JP5218477B2 - Gas sensor element and manufacturing method thereof - Google Patents

Gas sensor element and manufacturing method thereof Download PDF

Info

Publication number
JP5218477B2
JP5218477B2 JP2010128873A JP2010128873A JP5218477B2 JP 5218477 B2 JP5218477 B2 JP 5218477B2 JP 2010128873 A JP2010128873 A JP 2010128873A JP 2010128873 A JP2010128873 A JP 2010128873A JP 5218477 B2 JP5218477 B2 JP 5218477B2
Authority
JP
Japan
Prior art keywords
protective layer
porous protective
gas
particles
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010128873A
Other languages
Japanese (ja)
Other versions
JP2011252894A (en
Inventor
俊和 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010128873A priority Critical patent/JP5218477B2/en
Publication of JP2011252894A publication Critical patent/JP2011252894A/en
Application granted granted Critical
Publication of JP5218477B2 publication Critical patent/JP5218477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、自動車エンジン等の内燃機関から排出される燃焼排気等の被測定ガス中に含まれる特定ガス成分の濃度を測定するガスセンサに用いられるガスセンサ素子とその製造方法に関する。   The present invention relates to a gas sensor element used for a gas sensor for measuring the concentration of a specific gas component contained in a gas to be measured such as combustion exhaust discharged from an internal combustion engine such as an automobile engine, and a manufacturing method thereof.

従来、自動車エンジン等の内燃機関の燃焼排気流路に、該燃焼排気中に含まれる酸素、窒素酸化物、アンモニア、水素等の特定ガス成分の濃度を検知するガスセンサを配設して、内燃機関の燃焼制御や排ガス浄化装置の制御を行っている。   Conventionally, a gas sensor for detecting the concentration of a specific gas component such as oxygen, nitrogen oxides, ammonia, and hydrogen contained in the combustion exhaust gas is disposed in the combustion exhaust flow path of the internal combustion engine such as an automobile engine, and the internal combustion engine. Combustion control and exhaust gas purification device control.

このようなガスセンサとして、例えば、酸素センサの場合、平板状に形成された酸素イオン伝導性の固体電解質層と、該固体電解質層の一方の表面に形成されて被測定ガスに接する測定電極層と、該測定電極層側に形成されて上記被測定ガスを透過する多孔質拡散抵抗層と、上記固体電解質層の他方の表面に形成されて基準ガスに接する基準電極層と、該基準電極層側に形成されて上記基準ガスを導入する基準ガス室を有する基準ガス室形成層と、発熱体を内部に有するヒータ部とを積層して一体として、いわゆる積層型のガスセンサ素子が広く用いられている。   As such a gas sensor, for example, in the case of an oxygen sensor, an oxygen ion conductive solid electrolyte layer formed in a flat plate shape, and a measurement electrode layer formed on one surface of the solid electrolyte layer and in contact with the gas to be measured A porous diffusion resistance layer that is formed on the measurement electrode layer side and transmits the gas to be measured; a reference electrode layer that is formed on the other surface of the solid electrolyte layer and is in contact with the reference gas; and the reference electrode layer side A so-called stacked gas sensor element is widely used by stacking and integrally forming a reference gas chamber forming layer having a reference gas chamber for introducing the reference gas and a heater portion having a heating element therein. .

一方、被測定ガスとしての燃焼排気中には、P、Ca、Zn、Si等のオイル含有成分やK、Na、Pb等のガソリン添加成分からなる被毒物質が含まれており、ガスセンサ素子の測定電極層や多孔質拡散層がこれらの被毒物質に汚染されて、ガスセンサの応答性劣化や出力異常等の問題を引き起こす虞がある。
また、燃焼排気中には、水蒸気も含まれており、これが冷間時に凝縮して水滴となりガスセンサ素子に付着する虞もある。
On the other hand, the combustion exhaust as the gas to be measured contains poisonous substances composed of oil-containing components such as P, Ca, Zn, and Si and gasoline-added components such as K, Na, and Pb. There is a possibility that the measurement electrode layer and the porous diffusion layer are contaminated with these poisoning substances, causing problems such as deterioration in response of the gas sensor and abnormal output.
The combustion exhaust gas also contains water vapor, which may condense in the cold state to form water droplets and adhere to the gas sensor element.

加えて、このようなガスセンサ素子は、固体電解質層を酸素イオンやプロトン等の特定のイオンに対してイオン伝導性を示すべく、内蔵された発熱体によって例えば700℃以上の高温に加熱・活性化された状態で使用されている。
このため、被測定ガス中の水滴が付着(被水)すると、ガスセンサ素子に大きな熱衝撃が加わり、いわゆる被水割れを生じる虞もある。
In addition, such a gas sensor element heats and activates the solid electrolyte layer to a high temperature of, for example, 700 ° C. or higher by a built-in heating element in order to exhibit ion conductivity with respect to specific ions such as oxygen ions and protons. It is used in the state that was done.
For this reason, when water droplets in the gas to be measured adhere (water exposure), a large thermal shock is applied to the gas sensor element, and so-called water cracking may occur.

そこで、ガスセンサ素子の外周面に所定膜厚の多孔質保護層を形成して、該多孔質保護層内に上記被毒物質を捕獲して誤動作を防止したり、水滴を該多孔質保護層内に分散させて熱衝撃を緩和させ素子全体にクラックが発生するのを防止したりすることが広く行われている。   Therefore, a porous protective layer having a predetermined thickness is formed on the outer peripheral surface of the gas sensor element, and the poisoning substance is captured in the porous protective layer to prevent malfunction, or water droplets are placed in the porous protective layer. It is widely practiced that the thermal shock is relaxed by being dispersed in the substrate and cracks are prevented from occurring in the entire device.

このような多孔質保護層は、例えば所定の粒度分布を有するアルミナ等の耐熱性セラミック粉末を無機バインダ及び分散剤とともに水又は有機溶媒等の分散媒に分散させたスラリー中にガスセンサ素子の被測定流体中に晒される部分を浸漬(ディッピング)して、その外周面に耐熱性セラミック等からなる皮膜を形成し、これを乾燥、焼結等の加熱処理をすることにより形成されている(例えば、特許文献1、特許文献2等参照)。   Such a porous protective layer is, for example, a gas sensor element to be measured in a slurry in which a heat-resistant ceramic powder such as alumina having a predetermined particle size distribution is dispersed in a dispersion medium such as water or an organic solvent together with an inorganic binder and a dispersant. A part exposed to the fluid is immersed (dipped), and a film made of heat-resistant ceramic is formed on the outer peripheral surface thereof, and this is formed by heat treatment such as drying and sintering (for example, (See Patent Document 1, Patent Document 2, etc.).

ところが、従来のディッピングによって多孔質保護層を形成した場合、表面張力等の影響により、ガスセンサ素子の表面の全周に渡って一定の膜厚とすることは極めて困難であり、ガスセンサ素子の横断面に対してガスセンサ素子の角部における膜厚が薄く、平面部の中心部における膜厚が厚くなった略楕円状に形成される(特許文献2図3等参照)。   However, when a porous protective layer is formed by conventional dipping, it is extremely difficult to obtain a constant film thickness over the entire circumference of the surface of the gas sensor element due to the influence of surface tension and the like. On the other hand, the gas sensor element is formed in a substantially elliptical shape with a thin film thickness at the corner and a thick film at the center of the flat surface (see Patent Document 2, FIG. 3, etc.).

特に、複数回のディッピングを繰り返すことによって、膜厚を調整したり、異なる粒径や、気孔率を有する保護層を多層に形成したりする場合には、直前に形成された保護層の充填密度によって次に形成される保護層の膜厚が影響される。
例えば、下地となった保護層の気孔率が高い部分は吸水率が高く、速やかにスラリー中の水分が吸水されるため、付着量が増加し、形成される保護層の膜厚が厚くなり、気孔率が低い部分は、相対的に吸水率が低く、付着量が減少し、形成される保護層の膜厚は薄くなる。
さらに、一般的に用いられる水分散系のスラリーは表面張力が高く、ガスセンサ素子の平面の大きさに応じて膜厚バランスが発生する。このため、保護層の一部が膜厚過多となったり、乾燥、焼結時の収縮率の違いによって保護層表面に亀裂が発生したりする虞がある。
In particular, when the thickness is adjusted by repeating dipping a plurality of times, or when a protective layer having different particle diameters or porosity is formed in multiple layers, the packing density of the protective layer formed immediately before Affects the film thickness of the protective layer to be formed next.
For example, the portion having a high porosity of the protective layer that is the base has a high water absorption rate, and moisture in the slurry is quickly absorbed, so that the amount of adhesion increases, and the thickness of the protective layer to be formed increases. The portion having a low porosity has a relatively low water absorption rate, the amount of adhesion is reduced, and the thickness of the protective layer to be formed becomes thin.
Furthermore, the water dispersion type slurry generally used has a high surface tension, and a film thickness balance is generated according to the plane size of the gas sensor element. For this reason, there is a possibility that a part of the protective layer has an excessive film thickness, or a crack is generated on the surface of the protective layer due to a difference in shrinkage rate during drying and sintering.

そこで、本発明は、かかる実情に鑑み、多孔質保護層の膜厚の均一化を図り、内部応力の低減により多孔質保護層の亀裂を抑制して耐久性の高い多孔質保護層を有するガスセンサ素子とその製造方法の提供を目的とする。   Therefore, in view of such circumstances, the present invention aims to make the thickness of the porous protective layer uniform, and to suppress cracking of the porous protective layer by reducing internal stress, and to have a highly durable porous protective layer. An object is to provide an element and a method for manufacturing the element.

第1の発明では、特定のイオン伝導性を有する固体電解質材料を略平板状に形成した固体電解質層と、該固体電解質層の一の表面に形成され基準ガスに接する基準電極と、他の表面に形成され被測定ガスに接する測定電極とを含み、被測定ガス流路に載置され、被測定ガス中の特定ガス成分の濃度を検出するセンサ部と、通電により発熱する発熱体を内部に有し、上記センサ部を加熱するヒータ部と、耐熱性セラミック粉末を用いて形成され上記センサ部と上記ヒータ部との表面を覆う多孔質保護層とを具備するガスセンサ素子であって、
上記多孔質保護層を、所定の平均粒径にそろえた比較的大粒径の耐熱性セラミック粉末によって構成するとともに、該耐熱性セラミック粉末に対して、上記大粒径粒子の平均粒径の2分の1以下の粒径を有する微細粒径粒子の耐熱性セラミック粉末を所定の範囲で添加して、上記大粒径の耐熱性セラミック粉末の表面若しくは粒子間に上記微細粒径の耐熱性セラミック粉末を分布せしめる(請求項1)。
In the first invention, a solid electrolyte layer in which a solid electrolyte material having specific ion conductivity is formed in a substantially flat plate shape, a reference electrode formed on one surface of the solid electrolyte layer and in contact with a reference gas, and another surface A sensor electrode that is in contact with the gas to be measured and is placed in the gas flow path to be measured, detects a concentration of a specific gas component in the gas to be measured, and a heating element that generates heat when energized. A gas sensor element comprising: a heater part that heats the sensor part; and a porous protective layer that is formed using a heat-resistant ceramic powder and covers a surface of the sensor part and the heater part,
The porous protective layer is constituted by a heat-resistant ceramic powder having a relatively large particle size that is aligned to a predetermined average particle size, and the average particle size of the large particle size is 2 with respect to the heat-resistant ceramic powder. A heat-resistant ceramic powder having a fine particle size having a particle size of 1 / min or less is added within a predetermined range, and the heat-resistant ceramic having a fine particle size is added to the surface of the heat-resistant ceramic powder having a large particle size or between the particles. Distribute the powder (Claim 1).

第1の発明によれば、上記大粒径粒子の粒子間に上記微細粒径粒子が充填されることにより上記多孔質保護層の強度が高くなり、上記多孔質保護層に被水したときに上記多孔質保護層の剥離や亀裂を生じ難くなり、信頼性の高いガスセンサ素子が実現できる。   According to 1st invention, when the said fine particle size particle | grain is filled between the said large particle size particle | grains, the intensity | strength of the said porous protective layer becomes high, and when the said porous protective layer is flooded, The porous protective layer is less likely to be peeled off or cracked, and a highly reliable gas sensor element can be realized.

具体的には、第2の発明のように、上記多孔質保護層は、平均粒径が22μm±4μmの大粒径粒子と、この大粒径粒子の表面若しくは粒子間に分布する粒径10μm以下の微細粒径粒子とからなり、上記微細粒径粒子の内、粒径10μmの粒子の頻度が1.8%以下で、かつ、粒径10μm以下の粒子の積算量が8.4%以上13.0%以下である(請求項2)。   Specifically, as in the second invention, the porous protective layer comprises a large particle size particle having an average particle size of 22 μm ± 4 μm and a particle size of 10 μm distributed on the surface of the large particle particle or between the particles. The following fine particle size particles are used, and among the fine particle size particles, the frequency of particles having a particle size of 10 μm is 1.8% or less, and the cumulative amount of particles having a particle size of 10 μm or less is 8.4% or more. 13.0% or less (Claim 2).

