particulate matter detection sensor Download PDF

Info

Publication number
JP2016173251A
JP2016173251A JP2015052317A JP2015052317A JP2016173251A JP 2016173251 A JP2016173251 A JP 2016173251A JP 2015052317 A JP2015052317 A JP 2015052317A JP 2015052317 A JP2015052317 A JP 2015052317A JP 2016173251 A JP2016173251 A JP 2016173251A
Authority
JP
Japan
Prior art keywords
particulate matter
detection sensor
pair
detection electrodes
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015052317A
Other languages
Japanese (ja)
Other versions
JP6511304B2 (en
Inventor
弘宣 下川
Hironobu Shimokawa
弘宣 下川
小池 和彦
Kazuhiko Koike
和彦 小池
田村 昌之
Masayuki Tamura
昌之 田村
真宏 山本
Masahiro Yamamoto
真宏 山本
豪 宮川
Go Miyagawa
豪 宮川
友隆 毛利
Tomotaka Mori
友隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2015052317A priority Critical patent/JP6511304B2/en
Publication of JP2016173251A publication Critical patent/JP2016173251A/en
Application granted granted Critical
Publication of JP6511304B2 publication Critical patent/JP6511304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particulate matter detection sensor which excels in collection performance, and with which it is possible to accurately detect the amount of particulate matter.SOLUTION: A particulate matter detection sensor 1 comprises an accumulation unit 11 in which some of particulate matter included in an exhaust gas discharged from an internal combustion engine is accumulated, and at least a pair of detection electrodes 12 arranged in the accumulation unit 11. The particulate matter detection sensor 1 is configured so as to statically collect particulate matter in the accumulation unit 11 by an electric field generated by the application of a collection voltage to the pair of detection electrodes 12, and to change the output of an electric signal in accordance with a change in electric characteristic between the pair of detection electrodes 12 due to that particulate matter accumulates in the accumulation unit 11. A catalyst layer 13 consisting of a catalyst for selectively removing a soluble organic component is formed on the surface of the accumulation unit 11 so as to connect the pair of detection electrodes 12.SELECTED DRAWING: Figure 1

Description

本発明は、粒子状物質検出センサに関する。   The present invention relates to a particulate matter detection sensor.

内燃機関の排気管には、排ガスに含まれる粒子状物質(Particulate Matter:PM)を捕集する排ガス浄化装置が設けられている。この排ガス浄化装置は、排ガスに含まれる粒子状物質の量を検出する粒子状物質検出センサを有する粒子状物質検出装置を備えており、この粒子状物質検出装置によって得られた情報を基に、排ガス浄化装置の故障検知が行われている。   An exhaust gas purification apparatus that collects particulate matter (PM) contained in the exhaust gas is provided in an exhaust pipe of the internal combustion engine. This exhaust gas purification device includes a particulate matter detection device having a particulate matter detection sensor that detects the amount of particulate matter contained in the exhaust gas, and based on information obtained by this particulate matter detection device, Failure detection of the exhaust gas purification device is performed.

排ガス浄化装置に用いられる粒子状物質検出センサとしては、例えば、特許文献1に示されたものがある。特許文献1の粒子状物質検出センサは、多孔質の導電性物質からなる検出電極と、検出電極の電気抵抗値を検出するための一対の電極とを有している。   As a particulate matter detection sensor used in an exhaust gas purification apparatus, for example, there is one disclosed in Patent Document 1. The particulate matter detection sensor of Patent Document 1 has a detection electrode made of a porous conductive material and a pair of electrodes for detecting the electrical resistance value of the detection electrode.

特開2006−266961号公報JP 2006-266961 A

しかしながら、特許文献1の粒子状物質検出センサには以下の課題がある。
排ガスには、内燃機関において燃焼しきれなかった未燃のオイルや燃料からなる可溶性有機物質が含まれている。粒子状物質は、導電性の煤からなり、その表面が排ガスに含まれる可溶性有機物質によって被覆されている。この可溶性有機物質は、粒子状物質に比べて電気抵抗が高い。そのため、可溶性有機物質によって被覆された粒子状物質の電気抵抗は、粒子状物質自体の電気抵抗よりも高くなる。したがって、粒子状物質の電気抵抗を検出する特許文献1の粒子状物質検出装置によって、粒子状物質の正確な量を検出することができない。
However, the particulate matter detection sensor of Patent Document 1 has the following problems.
The exhaust gas contains a soluble organic substance composed of unburned oil or fuel that could not be combusted in the internal combustion engine. The particulate material is made of conductive soot, and its surface is covered with a soluble organic material contained in the exhaust gas. This soluble organic substance has a higher electrical resistance than the particulate substance. Therefore, the electrical resistance of the particulate material coated with the soluble organic material is higher than the electrical resistance of the particulate material itself. Therefore, an accurate amount of the particulate matter cannot be detected by the particulate matter detection device of Patent Document 1 that detects the electrical resistance of the particulate matter.

また、特許文献1の粒子状物質検出装置においては、多孔質の導電性物質をフィルタとして粒子状物質を捕集している。そのため、粒子状物質の捕集量が増大すると、導電性物質において目詰まりが生じ捕集性能が低下する。   Moreover, in the particulate matter detection device of Patent Document 1, particulate matter is collected using a porous conductive material as a filter. Therefore, when the amount of particulate matter collected increases, clogging occurs in the conductive material, and the collection performance decreases.

