JP6386805B2 - Particulate matter detection sensor element and particulate matter detection sensor using the same - Google Patents

Particulate matter detection sensor element and particulate matter detection sensor using the same Download PDF

Info

Publication number
JP6386805B2
JP6386805B2 JP2014123828A JP2014123828A JP6386805B2 JP 6386805 B2 JP6386805 B2 JP 6386805B2 JP 2014123828 A JP2014123828 A JP 2014123828A JP 2014123828 A JP2014123828 A JP 2014123828A JP 6386805 B2 JP6386805 B2 JP 6386805B2
Authority
JP
Japan
Prior art keywords
detection
sensor element
particulate matter
electrode
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014123828A
Other languages
Japanese (ja)
Other versions
JP2016003932A (en
JP2016003932A5 (en
Inventor
小池 和彦
和彦 小池
弘勝 今川
弘勝 今川
田村 昌之
昌之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014123828A priority Critical patent/JP6386805B2/en
Priority to PCT/JP2015/065880 priority patent/WO2015194362A1/en
Publication of JP2016003932A publication Critical patent/JP2016003932A/en
Publication of JP2016003932A5 publication Critical patent/JP2016003932A5/ja
Application granted granted Critical
Publication of JP6386805B2 publication Critical patent/JP6386805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、被測定ガス中の粒子状物質を検出するセンサ素子、及びこれを備える粒子状物質検出センサに関する。   The present invention relates to a sensor element that detects particulate matter in a gas to be measured, and a particulate matter detection sensor including the sensor element.

ガソリンエンジン、ディーゼルエンジンなどの内燃機関から排出される排ガス中には、カーボン微粒子等の粒子状物質(パティキュレート・マター;PM)が含まれることが知られている。このPMを捕集するために、排気管内には排ガス浄化フィルタが設置されている。さらに、排ガス浄化フィルタの下流又は上流には、排ガス中に含まれるPMの量を検出するためのセンサ(PM検出センサ)が用いられる。このようなPM検出センサとしては、表面に露出したPtからなる計測電極にPMを付着させ、電極間の電気的な特性の変化を測定することにより、測定ガス中のPMを検出することが可能なPM検出装置が提案されている(特許文献1参照)。また、PM検出装置には、電極に付着したPMを燃焼除去することにより電極を再生するためのヒータが内蔵される。   It is known that particulate matter (particulate matter: PM) such as carbon fine particles is contained in exhaust gas discharged from internal combustion engines such as gasoline engines and diesel engines. In order to collect this PM, an exhaust gas purification filter is installed in the exhaust pipe. Further, a sensor (PM detection sensor) for detecting the amount of PM contained in the exhaust gas is used downstream or upstream of the exhaust gas purification filter. As such a PM detection sensor, it is possible to detect PM in a measurement gas by attaching PM to a measurement electrode made of Pt exposed on the surface and measuring a change in electrical characteristics between the electrodes. A PM detection device has been proposed (see Patent Document 1). In addition, the PM detection device incorporates a heater for regenerating the electrode by burning and removing the PM adhering to the electrode.

特開2011−226832号公報JP 2011-226832 A

しかしながら、Ptからなる電極は、排ガス環境下において再生時の高温に繰り返し曝されると、蒸気圧の低い酸化白金(PtO2)となり、蒸散により飛散してしまうおそれがある。特に、PM検出センサにおいては、検出時にPMを電極に付着させる必要があるため上述のごとく電極が露出しており、Ptからなる電極の飛散が起こり易いという問題がある。その結果、PM検出センサの感度が経時的に劣化するおそれがある。即ち、従来のPM検出センサは、耐久性に改良の余地がある。 However, when the electrode made of Pt is repeatedly exposed to a high temperature during regeneration in an exhaust gas environment, it becomes platinum oxide (PtO 2 ) having a low vapor pressure and may be scattered by evaporation. In particular, in the PM detection sensor, it is necessary to attach PM to the electrode at the time of detection, so that the electrode is exposed as described above, and there is a problem that the electrode made of Pt is likely to be scattered. As a result, the sensitivity of the PM detection sensor may deteriorate over time. That is, the conventional PM detection sensor has room for improvement in durability.

本発明は、かかる背景に鑑みてなされたものであり、電極の飛散の抑制が可能であり、耐久性に優れた粒子状物質検出センサ素子及び粒子状物質検出センサを提供しようとするものである。   The present invention has been made in view of such a background, and is intended to provide a particulate matter detection sensor element and a particulate matter detection sensor that are capable of suppressing scattering of electrodes and that have excellent durability. .

本発明の一態様は、被測定ガス中の粒子状物質を検出するセンサ素子であって、
上記粒子状物質が付着する付着面を有する絶縁性基体と、
該絶縁性基体の上記付着面に形成された粒子状物質検出部と有し、
該粒子状物質検出部は、異なる極性を有し、相互に対向する少なくとも1対の検出電極を有しており、
上記検出電極の電極表面は、上記付着面と面一となるように配置されているとともに露出してり、
上記検出電極は、Rh、Ru、Ir、及びOsからなるグループから選ばれる少なくとも1種の金属とPtとの合金を主成分とし、
該合金中の上記金属の含有量は、Ptと上記金属との合計量100質量%中に0.5〜50質量%であり、
上記合金を構成する合金粒子のPt含有率は、該合金粒子の粒子表面部よりも粒子内部の方が高いことを特徴とする粒子状物質検出センサ素子にある。
One aspect of the present invention is a sensor element for detecting particulate matter in a gas to be measured,
An insulating substrate having an attachment surface to which the particulate matter adheres;
And a particulate matter detection portion formed on the attachment surface of the insulative substrate,
The particulate matter detection unit has at least one pair of detection electrodes having different polarities and facing each other ,
Electrode surface of the sensing electrodes, Ri Contact exposed to together when being arranged such that the attachment surface flush,
The detection electrode is mainly composed of an alloy of at least one metal selected from the group consisting of Rh, Ru, Ir, and Os and Pt,
The content of the metal in the alloy is 0.5 to 50% by mass in 100% by mass of the total amount of Pt and the metal,
In the particulate matter detection sensor element, the Pt content of the alloy particles constituting the alloy is higher in the inside of the particle than in the particle surface portion of the alloy particle.

本発明の他の態様は、上記粒子状物質検出センサ素子を備えることを特徴とする粒子状物質検出センサにある。   Another aspect of the present invention is a particulate matter detection sensor comprising the particulate matter detection sensor element.

上記PM検出センサ素子においては、検出電極が上記特定組成の合金を主成分としている。かかる組成の検出電極においては、高温環境下においても金属成分が蒸散し難い。そのため、上記PM検出センサ素子においては、上述のごとく付着面において検出電極が少なくとも部分的に露出しているにもかかわらず、検出電極の飛散が抑制される。それ故、PM検出センサ素子は、高温環境下に曝されてもPM検出部における感度を維持できる。即ち、上記構成のPM検出センサ素子は優れた耐久性を発揮することができる。   In the PM detection sensor element, the detection electrode includes the alloy having the specific composition as a main component. In the detection electrode having such a composition, the metal component hardly evaporates even under a high temperature environment. Therefore, in the PM detection sensor element, although the detection electrode is at least partially exposed on the adhesion surface as described above, scattering of the detection electrode is suppressed. Therefore, the PM detection sensor element can maintain the sensitivity in the PM detection unit even when exposed to a high temperature environment. That is, the PM detection sensor element having the above configuration can exhibit excellent durability.