第2の発明によれば、上記多孔質保護層の強度が高く、信頼性の高いガスセンサ素子が実現できる。   According to the second invention, a highly reliable gas sensor element having a high strength of the porous protective layer can be realized.

第3の発明では、上記多孔質保護層の最大膜厚に対する最小膜厚の比が2.5以下である(請求項3)。   In the third invention, the ratio of the minimum film thickness to the maximum film thickness of the porous protective layer is 2.5 or less (claim 3).

第3の発明によれば、上記多孔質保護層の最大膜厚をガスセンサに組み込み可能な範囲に抑制しつつ最小膜厚を最大限厚くできるので上記多孔質保護層の耐久性を向上させることができる。   According to the third invention, since the minimum film thickness can be maximized while suppressing the maximum film thickness of the porous protective layer within a range that can be incorporated in the gas sensor, the durability of the porous protective layer can be improved. it can.

第4の発明では、上記耐熱性セラミック粉末が、アルミナ、アルミナマグネシアスピネル、チタニア、ムライトの少なくともいずれか一種を主成分とする金属酸化物である(請求項4)。   In the fourth invention, the heat-resistant ceramic powder is a metal oxide containing at least one of alumina, alumina magnesia spinel, titania, and mullite as a main component (invention 4).

第4の発明によれば、耐久性の高い多孔質保護層を備えたガスセンサ素子が実現できる。   According to the fourth aspect of the invention, a gas sensor element having a highly durable porous protective layer can be realized.

第5の発明では、特定のイオン伝導性を有する固体電解質材料を略平板状に形成した固体電解質層と、該固体電解質層の一の表面に形成され基準ガスに接する基準電極と、他の表面に形成され被測定ガスに接する測定電極とを含み、被測定ガス流路に載置され、被測定ガス中の特定ガス成分の濃度を検出するセンサ部と、通電により発熱する発熱体を内部に有し、上記センサ部を加熱するヒータ部と、上記センサ部と上記ヒータ部との被測定ガスに晒される部分の表面を覆い被測定ガス中に含まれる水分や被毒成分から上記センサ部と上記ヒータ部とを保護する多孔質保護層を耐熱性セラミック粉末を用いて形成するガスセンサ素子の製造方法であって、
少なくとも、上記耐熱性セラミック粉末を所定の分散媒に分散せしめた多孔質保護層形成用スラリーに、上記センサ部とヒータ部との所定の範囲を複数回に渡って浸漬し、乾燥し、熱処理して多孔質保護層を形成する多孔質保護層形成工程を具備し、
上記スラリーに含まれる上記耐熱性セラミック粉末の平均粒径を22μm±4μmに調整すると共に、上記スラリーに含まれる10μm以下の微細粒径粒子の内、10μmの粒子の頻度を1.8%以下とし、10μm以下の粒子の積算量が8.4%以上、13.0%以下となるように調整する(請求項5)。
In the fifth invention, a solid electrolyte layer in which a solid electrolyte material having specific ion conductivity is formed in a substantially flat plate shape, a reference electrode formed on one surface of the solid electrolyte layer and in contact with a reference gas, and another surface A sensor electrode that is in contact with the gas to be measured and is placed in the gas flow path to be measured, detects a concentration of a specific gas component in the gas to be measured, and a heating element that generates heat when energized. A heater unit that heats the sensor unit, and covers the surface of the sensor unit and the heater unit exposed to the gas to be measured from the moisture and poison components contained in the gas to be measured. A method for producing a gas sensor element, wherein a porous protective layer for protecting the heater part is formed using a heat-resistant ceramic powder,
At least a predetermined range of the sensor part and the heater part is immersed in a slurry for forming a porous protective layer in which the heat-resistant ceramic powder is dispersed in a predetermined dispersion medium, dried, heat-treated. Comprising a porous protective layer forming step of forming a porous protective layer,
The average particle size of the heat-resistant ceramic powder contained in the slurry is adjusted to 22 μm ± 4 μm, and among the fine particle size particles of 10 μm or less contained in the slurry, the frequency of 10 μm particles is 1.8% or less. The total amount of particles of 10 μm or less is adjusted to be 8.4% or more and 13.0% or less (Claim 5).

第5の発明によれば、上記センサ部と上記ヒータ部との所定の範囲を上記多孔質保護層形成用スラリーに浸漬し、乾燥したときに上記耐熱性セラミック粉末の粒子間に上記微細粒径粒子が配列され、充填密度が高くなるので、強度の高い多孔質保護層を形成することが容易となる。
加えて、複数回に渡って上記多孔質保護層形成用スラリーへの浸漬と乾燥とを繰り返したときに、先に形成された多孔質保護層の充填密度が高くなり、粒子間に形成される毛管の毛管引力が抑制されるので、次に形成された多孔質保護層が過剰に厚くなる虞がなく、均一な膜厚を形成することが可能となる。
According to the fifth invention, when the predetermined range of the sensor part and the heater part is immersed in the slurry for forming the porous protective layer and dried, the fine particle size is between the particles of the heat-resistant ceramic powder. Since the particles are arranged and the packing density becomes high, it becomes easy to form a porous protective layer having high strength.
In addition, when the immersion into the slurry for forming the porous protective layer and the drying are repeated a plurality of times, the packing density of the porous protective layer formed earlier is increased and formed between the particles. Since the capillary attraction of the capillary is suppressed, there is no possibility that the next formed porous protective layer will be excessively thick, and a uniform film thickness can be formed.

第6の発明では、上記多孔質保護層形成用スラリーの表面張力が45mN/m以下にとなるように、上記多孔質保護層形成用スラリー中に含まれる固形分に対して重量比で0.5wt%以上5.0wt%以下の分散材を添加する(請求項6)。   In the sixth aspect of the invention, the weight ratio of the slurry for forming the porous protective layer to the solid content contained in the slurry for forming the porous protective layer is 0.00 so that the surface tension of the slurry for forming the porous protective layer is 45 mN / m or less. A dispersion material of 5 wt% to 5.0 wt% is added (claim 6).

第6の発明によれば、上記多孔質保護層形成用スラリーの表面張力が低いので、上記センサ部と上記ヒータ部とを上記多孔質保護層形成用スラリーに浸漬したときの接触角が小さく濡れ性が高いので、均一な膜厚の多孔質保護層を形成することができる。
加えて、複数回に渡って上記多孔質保護層形成用スラリーへの浸漬と乾燥とを繰り返したときに、先に形成された多孔質保護層の表面が上記多孔質保護層形成用スラリーに浸漬されたときの接触角が小さくなり、下地となった多孔質保護層を構成する上記耐熱性セラミック粉末の粒子間に形成される毛管の毛管引力が小さくなり、次に形成される多孔質保護層が過剰に厚くなる虞がなく、さらに均一な膜厚を形成することが可能となる。
According to the sixth invention, since the surface tension of the porous protective layer forming slurry is low, the contact angle when the sensor part and the heater part are immersed in the porous protective layer forming slurry is small and wet. Therefore, a porous protective layer having a uniform film thickness can be formed.
In addition, the surface of the previously formed porous protective layer is immersed in the slurry for forming the porous protective layer when the immersion and drying in the porous protective layer forming slurry are repeated a plurality of times. When the contact angle is reduced, the capillary attractive force of the capillary formed between the particles of the heat-resistant ceramic powder constituting the underlying porous protective layer is reduced, and then the porous protective layer is formed. There is no fear that the film will become excessively thick, and a more uniform film thickness can be formed.

第7の発明では、上記多孔質保護層形成用スラリーは、上記耐熱性セラミック粉末として、アルミナ、アルミナマグネシアスピネル、チタニア、ムライトの少なくともいずれか一種を主成分とする金属酸化物を用い、上記分散媒として水を用いる(請求項7)。   In the seventh invention, the slurry for forming the porous protective layer uses a metal oxide mainly composed of at least one of alumina, alumina magnesia spinel, titania, and mullite as the heat-resistant ceramic powder, and the dispersion Water is used as a medium (Claim 7).

第7の発明によれば、簡易な方法により、耐久性の高い多孔質保護層を備えたガスセンサ素子を製造できる。   According to the seventh invention, a gas sensor element including a highly durable porous protective layer can be manufactured by a simple method.

本発明の第1の実施形態におけるガスセンサ素子の概要を示し、(a)は、全体を示す斜視図、(b)は、本図(a)中A−A平面における横断面図。The outline | summary of the gas sensor element in the 1st Embodiment of this invention is shown, (a) is a perspective view which shows the whole, (b) is a cross-sectional view in the AA plane in this figure (a). 本発明のガスセンサ素子を具備するガスセンサの概要を示す縦断面図。The longitudinal cross-sectional view which shows the outline | summary of the gas sensor which comprises the gas sensor element of this invention. (a)は、多孔質保護層の膜厚の均一化に関連する要因別の寄与率を示すパレート図、(b)及び(c)は、多孔質保護層の均一化に寄与する保護層スラリー中に含まれる耐熱性レラミック粉末の粒度分布についての実施例を比較例と共に示す特性図。(A) is a Pareto chart showing the contribution ratio according to factors related to the uniform thickness of the porous protective layer, and (b) and (c) are protective layer slurries contributing to the uniformization of the porous protective layer. The characteristic view which shows the Example about the particle size distribution of the heat resistant rheramic powder contained in it with a comparative example. 本発明のガスセンサ素子の形成に用いられる多孔質保護層膜厚とスラリー中に含まれる特定粒径の積算量との相関を示し、(a)は、ヒータ側稜面上の膜厚に対する特性図、(b)は、センサ側稜面上の膜厚に対する特性図。The correlation with the film thickness of the porous protective layer used for formation of the gas sensor element of this invention and the integrated amount of the specific particle size contained in a slurry is shown, (a) is a characteristic view with respect to the film thickness on a heater side ridge surface. (B) is a characteristic view with respect to the film thickness on a sensor side ridge surface. 本発明のガスセンサ素子の形成に用いられる多孔質保護層形成用スラリーと分散材添加量との相関を示し、(a)は、表面張力に対する特性図、(b)は、スラリー粘度に対する特性図。The correlation with the slurry for porous protective layer formation used for formation of the gas sensor element of this invention and a dispersing agent addition amount is shown, (a) is a characteristic view with respect to surface tension, (b) is a characteristic view with respect to slurry viscosity. 本発明の効果を確認するために行った試験方法の説明図。Explanatory drawing of the test method performed in order to confirm the effect of this invention. (a)は、多孔質保護層膜厚比に対する分散材添加の効果を示す特性図、(b)は、多孔質保護層の均一化に対する本発明の効果を比較例とともに示す特性図。(A) is a characteristic diagram which shows the effect of the dispersion material addition with respect to porous protective layer film thickness ratio, (b) is a characteristic diagram which shows the effect of this invention with respect to the uniformization of a porous protective layer with a comparative example. 本発明のガスセンサ素子の横断面における多孔質保護層の特徴を示す図面代用顕微鏡写真。FIG. 5 is a drawing-substituting micrograph showing the characteristics of the porous protective layer in the cross section of the gas sensor element of the present invention. 比較例として示す従来のガスセンサ素子の横断面における多孔質保護層の特徴を示す図面代用顕微鏡写真。The drawing substitute photomicrograph which shows the characteristic of the porous protective layer in the cross section of the conventional gas sensor element shown as a comparative example. 本発明のガスセンサ素子の表面における多孔質保護層の特徴を示す図面代用電子顕微鏡写真(低倍率)。The drawing substitute electron micrograph (low magnification) which shows the characteristic of the porous protective layer in the surface of the gas sensor element of this invention. 比較例として示す従来のガスセンサ素子の表面における多孔質保護層の特徴を示す図面代用電子顕微鏡写真(低倍率)。The drawing substitute electron micrograph which shows the characteristic of the porous protective layer in the surface of the conventional gas sensor element shown as a comparative example (low magnification). 本発明のガスセンサ素子の表面における多孔質保護層の特徴を示す図面代用電子顕微鏡写真(高倍率)。The drawing substitute electron micrograph (high magnification) which shows the characteristic of the porous protective layer in the surface of the gas sensor element of this invention. 比較例として示す従来のガスセンサ素子の表面における多孔質保護層の特徴を示す図面代用電子顕微鏡写真(高倍率)。The drawing substitute electron micrograph (high magnification) which shows the characteristic of the porous protective layer in the surface of the conventional gas sensor element shown as a comparative example. (a)〜(d)は、多孔質保護層の膜厚に与える多孔質保護層形成用スラリーの表面張力の影響を説明するための模式図。(A)-(d) is a schematic diagram for demonstrating the influence of the surface tension of the slurry for porous protective layer formation given to the film thickness of a porous protective layer.