本発明は、かかる背景に鑑みてなされたものであり、捕集性能が優れており、粒子状物質の量を正確に検知できる粒子状物質検出センサを提供しようとするものである。   The present invention has been made in view of such a background, and is intended to provide a particulate matter detection sensor that has excellent collection performance and can accurately detect the amount of particulate matter.

本発明の一態様は、内燃機関から排出される排ガスに含まれる粒子状物質の一部を堆積させる被堆積部と、該被堆積部に配置された少なくとも一対の検出電極とを備え、
該一対の検出電極に捕集電圧を印加することで発生する電界によって上記被堆積部上に上記粒子状物質を静電捕集すると共に、上記粒子状物質が上記被堆積部上に堆積することによる上記一対の検出電極間における電気特性の変化に応じて電気信号の出力を変化させるように構成されており、
上記被堆積部の表面には、上記一対の検出電極をつなぐように、可溶性有機成分を選択的に除去する触媒からなる触媒層が形成されていることを特徴とする粒子状物質検出センサにある。
One aspect of the present invention includes a deposition portion that deposits part of particulate matter contained in exhaust gas discharged from an internal combustion engine, and at least a pair of detection electrodes disposed in the deposition portion,
The particulate matter is electrostatically collected on the deposition portion by an electric field generated by applying a collection voltage to the pair of detection electrodes, and the particulate matter is deposited on the deposition portion. Is configured to change the output of the electrical signal in accordance with the change in electrical characteristics between the pair of detection electrodes by
In the particulate matter detection sensor, a catalyst layer made of a catalyst that selectively removes soluble organic components is formed on the surface of the deposition portion so as to connect the pair of detection electrodes. .

上記粒子状物質検出センサは、可溶性有機成分を選択的に除去することができる上記触媒層を備えている。そのため、排ガスに含まれる粒子状物質が上記触媒層に付着すると、粒子状物質の表面を覆う可溶性有機成分が上記触媒層と反応し、粒子状物質から可溶性有機成分を除去することができる。これにより、上記検出電極間における電気特性の変化を正確に検出することができる。それゆえ、上記粒子状物質検出センサによれば、粒子状物質の量を正確に検出することができる。   The particulate matter detection sensor includes the catalyst layer capable of selectively removing soluble organic components. Therefore, when the particulate matter contained in the exhaust gas adheres to the catalyst layer, the soluble organic component covering the surface of the particulate matter reacts with the catalyst layer, and the soluble organic component can be removed from the particulate matter. Thereby, the change of the electrical property between the said detection electrodes can be detected correctly. Therefore, according to the particulate matter detection sensor, the amount of particulate matter can be accurately detected.

また、上記粒子状物質検出センサは、上記一対の検出電極に捕集電圧を印加することで、上記被堆積部上に上記粒子状物質を引き寄せることができる。これにより、上記粒子状物質の捕集性能を向上すると共に、堆積量が増大した際における捕集性能の低下を抑制することができる。   Further, the particulate matter detection sensor can attract the particulate matter onto the deposition target portion by applying a collection voltage to the pair of detection electrodes. Thereby, while improving the collection performance of the said particulate matter, the fall of the collection performance when the amount of deposition increases can be suppressed.

以上のごとく、本発明によれば、捕集性能が優れており、粒子状物質の量を正確に検知できる粒子状物質検出センサを提供することができる。   As described above, according to the present invention, it is possible to provide a particulate matter detection sensor that has excellent collection performance and can accurately detect the amount of particulate matter.

実施例1における、粒子状物質検出センサを示す説明図。FIG. 3 is an explanatory diagram illustrating a particulate matter detection sensor according to the first embodiment. 図1における、II−II矢視断面図。II-II arrow sectional drawing in FIG. 実施例1における、粒子状物質検出センサの構造を示す説明図。FIG. 3 is an explanatory diagram illustrating a structure of a particulate matter detection sensor in the first embodiment. 実施例2における、粒子状物質検出センサを示す説明図。FIG. 9 is an explanatory diagram showing a particulate matter detection sensor in Example 2. 実施例3における、粒子状物質検出センサを示す説明図。FIG. 6 is an explanatory view showing a particulate matter detection sensor in Example 3. 実施例4における、粒子状物質検出センサを示す説明図。Explanatory drawing which shows the particulate matter detection sensor in Example 4. FIG.

上記粒子状物質検出センサにおいて、上記触媒層は、上記一対の検出電極の間に部分的に突出するように形成されていることが好ましい。この場合には、上記被堆積部と上記触媒層との間に段差が形成されることにより、上記触媒層に上記粒子状物質を効率良く付着させることができる。したがって、上記粒子状物質検出センサにおける粒子状物質の捕集性能を向上することができる。   In the particulate matter detection sensor, the catalyst layer is preferably formed so as to partially protrude between the pair of detection electrodes. In this case, the particulate matter can be efficiently attached to the catalyst layer by forming a step between the deposition portion and the catalyst layer. Therefore, the particulate matter collection performance of the particulate matter detection sensor can be improved.

また、上記触媒層は、貴金属として白金又はパラジウムを含むと共に、アルミニウム、マグネシウム、ジルコニウム及びセリウムの酸化物のうち少なくとも1つを含んでいることが好ましい。この場合には、上記触媒層の反応温度を排ガス温度の近傍に設定することができる。これにより、排ガスによって加熱されることで、上記触媒層を反応に到達し、可溶性有機成分の除去性能を向上することができる。また、上記触媒層の耐熱温度を向上することができる。   The catalyst layer preferably contains platinum or palladium as a noble metal and at least one of oxides of aluminum, magnesium, zirconium and cerium. In this case, the reaction temperature of the catalyst layer can be set in the vicinity of the exhaust gas temperature. Thereby, the catalyst layer reaches the reaction by being heated by the exhaust gas, and the removal performance of the soluble organic component can be improved. Moreover, the heat-resistant temperature of the catalyst layer can be improved.