上記粒子状物質検出センサ(以下、適宜「PM検出センサ」という)は、上述の特定組成の合金を主成分とするPM検出センサ素子を備える。そのため、上記のごとくPM検出センサ素子の検出電極の飛散が抑制され、PM検出センサは耐久性に優れる。   The particulate matter detection sensor (hereinafter referred to as “PM detection sensor” as appropriate) includes a PM detection sensor element whose main component is the alloy having the specific composition described above. Therefore, scattering of the detection electrode of the PM detection sensor element is suppressed as described above, and the PM detection sensor is excellent in durability.

実施例1における、PM検出センサ素子の斜視図。FIG. 3 is a perspective view of a PM detection sensor element according to the first embodiment. 実施例1における、PM検出素子の構成を示す展開図。FIG. 3 is a development view illustrating a configuration of a PM detection element in the first embodiment. 実施例1における、PM検出センサ素子の検出電極の部分断面拡大図。FIG. 3 is an enlarged partial cross-sectional view of a detection electrode of a PM detection sensor element in Example 1. 実施例1における、高温耐久試験後のPM検出センサ素子(試料X3)の付着面周囲における検出電極の走査型電子顕微鏡写真を示す説明図。FIG. 3 is an explanatory view showing a scanning electron micrograph of the detection electrode around the adhesion surface of the PM detection sensor element (sample X3) after the high-temperature durability test in Example 1. 実施例1における、高温耐久試験後のPM検出センサ素子(試料X26)の付着面周囲における検出電極の走査型電子顕微鏡写真を示す説明図。Explanatory drawing which shows the scanning electron micrograph of the detection electrode in the surroundings of the adhesion surface of PM detection sensor element (sample X26) after a high temperature endurance test in Example 1. FIG. 実施例1における、検出部の形成位置の変形例を示す説明図。Explanatory drawing which shows the modification of the formation position of the detection part in Example 1. FIG. 実施例3における、排気管内に取り付けられたPM検出センサの拡大断面図。The expanded sectional view of PM detection sensor attached in the exhaust pipe in Example 3. FIG. 実施例4における、PM検出センサ素子の斜視図。The perspective view of PM detection sensor element in Example 4. FIG. 実施例4における、PM検出センサ素子の構成を示す展開図。FIG. 6 is a development view showing a configuration of a PM detection sensor element in Example 4.

次に、上記PM検出センサ素子及びPM検出センサの好ましい実施形態について説明する。PM検出センサは、例えば排ガス等の被測定ガス中に含まれる粒子状物質(PM)を検出するために用いられる。PM検出センサは、例えば排ガス浄化フィルタ(ディーゼルパティキュレートフィルタ;DPF、ガソリンパティキュレートフィルタ;GPF)の上流及び/又は下流に配置することができる。PM検出センサは、ディーゼルエンジンに適用することも、ガソリンエンジンに適用することもできる。   Next, preferred embodiments of the PM detection sensor element and the PM detection sensor will be described. The PM detection sensor is used for detecting particulate matter (PM) contained in a measurement gas such as exhaust gas. The PM detection sensor can be disposed, for example, upstream and / or downstream of an exhaust gas purification filter (diesel particulate filter; DPF, gasoline particulate filter; GPF). The PM detection sensor can be applied to a diesel engine or a gasoline engine.

絶縁性基体の材質としては、例えば電気絶縁性及び耐熱性に優れたセラミックス材料が好適である。セラミックス材料としては、具体的にはアルミナ等を用いることができる。   As a material for the insulating substrate, for example, a ceramic material excellent in electrical insulation and heat resistance is suitable. Specifically, alumina or the like can be used as the ceramic material.

検出電極は、合金を主成分とする。合金は、Rh、Ru、Ir、及びOsからなるグループから選ばれる少なくとも1種の金属とからなる。合金を構成する合金粒子の粒子表面部におけるPt含有率は、粒子内部におけるPt含有率よりも低いことが好ましい。即ち、Pt含有率は、合金粒子の粒子表面部よりも粒子内部の方が高いことが好ましい。この場合には、検出電極の飛散をより一層防止することができる。そのため、PM検出センサ素子の耐久性をより向上させることができる。同様の観点から合金粒子の粒子内部におけるPt含有率は50質量%以上であることがより好ましい。合金粒子の粒子表面部及び粒子内部におけるPt含有率は、例えば透過電子顕微鏡(TEM)を用いた定量分析によって測定することができる。   The detection electrode has an alloy as a main component. The alloy is composed of at least one metal selected from the group consisting of Rh, Ru, Ir, and Os. It is preferable that the Pt content in the particle surface portion of the alloy particles constituting the alloy is lower than the Pt content in the particles. That is, the Pt content is preferably higher in the interior of the particle than in the particle surface portion of the alloy particle. In this case, the scattering of the detection electrode can be further prevented. Therefore, the durability of the PM detection sensor element can be further improved. From the same viewpoint, the Pt content in the alloy particles is more preferably 50% by mass or more. The Pt content in the particle surface portion and inside the particle of the alloy particles can be measured by, for example, quantitative analysis using a transmission electron microscope (TEM).

合金粒子の粒子表面部は、合金粒子の表面を含む外周部分であり、表面から内側に所定の距離までの範囲をいう。具体的には、例えば表面から内側へ半径の1/4の距離までの範囲を合金粒子の粒子表面部とすることができる。粒子内部は、粒子表面部よりも内側の部分である。なお、合金粒子の半径は、平均粒子径に基づいて規定することできる。平均粒子径は、走査型電子顕微鏡(FE−SEM)等により、所定の倍率で合金粒子を含む視野を観察、撮影し、所定の個数(10個以上)の合金粒子の粒径を算術平均することにより求めることができる。   The particle surface portion of the alloy particle is an outer peripheral portion including the surface of the alloy particle, and refers to a range from the surface to a predetermined distance inside. Specifically, for example, a range from the surface to a distance of 1/4 of the radius inward can be used as the particle surface portion of the alloy particle. The inside of the particle is a portion inside the particle surface portion. The radius of the alloy particles can be defined based on the average particle diameter. The average particle size is observed and photographed with a scanning electron microscope (FE-SEM) or the like at a predetermined magnification, and the average of the particle sizes of a predetermined number (10 or more) of alloy particles is arithmetically averaged. Can be obtained.

(実施例1)
本例においては、検出電極の組成が異なる複数のPM検出センサ素子(試料X1〜X26)を作製し、これらの耐久性の評価を行う例である。代表例として、まず、試料X3のPM検出センサ素子1について図1〜図5を用いて説明する。
Example 1
In this example, a plurality of PM detection sensor elements (samples X1 to X26) having different detection electrode compositions are manufactured, and durability of these elements is evaluated. As a representative example, first, the PM detection sensor element 1 of the sample X3 will be described with reference to FIGS.