本発明の第1の実施形態におけるガスセンサ素子10は、自動車エンジン等の内燃機関の燃焼排気流路等の被測定ガス流路に載置され、燃焼排気等の被測定ガス中に含まれる酸素、NO、NH、CH等の特定ガス成分を検出し、内燃機関の燃焼制御や燃焼排気処理制御等に利用するガスセンサ1に用いられるものである。
図1を参照して本発明の第1の実施形態におけるガスセンサ素子10の概要について説明する。なお、本実施形態においては、ガスセンサとして一般的に用いられる酸素センサについて本発明を適用した場合を例に説明する。
なお、本図中、D、W、Lの符号はそれぞれ、ガスセンサ素子10の厚み方向D、幅方向W、長手方向Lを示す。
ガスセンサ素子10は、略平板状に形成した固体電解質層100と、固体電解質層100の一方の表面に形成され、基準ガスとして導入される大気に接する基準ガス電極110と、他方の表面に形成され、被測定ガスに接する測定電極120と、基準電極110側に積層され、基準ガスを導入するための基準ガス室130を形成する基準ガス室形成層131と、測定電極120側に積層され、測定電極120の表面に被測定ガスを導入するための所定の拡散抵抗を有する多孔質の拡散抵抗層140と、拡散抵抗層140の表面を覆う遮蔽層150と、によってセンサ部が形成されている。
さらに、略平板状の絶縁層180と、その表面に形成され、通電により発熱する発熱体170と、発熱体170を覆い絶縁性を確保する絶縁層181とによってヒータ部が形成されている。
The gas sensor element 10 according to the first embodiment of the present invention is placed in a measured gas flow path such as a combustion exhaust flow path of an internal combustion engine such as an automobile engine, and includes oxygen contained in a measured gas such as combustion exhaust, It is used for the gas sensor 1 that detects specific gas components such as NO X , NH 3 , CH, etc., and uses them for combustion control, combustion exhaust treatment control, etc.
An outline of the gas sensor element 10 according to the first embodiment of the present invention will be described with reference to FIG. In this embodiment, a case where the present invention is applied to an oxygen sensor generally used as a gas sensor will be described as an example.
In addition, in this figure, the code | symbol D, W, and L shows the thickness direction D of the gas sensor element 10, the width direction W, and the longitudinal direction L, respectively.
The gas sensor element 10 is formed on a solid electrolyte layer 100 formed in a substantially flat plate shape, a reference gas electrode 110 formed on one surface of the solid electrolyte layer 100 and in contact with the atmosphere introduced as a reference gas, and on the other surface. The measurement electrode 120 in contact with the gas to be measured is laminated on the reference electrode 110 side, and the reference gas chamber forming layer 131 for forming the reference gas chamber 130 for introducing the reference gas is laminated on the measurement electrode 120 side for measurement. A sensor portion is formed by a porous diffusion resistance layer 140 having a predetermined diffusion resistance for introducing a gas to be measured to the surface of the electrode 120 and a shielding layer 150 covering the surface of the diffusion resistance layer 140.
Further, a heater portion is formed by a substantially flat insulating layer 180, a heating element 170 that is formed on the surface thereof and generates heat when energized, and an insulating layer 181 that covers the heating element 170 and ensures insulation.

センサ部とヒータ部とが一体的に積層され、略有底筒状のガスセンサ素子10を構成し、ガスセンサ素子10の被測定ガスに晒される部分を覆うように、本発明の要部であり、被測定ガス中に含まれる水分や被毒成分からセンサ部を保護する多孔質保護層160が形成されている。
なお、ガスセンサ素子10のセンサ側平面SSと側面SDとの交わる角部には、センサ側稜面RSがテーパ状若しくはC面状にトリミングされ、ヒータ側平面SHと側面SDとの交わる角部には、ヒータ側稜面RHがテーパ状若しくはC面状に設けられている。
The sensor part and the heater part are integrally laminated to form a substantially bottomed cylindrical gas sensor element 10, and is a main part of the present invention so as to cover a part of the gas sensor element 10 exposed to the gas to be measured, A porous protective layer 160 that protects the sensor unit from moisture and poisoning components contained in the gas to be measured is formed.
In addition, the sensor side ridge surface RS is trimmed in a taper shape or a C surface shape at a corner portion where the sensor side plane SS and the side surface SD of the gas sensor element 10 intersect, and a corner portion where the heater side plane SH and the side surface SD intersect with each other. The heater side ridge surface RH is provided in a taper shape or a C surface shape.

以下の説明において、センサ側平面SS上に形成された多孔質保護層160の最大膜厚をt、ヒータ側平面SH上に形成された多孔質保護層の最大膜厚をt、側面SD上に形成された多孔質保護層160の最大膜厚をt、センサ側稜面RS上に形成された多孔質保護層160の最大膜厚をt、ヒータ側稜面RH上に形成された多孔質保護層160の最大膜厚をtとする。
なお、本実施形態において、tは、350μm以上450μm以下、tは、400μm以上450μm以下、tは、350μm以上450μm以下、tは、400μm以上500μm以下に形成されており、tは、200μm以上250μm以下に形成されておいる。
センサ側稜面SS上の多孔質保護層160の膜厚tが多孔質保護層160の全周に渡る膜厚の内、最大膜厚となっており、ヒータ側稜面RH上の多孔質保護層160の膜厚tが多孔質保護層160の全周に渡る膜厚の内、最小膜厚となっており、最大膜厚に対する最小膜厚の膜厚比t/tは、2.5以下となっている。
In the following description, the maximum film thickness of the porous protective layer 160 formed on the sensor side plane SS is t 1 , the maximum film thickness of the porous protective layer formed on the heater side plane SH is t 2 , and the side surface SD. The maximum thickness of the porous protective layer 160 formed thereon is t 3 , the maximum thickness of the porous protective layer 160 formed on the sensor side ridge surface RS is t 4 , and is formed on the heater side ridge surface RH. and the maximum film thickness of the porous protective layer 160 and t 5.
In the present embodiment, t 1 is 350 μm or more and 450 μm or less, t 2 is 400 μm or more and 450 μm or less, t 3 is 350 μm or more and 450 μm or less, t 4 is 400 μm or more and 500 μm or less, and t 5 Is formed to be 200 μm or more and 250 μm or less.
Among thickness t 4 of the porous protective layer 160 on sensor side edge surface SS of film thickness over the entire circumference of the porous protective layer 160, it has a maximum thickness, porous on RH heater-side edge surface The film thickness t 5 of the protective layer 160 is the minimum film thickness among the film thickness over the entire circumference of the porous protective layer 160, and the film thickness ratio t 4 / t 5 of the minimum film thickness to the maximum film thickness is It is 2.5 or less.

本発明のガスセンサ素子10の製造方法の概要について説明する。
固体電解質層100は、ジルコニア等の酸素イオン伝導性セラミック材料をポリビニルブチラール(PVB)等の結合材、ジブチルフタレート(DBP)等の可塑剤、分散剤とともにトルエン、エタノール等の分散媒に分散させたスラリーを配合し、これを用いてドクターブレード法等の公知の方法により所定の板厚で略平板状に形成する。
The outline of the manufacturing method of the gas sensor element 10 of the present invention will be described.
In the solid electrolyte layer 100, an oxygen ion conductive ceramic material such as zirconia is dispersed in a dispersion medium such as toluene and ethanol together with a binder such as polyvinyl butyral (PVB), a plasticizer such as dibutyl phthalate (DBP), and a dispersant. The slurry is blended and formed into a substantially flat plate shape with a predetermined plate thickness by a known method such as a doctor blade method.

固体電解質層100の被測定ガス側の表面には、測定電極層110、図略の測定電極リード部を厚膜印刷等の公知の方法により形成し、他方の表面には、基準電極層120、図略の基準電極リード部を同様の方法により形成する。
これらの印刷形成には、白金ペーストと上述の固体電解質層形成用のスラリーとを混合したペースト等を用いる。
例えば、アルミナ等の絶縁性セラミック材料をPVB、DBP、分散剤等とともに分散媒に分散させたアルミナスラリーを用いてドクターブレード法等により略平板状の絶縁性セラミックシートを形成し、金型等を用いて略U字形に打ち抜いて基準ガス室形成層131とし、これを複数枚積層し、さらに、固体電解質層100の基準電極側に貼り合わせることによって、基準ガス室130を形成する。
固体電解質層100の測定電極120の表面を覆うように、上述したアルミナシートよりも粒径の粗いアルミナ等の耐熱性セラミック材料を結合材とともに分散媒に分散させた拡散抵抗層用スラリーを用いてドクターブレード法、厚膜印刷法等の公知の方法により拡散抵抗層140を形成する。
さらに、拡散抵抗層140を覆うように、遮蔽層150を積層する。遮蔽層150は、上述の基準ガス導入層131の形成に用いたアルミナシートと同様のものを用いることができる。
基準電極110と測定電極120とは、適宜スルーホール電極等を設けて、それぞれ、遮蔽層150の外側に設けられる後述の基準電極端子111、測定電極端子121との導通を図る。
以上により、固体電解質層100の一方の表面に基準電極110が設けられ、他方の表面に測定電極120が設けられ、基準電極110側に積層して内部に基準ガス室130を有する基準ガス室形成層131が設けられ、測定電極120側に積層して拡散抵抗層140、遮蔽層150が設けられたセンサ部を形成することができる。
A measurement electrode layer 110 and a measurement electrode lead portion (not shown) are formed on the surface of the solid electrolyte layer 100 on the gas to be measured by a known method such as thick film printing, and the other surface has a reference electrode layer 120, A reference electrode lead portion (not shown) is formed by the same method.
For these print formations, a paste or the like in which a platinum paste and the above-described slurry for forming a solid electrolyte layer are mixed is used.
For example, a substantially flat insulating ceramic sheet is formed by a doctor blade method or the like using an alumina slurry in which an insulating ceramic material such as alumina is dispersed in a dispersion medium together with PVB, DBP, a dispersing agent, etc. The reference gas chamber forming layer 131 is punched into a reference gas chamber forming layer 131, and a plurality of the reference gas chamber forming layers 131 are stacked and bonded to the reference electrode side of the solid electrolyte layer 100, thereby forming the reference gas chamber 130.
Using a diffusion resistance layer slurry in which a heat-resistant ceramic material such as alumina having a particle size coarser than the above-described alumina sheet is dispersed in a dispersion medium together with a binder so as to cover the surface of the measurement electrode 120 of the solid electrolyte layer 100. The diffusion resistance layer 140 is formed by a known method such as a doctor blade method or a thick film printing method.
Further, a shielding layer 150 is laminated so as to cover the diffusion resistance layer 140. The shielding layer 150 may be the same as the alumina sheet used to form the reference gas introduction layer 131 described above.
The reference electrode 110 and the measurement electrode 120 are appropriately provided with a through-hole electrode or the like so as to be electrically connected to a later-described reference electrode terminal 111 and measurement electrode terminal 121 provided outside the shielding layer 150, respectively.
As described above, the reference electrode 110 is provided on one surface of the solid electrolyte layer 100, the measurement electrode 120 is provided on the other surface, and the reference gas chamber is formed so as to be laminated on the reference electrode 110 side and to have the reference gas chamber 130 inside. A sensor part provided with the layer 131 and laminated on the measurement electrode 120 side and provided with the diffusion resistance layer 140 and the shielding layer 150 can be formed.