(実施例1)
上記粒子状物質検出センサにかかる実施例について、図1〜図3を参照して説明する。
図1に示すごとく、粒子状物質検出センサ1は、内燃機関から排出される排ガスに含まれる粒子状物質の一部を堆積させる被堆積部11と、被堆積部11に配置された少なくとも一対の検出電極12とを備えている。粒子状物質検出センサ1は、一対の検出電極12に捕集電圧を印加することで発生する電界によって被堆積部11上に粒子状物質を静電捕集すると共に、粒子状物質が被堆積部11上に堆積することによる一対の検出電極12間における電気特性の変化に応じて電気信号の出力を変化させるように構成されている。被堆積部11の表面には、一対の検出電極12をつなぐように、可溶性有機成分を選択的に除去する触媒からなる触媒層13が形成されている。
Example 1
Examples relating to the particulate matter detection sensor will be described with reference to FIGS.
As shown in FIG. 1, the particulate matter detection sensor 1 includes a depositing portion 11 that deposits a part of the particulate matter contained in the exhaust gas discharged from the internal combustion engine, and at least a pair of the depositing portions 11 disposed in the depositing portion 11. And a detection electrode 12. The particulate matter detection sensor 1 electrostatically collects particulate matter on the deposition portion 11 by an electric field generated by applying a collection voltage to the pair of detection electrodes 12, and the particulate matter is deposited on the deposition portion. 11 is configured to change the output of an electrical signal in accordance with a change in electrical characteristics between the pair of detection electrodes 12 by being deposited on the electrode 11. On the surface of the portion 11 to be deposited, a catalyst layer 13 made of a catalyst that selectively removes soluble organic components is formed so as to connect the pair of detection electrodes 12.

以下、さらに詳細に説明する。
粒子状物質検出センサ1は、自動車に搭載された内燃機関から、排気管を通じて排出される排ガスに含まれる粒子状物質を検出するためのものである。粒子状物質検出センサ1によって得られた情報を基に、排ガス浄化装置の故障検知を行う。
This will be described in more detail below.
The particulate matter detection sensor 1 is for detecting particulate matter contained in exhaust gas discharged from an internal combustion engine mounted on an automobile through an exhaust pipe. Based on the information obtained by the particulate matter detection sensor 1, failure detection of the exhaust gas purification device is performed.

図1〜図3に示すごとく、粒子状物質検出センサ1は、排ガス中の粒子状物質を堆積させる被堆積部11と、被堆積部11上に互いに離れて配置された複数の検出電極12とを備えている。粒子状物質検出センサ1は、アルミナ、ジルコニア、マグネシア、ベリリアなどのセラミック材料を板状に成形した絶縁部材111を5枚積層することにより、棒状に形成されている。5枚の絶縁部材111のうち4枚には、主面の先端側に導電性材料からなる検出電極12が形成されている。したがって、粒子状物質検出センサ1は、二対の検出電極12を備えている。検出電極12は、正極と負極とからなり、絶縁部材111を積層した際に、正極と負極とが交互に配置される。また、検出電極12において、積層方向の両端にそれぞれ配置される正極及び負極には、検出電極12から基端側に延びる引き出し電極部121が形成されている。正極の検出電極12及び負極の検出電極12は、それぞれ図示しないリード部によって電気的に接続されている。   As shown in FIG. 1 to FIG. 3, the particulate matter detection sensor 1 includes a depositing portion 11 that deposits particulate matter in exhaust gas, and a plurality of detection electrodes 12 that are arranged apart from each other on the depositing portion 11. It has. The particulate matter detection sensor 1 is formed in a rod shape by stacking five insulating members 111 formed of a ceramic material such as alumina, zirconia, magnesia, and beryllia in a plate shape. Four of the five insulating members 111 have detection electrodes 12 made of a conductive material on the leading end side of the main surface. Therefore, the particulate matter detection sensor 1 includes two pairs of detection electrodes 12. The detection electrode 12 includes a positive electrode and a negative electrode. When the insulating member 111 is stacked, the positive electrode and the negative electrode are alternately arranged. Further, in the detection electrode 12, lead electrode portions 121 extending from the detection electrode 12 to the proximal end side are formed on the positive electrode and the negative electrode respectively disposed at both ends in the stacking direction. The positive detection electrode 12 and the negative detection electrode 12 are electrically connected by lead portions (not shown).

5枚の絶縁部材111を積層した状態において、検出電極12と絶縁部材111との積層方向及び軸方向Dと直交する側方S側に被堆積部11が形成される。被堆積部11には、絶縁部材111と検出電極12とが交互に積層された積層部10が形成されている。被堆積部11は、検出電極12が形成された絶縁部材111を積層した後、その先端部を研磨することで、検出電極12の端面を露出させている。   In a state where the five insulating members 111 are stacked, the portion to be deposited 11 is formed on the side S side orthogonal to the stacking direction of the detection electrode 12 and the insulating member 111 and the axial direction D. In the portion 11 to be deposited, a laminated portion 10 in which insulating members 111 and detection electrodes 12 are alternately laminated is formed. The deposited portion 11 exposes the end face of the detection electrode 12 by laminating the insulating member 111 on which the detection electrode 12 is formed and then polishing the tip.