図1及び図2に示すごとく、PM検出センサ素子1(以下、適宜「センサ素子1」という)は、被測定ガス中の粒子状物質(PM)を検出するために用いられる。センサ素子1は、PMが付着する付着面21を有する絶縁性基体2と、その付着面21に形成されたPM検出部3とを有する。PM検出部3は、異なる極性を有し、相互に対向する少なくとも1対の検出電極31が付着面21において少なくとも部分的に露出することにより形成されている。試料X3のセンサ素子1においては、検出電極31はPtとRhとの合金を主成分とする。合金中のRhの含有量は、PtとRhとの合計量100質量%中に2質量%である。   As shown in FIGS. 1 and 2, the PM detection sensor element 1 (hereinafter referred to as “sensor element 1” as appropriate) is used to detect particulate matter (PM) in the gas to be measured. The sensor element 1 includes an insulating substrate 2 having an adhesion surface 21 to which PM adheres, and a PM detector 3 formed on the adhesion surface 21. The PM detection unit 3 is formed by at least partially exposing at least one pair of detection electrodes 31 having different polarities and facing each other on the attachment surface 21. In the sensor element 1 of the sample X3, the detection electrode 31 is mainly composed of an alloy of Pt and Rh. The content of Rh in the alloy is 2% by mass in 100% by mass of the total amount of Pt and Rh.

図1に示すごとく、絶縁性基体2は、直方体形状であり、アルミナからなる。その長手方向(X方向)を含む面を側面とすると、本例のセンサ素子1においては側面のうちの一面が付着面21である。付着面21の先端側(図1におけるX方向右側)には、PM検出部3が配設されている。検出部3は、所定の間隔をあけて平行に配置された複数の検出電極31(31a、31b、31c、31d、31e)を有する。これらの検出電極31は、交互に異なる極性を有し、その電極表面が付着面と面一となるように、絶縁性基体2の内部に埋設されている。なお、付着面21や検出部3の位置は、適宜変更することが可能である。例えば図6に示すごとく直方体形状の絶縁性基体2の長手方向(X方向)における両端面のうちの一方の面を付着面21とし、この付着面21に検出部3を配置することも可能である。   As shown in FIG. 1, the insulating substrate 2 has a rectangular parallelepiped shape and is made of alumina. When the surface including the longitudinal direction (X direction) is defined as a side surface, in the sensor element 1 of the present example, one of the side surfaces is the adhesion surface 21. The PM detection unit 3 is disposed on the tip side of the adhesion surface 21 (right side in the X direction in FIG. 1). The detection unit 3 includes a plurality of detection electrodes 31 (31a, 31b, 31c, 31d, 31e) arranged in parallel at a predetermined interval. These detection electrodes 31 have alternately different polarities, and are embedded in the insulating base 2 so that the electrode surfaces are flush with the adhesion surface. In addition, the position of the adhesion surface 21 and the detection part 3 can be changed suitably. For example, as shown in FIG. 6, one of the two end faces in the longitudinal direction (X direction) of the rectangular parallelepiped insulating substrate 2 can be used as the attachment surface 21, and the detector 3 can be disposed on the attachment surface 21. is there.

図2に示すごとく、絶縁性基体2は、複数の板状の絶縁基板22〜28の積層体からなる。検出電極31a〜31eは、絶縁基板23〜27の表面に、例えばスクリーン印刷によって形成された電極膜からなる。図2に示すように例えば2種類のパターンで形成された電極膜31X、31Yを積層方向に交互に配置することにより、検出電極31a〜31eを形成することができる。図3に示すごとく、各検出電極31は、PtとRhとの合金311と、これに分散された骨材312とを含有する。骨材312はアルミナからなる。本例における骨材312の含有量は、100質量部の合金311に対して10質量部である。   As shown in FIG. 2, the insulating base 2 is composed of a laminate of a plurality of plate-like insulating substrates 22 to 28. The detection electrodes 31a to 31e are made of electrode films formed on the surfaces of the insulating substrates 23 to 27, for example, by screen printing. As shown in FIG. 2, for example, the detection electrodes 31a to 31e can be formed by alternately arranging the electrode films 31X and 31Y formed in two types of patterns in the stacking direction. As shown in FIG. 3, each detection electrode 31 contains an alloy 311 of Pt and Rh and an aggregate 312 dispersed in the alloy 311. The aggregate 312 is made of alumina. The content of the aggregate 312 in this example is 10 parts by mass with respect to 100 parts by mass of the alloy 311.

図2に示すごとく、電極膜31X、31Yは、相互に対称な略台形状で、長辺が絶縁基板23〜27の付着面21に露出している。電極膜31X、31Yの短辺は、相互にずれて配置されており、短辺の近傍に各基板23〜27を貫通するスルーホール2A、2Bが形成されている。ここでは、絶縁基板23、25、27に電極膜31Xとスルーホール2Aを、絶縁基板24、26に電極膜31Yとスルーホール2Bを形成している。スルーホール2Aは電極膜31Yと、スルーホール2Bは電極膜31Xと積層方向において対向する位置にある。さらに、電極膜31Xが形成される絶縁基板23、25、27のうち最上層の絶縁基板27に、電極膜31Xから長手方向の端縁(図の左端縁)に至る引き出し電極311が例えばスクリーン印刷により形成されている。また、電極膜31Yが形成される絶縁基板24、26のうち最下層の絶縁基板24に、電極膜31Yから長手方向の端縁(図の左端縁)に至る引き出し電極312が例えばスクリーン印刷により形成されている。   As shown in FIG. 2, the electrode films 31 </ b> X and 31 </ b> Y have substantially trapezoidal shapes that are symmetrical to each other, and the long sides are exposed on the adhesion surface 21 of the insulating substrates 23 to 27. The short sides of the electrode films 31X and 31Y are arranged so as to be shifted from each other, and through holes 2A and 2B penetrating the substrates 23 to 27 are formed in the vicinity of the short sides. Here, the electrode film 31X and the through hole 2A are formed in the insulating substrates 23, 25, and 27, and the electrode film 31Y and the through hole 2B are formed in the insulating substrates 24 and 26. The through hole 2A is at a position facing the electrode film 31Y and the through hole 2B is opposed to the electrode film 31X in the stacking direction. Further, an extraction electrode 311 extending from the electrode film 31X to the edge in the longitudinal direction (left edge in the figure) is screen-printed on the uppermost insulating substrate 27 among the insulating substrates 23, 25, 27 on which the electrode film 31X is formed, for example. It is formed by. In addition, a lead electrode 312 extending from the electrode film 31Y to the longitudinal edge (left edge in the drawing) is formed on the lowermost insulating substrate 24 of the insulating substrates 24 and 26 on which the electrode film 31Y is formed by, for example, screen printing. Has been.