上述の絶縁性セラミックシートを金型等用いて略平板状の絶縁層180とし、この一方の表面に白金ペーストと上述のアルミナスラリーとを混合したペーストを用いて発熱体170と図略の一対の発熱体リード部とを印刷形成し、他方の表面に一対の発熱体端子部171a、171bを印刷形成し、絶縁層180に穿設した一対のスルーホール内に発熱体リード部と発熱体端子部171a、171bとを導通するスルーホール電極を吸引印刷等により形成する。
絶縁層180の発熱体170の印刷された側に積層して絶縁層180と同様の絶縁層181を積層し、発熱体170を内蔵するヒータ部を形成する。
このようにして形成されたセンサ部とヒータ部とを積層し、一体的に焼成することによりガスセンサ素子10が形成される。
さらに、センサ側稜面RS及び、ヒータ側稜面RHは、研削、研磨等の方法によりテーパ状若しくはC面状に形成される。
なお、具体的なセンサ側稜面RS、ヒータ側稜面RHの形成方法として、ガスセンサ素子10の焼成前に稜面を形成する方法と焼成後に稜面を形成する方法のいずれを用いても良い。
焼成前にセンサ側稜面RS、ヒータ側稜面RHを形成する場合には、加工精度が劣る虞もあるが、加工に要する時間は短く、容易である。
一方、焼成後にセンサ側稜面RS、ヒータ側稜面RHを加工する場合には、焼成体の強度が高いので加工に時間を要するが、寸法精度に優れている。
The insulating ceramic sheet described above is formed into a substantially flat insulating layer 180 using a mold or the like, and a heating element 170 and a pair of unillustrated drawings are formed using a paste in which a platinum paste and the above-described alumina slurry are mixed on one surface thereof. A heating element lead part and a pair of heating element terminal parts 171a and 171b are printed and formed on the other surface, and the heating element lead part and the heating element terminal part are formed in a pair of through holes formed in the insulating layer 180. Through-hole electrodes that conduct to 171a and 171b are formed by suction printing or the like.
An insulating layer 181 similar to the insulating layer 180 is laminated on the printed side of the heating element 170 of the insulating layer 180 to form a heater portion in which the heating element 170 is built.
The gas sensor element 10 is formed by laminating the sensor part and the heater part formed in this way and firing them integrally.
Further, the sensor-side ridge surface RS and the heater-side ridge surface RH are formed in a tapered shape or a C-plane shape by a method such as grinding or polishing.
In addition, as a specific method for forming the sensor-side ridge surface RS and the heater-side ridge surface RH, either a method of forming a ridge surface before firing the gas sensor element 10 or a method of forming a ridge surface after firing may be used. .
When the sensor-side ridge surface RS and the heater-side ridge surface RH are formed before firing, the processing accuracy may be inferior, but the time required for processing is short and easy.
On the other hand, when the sensor-side ridge surface RS and the heater-side ridge surface RH are processed after firing, since the strength of the fired body is high, processing takes time, but the dimensional accuracy is excellent.

さらに、上述のようにしてできあがったガスセンサ素子10の先端側の被測定ガスに晒される部分には、本発明の要部である多孔質保護層160が形成される。
多孔質保護層160は、被測定ガス中に含まれる水分を拡散させ、P、Ca、Zn、Si等のオイル含有成分やK、Na、Pb等のガソリン添加成分からなる被毒物質を捕集し、被水割れやセンサ部の劣化等を抑制し、ガスセンサ素子10を保護する。
Further, a porous protective layer 160, which is a main part of the present invention, is formed in a portion exposed to the gas to be measured on the tip side of the gas sensor element 10 completed as described above.
The porous protective layer 160 diffuses moisture contained in the gas to be measured and collects poisonous substances composed of oil-containing components such as P, Ca, Zn, and Si and gasoline-added components such as K, Na, and Pb. In addition, the gas sensor element 10 is protected by suppressing water cracking and deterioration of the sensor portion.

以下、本発明の要部である多孔質保護層160の具体的な多孔質保護層形成工程について説明する。
本発明のガスセンサ素子10に施される多孔質保護層160を構成する耐熱性セラミック粉末として、例えば、アルミナ、アルミナマグネシアスピネル、チタニア、ムライト等を用いることができる。
本発明では、所定の平均粒径にそろえた比較的大粒径の耐熱性セラミック粉末に対して、大粒径粒子の平均粒径の2分の1以下の粒径を有する微細粒径粒子の耐熱性セラミック粉末を所定の範囲で添加して、大粒径の耐熱性セラミック粉末の表面若しくは粒子間に微細粒径の耐熱性セラミック粉末が分布することにより、充填密度を高くし、多孔質保護層160を形成したときの膜厚の安定化と強度の向上を図っている。
具体的には、例えば、大粒径粒子からなる耐熱性セラミック粉末として、平均粒径22μm±4μmのアルミナ粒子を用い、これに対して、微細粒径粒子からなる耐熱性セラミック粉末として10μm以下のアルミナ粒子を積算量として8.4%以上13.0%以下の範囲で含み、粒径10μmの頻度が1.8%以下となるように粒度調整してある。
さらに、これらの耐熱性セラミック粉末に加え、分散材を所定量の範囲で添加し、所定量の分散媒に分散させ、所定の表面張力の範囲に調整した多孔質保護層形成用スラリーを作成する。
Hereinafter, a specific porous protective layer forming step of the porous protective layer 160 which is a main part of the present invention will be described.
As the heat-resistant ceramic powder constituting the porous protective layer 160 applied to the gas sensor element 10 of the present invention, for example, alumina, alumina magnesia spinel, titania, mullite or the like can be used.
In the present invention, the heat-resistant ceramic powder having a relatively large particle size aligned to a predetermined average particle size is obtained by using a fine particle size particle having a particle size of 1/2 or less of the average particle size of the large particle size particle. Heat resistance ceramic powder is added within the specified range, and the heat resistance ceramic powder with fine particle size is distributed between the surface or particles of heat resistance ceramic powder with large particle size, so that packing density is increased and porous protection is achieved. Stabilization of the film thickness and improvement of strength when the layer 160 is formed are attempted.
Specifically, for example, alumina particles having an average particle diameter of 22 μm ± 4 μm are used as the heat-resistant ceramic powder composed of large particle diameter particles, whereas the heat-resistant ceramic powder composed of fine particle diameter particles is 10 μm or less. The particle size is adjusted so that alumina particles are included in the range of 8.4% to 13.0% as integrated amount, and the frequency of 10 μm in particle size is 1.8% or less.
Furthermore, in addition to these heat-resistant ceramic powders, a dispersing agent is added in a predetermined amount range, dispersed in a predetermined amount of dispersion medium, and a slurry for forming a porous protective layer adjusted to a predetermined surface tension range is prepared. .

このとき、多孔質保護層形成用スラリー中に含まれるアルミナ粒子は、平均粒径を22μm±4μmに調整すると共に、10μm以下の微細粒径粒子の内、10μmの粒子の頻度を1.8%以下とし、10μm以下の粒子の積算量が8.4%以上、13.0%以下となるように調整されている。
具体的には、分散媒として水を用いて所定の濃度、例えば、スラリー粘度が500〜1000mPa・sとなるように調整したアルミナスラリーの固形分に対して、非イオン性の分散剤(例えば、ポリオキシアルキレングリコール付加物、等 )をアルミナスラリーの固体分に対して0.5wt%以上5.0wt%以下の範囲で添加し、アルミナスラリーの表面張力が45mN/m以下となるように調整する。
At this time, the alumina particles contained in the slurry for forming the porous protective layer are adjusted to an average particle diameter of 22 μm ± 4 μm, and among the fine particle diameters of 10 μm or less, the frequency of 10 μm particles is 1.8%. The total amount of particles of 10 μm or less is adjusted to be 8.4% or more and 13.0% or less.
Specifically, a nonionic dispersant (for example, a solid content of alumina slurry adjusted to have a predetermined concentration using water as a dispersion medium, for example, a slurry viscosity of 500 to 1000 mPa · s, for example, Polyoxyalkylene glycol adduct, etc.) is added in a range of 0.5 wt% to 5.0 wt% with respect to the solid content of the alumina slurry, and the surface tension of the alumina slurry is adjusted to 45 mN / m or less. .

このようにしてできあがった多孔質保護層形成用スラリー(アルミナスラリー)にガスセンサ素子10の先端側の測定電極120等の形成された所定の範囲を浸漬し、所定の速度で引き上げ、これを乾燥して、表面に多孔質保護層160となる被膜を形成する。
複数回(例えば、本実施形態においては、3回)のディッピングと乾燥とを繰り返し、所定の膜厚が得られたら、さらに加熱処理することにより多孔質保護層160をガスセンサ素子10の表面に固着させる。
このとき、上述の範囲で微細粒径の耐熱性セラミック粉末が配合されているので、被膜形成時に充填密度が向上し、被膜の強度が高くなるのに加え、複数回ディッピングされたときに先に形成された下地となる多孔質保護層の充填密度が高いと、次にディッピングされたスラリーの吸水速度が抑制され、過剰膜厚となることなく、膜厚の均一化を図ることができる。
A predetermined range in which the measurement electrode 120 on the tip side of the gas sensor element 10 is formed is immersed in the slurry for forming a porous protective layer (alumina slurry) thus formed, pulled up at a predetermined speed, and dried. Then, a film to be the porous protective layer 160 is formed on the surface.
Repeated dipping and drying a plurality of times (for example, 3 times in the present embodiment), and when a predetermined film thickness is obtained, the porous protective layer 160 is fixed to the surface of the gas sensor element 10 by further heat treatment. Let
At this time, since the heat-resistant ceramic powder having a fine particle diameter is blended within the above-mentioned range, the packing density is improved at the time of coating formation, and the strength of the coating is increased. When the packing density of the formed porous protective layer serving as the base is high, the water absorption rate of the next dipped slurry is suppressed, and the film thickness can be made uniform without becoming an excessive film thickness.

加えて、分散剤の添加により、表面張力を所定の範囲に調整されているためガスセンサ素子10を多孔質保護層形成用スラリーに浸漬したときの接触角が小さくなるため、皮膜が濡れ広がり易くなるのに加え、乾燥された保護層の粒子間に形成される毛管の吸引力が小さくなるため、過剰な皮膜形成が抑制され、さらに膜厚の均一化を図ることができる。   In addition, since the surface tension is adjusted to a predetermined range by the addition of the dispersant, the contact angle when the gas sensor element 10 is immersed in the slurry for forming the porous protective layer is reduced, so that the coating is easily wetted and spread. In addition, since the suction force of the capillaries formed between the particles of the dried protective layer becomes small, excessive film formation can be suppressed and the film thickness can be made uniform.

なお、微細粒径の耐熱性セラミック粉末の積算量が所定の範囲となるように、上述の如く一定の粒度分布を持つ大粒径粒子の耐熱性セラミック粉末に、所定量の微細粒径粒子の耐熱性セラミック粉末を添加しても良いし、粒度分布の幅の広い耐熱性セラミック粉末を篩分けによって粒度分布を調整しても良い。
また、以下の実施形態において、耐熱性セラミック粉末としてアルミナを例として説明するが、アルミナ意外にも、アルミナマグネシアスピネル、チタニア、ムライトの少なくともいずれか一種を主成分とする金属酸化物を用いることができる。
また、5μm以下のアルミナ粒子の積算量を4%以上となるようにアルミナスラリーを調整することにより、さらに、膜厚の安定化、強度向上を図ることができると推察される。
It should be noted that a predetermined amount of fine particle size particles is added to a large particle size heat resistant ceramic powder having a constant particle size distribution as described above, so that the cumulative amount of the heat resistant ceramic powder having a fine particle size falls within a predetermined range. Heat resistant ceramic powder may be added, or the particle size distribution may be adjusted by sieving heat resistant ceramic powder having a wide particle size distribution.
Further, in the following embodiment, alumina will be described as an example of the heat-resistant ceramic powder. However, surprisingly, a metal oxide containing at least one of alumina magnesia spinel, titania, and mullite as a main component may be used. it can.
Further, it is presumed that the film thickness can be further stabilized and the strength can be further improved by adjusting the alumina slurry so that the integrated amount of alumina particles of 5 μm or less is 4% or more.

図2を参照して、本発明のガスセンサ素子10を具備するガスセンサ1の概要について説明する。
ガスセンサ1は、ガスセンサ素子10と、絶縁性保持部材20を介してその内側にガスセンサ素子10を保持するハウジング30とガスセンサ素子10の被測定ガス700に晒される部分を覆うカバー体60、61とガスセンサ素子10のヒータ部への給電を行う一対の通電線171a、171b〜174a、174bとガスセンサ素子10からの出力信号を取り出す一対の信号線111〜114、121〜124とを封止部材50を介して保持、固定するケーシング40とによって構成されている。
With reference to FIG. 2, the outline | summary of the gas sensor 1 which comprises the gas sensor element 10 of this invention is demonstrated.
The gas sensor 1 includes a gas sensor element 10, a housing 30 that holds the gas sensor element 10 inside the insulating holding member 20, and cover bodies 60 and 61 that cover portions of the gas sensor element 10 that are exposed to the gas 700 to be measured. A pair of energization wires 171 a, 171 b to 174 a and 174 b for supplying power to the heater portion of the element 10 and a pair of signal lines 111 to 114 and 121 to 124 for taking out an output signal from the gas sensor element 10 are interposed via the sealing member 50. And a casing 40 for holding and fixing.