触媒層13は、二対の検出電極12と直交するように5本形成されている。触媒層13は、可溶性有機成分を選択的に除去する触媒からなる。本例の触媒層13は、貴金属材料である白金と、アルミニウムの酸化物とを含んでおり、反応温度は、150℃〜200℃である。なお、排ガスの温度は、150℃〜400℃程度であり、排ガスによって加熱されることで、触媒層13が反応温度に到達する。また、白金とアルミニウムの酸化物との比率は、重量比で5:95である
Five catalyst layers 13 are formed so as to be orthogonal to the two pairs of detection electrodes 12. The catalyst layer 13 is made of a catalyst that selectively removes soluble organic components. The catalyst layer 13 of this example contains platinum which is a noble metal material and an oxide of aluminum, and the reaction temperature is 150 ° C. to 200 ° C. The temperature of the exhaust gas is about 150 ° C. to 400 ° C., and the catalyst layer 13 reaches the reaction temperature by being heated by the exhaust gas. The ratio of platinum to aluminum oxide is 5:95 by weight.

粒子状物質検出センサ1において、触媒層13に粒子状物質が堆積すると、一対の検出電極12間の電気抵抗値が低下する。このとき、触媒層13は、排ガスによって加熱されて反応温度に達し、触媒層13に堆積した粒子状物質の表面を覆う可溶性有機成分と反応し、粒子状物質の表面を覆う可溶性有機成分が除去される。そして、粒子状物質が一対の検出電極12間を繋ぐ導通パスを形成することによって一対の検出電極12間における電気抵抗値の低下が生じる。一対の検出電極12の間には電圧が印加されており、一対の検出電極12間の電気抵抗値の変化に伴い、検出電極12間を流れる電気信号としての電流量が変化する。これにより、粒子状物質検出センサ1からコントロールユニットへと出力される電流値が変化する。つまり、粒子状物質検出センサ1から出力される電流値は、触媒層13における粒子状物質の堆積質量に応じて変化するものであり、粒子状物質の堆積量に関する情報を有するものである。コントロールユニットは、出力された電流値をECU(エンジンコントロールユニット)へと出力する。   In the particulate matter detection sensor 1, when particulate matter is deposited on the catalyst layer 13, the electrical resistance value between the pair of detection electrodes 12 decreases. At this time, the catalyst layer 13 is heated by the exhaust gas to reach the reaction temperature, reacts with the soluble organic component covering the surface of the particulate matter deposited on the catalyst layer 13, and the soluble organic component covering the surface of the particulate matter is removed. Is done. Then, when the particulate matter forms a conduction path that connects the pair of detection electrodes 12, a decrease in the electrical resistance value between the pair of detection electrodes 12 occurs. A voltage is applied between the pair of detection electrodes 12, and the amount of current as an electric signal flowing between the detection electrodes 12 changes with a change in the electrical resistance value between the pair of detection electrodes 12. Thereby, the current value output from the particulate matter detection sensor 1 to the control unit changes. That is, the current value output from the particulate matter detection sensor 1 changes according to the particulate matter deposition mass in the catalyst layer 13 and has information on the particulate matter deposition amount. The control unit outputs the output current value to the ECU (engine control unit).

次に、本例の作用効果について説明する。
粒子状物質検出センサ1は、可溶性有機成分を選択的に除去することができる触媒層13を備えている。そのため、排ガスに含まれる粒子状物質が触媒層13に付着すると、粒子状物質の表面を覆う可溶性有機成分が触媒層13と反応し、粒子状物質から可溶性有機成分を除去することができる。これにより、粒子状物質の電気抵抗を正確に検出し、検出電極12間における電気特性の変化を正確に検出することができる。それゆえ、粒子状物質検出センサ1によれば、粒子状物質の量を正確に検出することができる。
Next, the function and effect of this example will be described.
The particulate matter detection sensor 1 includes a catalyst layer 13 that can selectively remove soluble organic components. Therefore, when the particulate matter contained in the exhaust gas adheres to the catalyst layer 13, the soluble organic component that covers the surface of the particulate matter reacts with the catalyst layer 13, and the soluble organic component can be removed from the particulate matter. Thereby, the electrical resistance of the particulate matter can be accurately detected, and a change in electrical characteristics between the detection electrodes 12 can be accurately detected. Therefore, the particulate matter detection sensor 1 can accurately detect the amount of particulate matter.

また、粒子状物質検出センサ1は、一対の検出電極12に捕集電圧を印加することで、被堆積部11上に粒子状物質を引き寄せることができる。これにより、粒子状物質の捕集性能を向上すると共に、堆積量が増大した際における捕集性能の低下を抑制することができる。   The particulate matter detection sensor 1 can attract the particulate matter onto the deposition target portion 11 by applying a collection voltage to the pair of detection electrodes 12. Thereby, while improving the collection performance of a particulate matter, the fall of the collection performance when the amount of accumulation increases can be suppressed.

また、触媒層13は、一対の検出電極12の間を部分的に繋ぐように形成されている。そして、触媒層13がその厚み分、被堆積部11から突出して、被堆積部11と触媒層13との間に段差が形成されることにより、触媒層13に粒子状物質を効率良く付着させることができる。したがって、粒子状物質検出センサ1における粒子状物質の捕集性能を向上することができる。   The catalyst layer 13 is formed so as to partially connect the pair of detection electrodes 12. Then, the catalyst layer 13 protrudes from the deposition portion 11 by the thickness, and a step is formed between the deposition portion 11 and the catalyst layer 13, so that the particulate matter is efficiently attached to the catalyst layer 13. be able to. Therefore, the particulate matter collection performance of the particulate matter detection sensor 1 can be improved.