そして、絶縁基板22を最下層として、その上に上述の絶縁基板23〜27と、絶縁基板28を順に積層する。これにより、検出電極31a、31c、31e(電極膜31X)は、その上下に位置するスルーホール2Bに充填される導電材を介して、互いに電気的に接続され、引き出し電極311により外部へ電気的な接続が可能となる。また、検出電極31b、31d(電極膜31Y)は、その上下に位置するスルーホール2Aに充填される導電材を介して、互いに電気的に接続され、引き出し電極312により外部へ電気的な接続が可能となる。また、最下層の絶縁基板22には、ヒータ電極膜39が例えばスクリーン印刷により形成されており、本例のセンサ素子1はヒータを内蔵している。   And the above-mentioned insulating substrates 23-27 and the insulating substrate 28 are laminated | stacked in order on the insulating substrate 22 as the lowest layer. As a result, the detection electrodes 31a, 31c, 31e (electrode film 31X) are electrically connected to each other via the conductive material filled in the through holes 2B located above and below the detection electrodes 31a, 31c, 31e, and are electrically connected to the outside by the extraction electrode 311. Connection is possible. The detection electrodes 31b and 31d (electrode film 31Y) are electrically connected to each other via a conductive material filled in the through holes 2A located above and below the detection electrodes 31b and 31d, and are electrically connected to the outside by the extraction electrode 312. It becomes possible. In addition, a heater electrode film 39 is formed on the lowermost insulating substrate 22 by, for example, screen printing, and the sensor element 1 of this example incorporates a heater.

引き出し電極311、312は、図1における電源部37に電気的に接続されて電源供給を受けることができる。また、引き出し電極311、312は、抵抗測定部(電気特性測定部)38に電気的に接続され、検出部3の電気特性、具体的には検出電極31a〜31eの対向電極間の抵抗値を測定することができる。ここで、検出電極31a〜31e間の距離は一定であり、対向する検出電極31aと検出電極31b、検出電極31bと検出電極31c、検出電極31cと検出電極31d、検出電極31dと検出電極31eは、
互いに極性が異なっている。また、極性の同じ検出電極31a、31c、31eは引き出し電極311に、検出電極31b、31dは引き出し電極312に、それぞれ接続されている。したがって、付着面21がPMを含む雰囲気に曝された時に、検出電極31a〜31eの対向電極間の抵抗値を測定し、その変化からPMの堆積を検出することができる。
The extraction electrodes 311 and 312 can be electrically connected to the power supply unit 37 in FIG. The lead electrodes 311 and 312 are electrically connected to a resistance measuring unit (electric characteristic measuring unit) 38, and the electric characteristics of the detecting unit 3, specifically, the resistance value between the counter electrodes of the detecting electrodes 31a to 31e are measured. Can be measured. Here, the distance between the detection electrodes 31a to 31e is constant, and the opposing detection electrode 31a and detection electrode 31b, detection electrode 31b and detection electrode 31c, detection electrode 31c and detection electrode 31d, detection electrode 31d and detection electrode 31e are ,
The polarities are different from each other. The detection electrodes 31a, 31c, and 31e having the same polarity are connected to the extraction electrode 311 and the detection electrodes 31b and 31d are connected to the extraction electrode 312. Therefore, when the adhesion surface 21 is exposed to an atmosphere containing PM, the resistance value between the counter electrodes of the detection electrodes 31a to 31e can be measured, and PM deposition can be detected from the change.

次に、センサ素子の作製方法を説明する。センサ素子は例えばシート積層法によって製造することができる。具体的には、まず、公知のドクターブレード法を用いて、セラミックスシートをフィルム上に成形する。セラミックシート材料には、アルミナが好適に用いられる。次いで、セラミックスシートを、各絶縁基板22〜28のサイズに合わせて打ち抜き(図2参照)、また、パンチングを施してスルーホール2A、2Bをそれぞれ設ける。ここで、スルーホールを形成する箇所、大きさは任意に設定可能である。   Next, a method for manufacturing the sensor element will be described. The sensor element can be manufactured by, for example, a sheet lamination method. Specifically, first, a ceramic sheet is formed on a film using a known doctor blade method. Alumina is suitably used for the ceramic sheet material. Next, the ceramic sheet is punched in accordance with the size of each of the insulating substrates 22 to 28 (see FIG. 2), and punched to provide the through holes 2A and 2B, respectively. Here, the location and size of the through hole can be arbitrarily set.

次いで、上述の2種類のパターンで電極膜31X、31Yをセラミックスシートに印刷する。電極膜の形成には、Pt−Rh合金からなる合金粒子と、アルミナからなる骨材と、有機溶剤と、有機バインダとを混合、混練してなるペースト状の電極材料が用いられる。この電極材料を所定のパターンでスクリーン印刷することによりセラミックスシート上に電極パターンを形成することができる。合金粒子は、Ptイオン及びRhイオンを含む酸溶液を混合し、還元剤により還元反応させることによって作製することができる。このとき、反応速度や析出速度を制御することにより、合金粒子中心から外側に向かって、Pt、Rhの順に析出させることができる。なお、本例の試料X3のセンサ素子を製造するにあたって、Ptイオン及びRhイオンの量を調整することにより、Ptを98質量%、Rhを2質量%含む合金粒子を製造した。   Next, the electrode films 31X and 31Y are printed on the ceramic sheet with the two types of patterns described above. For the formation of the electrode film, a paste-like electrode material obtained by mixing and kneading alloy particles made of a Pt—Rh alloy, an aggregate made of alumina, an organic solvent, and an organic binder is used. An electrode pattern can be formed on the ceramic sheet by screen printing this electrode material in a predetermined pattern. The alloy particles can be produced by mixing an acid solution containing Pt ions and Rh ions and performing a reduction reaction with a reducing agent. At this time, by controlling the reaction rate and the deposition rate, it is possible to deposit Pt and Rh in this order from the center of the alloy particles toward the outside. In manufacturing the sensor element of sample X3 of this example, alloy particles containing 98% by mass of Pt and 2% by mass of Rh were manufactured by adjusting the amounts of Pt ions and Rh ions.

さらに、電極材料を用いて引き出し電極311、312のパターンを印刷形成した。また、ヒータ電極膜39のパターンを印刷形成した。   Furthermore, the pattern of the extraction electrodes 311 and 312 was printed by using an electrode material. A pattern of the heater electrode film 39 was printed.

これらの各パターンが印刷されたセラミックスシートを順次積層し、積層体を焼成した。その後、PMの付着面を研磨することにより、検出電極31を付着面21に露出させた検出部3を形成した(図1参照)。このようにして、図1〜図3に示すごとく、センサ素子1(試料X3)を得ることができる。   Ceramic sheets on which these patterns were printed were sequentially laminated, and the laminate was fired. Then, the detection part 3 which exposed the detection electrode 31 to the adhesion surface 21 was formed by grind | polishing the adhesion surface of PM (refer FIG. 1). In this way, the sensor element 1 (sample X3) can be obtained as shown in FIGS.

また、本例においては、検出電極における合金の組成を変更した点を除き、上記試料X3と同様にしてさらに複数のセンサ素子(試料X1、試料X2、試料X4〜試料X26)を作製した。各試料の検出電極における貴金属の組成を後述の表1に示す。   Further, in this example, a plurality of sensor elements (sample X1, sample X2, sample X4 to sample X26) were further produced in the same manner as the sample X3 except that the composition of the alloy in the detection electrode was changed. The composition of the noble metal in the detection electrode of each sample is shown in Table 1 described later.

具体的には、試料X1、試料X2、試料X4、及び試料X5は、PtとRhとの配合比を変更した点を除いては、上述の試料X3と同様にして作製したセンサ素子である。また、試料X6〜試料X10は、Rhの代わりにRuを用い、その配合比を後述の表1に示すように調整して作製した点を除いては、上記試料X3と同様にして作製したセンサ素子である。また、試料X11〜試料X15は、Rhの代わりにIrを用い、その配合比を後述の表1に示すように調整して作製した点を除いては、上記試料X3と同様にして作製したセンサ素子である。また、試料X16〜試料X20は、Rhの代わりにOsを用い、その配合比を後述の表1に示すように調整して作製した点を除いては、上記試料X3と同様にして作製したセンサ素子である。また、試料X21〜試料X25は、Rhの代わりにPdを用い、その配合比を後述の表1に示すように調整して作製した点を除いては、上記試料X3と同様にして作製したセンサ素子である。また、試料X26は、Ptの他に金属を用いずに作製した点を除いては、上記試料X3と同様にして作製したセンサ素子である。   Specifically, Sample X1, Sample X2, Sample X4, and Sample X5 are sensor elements manufactured in the same manner as Sample X3 described above, except that the blending ratio of Pt and Rh was changed. Samples X6 to X10 were prepared in the same manner as Sample X3 except that Ru was used instead of Rh and the compounding ratio was adjusted as shown in Table 1 described later. It is an element. Samples X11 to X15 were manufactured in the same manner as Sample X3 except that Ir was used instead of Rh and the compounding ratio was adjusted as shown in Table 1 to be described later. It is an element. Samples X16 to X20 were prepared in the same manner as Sample X3 except that Os was used instead of Rh and the blending ratio was adjusted as shown in Table 1 described later. It is an element. Samples X21 to X25 were prepared in the same manner as Sample X3 except that Pd was used instead of Rh and the blending ratio was adjusted as shown in Table 1 to be described later. It is an element. Sample X26 is a sensor element manufactured in the same manner as Sample X3 except that it was manufactured without using metal in addition to Pt.

次に、各試料X1〜X26のセンサ素子について、高温耐久試験を行った。
具体的には、まず、各試料を温度900℃で250時間加熱した。そして、検出部における検出電極間の距離を測定し、高温耐久試験前の距離からの変化(増加)率を算出した。なお、高温耐久試験前における検出電極間の距離は20μmである。そして、耐久性に関して、変化率が0%の場合を優と評価し、変化率が0%を超えかつ5%以下の場合を良と評価し、変化率が5%を超える場合を不可と評価した。その結果を表1に示す。
Next, the high temperature durability test was done about the sensor element of each sample X1-X26.
Specifically, first, each sample was heated at a temperature of 900 ° C. for 250 hours. And the distance between the detection electrodes in a detection part was measured, and the change (increase) rate from the distance before a high temperature endurance test was computed. The distance between the detection electrodes before the high temperature durability test is 20 μm. And, regarding durability, when the rate of change is 0%, it is evaluated as excellent, when the rate of change exceeds 0% and 5% or less is evaluated as good, and when the rate of change exceeds 5%, it is evaluated as impossible. did. The results are shown in Table 1.

なお、検出電極間の距離は、電子顕微鏡を用いて調べることができる。代表例として、高温耐久試験後の試料X3及び試料X26における付着面付近の検出電極の走査型電子顕微鏡(SEM)写真を図4及び図5にそれぞれ示す。例えば図5においては、検出電極31が付着面21から後退しており、この後退した距離分だけ検出電極31間の距離が増加している。なお、後退距離Lは、付着面21から合金311の存在領域までの距離のうち、最大の距離である。これに対し、高温耐久試験後の試料X3のSEM写真(図4参照)においては、検出電極31の付着面21からの後退は観察されていない。   The distance between the detection electrodes can be examined using an electron microscope. As representative examples, scanning electron microscope (SEM) photographs of the detection electrodes in the vicinity of the adhesion surface in Sample X3 and Sample X26 after the high-temperature durability test are shown in FIGS. 4 and 5, respectively. For example, in FIG. 5, the detection electrodes 31 are retracted from the adhesion surface 21, and the distance between the detection electrodes 31 is increased by the retracted distance. The receding distance L is the maximum distance among the distances from the adhesion surface 21 to the region where the alloy 311 exists. On the other hand, in the SEM photograph (see FIG. 4) of the sample X3 after the high temperature endurance test, no receding from the adhesion surface 21 of the detection electrode 31 is observed.

表1より知られるように、金属成分がPtのみからなる検出電極を有する試料X26においては、高温耐久試験においてPtが蒸散した結果、検出電極間の距離が大きく増加していた。また、PtとPdとの合金からなる検出電極を有する試料X21〜X25においては、試料X26に比べて変化率が緩和するものの、耐久性は十分ではない。   As is known from Table 1, in the sample X26 having a detection electrode whose metal component is composed only of Pt, the distance between the detection electrodes was greatly increased as a result of the evaporation of Pt in the high temperature durability test. Further, in Samples X21 to X25 having detection electrodes made of an alloy of Pt and Pd, the rate of change is less than that of Sample X26, but the durability is not sufficient.

これに対し、Ptと、Rh、Ru、Ir、及びOsからなる特定のグループから選ばれる少なくとも1種の金属との合金を有する試料X1〜X20においては、配合比を調整することにより、金属成分の蒸散が抑制され、高い耐久性を示した。表1より知られるように、Ptと、Rh、Ru、Ir、及びOsからなる特定のグループから選ばれる少なくとも1種の金属との合計100質量%中におけるRh、Ru、Ir、Osの含有量は0.5〜50質量%であることが好ましい。より好ましくは2〜50質量%、さらに好ましくは10〜50質量%がよい。このように、検出電極の成分として、Ptと特定の貴金属との合金を採用し、これらの組成を調整することにより、耐久性に優れたPM検出センサ素子を実現できる。   On the other hand, in the samples X1 to X20 having an alloy of Pt and at least one metal selected from the specific group consisting of Rh, Ru, Ir, and Os, the metal component is adjusted by adjusting the compounding ratio. Transpiration was suppressed and high durability was exhibited. As is known from Table 1, the contents of Rh, Ru, Ir, and Os in a total of 100% by mass of Pt and at least one metal selected from the specific group consisting of Rh, Ru, Ir, and Os. Is preferably 0.5 to 50% by mass. More preferably, it is 2-50 mass%, More preferably, 10-50 mass% is good. As described above, by adopting an alloy of Pt and a specific noble metal as a component of the detection electrode and adjusting the composition thereof, a PM detection sensor element having excellent durability can be realized.

なお、本例においては、合金におけるPtと他の金属との含有割合を製造時における配合組成に基づいて表1中に示したが、製造後の検出電極の分析によって含有割合を測定することもできる。具体的には、電子線マイクロアナライザ(EPMA)により測定が可能である。この場合には、測定装置としては、例えば日本電子(株)製のJXA−8800を用いて、加速電圧15kV、プローブ電流50nAという条件で測定することができる。   In this example, the content ratio of Pt and other metals in the alloy is shown in Table 1 based on the composition at the time of manufacture, but the content ratio may be measured by analysis of the detection electrode after manufacture. it can. Specifically, it can be measured by an electron beam microanalyzer (EPMA). In this case, for example, JXA-8800 manufactured by JEOL Ltd. can be used as a measuring apparatus, and measurement can be performed under conditions of an acceleration voltage of 15 kV and a probe current of 50 nA.

また、本例において、検出電極31は、アルミナ312からなる骨材312を含有する(図3参照)。即ち、検出出電極31は、貴金属の合金311と、これに分散された骨材312とを含有し、骨材312は、絶縁性基体2と同じ材質のセラミックスからなる。そのため、検出電極31と絶縁性基体2とは優れた密着性を発揮することができる。そして、高温環境下における検出電極31の剥離を抑制することができる。   Moreover, in this example, the detection electrode 31 contains the aggregate 312 which consists of alumina 312 (refer FIG. 3). That is, the detection output electrode 31 includes a noble metal alloy 311 and an aggregate 312 dispersed therein, and the aggregate 312 is made of ceramics made of the same material as the insulating base 2. Therefore, the detection electrode 31 and the insulating substrate 2 can exhibit excellent adhesion. And the peeling of the detection electrode 31 in a high temperature environment can be suppressed.

また、図1〜図3に示すごとく、本例においては、検出電極31が絶縁性基体2に埋設されており、検出電極31の端部を絶縁性基体2の付着面21から露出させることにより、検出部3が形成されている。この場合には、絶縁性基体2を構成する上述の絶縁基板23〜27の厚みを小さくすることにより、検出電極31の間隔を小さくことが可能になる。その結果、検出感度の高いセンサ素子1の実現が可能になる。その一方で、このような構成のセンサ素子1においては、高温環境下において検出電極3の金属成分が蒸散すると、検出電極3が付着面21に露出しなくなり、検出部3におけるPMの検出が不可能になるおそれがある。しかし、上述の試料X2〜X5、試料X7〜X10、X12〜X15、X17〜X20における検出電極3の合金組成を採用することにより、金属成分の蒸散が抑制されるため、高温環境下に曝されてもPMの検出が可能になる。即ち、検出電極3の端部を絶縁性基体2の付着面21から露出させた検出部3を有するセンサ素子1においては、上記特定の合金組成を採用することによるメリットが顕著になる。   As shown in FIGS. 1 to 3, in this example, the detection electrode 31 is embedded in the insulating base 2, and the end of the detection electrode 31 is exposed from the adhesion surface 21 of the insulating base 2. The detection unit 3 is formed. In this case, the interval between the detection electrodes 31 can be reduced by reducing the thickness of the above-described insulating substrates 23 to 27 constituting the insulating base 2. As a result, the sensor element 1 with high detection sensitivity can be realized. On the other hand, in the sensor element 1 having such a configuration, when the metal component of the detection electrode 3 evaporates in a high temperature environment, the detection electrode 3 is not exposed to the adhesion surface 21 and PM detection in the detection unit 3 is not possible. May be possible. However, by employing the alloy composition of the detection electrode 3 in the samples X2 to X5, samples X7 to X10, X12 to X15, and X17 to X20, the transpiration of the metal component is suppressed, so that it is exposed to a high temperature environment. Even PM can be detected. That is, in the sensor element 1 having the detection portion 3 in which the end portion of the detection electrode 3 is exposed from the adhesion surface 21 of the insulating substrate 2, the merit by adopting the above specific alloy composition becomes remarkable.

(実施例2)
本例は、検出電極中の骨材の量を変更したセンサ素子の例である。
即ち、本例においては、後述の表2に示すように、検出電極中の金属成分に対する骨材(アルミナ)の量を変更し、複数のセンサ素子(試料X27〜試料X44)を作製した。 本例のセンサ素子は、検出電極におけるアルミナの量と、金属成分の組成を表2に示すように変更した点を除いては、実施例1と同様の構成を有する。なお、表2におけるアルミナの量は、貴金属の合金100質量部に対する量(質量部)である。
(Example 2)
This example is an example of a sensor element in which the amount of aggregate in the detection electrode is changed.
That is, in this example, as shown in Table 2 described later, the amount of aggregate (alumina) with respect to the metal component in the detection electrode was changed, and a plurality of sensor elements (samples X27 to X44) were produced. The sensor element of this example has the same configuration as that of Example 1 except that the amount of alumina in the detection electrode and the composition of the metal component are changed as shown in Table 2. In addition, the quantity of the alumina in Table 2 is the quantity (mass part) with respect to 100 mass parts of noble metal alloys.

各試料X24〜試料X44について、実施例1と同様の高温耐久試験を行った。そして、高温耐久試験後の検出電極間の距離を実施例1と同様にして測定し、耐久性の評価を行った。その結果を表2に示す。   About each sample X24-sample X44, the high temperature endurance test similar to Example 1 was done. And the distance between the detection electrodes after a high temperature endurance test was measured like Example 1, and durability was evaluated. The results are shown in Table 2.

表2より知られるごとく、検出電極中のアルミナ(骨材)の含有量は、貴金属の合金100質量部に対して5〜20質量部であることが好ましい。この場合には、実施例1において示すように、合金中の組成を調整することにより、検出電極の蒸散が抑制され、センサ素子が優れた耐久性を発揮することができる。骨材の量を上記範囲に調整することにより、金属成分の蒸散をより一層抑制することができる。また、骨材の量が少なくなり過ぎると、高温環境下において検出電極が剥離するおそれがあり、骨材の量が多くなりすぎると、PMの検出感度が低下するおそれがある。かかる観点からも、骨材の量は、貴金属の合金100質量部に対して5〜20質量部であることが好ましい。   As is known from Table 2, the content of alumina (aggregate) in the detection electrode is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the noble metal alloy. In this case, as shown in Example 1, by adjusting the composition in the alloy, transpiration of the detection electrode is suppressed, and the sensor element can exhibit excellent durability. By adjusting the amount of the aggregate to the above range, the transpiration of the metal component can be further suppressed. Further, if the amount of aggregate is too small, the detection electrode may be peeled off in a high temperature environment, and if the amount of aggregate is too large, the PM detection sensitivity may be decreased. Also from this viewpoint, the amount of the aggregate is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the noble metal alloy.

(実施例3)
次に、センサ素子を備えるPM検出センサの例について説明する。図7に示すごとく、本例のPM検出センサ4は、例えば自動車の排気管5に螺結される筒状のハウジング40を有し、その内部に配置された筒状のインシュレータ41に、実施例1のセンサ素子1(例えば試料X3)が挿入固定されている。インシュレータ41は、センサ素子1の上部を保持している。センサ素子1の下部(先端)は、インシュレータ41及びハウジングから突出している。センサ素子1の下部は、排気管5内に突出する中空のカバー42内に配置されている。カバー42の底部および側部には、被測定ガス51(排気ガス51)が流出入するための通孔420、421が穿設されている。
(Example 3)
Next, an example of a PM detection sensor including a sensor element will be described. As shown in FIG. 7, the PM detection sensor 4 of this example includes a cylindrical housing 40 that is screwed to an exhaust pipe 5 of an automobile, for example, and a cylindrical insulator 41 disposed inside the PM housing 4 includes an embodiment. One sensor element 1 (for example, sample X3) is inserted and fixed. The insulator 41 holds the upper part of the sensor element 1. The lower part (tip) of the sensor element 1 protrudes from the insulator 41 and the housing. The lower part of the sensor element 1 is arranged in a hollow cover 42 protruding into the exhaust pipe 5. Through holes 420 and 421 for allowing the gas 51 to be measured (exhaust gas 51) to flow in and out are formed in the bottom and sides of the cover 42.

本例のPM検出センサ4は、ディーゼルエンジン又はガソリンエンジンの排気管5に配置される。具体的には、例えばPMを捕集するためのディーゼルパティキュレートフィルタ(DPF)又はガソリンパティキュレートフィルタ(GPF)の下流にPM検出センサ4を配置することができる。この場合には、DPF又はGPFをすり抜けるPMを、PM検出センサ4にて検出することができる。   The PM detection sensor 4 of this example is disposed in an exhaust pipe 5 of a diesel engine or a gasoline engine. Specifically, for example, the PM detection sensor 4 can be disposed downstream of a diesel particulate filter (DPF) or a gasoline particulate filter (GPF) for collecting PM. In this case, PM that passes through the DPF or GPF can be detected by the PM detection sensor 4.

センサ素子1は、例えばその付着面21を被測定ガス51の流れ方向と対面させるように配置することができる(図7参照)。そして、被測定ガス51中に含まれるPMが付着面21に設けられたPM検出部3に付着することにより、その量を検出することができる。   The sensor element 1 can be arrange | positioned so that the adhesion surface 21 may face the flow direction of the to-be-measured gas 51, for example (refer FIG. 7). Then, the amount of PM contained in the measurement gas 51 can be detected by adhering to the PM detection unit 3 provided on the adhesion surface 21.

本例のPM検出センサ4においては、実施例1における試料X2〜X5、試料X7〜X10、X12〜X15、X17〜X20、実施例2におけるX29〜X32、試料X35〜X38、試料X41〜試料X44のセンサ素子1を用いることができる。この場合には、これらのセンサ素子1の上述の優れた耐久性を生かして、PM検出センサ4が優れた耐久性を発揮することができる。
尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
In the PM detection sensor 4 of this example, samples X2 to X5, samples X7 to X10, X12 to X15, X17 to X20 in Example 1, X29 to X32 in Example 2, samples X35 to X38, and samples X41 to X44 are used. The sensor element 1 can be used. In this case, the PM detection sensor 4 can exhibit excellent durability by taking advantage of the above-described excellent durability of the sensor element 1.
Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.

(実施例4)
本例は、櫛歯状の電極構造を有するPM検出センサ素子の例である。
図8及び図9に示すごとく、本例のPM検出センサ素子1は、PMの付着面21を有する直方体形状の絶縁性基体2と、付着面に形成されたPM検出部3とを有する。絶縁性基体2はアルミナからなる。PM検出部3は、絶縁性基体2の表面に形成された窪み29内に設けられている。検出部3は、所定の間隔をあけて平行に配置された複数の検出電極31(31f、31g、31h、31i、31j、31k、31l、31m)を有する。これらの検出電極31は、交互に異なる極性を有している。
(Example 4)
This example is an example of a PM detection sensor element having a comb-like electrode structure.
As shown in FIGS. 8 and 9, the PM detection sensor element 1 of this example includes a rectangular parallelepiped insulating substrate 2 having a PM adhesion surface 21 and a PM detection unit 3 formed on the adhesion surface. The insulating substrate 2 is made of alumina. The PM detection unit 3 is provided in a recess 29 formed on the surface of the insulating substrate 2. The detection unit 3 includes a plurality of detection electrodes 31 (31f, 31g, 31h, 31i, 31j, 31k, 31l, and 31m) arranged in parallel at a predetermined interval. These detection electrodes 31 have different polarities alternately.

図9に示すごとく、絶縁性基体2は、複数の板状の絶縁性基板200、201、202の積層体からなる。検出電極31f〜31mは、中間に配置される絶縁性基板201の表面に例えばスクリーン印刷によって形成された電極膜からなる。本例における電極膜は、一対の対向電極34、35からなる。対向電極34、35は、長手方向に伸びる引き出し電極340、350を有し、長手方向と直交する方向に伸びる複数の検出電極31をそれぞれ有する。対向電極34、35は、引き出し電極340、350が互いに向かい合うように配置されていると共に、一方の検出電極31の間に他方の検出電極31が入り込むように配置されている。   As shown in FIG. 9, the insulating base 2 is composed of a laminate of a plurality of plate-like insulating substrates 200, 201, 202. The detection electrodes 31f to 31m are made of an electrode film formed, for example, by screen printing on the surface of the insulating substrate 201 disposed in the middle. The electrode film in this example includes a pair of counter electrodes 34 and 35. The counter electrodes 34 and 35 have extraction electrodes 340 and 350 extending in the longitudinal direction, and each of the plurality of detection electrodes 31 extending in a direction orthogonal to the longitudinal direction. The counter electrodes 34 and 35 are arranged so that the extraction electrodes 340 and 350 face each other, and the other detection electrode 31 enters between the one detection electrodes 31.

また、最下層となる絶縁性基板200には、ヒータ電極膜39が例えばスクリーン印刷により形成されており、本例のPM検出センサ素子1はヒータを内蔵している。最上層となる絶縁性基板202には、貫通口290が設けられている。各絶縁性基板200、201、202の積層体においては、この貫通口290において櫛歯状に配置された検出電極31が部分的に露出する。   In addition, a heater electrode film 39 is formed on the lowermost insulating substrate 200 by, for example, screen printing, and the PM detection sensor element 1 of this example incorporates a heater. A through-hole 290 is provided in the insulating substrate 202 which is the uppermost layer. In the laminated body of each insulating substrate 200, 201, 202, the detection electrode 31 arranged in a comb-tooth shape is partially exposed at the through-hole 290.

本例のPM検出センサ素子1は、電極の形成パターンを変更したり、セラミックスシートの形状や使用枚数を変更する点を除いて、実施例1と同様にして作製することができるため、製造方法の詳説は省略する。   The PM detection sensor element 1 of this example can be manufactured in the same manner as in Example 1 except that the electrode formation pattern is changed and the shape and number of used ceramic sheets are changed. The detailed explanation of is omitted.

本例のPM検出センサ素子1においても、実施例1及び2において優れた耐久性を示した合金組成からなる検出電極31を採用することにより、実施例1及び実施例2と同様の作用効果を得ることができる。即ち、高温環境下においても、検出電極31が飛散し難くなり、優れた耐久性を発揮することができる。   Also in the PM detection sensor element 1 of the present example, by adopting the detection electrode 31 made of an alloy composition exhibiting excellent durability in Examples 1 and 2, the same effects as those of Example 1 and Example 2 are obtained. Can be obtained. That is, even in a high temperature environment, the detection electrode 31 is less likely to be scattered, and excellent durability can be exhibited.

1 PM検出センサ素子
2 絶縁性基体
21 付着面
3 PM検出部
31 検出電極
DESCRIPTION OF SYMBOLS 1 PM detection sensor element 2 Insulating base | substrate 21 Adhesion surface 3 PM detection part 31 Detection electrode

Claims (5)

被測定ガス中の粒子状物質を検出するセンサ素子(1)であって、
上記粒子状物質が付着する付着面(21)を有する絶縁性基体(2)と、
該絶縁性基体(2)の上記付着面(21)に形成された粒子状物質検出部(3)と有し、
該粒子状物質検出部(3)は、異なる極性を有し、相互に対向する少なくとも1対の検出電極(31)を有しており、
上記検出電極(31)の電極表面は、上記付着面(21)と面一となるように配置されているとともに露出してり、
上記検出電極(3)は、Rh、Ru、Ir、及びOsからなるグループから選ばれる少なくとも1種の金属とPtとの合金(311)を主成分とし、
該合金(311)中の上記金属の含有量は、Ptと上記金属との合計量100質量%中に0.5〜50質量%であり、
上記合金(311)を構成する合金粒子のPt含有率は、該合金粒子の粒子表面部よりも粒子内部の方が高いことを特徴とする粒子状物質検出センサ素子(1)。
A sensor element (1) for detecting particulate matter in a gas to be measured,
An insulating substrate (2) having an attachment surface (21) to which the particulate matter adheres;
A insulative substrate (2) above attachment surface (21) which is formed in the particulate matter detecting portion of the (3),
The particulate matter detection unit (3) has at least one pair of detection electrodes (31) having different polarities and facing each other ,
Electrode surface of the detection electrode (31), Ri Contact exposed to together when being arranged such that the attachment surface (21) flush,
The detection electrode (3 1 ) is mainly composed of an alloy (311) of at least one metal selected from the group consisting of Rh, Ru, Ir, and Os and Pt,
The content of the metal in the alloy (311) is 0.5 to 50% by mass in 100% by mass of the total amount of Pt and the metal,
The particulate matter detection sensor element (1) characterized in that the Pt content of the alloy particles constituting the alloy (311) is higher in the interior of the particle than in the particle surface portion of the alloy particle.
上記検出電極(31)は、電極表面が上記付着面(21)と面一となるように上記絶縁性基体(2)の内部に埋設されていることを特徴とする請求項1に記載の粒子状物質検出センサ素子(1)。The particle according to claim 1, wherein the detection electrode (31) is embedded in the insulating base (2) so that the electrode surface is flush with the adhesion surface (21). A substance detection sensor element (1). 上記検出電極(32)は、上記合金(311)と、該合金(311)に分散された骨材(312)とを含有し、該骨材(312)は、上記絶縁性基体(2)と同じ材質のセラミックスからなることを特徴とする請求項1または2に記載の粒子状物質検出センサ素子(1)。 The detection electrode (32) includes the alloy (311) and an aggregate (312) dispersed in the alloy (311), and the aggregate (312) includes the insulating base (2). The particulate matter detection sensor element (1) according to claim 1 or 2 , wherein the particulate matter detection sensor element (1) is made of ceramics of the same material. 上記骨材(312)の含有量は、上記合金100質量部に対して5〜20質量部であることを特徴とする請求項に記載の粒子状物質検出センサ素子(1)。 The particulate matter detection sensor element (1) according to claim 3 , wherein the content of the aggregate (312) is 5 to 20 parts by mass with respect to 100 parts by mass of the alloy. 請求項1〜のいずれか1項に記載の粒子状物質検出センサ素子(1)を備えることを特徴とする粒子状物質検出センサ(4)。 A particulate matter detection sensor (4) comprising the particulate matter detection sensor element (1) according to any one of claims 1 to 4 .
JP2014123828A 2014-06-16 2014-06-16 Particulate matter detection sensor element and particulate matter detection sensor using the same Active JP6386805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014123828A JP6386805B2 (en) 2014-06-16 2014-06-16 Particulate matter detection sensor element and particulate matter detection sensor using the same
PCT/JP2015/065880 WO2015194362A1 (en) 2014-06-16 2015-06-02 Particulate matter detection sensor element and particulate matter detection sensor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123828A JP6386805B2 (en) 2014-06-16 2014-06-16 Particulate matter detection sensor element and particulate matter detection sensor using the same

Publications (3)

Publication Number Publication Date
JP2016003932A JP2016003932A (en) 2016-01-12
JP2016003932A5 JP2016003932A5 (en) 2016-08-25
JP6386805B2 true JP6386805B2 (en) 2018-09-05

Family

ID=54935353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123828A Active JP6386805B2 (en) 2014-06-16 2014-06-16 Particulate matter detection sensor element and particulate matter detection sensor using the same

Country Status (2)

Country Link
JP (1) JP6386805B2 (en)
WO (1) WO2015194362A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406237B2 (en) 2015-12-17 2018-10-17 株式会社デンソー Sensor element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637593B2 (en) * 1990-01-23 1997-08-06 日本碍子株式会社 Activation method of oxygen sensor element
JPH07181156A (en) * 1993-12-24 1995-07-21 Ngk Insulators Ltd Flame sensor
JP4615788B2 (en) * 2001-09-13 2011-01-19 日本特殊陶業株式会社 Cleaning method for variable resistance gas sensor
JP3860768B2 (en) * 2002-03-27 2006-12-20 京セラ株式会社 Oxygen sensor element
DE102007047078A1 (en) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensor element for use in e.g. garage for emission investigation, has protective layers designed congruently to surfaces of electrodes of system, where upper surfaces of electrodes face surfaces of electrodes are arranged on isolation layer
JP5278499B2 (en) * 2011-06-03 2013-09-04 株式会社デンソー Gas sensor element and gas sensor using the same
US8823400B2 (en) * 2011-06-29 2014-09-02 Delphi Technologies, Inc. Method and system for contamination signature detection diagnostics of a particulate matter sensor
US9523632B2 (en) * 2011-08-29 2016-12-20 Toyota Jidosha Kabushiki Kaisha Particulate matter sensor and method for manufacturing particulate matter sensor

Also Published As

Publication number Publication date
JP2016003932A (en) 2016-01-12
WO2015194362A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5081897B2 (en) Particulate matter detection device and particulate matter detection method
JP4014513B2 (en) CERAMIC HEATER, LAMINATED GAS SENSOR ELEMENT AND ITS MANUFACTURING METHOD, AND GAS SENSOR HAVING LAMINATED GAS SENSOR ELEMENT
JP6759001B2 (en) Gas concentration measurement method using gas sensor and gas sensor
TWI499775B (en) Metal paste for forming gas sensor electrodes
JP5357347B1 (en) Metal paste for gas sensor electrode formation
KR20100103360A (en) Particulate matter detection device
JP5218477B2 (en) Gas sensor element and manufacturing method thereof
JP2002048758A (en) Gas sensor element and its manufacturing method
CN108369203B (en) Sensor element
WO2019009215A1 (en) Gas sensor element and gas sensor
JP5715549B2 (en) Electrode paste for screen printing and method for producing electrode using the same
JP6386805B2 (en) Particulate matter detection sensor element and particulate matter detection sensor using the same
JP6999455B2 (en) Sensor element and gas sensor
WO2016080120A1 (en) Particulate matter detection sensor
TW201743338A (en) Metal paste for forming gas sensor electrode
JP5387550B2 (en) Method for manufacturing gas sensor element
JP6212328B2 (en) Metal paste for gas sensor electrode formation
US20150300919A1 (en) Method for Producing a Sensor Element
US11125715B2 (en) Gas sensor
TWI648537B (en) Gas sensing electrode and method of manufacturing same
JP6511304B2 (en) Particulate matter detection sensor
JP2002365258A (en) Gas sensor element, its manufacturing method and gas sensor
JP2003107034A (en) Laminated gas sensor element and gas sensor equipped with the same
JP2001242124A (en) Gas sensor element and gas sensor equipped therewith
JP2002357580A (en) Humidity sensor and method for manufacturing sensor element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6386805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250