ハウジング30は、ステンレス等の金属製で、略筒型に形成されており、基端側のボス部32にはケーシング40が嵌着され、先端側の加締め部34には二重筒状のカバー体60、61が固定されている。
ハウジング30の中腹外周部にはネジ部31が形成され、図略の内燃機関の燃焼排気流路70にガスケット等を介して螺結されることにより、ガスセンサ素子10の先端側の多孔質保護層170で覆われた部分が被測定ガス700内に晒され、カバー体60、61で覆われた状態で固定された状態となる。
ハウジング30の基端側外周には、ネジ部31を締め付けるための六角部33が形成されている。
The housing 30 is made of a metal such as stainless steel and is formed in a substantially cylindrical shape. A casing 40 is fitted on the boss portion 32 on the proximal end side, and a double tubular shape is formed on the caulking portion 34 on the distal end side. Cover bodies 60 and 61 are fixed.
A threaded portion 31 is formed on the middle outer peripheral portion of the housing 30 and is screwed to a combustion exhaust passage 70 of an internal combustion engine (not shown) via a gasket or the like, so that a porous protective layer on the front end side of the gas sensor element 10 is formed. The portion covered with 170 is exposed to the gas 700 to be measured, and is fixed in a state covered with the cover bodies 60 and 61.
A hexagonal portion 33 for tightening the screw portion 31 is formed on the outer periphery on the proximal end side of the housing 30.

カバー体60、61は、ステンレス等の耐熱性金属製で、略有底円筒状のアウタカバー60とインナカバー61とからなる二重筒構造をしている。
アウタカバー60とインナカバー61とにはそれぞれ被測定ガス700を内部に導入しつつ、ガスセンサ素子10の被水防止を図る導入孔601、602、611、612が形成され、基端側に設けられたフランジ部によってハウジング30の加締め部34に加締め固定されている。
The cover bodies 60 and 61 are made of a heat-resistant metal such as stainless steel and have a double cylinder structure including a substantially bottomed cylindrical outer cover 60 and an inner cover 61.
The outer cover 60 and the inner cover 61 are respectively provided with introduction holes 601, 602, 611, 612 for introducing the measurement gas 700 into the inside and preventing the gas sensor element 10 from being exposed to water. The flange portion is caulked and fixed to the caulking portion 34 of the housing 30.

ガスセンサ素子10は、インシュレータ20によってハウジング30との絶縁性を確保しつつハウジング30の内部に封止部材22を介して固定されている。ガスセンサ素子10の被測定ガスに晒される先端部は、本発明の要部である多孔質保護層160で覆われている。
ガスセンサ素子10の基端側には、センサの出力を図る基準電極端子部111と測定電極端子部121と、発熱体170への通電を図るヒータ端子部171a、171bが形成されており、インシュレータ21によって保持された接続金具112、122、172a、172bと弾性的に接続されている。
接続金具112、122、172a、172bは、圧着金具113、123、173a、173bを介して、それぞれ、信号線114、124、通電線174a、174bに接続されている。
一対の信号線114、124と一対の通電線174a、174bとは、封止部材50を介してケーシング40の基端部41に封止固定されている。
基端部41には、基準ガス導入孔42、43が形成され、撥水フィルタ44を介して導入された大気が、ガスセンサ素子10の基準ガス室130内に導入されている。
The gas sensor element 10 is fixed to the inside of the housing 30 via the sealing member 22 while ensuring insulation with the housing 30 by the insulator 20. The tip of the gas sensor element 10 exposed to the gas to be measured is covered with a porous protective layer 160 that is a main part of the present invention.
On the base end side of the gas sensor element 10, a reference electrode terminal portion 111 and a measurement electrode terminal portion 121 that aim to output the sensor, and heater terminal portions 171a and 171b that energize the heating element 170 are formed. Are elastically connected to the connection fittings 112, 122, 172a, and 172b held by.
The connection fittings 112, 122, 172a and 172b are connected to the signal lines 114 and 124 and the energization wires 174a and 174b via the crimp fittings 113, 123, 173a and 173b, respectively.
The pair of signal lines 114 and 124 and the pair of energization lines 174 a and 174 b are sealed and fixed to the base end portion 41 of the casing 40 through the sealing member 50.
Reference gas introduction holes 42 and 43 are formed in the base end portion 41, and the air introduced through the water repellent filter 44 is introduced into the reference gas chamber 130 of the gas sensor element 10.

図略の通電制御装置によって発熱体170に通電され、発熱体170によって、固体電解質層100が活性化されると、拡散抵抗層140を介して測定電極層120に接する被測定ガス700中の酸素濃度と基準電極層110に接する基準ガス室130内に導入された大気中の酸素濃度との差によって両電極間に電位差が生じ、これを測定することによって、被測定ガス700中の酸素濃度を検出できる。
また、上記実施形態においては、酸素センサ、NOxセンサ、空燃比センサ等に用いられるセンサ部を構成する固体電解質体として、酸素イオン伝導性の固体電解質材料を用いた場合について説明したが、本発明はこのような酸素イオンの検出を行うガスセンサに限らず、プロトン伝導性の固体電解質を用いて、アンモニアや炭化水素等の水素成分含有ガスを検出するガスセンサ等任意のガスセンサに適用可能である。
When the heating element 170 is energized by an energization control device (not shown) and the solid electrolyte layer 100 is activated by the heating element 170, oxygen in the gas 700 to be measured that comes into contact with the measurement electrode layer 120 through the diffusion resistance layer 140. A potential difference is generated between the two electrodes due to the difference between the concentration and the oxygen concentration in the atmosphere introduced into the reference gas chamber 130 in contact with the reference electrode layer 110. By measuring this, the oxygen concentration in the gas 700 to be measured is determined. It can be detected.
In the above embodiment, the case where an oxygen ion conductive solid electrolyte material is used as a solid electrolyte body constituting a sensor unit used in an oxygen sensor, a NOx sensor, an air-fuel ratio sensor or the like has been described. The present invention is not limited to such a gas sensor that detects oxygen ions, but can be applied to any gas sensor such as a gas sensor that detects a hydrogen component-containing gas such as ammonia or hydrocarbon using a proton-conducting solid electrolyte.

図3を参照して、多孔質保護層160の膜厚の均一化に寄与する要因について説明する。図3(a)に示すように、多孔質保護層160の膜厚の均一化に最も寄与するのは、多孔質保護層160を形成する際に使用するスラリーに含まれる耐熱性セラミック粉末の内、10μm以下の微細粒子の積算量を制御することが最も重要であることが判明した。これは、本図(a)に示した要因について様々な条件で行った本発明者等の鋭意調査の結果である。
本発明者等の過去の試験調査において、多孔質保護層160を形成する耐熱性セラミック粉末として、平均粒径22μm±4μmの比較的大粒径のアルミナを用いることが効果的であることが判明している。
しかし、通常、アルミナ等の耐熱性セラミック粉末には広い粒度分布が存在するため、所望の気孔率、耐久性等の特性を有する多孔質保護層を形成するためには篩分け等により粒径を分級したものを用いるのが一般的である。
ところが、本図(b)、(c)に示すように、例えば、平均粒径22μm±4μmのアルミナ粉末であっても、中心粒径に対して正規分布とはならず、一定粒径以下の微細粒子が存在し、偏りを持った分布となっている。
このような微細粒子の存在によって、得られるスラリーの挙動が大きく影響され、多孔質保護層の膜厚にも影響することが判明した。
そこで、本発明者等は、意図的に微細粒径の粒子の存在量を制御することによってスラリーの挙動を制御し、多孔質保護層の膜厚の均一化、及び、高充填密度化を図ることに着目し、本発明を成したものである。
本図(b)、(c)に実施例として実線で示す本発明の多孔質保護層形成用スラリーは、本図(b)、(c)に比較例として点線で示す従来の多孔質保護層形成用スラリーと平均粒径は、等しいが、粒径10μmの粒子の頻度及び粒径10μm以下の粒子の積算量が特定の範囲となるように調整してある。
本発明者等の鋭意試験により、多孔質保護層160を構成する耐熱性セラミック粉末の平均粒径の2分の1以下となる10μm以下の積算量を制御することによって、ガスセンサ素子10に施す多孔質保護層160の膜厚の均一化と耐久性の向上とを実現できることが判明した。
With reference to FIG. 3, factors contributing to the uniform thickness of the porous protective layer 160 will be described. As shown in FIG. 3A, the most contributing to the uniform thickness of the porous protective layer 160 is the heat resistant ceramic powder contained in the slurry used to form the porous protective layer 160. It has been found that it is most important to control the integrated amount of fine particles of 10 μm or less. This is the result of the inventors' diligent investigations conducted under various conditions for the factors shown in FIG.
In past test investigations by the present inventors, it has been found that it is effective to use alumina having a relatively large particle size with an average particle size of 22 μm ± 4 μm as the heat-resistant ceramic powder forming the porous protective layer 160. doing.
However, since the heat-resistant ceramic powder such as alumina usually has a wide particle size distribution, the particle size can be reduced by sieving to form a porous protective layer having desired characteristics such as porosity and durability. In general, a classified one is used.
However, as shown in FIGS. 2B and 2C, for example, even an alumina powder having an average particle size of 22 μm ± 4 μm does not have a normal distribution with respect to the center particle size, and is not more than a certain particle size. There are fine particles and the distribution is biased.
It has been found that the presence of such fine particles greatly affects the behavior of the resulting slurry and also affects the thickness of the porous protective layer.
Therefore, the present inventors intentionally control the behavior of the slurry by controlling the abundance of finely sized particles, and aim to make the thickness of the porous protective layer uniform and increase the packing density. The present invention has been made by paying attention to the above.
The porous protective layer forming slurry of the present invention shown by solid lines as examples in FIGS. (B) and (c) is a conventional porous protective layer shown by dotted lines as comparative examples in FIGS. (B) and (c). The forming slurry and the average particle size are the same, but the frequency of particles having a particle size of 10 μm and the integrated amount of particles having a particle size of 10 μm or less are adjusted to be in a specific range.
By conducting an intensive test by the present inventors, a porous amount applied to the gas sensor element 10 is controlled by controlling an integrated amount of 10 μm or less, which is one half or less of the average particle size of the heat-resistant ceramic powder constituting the porous protective layer 160. It has been found that the film thickness of the quality protective layer 160 can be made uniform and the durability can be improved.

図4を参照して、本発明者等の鋭意試験調査の結果得られた知見について説明する。
本図(a)は、平均粒径22μm±4μmのアルミナ粉末を用いて作成したスラリー中に存在する粒径10μm以下の積算量とセンサ側稜面RS上に形成される保護層160の膜厚tとの相関について調査した結果であり、本図(b)は、平均粒径22μm±4μmのアルミナ粉末を用いて作成したスラリー中に存在する粒径10μmの頻度とセンサ側稜面RS上に形成される保護層160の膜厚tとの相関について調査した結果である。
なお、本実施形態において、センサ側稜面RS上に形成される多孔質保護層160の膜厚tが、多孔質保護層160の全周に渡る膜厚の内、最も厚い最大膜厚となっている。
本図(a)に示すように、粒径10μm以下の粒子の積算量とセンサ側稜面RS上に形成される多孔質保護層160の膜厚tとの間には、負の相関があり、アルミナスラリー中に含まれる粒径10μm以下の粒子の積算量が増加するとセンサ側稜面上RSに形成される多孔質保護層160の膜厚tは薄くなることが判明した。
被水割れを生じ難くするため、ヒータ側稜面RH上に形成される多孔質保護層160の膜厚tを厚く形成しようとすると、相対的にセンサ側稜面RS上に形成される多孔質保護層160の膜厚tも厚くなる。
そこで、インナカバー61の内周との距離が最も狭い、センサ側稜面RS上に形成される多孔質保護層160の膜厚t4の上限を630μmとした場合、ばらつきを考慮して、95%信頼限界から、粒径10μm以下のアルミナ粒子の積算量を8.4%以上とすることにより、センサ側稜面RS上に形成される多孔質保護層160の膜厚tを630μm以下に形成できることが分かる。
一方、アルミナスラリー中に含まれる10μmの粒径の頻度とセンサ側稜面RS上に形成される保護層160の膜厚tとの間には正の相関があり、アルミナスラリー中に含まれる粒径10μmの粒子の頻度が増加するとセンサ側稜面上RSに形成される多孔質保護層160の膜厚tは厚くなることが判明した。
そこで、粒径10μmの粒子の頻度を1.8%以下とすることによりセンサ側側稜面RS上に形成される多孔質保護層160の膜厚tを630μm以下に形成できることが分かる。
以上により、平均粒径22μm±4μmのアルミナ粉体中に含まれる粒径10μm以下の粒子の積算量について下限と、粒径10μmの粒子の頻度についての上限とを決定した。
With reference to FIG. 4, the knowledge obtained as a result of the earnest examination investigation by the present inventors will be described.
This figure (a) is the film thickness of the protective layer 160 formed on the sensor side ridge surface RS and the integrated amount of the particle size of 10 μm or less present in the slurry prepared using alumina powder having an average particle size of 22 μm ± 4 μm. This is a result of investigating the correlation with t 4, and this figure (b) shows the frequency of the particle size of 10 μm present in the slurry prepared using the alumina powder having an average particle size of 22 μm ± 4 μm and the sensor side ridge surface RS. it is the result of investigation on the correlation between the film thickness t 4 of the protective layer 160 to be formed.
In the present embodiment, the thickness t 4 of the porous protective layer 160 formed on the sensor side edge surface RS is, among the film thickness over the entire circumference of the porous protective layer 160, the thickest maximum film thickness Prefecture It has become.
As shown in this figure (a), there is a negative correlation between the integrated amount of particles having a particle size of 10 μm or less and the film thickness t 4 of the porous protective layer 160 formed on the sensor side ridge surface RS. There, the thickness t 4 of the porous protective layer 160 integrated amount of particle size 10μm or less of the particles contained in the alumina slurry is formed with increasing sensor on the side edge surface RS has been found to be thinner.
To hardly occurs under water cracks, an attempt to form a thick film thickness t 5 of the porous protective layer 160 formed on the RH heater-side edge surface, is formed on the relatively sensor side edge surface on RS porous thickness t 4 of the quality protective layer 160 is also increased.
Therefore, when the upper limit of the film thickness t4 of the porous protective layer 160 formed on the sensor side ridge surface RS having the shortest distance from the inner periphery of the inner cover 61 is 630 μm, 95% is considered in consideration of the variation. From the reliability limit, the film thickness t 4 of the porous protective layer 160 formed on the sensor side ridge surface RS is formed to be 630 μm or less by setting the cumulative amount of alumina particles having a particle size of 10 μm or less to 8.4% or more. I understand that I can do it.
On the other hand, there is a positive correlation between the frequency of the particle diameter of 10 μm contained in the alumina slurry and the film thickness t 4 of the protective layer 160 formed on the sensor side ridge surface RS, and is contained in the alumina slurry. thickness t 4 of the porous protective layer 160 the frequency of particle size 10μm particles are formed with increasing sensor on the side edge surface RS has been found that thicker.
Therefore, it can be seen that the film thickness t 4 of the porous protective layer 160 formed on the sensor side ridge surface RS can be formed to 630 μm or less by setting the frequency of particles having a particle size of 10 μm to 1.8% or less.
As described above, the lower limit for the integrated amount of particles having a particle size of 10 μm or less contained in the alumina powder having an average particle size of 22 μm ± 4 μm and the upper limit for the frequency of particles having a particle size of 10 μm were determined.

次いで、図5を参照して、本発明のガスセンサ素子10の多孔質保護層160を形成するアルミナスラリーの特性と分散剤添加量との関係について、本発明者等が行った試験結果について説明する。
分散剤の添加量についてスラリー中の固形分に対する重量比を変えて表面張力の変化を調査したところ本図(a)に示すように、分散剤を0.5wt%以上添加すると表面張力は45mN/m以下となり、1.0wt%以上で一定となることが判明した。表面張力の低下を図ることにより、ガスセンサ素子10に塗布したときの濡れ広がり性が向上し、多孔質保護層160の膜厚の均一化を図ることができると推察される。
また、分散剤の添加量についてスラリー中の固形分に対する重量比を変えてスラリー粘度の変化を調査したところ、本図(b)に示すように、分散剤を0.5wt%以上添加すると急激に粘度が低下し、5.0wt%以上添加すると分散剤の効果が低下し、アルミナの再凝集が発生して粘度が上昇することが判明した。以上により、分散剤の添加量についての上限、下限を決定した。
表面張力の低下及びスラリー粘度の低下に伴う多孔質保護層160の膜厚均一化の効果については後述する。
Next, with reference to FIG. 5, the results of tests conducted by the present inventors will be described regarding the relationship between the characteristics of the alumina slurry forming the porous protective layer 160 of the gas sensor element 10 of the present invention and the amount of dispersant added. .
As a result of investigating the change in the surface tension by changing the weight ratio of the dispersant to the solid content in the slurry, as shown in this figure (a), when 0.5 wt% or more of the dispersant is added, the surface tension is 45 mN / It became clear that it became m or less and became constant at 1.0 wt% or more. By reducing the surface tension, it is assumed that wetting and spreading properties when applied to the gas sensor element 10 are improved, and the thickness of the porous protective layer 160 can be made uniform.
Further, when the change in slurry viscosity was investigated by changing the weight ratio of the dispersant to the solid content in the slurry, as shown in FIG. It has been found that when the viscosity decreases and 5.0 wt% or more is added, the effect of the dispersant decreases, and alumina re-aggregates to increase the viscosity. As described above, the upper limit and the lower limit for the addition amount of the dispersant were determined.
The effect of uniformizing the film thickness of the porous protective layer 160 accompanying the decrease in surface tension and the decrease in slurry viscosity will be described later.

次いで、図6を参照して、本発明のガスセンサ素子10の耐久性に関して行った試験について説明する。
本発明のガスセンサ素子10の多孔質保護層160を形成するに際して、多孔質保護層形成用スラリーに含まれる粒径10μm以下の粒子の積算量を0.5%から18.0%まで条件を変化させて製作したガスセンサ素子の試料No.1〜15をそれぞれ複数水準用意し、発熱体170に通電した状態で、図6に示すように、発熱体170との距離が近く、熱衝撃の影響を受け易い、ヒータ側稜面RH上に設けた保護層160に当たるように、滴下装置を用いて、1.0μlずつの水滴を滴下し、500滴の水滴を滴下するごとに多孔質保護層160の状態を観察し、多孔質保護層160に亀裂、剥離等の異常が発生した時点の滴下回数を計測し、評価を行った。表1にその試験結果を示す。
なお、粒径10μm以下の積算量を制御していない従来の多孔質保護層用スラリーを用いた場合を、表1に比較例5として示した。
比較例5の粒径10μm以下の粒子の積算量は8.2%であり、剥離発生に至るまでの滴下回数が5100回であったので、これを基準として、剥離発生に至るまでの滴下回数が5100回を下回る場合を効果なしと判定し、判定結果を×印で示し、剥離発生に至るまでの滴下回数が5100回を上回る場合を効果ありと判定し、判定結果を○印で示し、剥離発生に至るまでの滴下回数が7000回を上回る場合を顕著な効果ありと判定し、判定結果を◎印で示した。
また、表1の備考欄に示すように、効果の認められなかった試料No.1〜5及びNo.12〜15をそれぞれ、比較例1〜5、比較例6〜9とし、効果の確認された試料No.6〜11をそれぞれ、本発明の実施例1〜6とした。
また、滴下試験中に亀裂が発生した場合には、滴下回数にかかわらず効果なしと判定し、判定結果を×印で示した。
なお、表1の膜外観の欄に示した括弧内の数値は、分母が試験水準数を示し、分子が亀裂の発生した水準数を示す。
Next, with reference to FIG. 6, a test performed on the durability of the gas sensor element 10 of the present invention will be described.
When the porous protective layer 160 of the gas sensor element 10 of the present invention is formed, the condition is changed from 0.5% to 18.0% of the cumulative amount of particles having a particle size of 10 μm or less contained in the slurry for forming the porous protective layer Sample No. of gas sensor element manufactured As shown in FIG. 6, in a state where a plurality of levels 1 to 15 are prepared and the heating element 170 is energized, on the heater side ridge surface RH, which is close to the heating element 170 and easily affected by thermal shock, as shown in FIG. Using a dropping device, 1.0 μl of water drops are dropped so as to hit the protective layer 160 provided, and the state of the porous protective layer 160 is observed every time 500 drops of water are dropped. The number of drops was measured at the time when an abnormality such as cracking or peeling occurred in the film and evaluated. Table 1 shows the test results.
In addition, Table 1 shows a case where a conventional slurry for a porous protective layer in which an integrated amount having a particle size of 10 μm or less is not controlled is shown as Comparative Example 5.
The cumulative amount of particles having a particle size of 10 μm or less in Comparative Example 5 was 8.2%, and the number of drops until the occurrence of peeling was 5100. Based on this, the number of drops until the peeling occurred Is less than 5100 times, it is determined that there is no effect, the determination result is indicated by × mark, the case where the number of drops until the occurrence of peeling exceeds 5100 times is determined to be effective, the determination result is indicated by ○ mark, The case where the number of drops until the occurrence of peeling exceeded 7000 was judged as having a remarkable effect, and the judgment result was indicated by ◎.
In addition, as shown in the remarks column of Table 1, the sample No. in which the effect was not recognized. 1-5 and no. Samples Nos. 12 to 15 were identified as Comparative Examples 1 to 5 and Comparative Examples 6 to 9, respectively. 6 to 11 were set as Examples 1 to 6 of the present invention, respectively.
In addition, when a crack occurred during the dropping test, it was determined that there was no effect regardless of the number of times of dropping, and the determination result was indicated by x.
The numerical values in parentheses shown in the column of the film appearance in Table 1 indicate the number of test levels in the denominator and the number of levels in which the numerator has cracked.

以上の結果から、多孔質保護層160を形成する耐熱性セラミック粉末として平均粒径22μm±4μmのアルミナを分散したスラリーに含まれる粒径10μm以下の粒子の積算量を8.4%以上、13.0%以下に設定することにより被水時に亀裂、剥離が起こり難く、耐久性の高い多孔質保護層160を形成することができることが判明した。   From the above results, the cumulative amount of particles having a particle size of 10 μm or less contained in a slurry in which alumina having an average particle size of 22 μm ± 4 μm is dispersed as the heat-resistant ceramic powder forming the porous protective layer 160 is 8.4% or more, 13 It was found that by setting the ratio to 0.0% or less, it is possible to form a highly durable porous protective layer 160 that hardly causes cracking and peeling when wet.

上述の如く、10μm以下の粒子の積算量が8.4%以下の場合には、センサ側稜面上の膜厚tが630μm以上となることからも多孔質保護層160を形成する耐熱性セラミック粉末として平均粒径22.0μmのアルミナを分散したスラリーに含まれる粒径10μm以下の粒子の積算量を8.4%以上とするのが望ましいことが確認された。また、粒径10μm以下の粒子の積算量が13%を超える場合、耐久性の低下に加え、多孔質保護層160の面粗度も低下し、対被毒性も低下する虞もある。
ガスセンサ素子の多孔質保護層を形成するにあたり、多孔質保護層を構成する特定の平均粒径を有する耐熱性セラミック粉末が、その平均粒径の2分の1以下の特定の範囲の微細な粒径の粒子を所定の範囲で含有することにより、多孔質保護層の充填密度が向上し、被水強度が増すものと推察される。
As described above, when the cumulative amount of particles of 10 μm or less is 8.4% or less, the film thickness t 4 on the sensor-side ridge surface is 630 μm or more, so that the heat resistance for forming the porous protective layer 160 is also achieved. It has been confirmed that the cumulative amount of particles having a particle size of 10 μm or less contained in a slurry in which alumina having an average particle size of 22.0 μm is dispersed as ceramic powder is preferably 8.4% or more. Further, when the cumulative amount of particles having a particle size of 10 μm or less exceeds 13%, in addition to the decrease in durability, the surface roughness of the porous protective layer 160 may also decrease, and the toxicity to the object may also decrease.
In forming the porous protective layer of the gas sensor element, the heat-resistant ceramic powder having a specific average particle diameter constituting the porous protective layer is a fine particle having a specific range of 1/2 or less of the average particle diameter. By containing particles having a diameter within a predetermined range, it is presumed that the packing density of the porous protective layer is improved, and the water receiving strength is increased.

上述の如く分散剤の添加量を0.5wt%以上5.0wt%以下に設定することにより、表面張力及びスラリーの粘度を低くできることが判明したが、このような条件のスラリーを用いて多孔質保護層を形成したときの膜厚の均一化に対する効果について、図7を参照して説明する。
本図(a)に示すように、分散剤を多孔質保護層形成用スラリーの固形分に対して0.5wt%以上添加したとき、膜厚が最も薄くなるヒータ側稜面RH上の膜厚tに対して、膜厚が最も厚くなるセンサ側稜面RS上の膜厚tの比t/tを2.5以下とすることが可能となり、5.0wt%以上添加すると再び膜厚比t/tが2.5を越え多孔質保護層160の全周に渡る膜厚の差が大きくなることが判明した。
また、本図(b)に比較例として示す従来の多孔質保護層形成用スラリーに分散剤を添加しない場合の各部における膜厚(t〜t)と、実施例として示す分散剤を0.5〜5.0wt%添加した場合の各部の膜厚(t〜t)を示す。なお、測定位置に付した添え字R、Lは、図1(b)に示したセンサ側平面SSを上に向けた断面において、それぞれ右側、左側の位置で計測した結果であることを意味する。
本図(b)に示すように、比較例に対して実施例は、t、t、t(R、L)、t(R、L)は比較例よりも薄くなり、t(R、L)は比較例よりも厚くなり、全体として多孔質保護層160の膜厚の均一化が図られているのが確認された。
また、多孔質保護層160全体の膜厚の均一化のみならず、試料間のバラツキも低減されており、本発明によれば、より一層安定した品質のガスセンサ素子10を形成できると期待できる。
As described above, it was found that the surface tension and the viscosity of the slurry can be lowered by setting the addition amount of the dispersant to 0.5 wt% or more and 5.0 wt% or less. The effect on the uniform film thickness when the protective layer is formed will be described with reference to FIG.
As shown to this figure (a), when a dispersing agent is added 0.5 wt% or more with respect to solid content of the slurry for porous protective layer formation, the film thickness on the heater side ridge surface RH where the film thickness becomes the thinnest The ratio t 4 / t 5 of the film thickness t 4 on the sensor-side ridge surface RS where the film thickness is the largest with respect to t 5 can be set to 2.5 or less, and again when 5.0 wt% or more is added. It was found that the film thickness ratio t 4 / t 5 exceeded 2.5 and the difference in film thickness over the entire circumference of the porous protective layer 160 was increased.
Further, the film thickness (t 1 to t 5 ) in each part when no dispersant is added to the conventional slurry for forming a porous protective layer shown as a comparative example in FIG. the thickness of each part of the case of adding .5~5.0Wt% showing a (t 1 ~t 5). The subscripts R and L attached to the measurement positions mean the results of measurement at the right and left positions, respectively, in the cross section with the sensor-side plane SS shown in FIG. .
As shown in FIG. 5B, in the embodiment, t 1 , t 2 , t 3 (R, L), and t 4 (R, L) are thinner than the comparative example, and t 5 (R, L) became thicker than the comparative example, and it was confirmed that the thickness of the porous protective layer 160 was made uniform as a whole.
Further, not only the film thickness of the entire porous protective layer 160 is made uniform, but also the variation between samples is reduced, and according to the present invention, it can be expected that the gas sensor element 10 with more stable quality can be formed.

図8、図9を参照して、本発明の効果についてさらに説明する。図8は、本発明のガスセンサ素子10の横断面を観察した顕微鏡写真で、図9は、従来のガスセンサ素子10zの横断面を観察した顕微鏡写真である。
本発明の実施例として、平均粒径が21.4μm、粒径10μm以下の粒子の積算量が13.0%で、分散材添加量が1.0wt%のアルミナスラリーを用いて多孔質保護層160を形成したガスセンサ素子10と、比較例として、平均粒径が22.0μm、粒径10μm以下の粒子の積算量が0.5%で、分散剤無添加のアルミナスラリーを用いて多孔質保護層160zを形成したガスセンサ素子10zについて比較検討した。
なお、実施例と比較例とは、多孔質保護層形成用スラリー以外の条件は同一の条件で形成されている。
図9に比較例として示す従来のガスセンサ素子10zのヒータ側稜面上の多孔質保護層160zの膜厚t5zに比べ、図8に本発明の実施例として示す本発明のガスセンサ素子10のヒータ側稜面上の多孔質保護層160の膜厚tが厚くなっており、明らかに多孔質保護層160の膜厚の均一化が図られていること確認できる。
The effect of the present invention will be further described with reference to FIGS. FIG. 8 is a photomicrograph observing the cross section of the gas sensor element 10 of the present invention, and FIG. 9 is a photomicrograph observing the cross section of the conventional gas sensor element 10z.
As an example of the present invention, a porous protective layer using an alumina slurry having an average particle size of 21.4 μm, an integrated amount of particles having a particle size of 10 μm or less of 13.0%, and a dispersant addition amount of 1.0 wt% As a comparative example, the gas sensor element 10 having 160 and an integrated amount of particles having an average particle diameter of 22.0 μm and a particle diameter of 10 μm or less are 0.5%, and porous protection is performed using an alumina slurry without addition of a dispersant. The gas sensor element 10z in which the layer 160z was formed was compared and examined.
The example and the comparative example are formed under the same conditions except for the slurry for forming the porous protective layer.
Compared to the porous protective layer 160z of thickness t 5z on the heater side edge surface of the conventional gas sensor element 10z as a comparative example in FIG. 9, the heater of the gas sensor element 10 of the present invention shown as an example of the present invention in FIG. 8 has become thicker thickness t 5 of the porous protective layer 160 on the side edge surface, clearly it can be confirmed that the uniformity of the film thickness of the porous protective layer 160 is achieved.

図10から図13を参照して、本発明のガスセンサ素子10と従来のガスセンサ素子10zとの特徴の違いをさらに説明する。
図10、図11は、それぞれ、本発明のガスセンサ素子10の多孔質保護層160zの表面と従来のガスセンサ素子10zの多孔質保護層160zの表面とを低倍率(×200)で観察した電子顕微鏡写真であり、図12、図13は、それぞれ、高倍率(×2000)で観察した電子顕微鏡写真である。
図10、図11に示すように、開孔の分布状態、表面の粗さ、大粒径の粒子の分布状態については、本発明のガスセンサ素子10と従来のガスセンサ素子10zとで大きな違いはないが、図12、図13に示すように、本発明の実施例と従来の比較例とでは、10μm以下の微細な粒径の粒子の分布に大きな違いが確認できる。
With reference to FIGS. 10 to 13, the difference in characteristics between the gas sensor element 10 of the present invention and the conventional gas sensor element 10z will be further described.
10 and 11 are electron microscopes in which the surface of the porous protective layer 160z of the gas sensor element 10 of the present invention and the surface of the porous protective layer 160z of the conventional gas sensor element 10z are observed at a low magnification (× 200), respectively. FIGS. 12 and 13 are electron micrographs observed at a high magnification (× 2000), respectively.
As shown in FIGS. 10 and 11, there is no significant difference between the gas sensor element 10 of the present invention and the conventional gas sensor element 10z with respect to the distribution state of the holes, the roughness of the surface, and the distribution state of the particles having a large particle diameter. However, as shown in FIGS. 12 and 13, a large difference can be confirmed in the distribution of particles having a fine particle diameter of 10 μm or less between the example of the present invention and the conventional comparative example.

図12に示すように、本発明のガスセンサ素子10の多孔質保護層160では、1μm程度の大きさの一次粒子が集合して10μm以上の大きな二次粒子を形成したものが分散しており、その二次粒子の表面や粒子間に10μm以下の微細な粒径の一次粒子が凝集することなく分散しているのが観察される。
一方、図13に示すように、従来のガスセンサ素子10zの多孔質保護層160zでは、1μm程度の大きさの一次粒子が集合して10μm以上の大きな二次粒子を形成したものが分散しており、本発明のガスセンサ素子10のように、微細な粒径の粒子が凝集することなく二次粒子の表面や粒子間に分散する様子は観察されない。
As shown in FIG. 12, in the porous protective layer 160 of the gas sensor element 10 of the present invention, primary particles having a size of about 1 μm are aggregated to form large secondary particles of 10 μm or more. It is observed that primary particles having a fine particle diameter of 10 μm or less are dispersed without agglomeration between the surfaces of the secondary particles and between the particles.
On the other hand, as shown in FIG. 13, in the porous protective layer 160z of the conventional gas sensor element 10z, primary particles having a size of about 1 μm are aggregated to form large secondary particles of 10 μm or more. As in the gas sensor element 10 of the present invention, it is not observed that particles having a fine particle diameter are dispersed without being aggregated between the surfaces of the secondary particles and the particles.

ここで、本発明のガスセンサ素子10のへの分散材の添加及び、多孔質保護層160を形成する多孔質保護層形成用スラリーに含まれる10μm以下の粒子の積算量と分散剤の添加による表面張力の低下と多孔質保護層160の膜形成との関係について図14を参照して説明する。
本図(a)に示すように、多孔質保護層形成用スラリーの表面張力σが大きいと、多孔質保護層用スラリーをセンサ素子10の表面に塗布したときの接触角θが大きくなる。
一方、本図(b)に示すように、スラリーの表面張力σが小さいと、多孔質保護層用スラリーをセンサ素子10の表面に塗布したときの接触角θは小さくなる。
このため、平面上に多孔質膜を形成したときに、表面張力σの大きなスラリーを用いた場合には、中心部の膜厚がより厚くなる傾向が現れ、表面張力σの小さなスラリーを用いた場合には、濡れ性が向上し全体に広がり易くなるので、膜厚の均一化を図ることができる。
さらに、本図(c)に示すように、表面張力σが大きい場合には、多孔質保護層の粒子間に形成されるキャピラリー(直径2r)の毛管引力PCaが大きくなり、複数回に渡って多孔質保護層を形成したとき、下地となった保護層の吸水速度が速くなり、形成される膜厚も高くなる。
このため、表面張力σの大きな従来のスラリーを用いた場合、センサ側平面SS上の膜厚t及びヒータ側平面SH上の膜厚tの中心付近がさらに厚くなる傾向が生まれ、膜厚過剰となる虞がある。
一方、本図(d)に示すように、表面張力σが低いと、多孔質保護層の粒子間に形成されるキャピラリー(直径2r)の毛管引力PCbが小さくなり、複数回に渡って多孔質保護層を形成したときでも、下地となった保護層の吸水速度が緩慢となり過剰膜厚となるのが抑制される。
さらに、本発明では、上述の範囲で微細粒径の耐熱性セラミック粉末が配合されているので、被膜形成時に充填密度が向上し、被膜の強度が高くなるのに加え、複数回ディッピングされたときに先に形成された下地となる多孔質保護層の充填密度が高いと、粒子間に形成されるキャピラリー内に微細な粒径の粒子が存在し、吸水可能量が減少するため、次にディッピングされたスラリーの吸水速度がさらに抑制され、過剰膜厚となることなく、膜厚の均一化を図ることができるのである。
Here, addition of a dispersing material to the gas sensor element 10 of the present invention, and a surface by adding an integrated amount of particles of 10 μm or less contained in a slurry for forming a porous protective layer forming the porous protective layer 160 and a dispersant. The relationship between the decrease in tension and the film formation of the porous protective layer 160 will be described with reference to FIG.
As shown in this figure (a), when the surface tension σ a of the porous protective layer forming slurry is large, the contact angle θ a when the porous protective layer slurry is applied to the surface of the sensor element 10 becomes large. .
On the other hand, as shown in FIG. 4B, when the surface tension σ b of the slurry is small, the contact angle θ b when the slurry for the porous protective layer is applied to the surface of the sensor element 10 becomes small.
For this reason, when a slurry having a large surface tension σ a is used when a porous film is formed on a flat surface, the film thickness at the center portion tends to become thicker, and a slurry having a small surface tension σ b appears. When used, the wettability is improved and the entire film is easily spread, so that the film thickness can be made uniform.
Furthermore, as shown in the figure (c), when the surface tension sigma a is large, increased capillary attraction P Ca capillary (diameter 2r) formed between the porous protective layer particles, a plurality of times When a porous protective layer is formed across the substrate, the water absorption rate of the protective layer serving as a base is increased, and the formed film thickness is increased.
For this reason, when a conventional slurry having a large surface tension σ a is used, there is a tendency that the vicinity of the center of the film thickness t 1 on the sensor side plane SS and the film thickness t 2 on the heater side plane SH tends to be further thickened. There is a risk of excessive thickness.
On the other hand, as shown in this figure (d), when the surface tension σ b is low, the capillary attractive force PCb of the capillary (diameter 2r) formed between the particles of the porous protective layer becomes small, and it is repeated several times. Even when the porous protective layer is formed, the water absorption rate of the protective layer serving as a base is slowed down and an excessive film thickness is suppressed.
Furthermore, in the present invention, since the heat-resistant ceramic powder having a fine particle diameter is blended within the above-mentioned range, the packing density is improved during the formation of the coating, and the strength of the coating is increased. If the packing density of the porous protective layer, which is the base layer previously formed, is high, particles with a fine particle size exist in the capillaries formed between the particles, and the amount of water that can be absorbed decreases. The water absorption rate of the slurry thus obtained is further suppressed, and the film thickness can be made uniform without becoming an excessive film thickness.

本発明は上記実施形態に限定するものではなく、ガスセンサ素子の表面を覆う多孔質保護層を形成するに当たり、多孔質保護層を構成する耐熱性セラミック粉末の平均粒径の2分の1以下の微細粒径粒子の積算量を特定すると共に、分散剤を添加することにより、スラリーの表面張力を低下させ、多孔質保護層の充填密度を上げると共に、膜厚を均一化させ、多孔質保護層の強度を向上させる本発明の趣旨に反しない限りにおいて適宜変更可能である。
例えば上記実施形態においては、ガスセンサ素子として、基準電極110と測定電極120と固体電解質層100とによって1つの検出セルを構成した例を示したが、複数の検出セルが形成されたガスセンサ素子にも適宜採用可能である。
The present invention is not limited to the above embodiment, and in forming the porous protective layer covering the surface of the gas sensor element, the average particle diameter of the heat-resistant ceramic powder constituting the porous protective layer is not more than one half. By specifying the cumulative amount of fine particles and adding a dispersant, the surface tension of the slurry is reduced, the packing density of the porous protective layer is increased, the film thickness is made uniform, and the porous protective layer As long as the strength of the present invention is not contrary to the gist of the present invention, it can be appropriately changed.
For example, in the above embodiment, an example in which one detection cell is configured by the reference electrode 110, the measurement electrode 120, and the solid electrolyte layer 100 as the gas sensor element has been described. It can be adopted as appropriate.

10 ガスセンサ素子
100 固体電解質層
110 基準電極
120 測定電極
130 基準ガス室
131 基準ガス室形成層
140 拡散抵抗層
150 遮蔽層
160 多孔質保護層
170 発熱体
180、181 絶縁層
SS センサ側平面
SH ヒータ側平面
SD 側面
RS センサ側稜面
RH ヒータ側稜面
10 Gas sensor element 100 Solid electrolyte layer 110 Reference electrode 120 Measurement electrode 130 Reference gas chamber 131 Reference gas chamber forming layer 140 Diffusion resistance layer 150 Shielding layer 160 Porous protective layer 170 Heating element 180, 181 Insulating layer SS Sensor side plane SH Heater side Planar SD Side RS Sensor side ridge surface RH Heater side ridge surface

特開2006−343297号公報JP 2006-343297 A 特開2006−250537号公報JP 2006-250537 A

Claims (6)

特定のイオン伝導性を有する固体電解質材料を略平板状に形成した固体電解質層と、該固体電解質層の一の表面に形成され基準ガスに接する基準電極と、他の表面に形成され被測定ガスに接する測定電極とを含み、被測定ガス流路に載置され、被測定ガス中の特定ガス成分の濃度を検出するセンサ部と、通電により発熱する発熱体を内部に有し、上記センサ部を加熱するヒータ部と、耐熱性セラミック粉末を用いて形成され上記センサ部と上記ヒータ部との表面を覆う多孔質保護層とを具備するガスセンサ素子であって、
上記多孔質保護層は、平均粒径が22μm±4μmの大粒径粒子と、この大粒径粒子の表面若しくは粒子間に分布する粒径10μm以下の微細粒径粒子とからなり、上記微細粒径粒子の内、粒径10μmの粒子の頻度が1.8%以下で、かつ、粒径10μm以下の粒子の積算量が8.4%以上13.0%以下であることを特徴とするガスセンサ素子。
A solid electrolyte layer in which a solid electrolyte material having specific ion conductivity is formed in a substantially flat plate shape, a reference electrode formed on one surface of the solid electrolyte layer and in contact with a reference gas, and a gas to be measured formed on another surface A sensor unit that is placed in the measurement gas flow path and detects the concentration of a specific gas component in the measurement gas; and a heating element that generates heat when energized, and the sensor unit A gas sensor element comprising: a heater portion that heats; and a porous protective layer that is formed using a heat-resistant ceramic powder and covers a surface of the sensor portion and the heater portion,
The porous protective layer is composed of large particles having an average particle diameter of 22 μm ± 4 μm and fine particles having a particle diameter of 10 μm or less distributed on the surface of the large particles or between the particles. Among the diameter particles, the frequency of particles having a particle diameter of 10 μm is 1.8% or less, and the integrated amount of particles having a particle diameter of 10 μm or less is 8.4% to 13.0%. element.
上記多孔質保護層の最大膜厚に対する最小膜厚の比が2.5以下である請求項1に記載のガスセンサ素子。   The gas sensor element according to claim 1, wherein the ratio of the minimum film thickness to the maximum film thickness of the porous protective layer is 2.5 or less. 上記耐熱性セラミック粉末が、アルミナ、アルミナマグネシアスピネル、チタニア、ムライトの少なくともいずれか一種を主成分とする金属酸化物である請求項1又は2に記載のガスセンサ素子。   The gas sensor element according to claim 1 or 2, wherein the heat-resistant ceramic powder is a metal oxide containing at least one of alumina, alumina magnesia spinel, titania, and mullite as a main component. 特定のイオン伝導性を有する固体電解質材料を略平板状に形成した固体電解質層と、該固体電解質層の一の表面に形成され基準ガスに接する基準電極と、他の表面に形成され被測定ガスに接する測定電極とを含み、被測定ガス流路に載置され、被測定ガス中の特定ガス成分の濃度を検出するセンサ部と、通電により発熱する発熱体を内部に有し、上記センサ部を加熱するヒータ部と、上記センサ部と上記ヒータ部との被測定ガスに晒される部分の表面を覆い被測定ガス中に含まれる水分や被毒成分から上記センサ部と上記ヒータ部とを保護する多孔質保護層を耐熱性セラミック粉末を用いて形成するガスセンサ素子の製造方法であって、
少なくとも、上記耐熱性セラミック粉末を所定の分散媒に分散せしめた多孔質保護層形成用スラリーに、上記センサ部とヒータ部との所定の範囲を複数回に渡って浸漬し、乾燥し、熱処理して多孔質保護層を形成する多孔質保護層形成工程を具備し、
上記スラリーに含まれる上記耐熱性セラミック粉末の平均粒径を22μm±4μmに調整すると共に、上記多孔質保護層形成用スラリーに含まれる10μm以下の微細粒径粒子の内、10μmの粒子の頻度を1.8%以下とし、10μm以下の粒子の積算量が8.4%以上、13.0%以下となるように調整することを特徴とするガスセンサ素子の製造方法。
A solid electrolyte layer in which a solid electrolyte material having specific ion conductivity is formed in a substantially flat plate shape, a reference electrode formed on one surface of the solid electrolyte layer and in contact with a reference gas, and a gas to be measured formed on another surface A sensor unit that is placed in the measurement gas flow path and detects the concentration of a specific gas component in the measurement gas; and a heating element that generates heat when energized, and the sensor unit The heater part that heats the sensor, and covers the surface of the sensor part and the heater part exposed to the gas to be measured to protect the sensor part and the heater part from moisture and poisonous components contained in the gas to be measured A method for producing a gas sensor element, wherein a porous protective layer is formed using a heat-resistant ceramic powder,
At least a predetermined range of the sensor part and the heater part is immersed in a slurry for forming a porous protective layer in which the heat-resistant ceramic powder is dispersed in a predetermined dispersion medium, dried, heat-treated. Comprising a porous protective layer forming step of forming a porous protective layer,
The average particle size of the heat-resistant ceramic powder contained in the slurry is adjusted to 22 μm ± 4 μm, and among the fine particle size particles of 10 μm or less contained in the slurry for forming the porous protective layer, the frequency of 10 μm particles is set. A method for producing a gas sensor element, wherein the gas sensor element is adjusted to 1.8% or less so that an integrated amount of particles of 10 μm or less is 8.4% or more and 13.0% or less.
上記多孔質保護層形成用スラリーの表面張力が45mN/m以下にとなるように、上記多孔質保護層形成用スラリー中に含まれる固形分に対して重量比で0.5wt%以上5.0wt%以下の分散材を添加する請求項4に記載のガスセンサ素子の製造方法。   In order that the surface tension of the slurry for forming the porous protective layer is 45 mN / m or less, the weight ratio is 0.5 wt% or more and 5.0 wt% with respect to the solid content contained in the slurry for forming the porous protective layer. The manufacturing method of the gas sensor element of Claim 4 which adds a dispersion material of% or less. 上記多孔質保護層形成用スラリーは、上記耐熱性セラミック粉末として、アルミナ、アルミナマグネシアスピネル、チタニア、ムライトの少なくともいずれか一種を主成分とする金属酸化物を用い、上記分散媒として水を用いる請求項4又は5に記載のガスセンサ素子の製造方法。   The slurry for forming a porous protective layer uses a metal oxide mainly composed of at least one of alumina, alumina magnesia spinel, titania, and mullite as the heat-resistant ceramic powder, and uses water as the dispersion medium. Item 6. The method for producing a gas sensor element according to Item 4 or 5.
JP2010128873A 2010-06-04 2010-06-04 Gas sensor element and manufacturing method thereof Active JP5218477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128873A JP5218477B2 (en) 2010-06-04 2010-06-04 Gas sensor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128873A JP5218477B2 (en) 2010-06-04 2010-06-04 Gas sensor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011252894A JP2011252894A (en) 2011-12-15
JP5218477B2 true JP5218477B2 (en) 2013-06-26

Family

ID=45416923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128873A Active JP5218477B2 (en) 2010-06-04 2010-06-04 Gas sensor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5218477B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218602B2 (en) * 2011-05-27 2013-06-26 株式会社デンソー GAS SENSOR ELEMENT, MANUFACTURING METHOD THEREOF, AND GAS SENSOR
JP5783424B2 (en) * 2012-04-13 2015-09-24 トヨタ自動車株式会社 Gas sensor control device
JP5773220B2 (en) 2012-08-07 2015-09-02 トヨタ自動車株式会社 Exhaust gas sensor
JP5787180B2 (en) * 2012-08-07 2015-09-30 トヨタ自動車株式会社 Exhaust gas sensor
US20150168261A1 (en) * 2013-12-12 2015-06-18 Delphi Technologies, Inc. Thermal shock resistant coated exhaust sensor
JP6475074B2 (en) 2014-07-18 2019-02-27 トヨタ自動車株式会社 Gas sensor element
JP6936025B2 (en) * 2017-03-08 2021-09-15 日本特殊陶業株式会社 Manufacturing method of gas sensor element
DE102017218469A1 (en) * 2017-06-28 2019-01-03 Robert Bosch Gmbh Sensor element for detecting at least one property of a sample gas in a sample gas space and method for producing the same
JP7179968B2 (en) * 2019-03-29 2022-11-29 日本碍子株式会社 Sensor element of gas sensor
CN116445077A (en) * 2023-04-06 2023-07-18 武汉双虎涂料股份有限公司 Normal-temperature self-drying water-based aluminum powder high-temperature-resistant coating and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486956B2 (en) * 1994-06-09 2004-01-13 株式会社デンソー Oxygen concentration detector
JP3633584B2 (en) * 1996-01-31 2005-03-30 株式会社デンソー Oxygen concentration detector and manufacturing method thereof
JP2006126077A (en) * 2004-10-29 2006-05-18 Denso Corp Manufacturing method of gas sensor element
JP2008216241A (en) * 2007-02-05 2008-09-18 Ngk Spark Plug Co Ltd Gas sensor and method of manufacturing same
JP2009031266A (en) * 2007-06-26 2009-02-12 Fuji Electric Systems Co Ltd Oxygen sensor, manufacturing method of oxygen sensor, and oxygen sensor manufacturing device
JP4894829B2 (en) * 2007-09-07 2012-03-14 株式会社デンソー Gas sensor
JP2010038638A (en) * 2008-08-01 2010-02-18 Toyota Motor Corp Gas sensor
JP5056723B2 (en) * 2008-10-31 2012-10-24 株式会社デンソー Gas sensor element

Also Published As

Publication number Publication date
JP2011252894A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5218477B2 (en) Gas sensor element and manufacturing method thereof
US7329844B2 (en) Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multilayered structure including the prismatic ceramic heater, and method for manufacturing the prismatic ceramic heater and prismatic gas sensor element
JP5024243B2 (en) Gas concentration detecting element and manufacturing method thereof
JP5390682B1 (en) Gas sensor element and gas sensor
WO2013084097A2 (en) Gas sensor element, and gas sensor
US20080264146A1 (en) Sensor Element for Particle Sensors and Method for Operating Same
JP5056723B2 (en) Gas sensor element
JP2010169655A (en) Gas sensor element and gas sensor equipped with it
US20220113276A1 (en) Gas sensor and method of manufacture thereof
US10591431B2 (en) Sensor element
US10996191B2 (en) Sensor element and gas sensor
JP2019039692A (en) Gas sensor element and gas sensor
JP6540661B2 (en) Gas sensor element and gas sensor
WO2017104564A1 (en) Gas sensor element and gas sensor
US11125715B2 (en) Gas sensor
US20210356423A1 (en) Exhaust sensor
JPWO2020065952A1 (en) Sensor elements of ceramic structures and gas sensors
US20210156817A1 (en) Ceramic structured body and sensor element of gas sensor
WO2020195079A1 (en) Gas sensor
JP2004514904A (en) Heating equipment
JP6386805B2 (en) Particulate matter detection sensor element and particulate matter detection sensor using the same
WO2020203030A1 (en) Sensor element for gas sensor
WO2023162385A1 (en) Gas sensor
JP2013242231A (en) Method of depositing protection film of gas sensor element, and gas sensor element including protection film formed thereby
JP2005069719A (en) Humidity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250