また、触媒層13は、貴金属として白金を含むと共に、アルミニウムの酸化物を含んでいる。そのため、触媒層13の反応温度を排ガス温度の近傍に設定することができる。これにより、排ガスによって加熱されることで、触媒層13を反応に到達し、可溶性有機成分の除去性能を向上することができる。また、触媒層13の耐熱温度を向上することができる。   The catalyst layer 13 includes platinum as a noble metal and an oxide of aluminum. Therefore, the reaction temperature of the catalyst layer 13 can be set in the vicinity of the exhaust gas temperature. Thereby, the catalyst layer 13 reaches the reaction by being heated by the exhaust gas, and the removal performance of the soluble organic component can be improved. Moreover, the heat-resistant temperature of the catalyst layer 13 can be improved.

以上のごとく、本例によれば、捕集性能が優れており、粒子状物質の量を正確に検知できる粒子状物質検出センサ1を提供することができる。   As described above, according to this example, it is possible to provide the particulate matter detection sensor 1 that has excellent collection performance and can accurately detect the amount of the particulate matter.

(確認試験)
本試験においては、触媒層の有無による粒子状物質検出センサにおける検出感度への影響を確認した。
本試験には、上述の実施例1に示した粒子状物質検出センサ1と、触媒層が形成されていない粒子状物質検出センサとを用いて検出感度の比較を行った。なお、実験に用いた粒子状物質検出センサ1は、検出電極12としてアルミナからなる絶縁部材111に、重量比で白金85重量%とアルミナ15重量%とで混合した混合物からなる二対の検出電極12を備え、触媒層13は、白金5重量%とアルミナ95重量%とからなる。
触媒層が形成されていない粒子状物質検出センサにおいて、触媒層が形成されていないこと以外の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
(Confirmation test)
In this test, the influence of the presence or absence of the catalyst layer on the detection sensitivity of the particulate matter detection sensor was confirmed.
In this test, the detection sensitivity was compared using the particulate matter detection sensor 1 shown in Example 1 described above and the particulate matter detection sensor in which the catalyst layer was not formed. In addition, the particulate matter detection sensor 1 used in the experiment has two pairs of detection electrodes made of a mixture of 85 wt% platinum and 15 wt% alumina in a weight ratio with an insulating member 111 made of alumina as the detection electrode 12. 12 and the catalyst layer 13 is composed of 5 wt% platinum and 95 wt% alumina.
In the particulate matter detection sensor in which the catalyst layer is not formed, the configuration is the same as that of the first embodiment except that the catalyst layer is not formed. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.

本試験においては、内燃機関の運転条件を変化させて、排ガスの温度及び排ガスにおける粒子状物質の濃度を変化させた際の不感質量を比較した。不感質量とは、粒子状物質検出センサにおいて導通パスが形成され、粒子状物質検出センサの電気特性が変化するまでの間に、排気管内を流通した排気ガスに含まれる粒子状物質の量を示すものである。尚、可溶性有機成分が付着し電気抵抗が大きい粒子状物質を堆積させた際には、不感質量が大きくなり、可溶性有機成分を除去し電気抵抗が小さい粒子状物質を堆積させた際には、不感質量が小さくなる。   In this test, the operating conditions of the internal combustion engine were changed to compare the dead mass when the exhaust gas temperature and the concentration of particulate matter in the exhaust gas were changed. Dead mass refers to the amount of particulate matter contained in the exhaust gas that circulates in the exhaust pipe until a conduction path is formed in the particulate matter detection sensor and the electrical characteristics of the particulate matter detection sensor change. Is. In addition, when a particulate matter having a high electrical resistance is deposited by adhering a soluble organic component, the dead mass is increased, and when a particulate matter having a low electrical resistance is deposited by removing the soluble organic component, The dead mass is reduced.

Figure 2016173251
Figure 2016173251

本試験においては、内燃機関の運転条件を表1の条件A〜条件Dに変化させた。条件Aは、内燃機関の回転数を1200rpmとし、排ガスの温度が185℃、排ガスにおける粒子状物質の濃度が5.7mg/m3である。条件Bは、内燃機関の回転数を1450rpmとし、排ガスの温度が250℃、排ガスにおける粒子状物質の濃度が6.1mg/m3である。条件Cは、内燃機関の回転数を1650rpmとし、排ガスの温度が180℃、排ガスにおける粒子状物質の濃度が6mg/m3である。条件Dは、内燃機関の回転数を2250rpmとし、排ガスの温度が420℃、排ガスにおける粒子状物質の濃度が6.3mg/m3である。 In this test, the operating conditions of the internal combustion engine were changed to conditions A to D in Table 1. Condition A is that the rotational speed of the internal combustion engine is 1200 rpm, the temperature of the exhaust gas is 185 ° C., and the concentration of the particulate matter in the exhaust gas is 5.7 mg / m 3 . Condition B is that the rotational speed of the internal combustion engine is 1450 rpm, the temperature of the exhaust gas is 250 ° C., and the concentration of particulate matter in the exhaust gas is 6.1 mg / m 3 . Condition C is that the rotational speed of the internal combustion engine is 1650 rpm, the temperature of the exhaust gas is 180 ° C., and the concentration of particulate matter in the exhaust gas is 6 mg / m 3 . Condition D is that the rotational speed of the internal combustion engine is 2250 rpm, the temperature of the exhaust gas is 420 ° C., and the concentration of the particulate matter in the exhaust gas is 6.3 mg / m 3 .

表1における結果1は、実施例1の粒子状物質検出センサ1における不感質量の検出結果を示すものである。また、結果2は、触媒層が形成されていない粒子状物質検出センサ1における不感質量の検出結果を示すものである。結果1及び結果2に示すごとく、条件A〜条件Dのいずれの場合においても、実施例1の粒子状物質検出センサ1における不感質量及び不感質量のバラつきが小さくなった。これは、粒子状物質検出センサ1に堆積した粒子状物質から可溶性有機成分が除去され、電気抵抗値のバラつきが低減されたことによると考えられる。したがって、実施例1の粒子状物質検出センサ1によれば、触媒層が形成されていない粒子状物質検出センサに比べて、粒子状物質の堆積量を正確に検知することができる。   The result 1 in Table 1 shows the detection result of the dead mass in the particulate matter detection sensor 1 of Example 1. Result 2 shows the detection result of the dead mass in the particulate matter detection sensor 1 in which the catalyst layer is not formed. As shown in the results 1 and 2, in any of the conditions A to D, the variation in the dead mass and the dead mass in the particulate matter detection sensor 1 of Example 1 was reduced. This is considered to be due to the fact that the soluble organic component was removed from the particulate matter deposited on the particulate matter detection sensor 1 and the variation in electrical resistance value was reduced. Therefore, according to the particulate matter detection sensor 1 of the first embodiment, the amount of particulate matter deposited can be accurately detected as compared with the particulate matter detection sensor in which the catalyst layer is not formed.

(実施例2)
本例は、図4に示すごとく、実施例1の粒子状物質検出センサ1における構造を一部変更した例である。
本例の粒子状物質検出センサ1の触媒層13は、二対の検出電極12のうちの一対を繋ぐように形成されており、残る一対の検出電極12は触媒層13によって繋がれていない。
その他の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
(Example 2)
In this example, as shown in FIG. 4, the structure of the particulate matter detection sensor 1 of Example 1 is partially changed.
The catalyst layer 13 of the particulate matter detection sensor 1 of this example is formed so as to connect a pair of the two pairs of detection electrodes 12, and the remaining pair of detection electrodes 12 are not connected by the catalyst layer 13.
Other configurations are the same as those of the first embodiment. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.

本例の粒子状物質検出センサ1は、触媒層13によって繋がった一対の検出電極12における電気信号の出力と、触媒層13によって繋がっていない一対の検出電極12における電気信号の出力とを比較することにより、粒子状物質における可溶性有機成分の付着量を検出することができる。これを利用して、内燃機関の運転条件を制御することにより、内燃機関の運転条件の最適化を図ることができる。
また、本例においても実施例1と同様の作用効果を得ることができる。
The particulate matter detection sensor 1 of this example compares the output of the electrical signal at the pair of detection electrodes 12 connected by the catalyst layer 13 with the output of the electrical signal at the pair of detection electrodes 12 not connected by the catalyst layer 13. Thereby, the adhesion amount of the soluble organic component in the particulate matter can be detected. By using this to control the operating conditions of the internal combustion engine, the operating conditions of the internal combustion engine can be optimized.
Also in this example, the same effects as those of the first embodiment can be obtained.

(実施例3)
本例は、図5に示すごとく、実施例1とは構造の異なる粒子状物質検出センサ1の例である。
本例の粒子状物質検出センサ1において、被堆積部11は、略長方形の板状をなしており、絶縁性材料によって形成されている。被堆積部11における粒子状物質を堆積させる一面には、互いに離れて配置された一対の検出電極12と、一対の検出電極12をつなぐように形成された触媒層13とが形成されている。一対の検出電極12は、導電性材料からなり、被堆積部11の表面にパターン印刷によって形成されている。一対の検出電極12は、被堆積部11における長手方向と平行に形成された電極基部122と、電極基部122から長手方向と直交して延設された複数の櫛歯部123とをそれぞれ有している。各検出電極12は、電極基部122が互いに向かい合うように配置されると共に、一方の検出電極12における櫛歯部123の間に、他方の検出電極12における櫛歯部123が入り込むように配置されている。
(Example 3)
As shown in FIG. 5, this example is an example of a particulate matter detection sensor 1 having a structure different from that of the first embodiment.
In the particulate matter detection sensor 1 of this example, the portion 11 to be deposited has a substantially rectangular plate shape and is formed of an insulating material. On one surface on which the particulate matter is deposited in the portion 11 to be deposited, a pair of detection electrodes 12 disposed apart from each other and a catalyst layer 13 formed so as to connect the pair of detection electrodes 12 are formed. The pair of detection electrodes 12 is made of a conductive material, and is formed on the surface of the deposition target portion 11 by pattern printing. Each of the pair of detection electrodes 12 includes an electrode base 122 formed in parallel with the longitudinal direction of the portion 11 to be deposited and a plurality of comb teeth 123 extending from the electrode base 122 perpendicular to the longitudinal direction. ing. Each detection electrode 12 is arranged so that the electrode base parts 122 face each other, and is arranged so that the comb tooth part 123 of the other detection electrode 12 enters between the comb tooth parts 123 of one detection electrode 12. Yes.

触媒層13は、被堆積部11において、一対の検出電極12の電極基部122の外縁及び長手方向の両端に配設された櫛歯部123の外縁よりも内側の範囲において、一対の検出電極12の表面を除く全面に形成されている。
その他の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
本例においても実施例1と同様の作用効果を得ることができる。
The catalyst layer 13 has a pair of detection electrodes 12 in the deposition portion 11 in a range inside the outer edges of the electrode base portions 122 of the pair of detection electrodes 12 and the outer edges of the comb tooth portions 123 disposed at both ends in the longitudinal direction. It is formed on the entire surface except the surface.
Other configurations are the same as those of the first embodiment. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
Also in this example, it is possible to obtain the same effect as that of the first embodiment.

(実施例4)
本例は、図6に示すごとく、実施例3の粒子状物質検出センサ1における構造を一部変更した例を示すものである。
本例の粒子状物質検出センサ1において、被堆積部11には、2本の触媒層13が形成されている。触媒層13は、粒子状物質検出センサ1の軸方向Dと並行で、かつ一対の検出電極12の櫛歯部123を繋ぐように形成されている。
その他の構成は実施例3と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例3において用いた符号と同一のものは、特に示さない限り、実施例3と同様の構成要素等を表す。
本例においても実施例3と同様の作用効果を得ることができる。
Example 4
This example shows an example in which the structure of the particulate matter detection sensor 1 of Example 3 is partially changed as shown in FIG.
In the particulate matter detection sensor 1 of this example, two catalyst layers 13 are formed on the deposition target portion 11. The catalyst layer 13 is formed to be parallel to the axial direction D of the particulate matter detection sensor 1 and to connect the comb teeth 123 of the pair of detection electrodes 12.
Other configurations are the same as those of the third embodiment. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the third embodiment denote the same components as in the third embodiment unless otherwise specified.
In this example, the same effect as that of the third embodiment can be obtained.

1 粒子状物質検出センサ
11 被堆積部
12 検出電極
13 触媒層
DESCRIPTION OF SYMBOLS 1 Particulate matter detection sensor 11 Deposited part 12 Detection electrode 13 Catalyst layer

Claims (4)

内燃機関から排出される排ガスに含まれる粒子状物質の一部を堆積させる被堆積部(11)と、該被堆積部(11)に配置された少なくとも一対の検出電極(12)とを備え、
該一対の検出電極(12)に捕集電圧を印加することで発生する電界によって上記被堆積部(11)上に上記粒子状物質を静電捕集すると共に、上記粒子状物質が上記被堆積部(11)上に堆積することによる上記一対の検出電極(12)間における電気特性の変化に応じて電気信号の出力を変化させるように構成されており、
上記被堆積部(11)の表面には、上記一対の検出電極(12)をつなぐように、可溶性有機成分を選択的に除去する触媒からなる触媒層(13)が形成されていることを特徴とする粒子状物質検出センサ(1)。
A deposition portion (11) for depositing a part of particulate matter contained in exhaust gas discharged from the internal combustion engine, and at least a pair of detection electrodes (12) disposed in the deposition portion (11);
The particulate matter is electrostatically collected on the deposition portion (11) by an electric field generated by applying a collection voltage to the pair of detection electrodes (12), and the particulate matter is deposited. An output of an electrical signal is changed according to a change in electrical characteristics between the pair of detection electrodes (12) by being deposited on the part (11),
A catalyst layer (13) made of a catalyst that selectively removes soluble organic components is formed on the surface of the deposition part (11) so as to connect the pair of detection electrodes (12). A particulate matter detection sensor (1).
上記触媒層(13)は、上記一対の検出電極(12)の間を部分的に繋ぐように形成されていることを特徴とする請求項1に記載の粒子状物質検出センサ(1)。   The particulate matter detection sensor (1) according to claim 1, wherein the catalyst layer (13) is formed so as to partially connect the pair of detection electrodes (12). 上記触媒層(13)は、貴金属として白金又はパラジウムを含むと共に、アルミニウム、マグネシウム、ジルコニウム及びセリウムの酸化物のうち少なくとも1つを含んでいることを特徴とする請求項1又は2に記載の粒子状物質検出センサ(1)。   The particle according to claim 1 or 2, wherein the catalyst layer (13) contains platinum or palladium as a noble metal and at least one of oxides of aluminum, magnesium, zirconium and cerium. A substance detection sensor (1). 上記被堆積部(11)には、複数対の上記検出電極(12)が形成されており、複数対の検出電極(12)のうちの一部は、上記触媒層(13)によって繋がれていないことを特徴とする請求項1〜3のいずれか一項に記載の粒子状物質検出センサ(1)。   A plurality of pairs of the detection electrodes (12) are formed in the deposition portion (11), and a part of the plurality of pairs of detection electrodes (12) is connected by the catalyst layer (13). The particulate matter detection sensor (1) according to any one of claims 1 to 3, wherein the particulate matter detection sensor (1) is not present.
JP2015052317A 2015-03-16 2015-03-16 Particulate matter detection sensor Expired - Fee Related JP6511304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052317A JP6511304B2 (en) 2015-03-16 2015-03-16 Particulate matter detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052317A JP6511304B2 (en) 2015-03-16 2015-03-16 Particulate matter detection sensor

Publications (2)

Publication Number Publication Date
JP2016173251A true JP2016173251A (en) 2016-09-29
JP6511304B2 JP6511304B2 (en) 2019-05-15

Family

ID=57008819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052317A Expired - Fee Related JP6511304B2 (en) 2015-03-16 2015-03-16 Particulate matter detection sensor

Country Status (1)

Country Link
JP (1) JP6511304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078832A (en) * 2016-12-30 2018-07-10 주식회사 쓰리에이치굿스 air purification processing system for dust and microorganism dectection

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193950A (en) * 1995-01-14 1996-07-30 Horiba Ltd Continuous particulate measuring apparatus
JPH10202105A (en) * 1997-01-22 1998-08-04 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JP2002177788A (en) * 2000-12-06 2002-06-25 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP2002285822A (en) * 2001-03-26 2002-10-03 Isuzu Motors Ltd Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
JP2003035128A (en) * 2001-07-19 2003-02-07 Toyota Central Res & Dev Lab Inc Exhaust emission control device for internal combustion engine
JP2006342709A (en) * 2005-06-08 2006-12-21 Nissin Electric Co Ltd Exhaust gas purification method and exhaust gas purifier
JP2007229679A (en) * 2006-03-03 2007-09-13 Ne Chemcat Corp Oxidation catalyst for cleaning exhaust gas, catalytic structure for cleaning exhaust gas and method for cleaning exhaust gas
JP2010078378A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Granular substance detecting sensor
US20110107815A1 (en) * 2009-11-09 2011-05-12 Delphi Technologies, Inc. Method and System for Diagnostics of a Particulate Matter Sensor
JP2012078130A (en) * 2010-09-30 2012-04-19 Denso Corp Particulate substance detection sensor and manufacturing method thereof
JP2012220257A (en) * 2011-04-05 2012-11-12 Denso Corp Particulate matter detection sensor and manufacturing method of the same
JP2012233874A (en) * 2011-04-21 2012-11-29 Denso Corp Particulate matter detector and method for correcting particulate matter detector
WO2013187633A1 (en) * 2012-06-12 2013-12-19 희성촉매 주식회사 High performance scr catalyst system
US20140238108A1 (en) * 2013-02-22 2014-08-28 Robert Bosch Gmbh Method and device for regenerating a particle sensor
US20150020507A1 (en) * 2013-07-16 2015-01-22 GM Global Technology Operations LLC Particulate filter performance monitoring

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193950A (en) * 1995-01-14 1996-07-30 Horiba Ltd Continuous particulate measuring apparatus
JPH10202105A (en) * 1997-01-22 1998-08-04 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JP2002177788A (en) * 2000-12-06 2002-06-25 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and its manufacturing method
JP2002285822A (en) * 2001-03-26 2002-10-03 Isuzu Motors Ltd Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
JP2003035128A (en) * 2001-07-19 2003-02-07 Toyota Central Res & Dev Lab Inc Exhaust emission control device for internal combustion engine
JP2006342709A (en) * 2005-06-08 2006-12-21 Nissin Electric Co Ltd Exhaust gas purification method and exhaust gas purifier
JP2007229679A (en) * 2006-03-03 2007-09-13 Ne Chemcat Corp Oxidation catalyst for cleaning exhaust gas, catalytic structure for cleaning exhaust gas and method for cleaning exhaust gas
JP2010078378A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Granular substance detecting sensor
US20110107815A1 (en) * 2009-11-09 2011-05-12 Delphi Technologies, Inc. Method and System for Diagnostics of a Particulate Matter Sensor
JP2012078130A (en) * 2010-09-30 2012-04-19 Denso Corp Particulate substance detection sensor and manufacturing method thereof
JP2012220257A (en) * 2011-04-05 2012-11-12 Denso Corp Particulate matter detection sensor and manufacturing method of the same
JP2012233874A (en) * 2011-04-21 2012-11-29 Denso Corp Particulate matter detector and method for correcting particulate matter detector
WO2013187633A1 (en) * 2012-06-12 2013-12-19 희성촉매 주식회사 High performance scr catalyst system
US20140238108A1 (en) * 2013-02-22 2014-08-28 Robert Bosch Gmbh Method and device for regenerating a particle sensor
US20150020507A1 (en) * 2013-07-16 2015-01-22 GM Global Technology Operations LLC Particulate filter performance monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078832A (en) * 2016-12-30 2018-07-10 주식회사 쓰리에이치굿스 air purification processing system for dust and microorganism dectection

Also Published As

Publication number Publication date
JP6511304B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP5223905B2 (en) Particulate matter detection element
JP5081897B2 (en) Particulate matter detection device and particulate matter detection method
JP5288472B2 (en) Particulate matter detector
JP2012083210A (en) Particulate substance detection sensor
JP5606356B2 (en) Particulate matter detector
JP2012127907A (en) Particulate matter detection sensor
JP2006266961A (en) Soot sensor
JP2009085959A (en) Sensor element for detecting particle in gas, and manufacturing method for sensor element
US20190293541A1 (en) Particulate matter detection apparatus
JP2012047596A (en) Particulate substance detector
CN107076691B (en) Granular substance detection sensor
JP2012220257A (en) Particulate matter detection sensor and manufacturing method of the same
JP6421617B2 (en) Particulate matter detection sensor and particulate matter detection device
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP2011080780A (en) Particulate detection element
CN108369203B (en) Sensor element
JP6425993B2 (en) Particulate matter detection element
KR20190141995A (en) Particulater matter detection sensor
WO2016080120A1 (en) Particulate matter detection sensor
JP6739363B2 (en) Particulate matter detection sensor and particulate matter detection device
JP6511304B2 (en) Particulate matter detection sensor
WO2016185841A1 (en) Particulate matter detection sensor
CN211148360U (en) Chip type particle sensor ceramic chip
JP2013205028A (en) Particulate substance detector
JP6386805B2 (en) Particulate matter detection sensor element and particulate matter detection sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees