JP5056723B2 - Gas sensor element - Google Patents

Gas sensor element Download PDF

Info

Publication number
JP5056723B2
JP5056723B2 JP2008280808A JP2008280808A JP5056723B2 JP 5056723 B2 JP5056723 B2 JP 5056723B2 JP 2008280808 A JP2008280808 A JP 2008280808A JP 2008280808 A JP2008280808 A JP 2008280808A JP 5056723 B2 JP5056723 B2 JP 5056723B2
Authority
JP
Japan
Prior art keywords
ridge
gas sensor
sensor element
gas
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008280808A
Other languages
Japanese (ja)
Other versions
JP2010107409A (en
Inventor
将 内藤
淳 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008280808A priority Critical patent/JP5056723B2/en
Publication of JP2010107409A publication Critical patent/JP2010107409A/en
Application granted granted Critical
Publication of JP5056723B2 publication Critical patent/JP5056723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、自動車エンジン等の内燃機関から排出される燃焼排気中の特定ガス成分濃度を測定するガスセンサに用いられるガスセンサ素子の耐久性、耐被水性強度向上に関するものである。   The present invention relates to an improvement in durability and moisture resistance of a gas sensor element used in a gas sensor for measuring a specific gas component concentration in combustion exhaust gas discharged from an internal combustion engine such as an automobile engine.

従来、自動車エンジン等の内燃機関の燃焼排気流路に、該燃焼排気中に含まれる酸素、窒素酸化物、アンモニア、水素等の特定ガス成分の濃度を検知するガスセンサを配設して、内燃機関の燃焼制御や排ガス浄化装置の制御を行っている。
このようなガスセンサとして、例えば、酸素センサの場合、平板状に形成された酸素イオン導伝性の固体電解質層と、該固体電解質層の一方の表面に形成されて被測定ガスに接する測定電極層と、該測定電極層側に形成されて上記被測定ガスを透過する多孔質拡散抵抗層と、上記固体電解質層の他方の表面に形成されて基準ガスに接する基準電極層と、該基準電極層側に形成されて上記基準ガスを導入する基準ガス室を有する基準ガス室形成層と、発熱体を内部に有する絶縁性の基体とを積層してなる積層型ガスセンサ素子が用いられている。
Conventionally, a gas sensor for detecting the concentration of a specific gas component such as oxygen, nitrogen oxides, ammonia, and hydrogen contained in the combustion exhaust gas is disposed in the combustion exhaust flow path of the internal combustion engine such as an automobile engine, and the internal combustion engine. Combustion control and exhaust gas purification device control.
As such a gas sensor, for example, in the case of an oxygen sensor, an oxygen ion conductive solid electrolyte layer formed in a flat plate shape, and a measurement electrode layer formed on one surface of the solid electrolyte layer and in contact with the gas to be measured A porous diffusion resistance layer that is formed on the measurement electrode layer side and transmits the gas to be measured; a reference electrode layer that is formed on the other surface of the solid electrolyte layer and is in contact with a reference gas; and the reference electrode layer A laminated gas sensor element is used which is formed by laminating a reference gas chamber forming layer having a reference gas chamber which is formed on the side and into which the reference gas is introduced, and an insulating substrate having a heating element therein.

一方、被測定流体としての燃焼排気中には、P、Ca、Zn、Si等のオイル含有成分やK、Na、Pb等のガソリン添加成分からなる被毒物質が含まれており、積層型ガスセンサ素子の測定電極層や多孔質拡散層がこれらの被毒物質に汚染されて、ガスセンサの応答性劣化や出力異常等の問題を引き起こす虞がある。また、燃焼排気中には、水蒸気も含まれており、これが凝縮して水滴となり積層型ガスセンサ素子に付着する虞もある。   On the other hand, the combustion exhaust as the fluid to be measured contains poisonous substances composed of oil-containing components such as P, Ca, Zn, and Si and gasoline-added components such as K, Na, and Pb. The measurement electrode layer and the porous diffusion layer of the element may be contaminated with these poisoning substances, which may cause problems such as deterioration in response of the gas sensor and abnormal output. The combustion exhaust gas also contains water vapor, which may condense and form water droplets that adhere to the stacked gas sensor element.

加えて、このような積層型ガスセンサ素子は、固体電解質層を特定のイオンに対してイオン電導性を示すべく、内蔵された発熱体によって例えば700℃以上の高温に加熱・活性化された状態で使用されている。
このため、被測定ガス雰囲気中の水滴の付着(被水)によって、積層型ガスセンサ素子に大きな熱衝撃が加わり素子の被水割れを生じる虞もある。
In addition, in such a stacked gas sensor element, the solid electrolyte layer is heated and activated at a high temperature of, for example, 700 ° C. or higher by a built-in heating element so as to exhibit ionic conductivity with respect to specific ions. in use.
For this reason, adhesion of water droplets in the measurement gas atmosphere (water exposure) may cause a large thermal shock to the stacked gas sensor element and cause water cracking of the element.

そこで、ガスセンサ素子の外周面に所定膜厚の多孔質保護層を形成することによって、該多孔質保護層内に上記被毒物質を捕獲して誤動作を防止したり、水滴が付着したときには、水滴を該多孔質保護層内に分散させて熱衝撃を緩和させ素子全体にクラックが発生するのを防止したりできることが知られている(特許文献1、特許文献2参照)。   Therefore, by forming a porous protective layer with a predetermined film thickness on the outer peripheral surface of the gas sensor element, the poisoning substance is captured in the porous protective layer to prevent malfunction, or when water droplets adhere, Is dispersed in the porous protective layer to relieve thermal shock and prevent the entire device from cracking (see Patent Documents 1 and 2).

このような多孔質保護層は、例えば所定の粒度分布を有するアルミナ等の耐熱性セラミック粉末を無機バインダ及び分散剤とともに水又は有機溶媒等の分散媒に分散させたスラリーにガスセンサ素子の被測定流体中に晒される部分を浸漬(ディッピング)して、ガスセンサ素子の外周面に該スラリーの膜を形成し、これを乾燥、焼結することにより得られる(特許文献1参照)。   Such a porous protective layer is, for example, a fluid to be measured of a gas sensor element in a slurry in which a heat-resistant ceramic powder such as alumina having a predetermined particle size distribution is dispersed in a dispersion medium such as water or an organic solvent together with an inorganic binder and a dispersant. It is obtained by immersing (dipping) a portion exposed to the inside to form a film of the slurry on the outer peripheral surface of the gas sensor element, and drying and sintering the film (see Patent Document 1).

例えば、このような従来のガスセンサ素子として、図8(a)に示すガスセンサ素子10は、平板状に形成した固体電解質層100の一方の表面に測定電極層110を形成し、他方の面に基準電極層120を形成し、基準電極層120の側に積層して基準ガスとして大気を導入する基準ガス室130を形成する基準ガス室形成層131を配設し、さらに測定電極層110の側に積層して多孔質体からなる拡散抵抗層160を配設してセンサ部11となし、平板状に形成した絶縁体140、141の内部に発熱体150を設けてヒータ部14となし、センサ部11とヒータ部14とを積層、焼成して一体のガスセンサ素子を構成している。
特開2006−126077号公報 特開2007−121323号公報
For example, as such a conventional gas sensor element, a gas sensor element 10 Z shown in FIG. 8A has a measurement electrode layer 110 Z formed on one surface of a solid electrolyte layer 100 Z formed in a flat plate shape, and the other forms a reference electrode layer 120 Z in the plane, the reference gas chamber forming layer 131 Z to form the reference gas chamber 130 Z for introducing the atmosphere disposed as a reference gas are stacked on the side of the reference electrode layer 120 Z, further the measurement electrode layer 110 Z sensor unit 11 disposed diffusion resistance layer 160 Z made of a porous material laminated on the side of Z ungated, inside the heating element of the plate-shaped insulator 140 is formed on the Z, 141 Z 150 Z is provided to form the heater unit 14 Z, and the sensor unit 11 Z and the heater unit 14 Z are laminated and fired to form an integrated gas sensor element.
JP 2006-126077 A JP 2007-121323 A

ところが、断面略矩形のガスセンサ素子10の表面に、アルミナ等の保護層形成材料と分散剤と無機バインダ等とを水又は有機溶剤等の分散媒に分散させてスラリー状又はペースト状に調整し、ディッピング、刷毛塗り、スプレー噴霧、印刷等の湿式的手法により多孔質保護層170を形成しようとすると、図8(a)に示すように、表面張力等の影響により多孔質保護層170の膜厚tHTRZ、tSNZ、tSDZは、発熱面SHTRZ、センサ面SSNZ、側面SSDZにおいて、それぞれの平面の中心部分で最も厚くなり、それぞれの平面が交わる稜線L、即ち、ガスセンサ素子10zの長手方向の端縁の近傍において薄くなることが判明した。 However, the surface of the gas sensor element 10 Z of substantially rectangular cross-section, the protective layer forming material such as alumina and dispersant and an inorganic binder or the like are dispersed in a dispersion medium such as water or an organic solvent to adjust the slurry or paste , dipping, brushing, spraying, by wet methods such as printing when you try to form a porous protective layer 170 Z, as shown in FIG. 8 (a), the porous protective layer 170 under the influence of surface tension Z The film thicknesses t HTR Z, t SN Z, and t SD Z of the heat generating surface S HTR Z, the sensor surface S SN Z, and the side surface S SD Z are the thickest at the center portions of the respective planes, and the planes intersect. It has been found that the ridge line L Z , that is, the vicinity of the edge in the longitudinal direction of the gas sensor element 10 z becomes thin.

このように膜厚分布が生じた状態で多孔質保護層170を乾燥、焼結すると、乾燥時の収縮及び焼結時の収縮のストレスが多孔質保護層170内部で稜線L付近に集中し、多孔質保護層170が稜線Lを境に分断される虞がある。また、多孔質保護層170が稜線Lにおいて分断されることによりガスセンサ素子10Zと多孔質保護層170との密着強度が低下し、剥離しやすくなることが判明した。 Thus the porous protective layer 170 Z in a state in which the thickness distribution occurs dried and sintered, stress during drying shrinkage and the sintering shrinkage in the vicinity of the ridge line L Z within the porous protective layer 170 Z concentrated, there is a possibility that the porous protective layer 170 Z is divided into boundary ridgeline L Z. The porous protective layer 170 Z decreases adhesion strength between the gas sensing element 10Z and the porous protective layer 170 Z is by being divided in the ridge line L Z, was found to be easily peeled off.

加えて、断面略矩形に形成されたヒータ部14においては、絶縁体141の発熱面方向の板厚t141及び側面方向の板厚ts141Zに対して、内蔵される発熱体150の端縁と稜線Lまでの距離t141が長い。
このため、発熱体150の発熱時には、ヒータ部14内部に温度勾配が生じ、熱的なストレスとなる。このように状態でガスセンサ素子10が被水すると、被水による熱衝撃とヒータ部14の内部ストレスとの相乗的なストレスによって容易にガスセンサ素子が破壊される虞がある。
In addition, in the heater unit 14 Z formed in a substantially rectangular cross section, with respect to the heat generating surface direction of the plate thickness t 141 Z 1 and side direction of thickness ts 141 Z of the insulator 141 Z, heating elements incorporated The distance t 141 Z 2 from the edge of 150 Z to the ridgeline L Z is long.
Therefore, when heating of the heating element 0.99 Z, a temperature gradient is generated inside the heater unit 14 Z, the thermal stress. With such gas sensor element 10 Z state is exposed to water, there is a fear that readily gas sensor element by the synergistic stress of the internal stress of the thermal shock and the heater unit 14 Z by the water are destroyed.

一方、図8(b)に示すように、ガスセンサ素子10では、ガスセンサ素子10Zと同様な構成に加え、長手方向の端縁に沿ってC面状の稜面Cを少なくとも素子先端側の発熱領域に形成し、断面略六角形状又は略八角形状に形成することによって、発熱体150の端縁から稜面C表面までの距離が短くなり、発熱体150表面から発熱面SHTRX方向への発熱量と稜面C方向への発熱量との均一化を図り、ヒータ部14内部に発生する熱ストレスを緩和できると期待される。
しかしながら、このような熱ストレスを緩和する構造のガスセンサ素子10においても、稜面Cと側面SSDXとが交わる側面側稜線L1X、又は、稜面Cと発熱面SHTRXとが交わる発熱面側稜線L2Xにおいて、上述の断面矩形状のガスセンサ素子10と同様、多孔質保護層170の膜厚が局所的に薄くなり、多孔質保護層170が分断され、剥離を招く虞がある。
On the other hand, as shown in FIG. 8B, in the gas sensor element 10 X , in addition to the same configuration as the gas sensor element 10Z, a C-shaped ridge surface C X is formed at least on the element tip side along the edge in the longitudinal direction. By forming it in the heat generating region and having a substantially hexagonal or octagonal cross section, the distance from the edge of the heating element 150 X to the surface of the ridge surface C X is shortened, and the surface of the heating element 150 X to the heating surface S HTR achieving uniformity of the heating value and the calorific value of the 2 Sided C X direction in the X direction, it is expected to alleviate the thermal stress generated inside the heater unit 14 Z.
However, also in the gas sensor element 10 X having a structure for reducing such thermal stress, the side surface side ridge line L 1X where the ridge surface C X and the side surface S SD X intersect, or the ridge surface C X and the heat generating surface S HTR X in the heat generating surface side ridge line L 2X which intersect, as with the gas sensor element 10 Z of the above-mentioned rectangular section, the thickness of the porous protective layer 170 X is locally thinner, porous protective layer 170 X is divided, peeling There is a risk of inviting.

そこで、本願発明は、かかる実情に鑑み、被測定ガス中の特定ガス成分の濃度を検出するガスセンサに用いられるガスセンサ素子であって、該ガスセンサ素子の表面を覆う多孔質保護層の剥離が起こり難く、耐久性に優れたガスセンサ素子の提供を目的とするものである。   Therefore, in view of such circumstances, the present invention is a gas sensor element used in a gas sensor for detecting the concentration of a specific gas component in a gas to be measured, and the porous protective layer covering the surface of the gas sensor element is unlikely to peel off. An object of the present invention is to provide a gas sensor element having excellent durability.

請求項1の発明では、被測定ガス流路に載置され、被測定ガス中の特定成分の濃度を検出する略平板状に形成されたセンサ部と、該センサ部に積層して上記センサ部を加熱、活性化する略平板状に形成されたヒータ部とを具備し、少なくとも上記ヒータ部の長手方向の端縁に沿って、少なくとも2以上の稜面からなる多重稜面部を設けるとともに、該多重稜面部を含む上記ガスセンサ素子の外周面の所定の範囲を湿式的手法で形成した多孔質保護層によって包囲せしめたガスセンサ素子において、上記多重稜面部は、少なくとも上記ヒータ部側面に連なる側面側稜面と上記ヒータ部の発熱面に連なる発熱面側稜面とを含み、上記多孔質保護層は、上記側面側稜面と上記ヒータ部の側面とが交わる側面側稜線上に形成した上記多孔質保護層の膜厚を側面側膜厚t とし、上記発熱面側稜面と上記ヒータ部発熱面とが交わる発熱面側稜線上に形成した上記多孔質保護層の膜厚を発熱面側膜厚t としたとき、下記式1の関係を満たす範囲に設定する。
1.0・t ≦t ≦1.6・t ・・・式1
According to the first aspect of the present invention, there is provided a sensor unit that is placed in the measured gas flow path and detects the concentration of a specific component in the measured gas, and is formed in a substantially flat plate shape, and the sensor unit stacked on the sensor unit. A heater portion formed in a substantially flat plate shape that heats and activates, and at least along the edge in the longitudinal direction of the heater portion, a multiple ridge surface portion composed of at least two ridge surfaces is provided, In the gas sensor element in which a predetermined range of the outer peripheral surface of the gas sensor element including the multiple ridge surface portion is surrounded by a porous protective layer formed by a wet method, the multiple ridge surface portion is at least a side surface ridge continuous with the heater portion side surface. The porous protective layer is formed on a side-side ridge line where the side-side ridge surface and the side surface of the heater part intersect with each other. Protective layer film Was a side surface side thickness t 1, and the thickness of the porous protective layer formed on the heat generating surface side on the edge line and the heat generating surface side ridge surface and the heater unit heating surface intersects with the heat generating surface side thickness t 2 At this time, it is set to a range satisfying the relationship of the following formula 1.
1.0 · t 1 ≦ t 2 ≦ 1.6 · t 1 Formula 1

本発明者等の鋭意試験によって、上記多孔質保護層の膜厚を請求項1の発明の範囲に設定することによって、上記多孔質保護層の剥離をさらに効果的に抑制できることが判明した。
請求項1の発明によれば、所定の範囲に設定した上記多重稜面部を介することによって、上記ヒータ部の発熱面から側面に向かって緩やかに角度変化するため、湿式的手法を用いて形成した上記多孔質保護層膜厚の局所的な薄肉化が抑制され、乾燥、焼結時に上記多孔質保護層の収縮が起こっても上記ヒータ部の発熱面と側面との境界で分断されることがなく、上記多孔質保護層と上記ガスセンサ素子との密着強度が増し、剥離が起こり難くなる。したがって、被測定ガス中の特定ガス成分濃度を検出するガスセンサに用いられるガスセンサ素子の耐久性が向上する。
As a result of diligent tests by the present inventors, it has been found that by setting the film thickness of the porous protective layer within the scope of the invention of claim 1, peeling of the porous protective layer can be more effectively suppressed.
According to the first aspect of the present invention, since the angle gradually changes from the heat generation surface of the heater portion to the side surface through the multiple ridge surface portion set in a predetermined range, it is formed using a wet method. Local thinning of the porous protective layer thickness is suppressed, and even if the porous protective layer shrinks during drying and sintering, it is divided at the boundary between the heating surface and the side surface of the heater part. In addition, the adhesion strength between the porous protective layer and the gas sensor element is increased, and peeling is less likely to occur. Therefore, the durability of the gas sensor element used in the gas sensor for detecting the specific gas component concentration in the gas to be measured is improved.

請求項の発明では、被測定ガス流路に載置され、被測定ガス中の特定成分の濃度を検出する略平板状に形成されたセンサ部と、該センサ部に積層して上記センサ部を加熱、活性化する略平板状に形成されたヒータ部とを具備し、少なくとも上記ヒータ部の長手方向の端縁に沿って、少なくとも2以上の稜面からなる多重稜面部を設けるとともに、該多重稜面部を含む上記ガスセンサ素子の外周面の所定の範囲を湿式的手法で形成した多孔質保護層によって包囲せしめたガスセンサ素子において、上記多重稜面部は、少なくとも上記ヒータ部側面に連なる側面側稜面と上記ヒータ部の発熱面に連なる発熱面側稜面とを含み、上記ヒータ部の発熱面から上記側面側稜面と上記ヒータ部の側面とが交わる側面側稜線までの高さを側面側稜面高Hとし、上記ヒータ部の発熱面から上記発熱面側稜面と上記側面側稜面との交わる稜線までの高さを発熱面側稜面高Hとしたとき、下記式2の関係を満たす範囲に設ける。
1/2・H≦H≦3/4・H・・・式2
According to a second aspect of the present invention, there is provided a sensor unit that is placed in the measurement gas flow path and that is formed in a substantially flat plate shape for detecting the concentration of a specific component in the measurement gas, and the sensor unit is stacked on the sensor unit. A heater portion formed in a substantially flat plate shape that heats and activates, and at least along the edge in the longitudinal direction of the heater portion, a multiple ridge surface portion composed of at least two ridge surfaces is provided, In the gas sensor element in which a predetermined range of the outer peripheral surface of the gas sensor element including the multiple ridge surface portion is surrounded by a porous protective layer formed by a wet method, the multiple ridge surface portion is at least a side surface ridge continuous with the heater portion side surface. And a heating surface side ridge surface connected to the heating surface of the heater portion, and the height from the heat generation surface of the heater portion to the side surface ridge line where the side surface ridge surface intersects the side surface of the heater portion is the side surface side. Ridge height H 1 And then, when the heat generating surface side ridge surface height H 2 the height of the ridge intersects with the heat generating surface side ridge surface and the side surface side ridge surface from the heating surface of the heater unit, the range satisfying the relation of the following formula 2 Provided.
1/2 · H 1 ≤ H 2 ≤ 3/4 · H 1 ... Formula 2

本発明者等の鋭意試験によって、上記多重稜面部を請求項の発明の範囲に設定することによって、上記多孔質保護層の剥離を抑制するとともに、上記ガスセンサ素子の被水割れを効果的に抑制できることが判明した。 By setting the multiple ridge surface portions within the scope of the invention according to claim 2 through an intensive test by the present inventors, it is possible to suppress peeling of the porous protective layer and effectively prevent water cracking of the gas sensor element. It was found that it can be suppressed.

本発明のガスセンサ素子は、自動車エンジン等の内燃機関の燃焼排気流路に設けられ燃焼排気中に含まれる酸素、NO、NH、HC(ハイドロキシカーボン)等の特定ガス成分を検出し、内燃機関の燃焼制御や燃焼排気処理制御等に利用するガスセンサに用いられるものである。
本発明の第1の実施形態におけるガスセンサ素子として最も基本的な構成の酸素センサに用いられるガスセンサ素子10を例として図を参照しながら説明する。図1(a)は、本実施形態におけるガスセンサ素子10の断面図、(b)は、要部拡大断面図である。
The gas sensor element of the present invention is provided in a combustion exhaust passage of an internal combustion engine such as an automobile engine, and detects specific gas components such as oxygen, NO x , NH 3 , and HC (hydroxycarbon) contained in the combustion exhaust, It is used for a gas sensor used for engine combustion control, combustion exhaust treatment control, and the like.
The gas sensor element 10 used in the oxygen sensor having the most basic configuration as the gas sensor element in the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a cross-sectional view of the gas sensor element 10 in the present embodiment, and FIG.

図1に示すように、ガスセンサ素子10は、略平板状に形成されたセンサ部11とヒータ部14とを積層して構成され、その外周面は多孔質保護層170で覆われている。
ヒータ部14の側面SSDと発熱面SHTRとの間には長手方向の端縁に沿って、本発明の要部であり、複数の稜面からなる多重稜面S、Sが形成されている。
側面SSD側には発熱面SHTRに対して所定の角度θを設けて第1の稜面として側面側稜面Sが所定の稜面高Hで形成され、発熱面SHTR側には発熱面SHTRに対して所定の角度θを設けて第2の稜面として発熱面側稜面Sが所定の稜面高Hで形成されている。
さらに、側面SSDと側面側稜面Sとが交わる側面側稜線L上の多孔質保護層170の膜厚tと、発熱面SHTRと発熱面側稜面Sとが交わる発熱面側稜線L上の膜厚tとの間には、下記式1の関係が成立している。
≦t≦1.6・t・・・式1
また、側面側稜面高Hと発熱面側稜面高Hとの間には、下記式2の関係が成立している。
1/2・H≦H≦3/4・H・・・式2
As shown in FIG. 1, the gas sensor element 10 is configured by laminating a sensor portion 11 and a heater portion 14 formed in a substantially flat plate shape, and the outer peripheral surface thereof is covered with a porous protective layer 170.
Between the side surface S SD of the heater 14 and the heat generating surface S HTR along the longitudinal direction of the edge, a main part of the present invention, multiple crest surfaces S 1, S 2 comprising a plurality of ridges surfaces formed Has been.
The side surface S SD side surface side ridge surface S 1 is formed in a predetermined edge surface height H 1 as a first edge surface with a predetermined angle theta 1 with respect to the heat generating surface S HTR, heating surface S HTR side Is provided with a predetermined angle θ 2 with respect to the heat generating surface SHTR , and a heat generating surface side ridge surface S 2 is formed with a predetermined ridge surface height H 2 as a second ridge surface.
Further, the thickness t 1 of the porous protective layer 170 on the side face side ridgeline L 1 which is the side surface S SD and the side side edge surface S 1 intersects a heat generating surface S HTR and the heat generating surface side ridge surface S 2 intersects heating between the film thickness t 2 on the side ridgeline L 2, the relationship of the following formula 1 is satisfied.
t 1 ≦ t 2 ≦ 1.6 · t 1 Formula 1
Between the side surface side ridge surface height H 1 and the heat generating surface side ridge surface height H 2, the relationship of the following formula 2 is satisfied.
1/2 · H 1 ≤ H 2 ≤ 3/4 · H 1 ... Formula 2

センサ部11は、平板状に成形した固体電解質層100と、固体電解質層100の被測定ガスに接する側の表面に形成された測定電極層110と、さらに測定電極層110側に積層して形成された被測定ガスを所定の拡散抵抗の下で透過する多孔質の拡散抵抗層160と、固体電解質層100の他方の表面に形成されて基準ガスとして導入される大気に接する基準電極層120と、基準電極層120の側に積層して形成されて基準ガスを導入する基準ガス室130を形成するための基準ガス室形成層131とによって構成されている。ヒータ部14は、平板状に成形した絶縁性の基体140、141の内側に積層して発熱体150が形成されている。   The sensor unit 11 is formed by laminating the solid electrolyte layer 100 formed into a flat plate shape, the measurement electrode layer 110 formed on the surface of the solid electrolyte layer 100 on the side in contact with the gas to be measured, and the measurement electrode layer 110 side. A porous diffusion resistance layer 160 that transmits the measured gas under a predetermined diffusion resistance, and a reference electrode layer 120 that is formed on the other surface of the solid electrolyte layer 100 and is in contact with the atmosphere introduced as a reference gas The reference gas chamber forming layer 131 is formed by laminating on the reference electrode layer 120 side to form a reference gas chamber 130 for introducing a reference gas. The heater part 14 is laminated on the inner side of the insulating bases 140 and 141 formed in a flat plate shape to form a heating element 150.

なお、本実施形態において、θは40度から50度の範囲で設けられ、θは17.5度から27.5度の範囲で設けられている。
また、側面側稜線L上の多孔質保護層170の膜厚tは、125μm〜250μm程度に形成され、発熱側稜線L上の多孔質保護層170の膜厚tは、200μm〜250μm程度に形成されている。ただし、側面側稜線L上の多孔質保護層170の膜厚tと発熱側稜線L上の多孔質保護層170の膜厚tとは、発熱面側稜線上膜厚tを側面側稜線上膜厚tに対して1.0倍から1.6倍の範囲に設定することが望ましい。一方、側面側稜面Sの稜面高Hは、0.2mmから0.4mmの範囲で設けられ、発熱面側稜面Sの稜面高Hは、0.1mmから0.3mmの範囲で設けられている。ただし、側面側稜面高Hに対して発熱面側稜面高Hは2分の1から4分の3の範囲に設定するのが望ましい。
さらに、絶縁性基体140、141の板厚t140、t141は、150μmから170μmの範囲に形成され、ガスセンサ素子10全体としては、板厚1.4mm、幅3.4mm程度に形成され、装着される被測定ガス流路に応じた長さに形成されている。
In the present embodiment, θ 1 is provided in the range of 40 degrees to 50 degrees, and θ 2 is provided in the range of 17.5 degrees to 27.5 degrees.
The thickness t 1 of the porous protective layer 170 on the side face side ridgeline L 1 is formed in about 125Myuemu~250myuemu, thickness t 2 of the porous protective layer 170 on the heating side ridgeline L 2 is 200 m to It is formed to about 250 μm. However, the thickness t 2 of the porous protective layer 170 on the film thickness t 1 and the heating side ridgeline L 2 of the porous protective layer 170 on the side face side ridgeline L 1, the heat generating surface side edge line thickness t 2 it is desirable to set to the side surface side edge line thickness t 1 in the range of 1.0 times 1.6 times. On the other hand, edge surface height H 1 of the side surface side edge surface S 1 is provided in a range of 0.2mm to 0.4 mm, ridge surface height of H 2 heat generating surface side ridge surface S 2 is from 0 to 0.1 mm. It is provided in a range of 3 mm. However, the heat generating surface side ridge surface height H 2 relative to the side surface side ridge surface height H 1 can be set from the third range of 4 minutes from one half.
Further, the plate thicknesses t 140 and t 141 of the insulating bases 140 and 141 are formed in the range of 150 μm to 170 μm, and the gas sensor element 10 as a whole is formed to have a plate thickness of 1.4 mm and a width of about 3.4 mm. It is formed in a length corresponding to the measured gas flow path.

また、センサ面SSNの表面温度は、ヒータ部11の発熱面SHTRに比べて温度が低く、さらに、センサ部11を構成する固体電解質層100と拡散抵抗層160とは、多孔質であるため熱ストレスに対する耐久性が高いので元来被水割れを生じ難いが、側面SSDとセンサ面SSNとの間にも同様の多重稜面を形成することによってセンサ部11の耐久性をさらに向上することもできる。 The surface temperature of the sensor surface S SN is lower temperature than the heat generating surface S HTR of the heater unit 11, furthermore, the solid electrolyte layer 100 and the diffusion resistance layer 160 constituting the sensor unit 11, is porous hardly originally produce the water cracking because of their high resistance to thermal stress for, but further the durability of the sensor portion 11 by forming a similar multi-edge surface also between the side surface S SD and the sensor surface S SN It can also be improved.

図2、図3を参照して本発明の第1の実施形態におけるガスセンサ素子10の製造方法について説明する。図2は、最も基本的な構成のガスセンサ素子積層体10STKの展開斜視図であり、図3は、ガスセンサ素子10の製造方法概要を、(a)から(d)の順を追って示す斜視図である。 A method for manufacturing the gas sensor element 10 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is an exploded perspective view of the gas sensor element stack 10 STK having the most basic configuration, and FIG. 3 is a perspective view showing an outline of a manufacturing method of the gas sensor element 10 in order from (a) to (d). It is.

固体電解質層100は、ジルコニア等の酸素イオン導電性セラミック材料をポリビニルブチラール(PVB)等の結合材、ジブチルフタレート(DBP)等の可塑剤、分散剤とともにトルエン、エタノール等の分散媒に分散させたスラリーを配合し、これを用いてドクターブレード法等により所定の板厚の平板状に形成して得られる。   In the solid electrolyte layer 100, an oxygen ion conductive ceramic material such as zirconia is dispersed in a dispersion medium such as toluene and ethanol together with a binder such as polyvinyl butyral (PVB), a plasticizer such as dibutyl phthalate (DBP), and a dispersant. It is obtained by blending the slurry and using it to form a flat plate having a predetermined thickness by the doctor blade method or the like.

固体電解質層100の被測定ガス側の表面には、測定電極層110、測定電極リード部111を印刷形成し、他方の表面には、基準電極層120、基準電極リード部121を印刷形成する。これらの印刷形成には、白金ペーストと上述の固体電解質層形成用のスラリーとを混合したペースト等が用いられる。   The measurement electrode layer 110 and the measurement electrode lead part 111 are printed on the surface of the solid electrolyte layer 100 on the gas to be measured, and the reference electrode layer 120 and the reference electrode lead part 121 are printed on the other surface. For these print formations, a paste or the like in which a platinum paste and the above-described slurry for forming a solid electrolyte layer are mixed is used.

基準ガス室130は、例えばアルミナ等の絶縁性セラミック材料をPBV、DBP、分散剤等とともに分散媒に分散させたスラリーを用いてドクターブレード法によりシート状に形成し、これを金型等で略U字形に打ち抜いた基準ガス室形成層131を複数枚積層して形成する。   The reference gas chamber 130 is formed into a sheet shape by a doctor blade method using a slurry in which an insulating ceramic material such as alumina is dispersed in a dispersion medium together with PBV, DBP, a dispersant, etc. A plurality of reference gas chamber forming layers 131 punched into a U shape are stacked and formed.

上述の絶縁性セラミックシートを用いて平板状の絶縁性基体141とし、この一方の表面に白金ペーストとアルミナスラリーとを混合したペーストを用いて発熱体150と一対の発熱体リード部151、152とを印刷形成し、他方の表面に一対の発熱体端子部155、156を印刷形成し、絶縁性基体141に穿設した一対のスルーホール内に発熱体リード部151、152と発熱体端子部155、156とを導通するスルーホール電極153、154を吸引印刷等により形成する。
絶縁性基体141の発熱体150の印刷された側に積層して絶縁性基体141と同様の絶縁性基体140を配設し、発熱体150を内蔵するヒータ部14を形成する。
Using the above-mentioned insulating ceramic sheet, a flat insulating substrate 141 is formed, and a heating element 150 and a pair of heating element leads 151 and 152 are formed using a paste obtained by mixing platinum paste and alumina slurry on one surface thereof. And a pair of heating element terminal portions 155 and 156 are printed on the other surface, and the heating element lead portions 151 and 152 and the heating element terminal portion 155 are placed in a pair of through holes formed in the insulating base 141. Through-hole electrodes 153 and 154 that are electrically connected to 156 are formed by suction printing or the like.
An insulating base 140 similar to the insulating base 141 is disposed on the printed side of the heat generating body 150 of the insulating base 141 to form the heater unit 14 containing the heat generating body 150.

固体電解質層100の測定電極層110が形成された側に積層して、上述したアルミナシートよりも粒径の粗いアルミナ等の耐熱性セラミック材料を結合材とともに分散媒に分散させたスラリーを用いて拡散抵抗層160を形成する。なお、拡散抵抗層160は、本図に示すように平板状に形成したものを積層しても良いし、測定電極層110を覆うように印刷形成しても良い。
また、測定電極リード部111が形成された側に積層して測定電極リード部111を保護すべく上記絶縁性基体141と同様の絶縁性セラミックシートにより絶縁層161を形成する。なお、絶縁層161は、測定電極リード部111を保護するとともに、拡散抵抗層160内を通過する被測定ガスが基準ガスを導入する基準ガス室130の開口端側への拡散を防止する。
測定電極端子部112と基準電極端子部122とを保護層161の表面に印刷形成し、保護層161に穿設したスルーホール内に、測定電極リード部11と測定電極端子部112とを導通するホール電極113並びに基準電極リード部121と基準電極端子部122とを導通するスルーホール電極123を吸引印刷等により形成する。
Using a slurry obtained by laminating the solid electrolyte layer 100 on the side where the measurement electrode layer 110 is formed and dispersing a heat-resistant ceramic material such as alumina having a particle diameter coarser than the above-described alumina sheet together with a binder in a dispersion medium. A diffusion resistance layer 160 is formed. Note that the diffusion resistance layer 160 may be formed by laminating a flat plate as shown in the figure, or may be printed to cover the measurement electrode layer 110.
In addition, an insulating layer 161 is formed of an insulating ceramic sheet similar to the insulating base 141 to be stacked on the side where the measurement electrode lead portion 111 is formed to protect the measurement electrode lead portion 111. The insulating layer 161 protects the measurement electrode lead part 111 and prevents the gas to be measured passing through the diffusion resistance layer 160 from diffusing to the opening end side of the reference gas chamber 130 into which the reference gas is introduced.
The measurement electrode terminal portion 112 and the reference electrode terminal portion 122 are printed on the surface of the protective layer 161, and the measurement electrode lead portion 11 and the measurement electrode terminal portion 112 are electrically connected to each other in the through hole formed in the protective layer 161. A through-hole electrode 123 that conducts the hole electrode 113 and the reference electrode lead 121 and the reference electrode terminal 122 is formed by suction printing or the like.

以上のようにしてセンサ部11とヒータ部14とを積層することにより図3(a)に示すような有底筒状のガスセンサ素子積層体10STKを形成することができる。なお、各層の積層に際して、積層される層と層とのそれぞれの材料を適宜混合した接着層ペーストを用いた接着積層によって一体の積層体としても良いし、加熱圧着によって一体の積層体としても良い。 By laminating the sensor part 11 and the heater part 14 as described above, a bottomed cylindrical gas sensor element laminate 10 STK as shown in FIG. 3A can be formed. In addition, when laminating each layer, an integral laminate may be formed by adhesive lamination using an adhesive layer paste in which materials of the layers to be laminated are appropriately mixed, or may be integrated by thermocompression bonding. .

得られたガスセンサ素子積層体10STKの発熱面SHTRと両側の側面SSDとセンサ面SSNとの4面の内2面によって形成される4角の稜線の長手方向に沿って本発明の要部である多重稜面部S、Sを形成して、ガスセンサ稜面形成体10SPDを得る。
少なくとも、発熱面SHTRの両側に長低方向に伸びるように、側面SSDと側面側稜面Sとの交わる側面側稜線Lと、発熱面SHTRと発熱面側稜面Sとの交わる発熱面側稜線Lが形成される。
The resulting gas sensor element laminate 10 STK heat generating surface S HTR both sides of the side surface of the S SD and four sides of the longitudinal direction of the ridge of the four corners formed by the two faces present invention the sensor surface S SN The multiple ridge surface portions S 1 and S 2 that are essential portions are formed to obtain the gas sensor ridge surface forming body 10 SPD .
At least, so as to extend in the long lower direction on both sides of the heat generating surface S HTR, a side surface side ridgeline L 1 intersects the side surface S SD and the side side edge surface S 1, the heat generating surface S HTR a heat generating surface side ridge surface S 2 heat generating surface side ridge line L 2 intersecting the is formed.

具体的な多重稜面部S、Sの形成方法としては、ガスセンサ素子積層体10STKの焼成前に稜面を形成する方法と焼成後に稜面を形成する方法のいずれを用いても良い。焼成前に多重稜面部S、Sを形成する場合には、加工精度が劣る虞もあるが、加工に要する時間は短く、極めて容易である。一方、焼成後に多重稜面部S、Sを加工する場合には、焼成体の強度が高いので加工に時間を要するが、寸法精度に優れている。 As a specific method of forming the multiple ridge surface portions S 1 and S 2 , either a method of forming a ridge surface before firing the gas sensor element laminate 10 STK or a method of forming a ridge surface after firing may be used. When the multiple ridge surface portions S 1 and S 2 are formed before firing, the processing accuracy may be inferior, but the time required for processing is short and extremely easy. On the other hand, when the multiple ridge surface portions S 1 and S 2 are processed after firing, since the strength of the fired body is high, processing takes time, but the dimensional accuracy is excellent.

例えば、複数のガスセンサ素子を同時に形成すべく、複数個取りで形成したガスセンサ積層体10STKを積層する際にV字状の溝部を設けて、これを個辺に分割することによってガスセンサ積層体10STKの4角にC面状の第1の稜面Sを形成することができる。これをさらに研磨することによって第2の稜面部Sを形成することができる。
また、焼成前の加工の場合、シート成形材料の熱可塑性を利用して、加熱圧縮することによって多重稜面部S、Sを形成することも可能である。
このようにして得られたガスセンサ素子稜面形成体10SPDを焼成した後、図3(c)に示すように、その表面に湿式的手法を用いて多孔質保護層170を形成する。より具体的な湿式的手法としては、例えば、アルミナ等の保護層形成材料と分散剤と無機バインダ等とを水又は有機溶剤等の分散媒に分散させてスラリー状に調整し、これにガスセンサ素子稜面形成体10SPDを浸漬し、ガスセンサ素子稜面形成体10SPDの所定の範囲を多孔質保護層形成材料でコーティングし、これを乾燥、焼結することによってガスセンサ素子10を得ることができる。
For example, in order to form a plurality of gas sensor elements at the same time, when the gas sensor laminate 10 STK formed by taking a plurality of pieces is laminated, a V-shaped groove is provided, and the gas sensor laminate 10 is divided into individual sides. A C-shaped first ridge surface S 1 can be formed at four corners of the STK . This may be further formed a second edge face S 2 by polishing.
In the case of processing before firing, it is also possible to form the multiple ridge surface portions S 1 and S 2 by heat compression using the thermoplasticity of the sheet molding material.
After the gas sensor element ridge surface forming body 10 SPD thus obtained is fired, as shown in FIG. 3C, a porous protective layer 170 is formed on the surface using a wet technique. As a more specific wet method, for example, a protective layer forming material such as alumina, a dispersing agent, an inorganic binder, and the like are dispersed in a dispersion medium such as water or an organic solvent, and adjusted to a slurry, and a gas sensor element The ridge surface forming body 10 SPD is immersed, a predetermined range of the ridge surface forming body 10 SPD of the gas sensor element is coated with a porous protective layer forming material, and dried and sintered, whereby the gas sensor element 10 can be obtained. .

このとき、多重稜面部S、Sによって稜面の角度変化が緩やかになっている。このため、多孔質保護層170が稜線L、L、Lによって分断されることなく、比較的均一な膜厚を維持して形成することができる。
なお、本発明は、多孔質保護層170をディッピングによって形成した場合に特に優れた効果を発揮するものであるが、本発明において、多孔質保護層170の形成方法は、ディッピングに限るものではない。
例えば、多孔質保護層材料をペースト状に調整し、刷毛塗りや印刷によって多孔質保護層170を形成しても良いし、多孔質保護層材料をスラリー状に調整しスプレー噴霧することによって多孔質保護層170を形成しても良い。或いは、スラリー状に調整した多孔質保護層材料をドクターブレード法等によってシート状に形成し、ガスセンサ素子稜面形成体10SPDの被測定ガスに晒される部位を覆うように貼り付けて多孔質保護層170を形成しても良い。
いずれの製法によって多孔質保護層170を形成した場合であっても、多重稜面部S、Sによって稜面の角度が緩やかに変化しているので、本発明の効果である乾燥、焼成時の収縮ストレスの緩和効果が発揮され、多孔質保護層170が稜線L、Lにおいて分断され虞がない。
なお、多重稜面部S、Sは、2以上からなる複数の平面状に形成された稜面で構成しても良いし、連続的に湾曲する曲面で構成しても良い。
At this time, the angle change of the ridge surface is moderated by the multiple ridge surface portions S 1 and S 2 . For this reason, the porous protective layer 170 can be formed while maintaining a relatively uniform film thickness without being divided by the ridgelines L 1 , L 2 , and L 3 .
The present invention exhibits a particularly excellent effect when the porous protective layer 170 is formed by dipping. However, in the present invention, the method for forming the porous protective layer 170 is not limited to dipping. .
For example, the porous protective layer material may be adjusted to a paste form, and the porous protective layer 170 may be formed by brushing or printing, or the porous protective layer material may be formed into a slurry form and sprayed to form a porous layer. A protective layer 170 may be formed. Alternatively, a porous protective layer material adjusted to a slurry shape is formed into a sheet shape by a doctor blade method or the like, and is attached so as to cover the portion exposed to the gas to be measured of the gas sensor element ridge surface forming body 10 SPD. Layer 170 may be formed.
Even when the porous protective layer 170 is formed by any method, the angle of the ridge surface is gradually changed by the multiple ridge surface portions S 1 and S 2 . Thus, there is no possibility that the porous protective layer 170 is divided at the ridgelines L 1 and L 2 .
The multiple ridge surface portions S 1 and S 2 may be formed by a plurality of flat ridge surfaces formed of two or more, or may be formed by a curved surface that is continuously curved.

図4、図5を参照して本発明の効果について説明する。
図4は、発熱面側稜線L上の多孔質保護層170の膜厚tを所定の厚み(例えば200μm)に形成し、側面側稜線L上の多孔質保護層170の膜厚tを変化させて(例えば110〜250μm)形成した場合の保護層剥離の発生頻度を調査した試験結果を示す特性図である。
図4に示すように、側面側稜線上膜厚tに対して発熱面側稜線上膜厚tが相対的に薄くなるように形成した場合、即ち、t/tが1より小さい場合には、発熱面側稜面S上で多孔質保護層170の剥離が発生し、側面側稜線上膜厚tに対して発熱面側稜線上膜厚tが1.6倍よりも厚くなるように形成した場合には、即ち、t/tが1.6より大きい場合には、側面側稜面S上で多孔質保護層170の剥離が発生している。したがって、発熱面側稜線上膜厚tを側面側稜線上膜厚tの1.0倍から1.6倍の範囲に設定することが望ましいことが判明した。
The effects of the present invention will be described with reference to FIGS.
4, the thickness t 2 of the porous protective layer 170 on the heat generating surface side ridge line L 2 is formed to a predetermined thickness (e.g. 200 [mu] m), the thickness of the porous protective layer 170 on the side face side ridgeline L 1 t It is a characteristic view which shows the test result which investigated the generation | occurrence | production frequency of protective layer peeling at the time of forming 1 changing (for example, 110-250 micrometers).
As shown in FIG. 4, when the heat generating surface side ridge line thickness t 2 is formed relatively thin with respect to the side surface ridge line thickness t 1 , that is, t 2 / t 1 is smaller than 1. If the separation of the porous protective layer 170 on the heat generating surface side ridge surface S 2 is generated, the heat generating surface side edge line thickness t 2 to the side surface side edge line thickness t 1 is from 1.6 times In other words, when t 2 / t 1 is larger than 1.6, the porous protective layer 170 is peeled on the side surface ridge surface S 1 . Therefore, it is desirable to set the heating side edge line thickness t 2 in the range of 1.0 times the lateral side edge line thickness t 1 1.6-fold was found.

図5(a)に示すように、側面側稜面Sを所定の値(例えば、θ=45度、H=0.4mm)に形成し、発熱面側稜面Sは、θを22.5度とし、Hを0.05mm、0.1mm、0.15mm、0.2mm、0.3mmとなるように、S(1)、S(2)、S(3)、S(4)、S(5)を変化させ、これに同一条件で多孔質保護層170を設けた試料1、試料2、試料3、試料4、試料5について被水割れ試験を行い、その結果を本図(b)に示す。なお、本図(a)において、各試料の特徴を明確にすべく、多孔質保護層170は省略して記載してある。
また、被水割れ試験の方法は、ヒータ部11に通電をし、発熱面SHTR上の温度を700℃に加熱したガスセンサ素子10の発熱面側稜面Sに0.5μlの水滴を滴下し、被水割れの発生有無を調査することによって行った。
本図(b)に示すように、多重稜面部S、Sを設けることによって被水割れが減少し、発熱面側稜面Sの稜面高Hを側面側稜面Sの稜面高Hの2分の1以上、4分の3以下の範囲とすることによってさらに被水割れを抑制できることが判明した。
As shown in FIG. 5A, the side surface side ridge surface S 1 is formed to a predetermined value (for example, θ 1 = 45 degrees, H 1 = 0.4 mm), and the heat generation surface side ridge surface S 2 is θ 2 is set to 22.5 degrees, and S 2 (1), S 2 (2), and S 2 (so that H 2 is 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, and 0.3 mm. 3), S 2 (4), S 2 (5) were changed, and water cracking test was performed on Sample 1, Sample 2, Sample 3, Sample 4, and Sample 5 provided with the porous protective layer 170 under the same conditions. The results are shown in FIG. In this figure (a), in order to clarify the characteristics of each sample, the porous protective layer 170 is omitted.
Further, the method of the water cracking test, the heater unit 11 and the energization, dropwise 0.5μl of water droplets on the heat generating surface side ridge surface S 2 of the gas sensor element 10 heated to a temperature on the heat generating surface S HTR to 700 ° C. And it was done by investigating the occurrence of water cracking.
As shown in this figure (b), by providing multiple ridge surface portions S 1 and S 2 , water cracking is reduced, and the ridge surface height H 2 of the heat generating surface side ridge surface S 2 is set to the side surface ridge surface S 1 . It has been found that water cracking can be further suppressed by setting the ridge surface height H 1 to be in the range of 1/2 or more and 3/4 or less.

図6に本発明のガスセンサ素子10を備えたガスセンサ1の全体構成を示す。
ガスセンサ1は、ガスセンサ素子10と、絶縁性保持部材20を介してその内側にガスセンサ素子10を保持するハウジング30とガスセンサ素子10の被測定ガスに晒される部分を覆うカバー体50、51とガスセンサ素子10のヒータ部14への給電を行う一対の通電線157a、157bとガスセンサ素子10からの出力信号を取り出す一対の信号線115、125を保持するケーシング40とによって構成されている。
ハウジング30は、ステンレス等の金属製で、略筒型に形成されており、基端側のボス部32にはケーシング40が嵌着され、先端側の加締め部34には二重筒状のカバー体50、51が固定されている。
ハウジング30の中腹外周部にはネジ部33が形成され、図略の内燃機関の年商排気流路600の流路壁60にガスケット37を介して螺結されることにより、ガスセンサ検出素子10の先端側が被測定ガス流路600内に配設されカバー体50、51で覆われた状態で固定されている。
ハウジング30には、ネジ部33を締め付けるための六角部35が形成されている。
FIG. 6 shows the overall configuration of the gas sensor 1 including the gas sensor element 10 of the present invention.
The gas sensor 1 includes a gas sensor element 10, a housing 30 that holds the gas sensor element 10 inside the insulating holding member 20, cover bodies 50 and 51 that cover a portion of the gas sensor element 10 that is exposed to the gas to be measured, and the gas sensor element. And a casing 40 holding a pair of signal lines 115 and 125 for taking out an output signal from the gas sensor element 10.
The housing 30 is made of a metal such as stainless steel and is formed in a substantially cylindrical shape. A casing 40 is fitted on the boss portion 32 on the proximal end side, and a double tubular shape is formed on the caulking portion 34 on the distal end side. Cover bodies 50 and 51 are fixed.
A screw portion 33 is formed on the middle outer peripheral portion of the housing 30 and is screwed to a flow path wall 60 of an annual combustion exhaust flow path 600 of an internal combustion engine (not shown) via a gasket 37, so that the gas sensor detection element 10. The distal end side is disposed in the gas flow channel 600 to be measured and is fixed in a state covered with the cover bodies 50 and 51.
The housing 30 is formed with a hexagonal portion 35 for tightening the screw portion 33.

カバー体50、51は、ステンレス等の耐熱性金属製で、略有底円筒状のインナカバー50とアウタカバー51とからなる二重筒構造をしている。
インナカバー50とアウタカバー51とにはそれぞれ被測定ガスを内部に導入しつつガスセンサ素子10の被水防止を図る開口501、503、511、512が形成され、基端側に設けられたフランジ部503、513によってハウジング30の加締め部34に加締め固定されている。
The cover bodies 50 and 51 are made of a heat-resistant metal such as stainless steel and have a double cylinder structure including a substantially bottomed cylindrical inner cover 50 and an outer cover 51.
The inner cover 50 and the outer cover 51 are respectively formed with openings 501, 503, 511, 512 for introducing the gas to be measured into the gas sensor element 10 to prevent the gas sensor element 10 from being exposed to water, and a flange portion 503 provided on the base end side. 513 is fixed to the caulking portion 34 of the housing 30 by caulking.

ガスセンサ素子10は、インシュレータ20によってハウジング30との絶縁性を確保しつつハウジング30の内部に固定されている。ガスセンサ素子10の被測定ガスに晒される先端部は、多孔質保護層170で覆われている。   The gas sensor element 10 is fixed inside the housing 30 by the insulator 20 while ensuring insulation from the housing 30. The tip of the gas sensor element 10 exposed to the gas to be measured is covered with a porous protective layer 170.

一対の信号線115、125と一対の通電線158a、158bとは、基端部絶縁封止材420によってケーシング基端部411内に保持され、接続金具114、124、157a、157bを介してセンサ素子10の測定電極端子112、基準電極端子122、発熱体通電端子155、156にそれぞれ接続されている。   The pair of signal lines 115 and 125 and the pair of energization lines 158a and 158b are held in the casing base end part 411 by the base end insulating sealing material 420, and are connected to the sensor via the connection fittings 114, 124, 157a and 157b. The element 10 is connected to the measurement electrode terminal 112, the reference electrode terminal 122, and the heating element energization terminals 155 and 156, respectively.

基端部絶縁封止材420には、基準ガス導入り口412が形成され、基準ガス導入口412から撥水フィルタ421を介して導入された大気が、ガスセンサ素子10の基準ガス室130内に導入されている。   A reference gas inlet 412 is formed in the base end insulating sealing material 420, and the atmosphere introduced from the reference gas inlet 412 through the water repellent filter 421 is introduced into the reference gas chamber 130 of the gas sensor element 10. Has been.

図略の通電制御装置によって発熱体150に通電され、発熱体150によって、固体電解質層100が活性化されると、拡散抵抗層160を介して測定電極層110に接する被測定ガス中の酸素濃度と基準電極層120に接する基準ガス室130内に導入された大気中の酸素濃度との差によって両電極間に電位差が生じ、これを測定することによって、被測定ガス中の酸素濃度を検出できる。   When the heating element 150 is energized by an energization control device (not shown) and the solid electrolyte layer 100 is activated by the heating element 150, the oxygen concentration in the measurement gas that is in contact with the measurement electrode layer 110 via the diffusion resistance layer 160. And the difference in oxygen concentration in the atmosphere introduced into the reference gas chamber 130 in contact with the reference electrode layer 120 causes a potential difference between the two electrodes. By measuring this, the oxygen concentration in the gas to be measured can be detected. .

本発明は、上記実施形態に限定するものではなく、図7(a)に示すように、ガスセンサ素子10aは、ヒータ部14aとセンサ部11aとによって構成され、ガスセンサ素子10aの少なくともヒータ部14a側の長手方向の端縁に少なくとも2以上の複数の稜面S、Sを形成することによって、多孔質保護層170の剥離を抑制するとともにガスセンサ素子10aの被水割れを防止しようとする本発明の趣旨を逸脱しない範囲において適宜変更可能であり、センサ部11aには如何なるセンサ機能を有するものであっても適用し得るものである。 The present invention is not limited to the above-described embodiment. As shown in FIG. 7A, the gas sensor element 10a includes a heater part 14a and a sensor part 11a, and at least the heater part 14a side of the gas sensor element 10a. The present invention is intended to suppress peeling of the porous protective layer 170 and prevent water sensor cracking of the gas sensor element 10a by forming at least two or more ridge surfaces S 1 and S 2 at the longitudinal edges of the gas sensor element 10a. The present invention can be changed as appropriate without departing from the spirit of the invention, and any sensor function can be applied to the sensor unit 11a.

例えば、本図(b)に示すように、酸素をポンピングして被測定ガス室133a内の酸素濃度を調整する酸素ポンプセル100a、110a、120a、180、181と、被測定ガス室133a内の酸素濃度を検出する酸素モニタセル100b、110b、110dと、被測定ガス中の特定ガス成分濃度を検出するセンサセル100b、110c、110dと、被測定ガスの空燃比を検出する空燃比検出セル120a、110dとを設けて、空燃比検出セル120a、110dにおける被測定ガス側電極120aと酸素ポンプセル100a、110a、120a、180、181におけるポンプ電極120aとを共通化させ、酸素モニタセル100b、110b、110dにおける基準ガス側電極110dと、センサセル100b、110c、110dにおける基準ガス側電極110dと、空燃比検出セル120a、110dにおける基準ガス側電極110dとの3つの電極を共通化した複合ガスセンサ素子10a等にも適用し得るものである。   For example, as shown in FIG. 5B, oxygen pump cells 100a, 110a, 120a, 180, and 181 that adjust oxygen concentration in the gas chamber 133a to be pumped by oxygen, and oxygen in the gas chamber 133a to be measured. Oxygen monitor cells 100b, 110b, 110d for detecting concentrations, sensor cells 100b, 110c, 110d for detecting specific gas component concentrations in the gas to be measured, air-fuel ratio detection cells 120a, 110d for detecting the air-fuel ratio of the gas to be measured, The measurement gas side electrode 120a in the air-fuel ratio detection cells 120a, 110d and the pump electrode 120a in the oxygen pump cells 100a, 110a, 120a, 180, 181 are made common, and the reference gas in the oxygen monitor cells 100b, 110b, 110d The side electrode 110d and the sensor cells 100b and 110 , A reference gas side electrode 110d in 110d, it is capable of applying to an air-fuel ratio detection cell 120a, the composite gas sensor element 10a or the like in common the three electrodes of the reference gas side electrode 110d in 110d.

また、上記実施形態においては、酸素センサ、NOxセンサ、空燃比センサ等に用いられるセンサ部11を構成する固体電解質として、酸素イオン電導性の固体電解質を用いた場合について説明したが、本発明はこのような酸素由来ガス成分の検出を行うガスセンサに限らず、プロトン電導性の固体電解質を用いて、アンモニアや炭化水素等の水素成分含有ガスを検出するガスセンサ等任意のガスセンサに適用可能である。   In the above embodiment, the case where an oxygen ion conductive solid electrolyte is used as the solid electrolyte constituting the sensor unit 11 used in an oxygen sensor, a NOx sensor, an air-fuel ratio sensor, and the like has been described. The present invention is not limited to such a gas sensor that detects an oxygen-derived gas component, but can be applied to any gas sensor such as a gas sensor that detects a hydrogen component-containing gas such as ammonia or hydrocarbon using a proton conductive solid electrolyte.

は、本発明の第1の実施形態におけるガスセンサ素子の概要を示し、(a)は、断面図、(b)は、本発明の特徴的な部分を示す要部拡大図。These show the outline | summary of the gas sensor element in the 1st Embodiment of this invention, (a) is sectional drawing, (b) is a principal part enlarged view which shows the characteristic part of this invention. 本発明の第1の実施形態におけるガスセンサ素子を構成する積層体の展開斜視図。The expansion | deployment perspective view of the laminated body which comprises the gas sensor element in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるガスセンサ素子の製造工程の概要を(a)から(d)の順を追って示す斜視図。The perspective view which shows the outline | summary of the manufacturing process of the gas sensor element in the 1st Embodiment of this invention later on in order of (a) to (d). 本発明の剥離に対する効果について行った試験の結果を示す特性図。The characteristic view which shows the result of the test done about the effect with respect to peeling of this invention. 本発明の被水割れに対する効果を示し、(a)は各試料の概要を示す要部断面図、(b)は、各試料の試験結果を示す特性図。The effect with respect to the moisture crack of this invention is shown, (a) is principal part sectional drawing which shows the outline | summary of each sample, (b) is a characteristic view which shows the test result of each sample. 本発明の第1の実施形態におけるガスセンサ素子を用いたガスセンサの全体構成を示す断面図。Sectional drawing which shows the whole structure of the gas sensor using the gas sensor element in the 1st Embodiment of this invention. (a)は、本発明の他の実施形態におけるガスセンサ素子の特徴を示す断面図、(b)は、その具体例として示す斜視図。(A) is sectional drawing which shows the characteristic of the gas sensor element in other embodiment of this invention, (b) is a perspective view shown as the example. 従来のガスセンサ素子の問題点を示し、(a)は、ガスセンサ素子の長手方向端縁に面取りが施されていない場合の断面図、(b)は、ガスセンサ素子の長手方向端縁に面取りが施されている場合の断面図。The problems of the conventional gas sensor element are shown. (A) is a sectional view when the longitudinal edge of the gas sensor element is not chamfered, and (b) is the chamfered edge of the gas sensor element. Sectional drawing when being done.

符号の説明Explanation of symbols

10 ガスセンサ素子
11 センサ部
100 固体電解質層
110 測定電極
120 基準電極
130 基準ガス室
14 ヒータ部
140、141 絶縁性基体
150 発熱体
160 拡散抵抗層
170 多孔質保護層
第1の稜線(側面側稜線)
第2の稜線(発熱面側稜線)
SD 側面
第1の稜面(側面側稜面)
第2の稜面(発熱面側稜面)
HTR 発熱面
第1の稜面高(側面側稜面高)
第2の稜面高(発熱面側稜面高)
第1の稜線上膜厚(側面側稜線上膜厚)
第2の稜線上膜厚(発熱面側稜線上膜厚)
θ 第1の稜面角度(側面側稜面角度)
θ 第2の稜面角度(発熱面側稜面角度)
DESCRIPTION OF SYMBOLS 10 Gas sensor element 11 Sensor part 100 Solid electrolyte layer 110 Measurement electrode 120 Reference electrode 130 Reference gas chamber 14 Heater part 140, 141 Insulating base | substrate 150 Heating body 160 Diffusion resistance layer 170 Porous protective layer L 1 1st ridgeline (side surface side) Edge)
L 2 2nd ridge line (heat generation surface side ridge line)
S SD side surface S 1 first ridge surface (side surface ridge surface)
S2 2nd ridge surface (heating surface side ridge surface)
S HTR heating surface H 1 1st ridge surface height (side surface ridge surface height)
H 2 2nd ridge surface height (heating surface side ridge surface height)
t 1 First film thickness on the ridge line (film thickness on the side ridge line)
t 2 Second ridge line thickness (heat generation surface side ridge line thickness)
θ 1 First ridge surface angle (side surface ridge surface angle)
θ 2 Second ridge surface angle (heating surface side ridge surface angle)

Claims (2)

被測定ガス流路に載置され、被測定ガス中の特定成分の濃度を検出する略平板状に形成されたセンサ部と、該センサ部に積層して上記センサ部を加熱、活性化する略平板状に形成されたヒータ部とを具備し、
少なくとも上記ヒータ部の長手方向の端縁に沿って、少なくとも2以上の稜面からなる多重稜面部を設けるとともに、該多重稜面部を含む上記ガスセンサ素子の外周面の所定の範囲を湿式的手法で形成した多孔質保護層によって包囲せしめたガスセンサ素子において、
上記多重稜面部は、少なくとも上記ヒータ部側面に連なる側面側稜面と上記ヒータ部の発熱面に連なる発熱面側稜面とを含み、上記多孔質保護層は、上記側面側稜面と上記ヒータ部の側面とが交わる側面側稜線上に形成した上記多孔質保護層の膜厚を側面側膜厚t とし、上記発熱面側稜面と上記ヒータ部発熱面とが交わる発熱面側稜線上に形成した上記多孔質保護層の膜厚を発熱面側膜厚t としたとき、下記式1の関係を満たす範囲に設定したことを特徴とするガスセンサ素子。
1.0・t ≦t ≦1.6・t ・・・式1
A sensor unit that is placed in the measurement gas flow path and detects the concentration of a specific component in the measurement gas, and a sensor unit that is formed in a substantially flat plate shape, and that is stacked on the sensor unit to heat and activate the sensor unit. A heater portion formed in a flat plate shape ,
At least along the edge in the longitudinal direction of the heater portion, a multiple ridge surface portion including at least two ridge surfaces is provided, and a predetermined range of the outer peripheral surface of the gas sensor element including the multiple ridge surface portion is formed by a wet method. In the gas sensor element surrounded by the formed porous protective layer ,
The multiple ridge surface portion includes at least a side surface ridge surface continuous with the heater portion side surface and a heat generation surface side ridge surface continuous with the heat generation surface of the heater portion, and the porous protective layer includes the side surface ridge surface and the heater. the thickness of the side surface and the above porous protective layer formed on the side face side on the edge line intersecting parts and side surface side thickness t 1, the heat generating surface side ridge surface and the heater unit heating surface and the heating surface on the edge line intersects when the film thickness of the formed the porous protective layer was changed to the heat generating surface side thickness t 2, the gas sensor element, characterized in that set in a range satisfying the relation of the following formula 1.
1.0 · t 1 ≦ t 2 ≦ 1.6 · t 1 Formula 1
被測定ガス流路に載置され、被測定ガス中の特定成分の濃度を検出する略平板状に形成されたセンサ部と、該センサ部に積層して上記センサ部を加熱、活性化する略平板状に形成されたヒータ部とを具備し、
少なくとも上記ヒータ部の長手方向の端縁に沿って、少なくとも2以上の稜面からなる多重稜面部を設けるとともに、該多重稜面部を含む上記ガスセンサ素子の外周面の所定の範囲を湿式的手法で形成した多孔質保護層によって包囲せしめたガスセンサ素子において、
上記多重稜面部は、少なくとも上記ヒータ部側面に連なる側面側稜面と上記ヒータ部の発熱面に連なる発熱面側稜面とを含み、
上記ヒータ部の発熱面から上記側面側稜面と上記ヒータ部の側面とが交わる側面側稜線までの高さを側面側稜面高H とし、上記ヒータ部の発熱面から上記発熱面側稜面と上記側面側稜面との交わる稜線までの高さを発熱面側稜面高H としたとき、下記式2の関係を満たす範囲に設定したことを特徴とするガスセンサ素子。
1/2・H ≦H ≦3/4・H ・・・式2
A sensor unit that is placed in the measurement gas flow path and detects the concentration of a specific component in the measurement gas, and a sensor unit that is formed in a substantially flat plate shape, and that is stacked on the sensor unit to heat and activate the sensor unit. A heater portion formed in a flat plate shape,
At least along the edge in the longitudinal direction of the heater portion, a multiple ridge surface portion including at least two ridge surfaces is provided, and a predetermined range of the outer peripheral surface of the gas sensor element including the multiple ridge surface portion is formed by a wet method. In the gas sensor element surrounded by the formed porous protective layer,
The multiple ridge surface portion includes at least a side surface ridge surface continuous with the heater portion side surface and a heat generation surface side ridge surface continuous with the heat generation surface of the heater portion,
The height from the heat generating surface of the heater portion to the side surface side ridge intersection between the side surface of the side surface side ridge surface and the heater portion and the side surface side ridge surface height H 1, the heat generating surface side ridge from the heating surface of the heater unit A gas sensor element, wherein a height to a ridge line where the surface and the side surface side ridge surface intersect is set to a range satisfying the relationship of the following formula 2 when the heat generation surface side ridge surface height H 2 is set .
1/2 · H 1 ≤ H 2 ≤ 3/4 · H 1 ... Formula 2
JP2008280808A 2008-10-31 2008-10-31 Gas sensor element Active JP5056723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280808A JP5056723B2 (en) 2008-10-31 2008-10-31 Gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280808A JP5056723B2 (en) 2008-10-31 2008-10-31 Gas sensor element

Publications (2)

Publication Number Publication Date
JP2010107409A JP2010107409A (en) 2010-05-13
JP5056723B2 true JP5056723B2 (en) 2012-10-24

Family

ID=42296985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280808A Active JP5056723B2 (en) 2008-10-31 2008-10-31 Gas sensor element

Country Status (1)

Country Link
JP (1) JP5056723B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028589A1 (en) * 2010-05-05 2011-11-10 Robert Bosch Gmbh Method for producing a ceramic sensor element
JP5218477B2 (en) * 2010-06-04 2013-06-26 株式会社デンソー Gas sensor element and manufacturing method thereof
JP5530950B2 (en) * 2011-02-15 2014-06-25 株式会社日本自動車部品総合研究所 Gas sensor element and gas sensor
JP5373837B2 (en) * 2011-03-08 2013-12-18 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP2013242231A (en) * 2012-05-21 2013-12-05 Toyota Motor Corp Method of depositing protection film of gas sensor element, and gas sensor element including protection film formed thereby
JP6580845B2 (en) 2015-03-17 2019-09-25 株式会社Soken Gas sensor element
JP6761371B2 (en) * 2017-03-30 2020-09-23 日本碍子株式会社 Gas sensor element
JP6761369B2 (en) * 2017-03-30 2020-09-23 日本碍子株式会社 Gas sensor element
JP7152964B2 (en) * 2019-02-14 2022-10-13 日本特殊陶業株式会社 Method for manufacturing gas sensor element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786507B2 (en) * 1990-03-22 1998-08-13 日本碍子株式会社 Oxygen sensor
JP4014623B2 (en) * 2002-02-28 2007-11-28 日本特殊陶業株式会社 Gas sensor
JP2005134345A (en) * 2003-10-31 2005-05-26 Kyocera Corp Gas sensor
JP4758117B2 (en) * 2005-03-08 2011-08-24 京セラ株式会社 Gas sensor element and manufacturing method thereof
JP4887981B2 (en) * 2006-01-23 2012-02-29 株式会社デンソー Method for manufacturing gas sensor element

Also Published As

Publication number Publication date
JP2010107409A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5056723B2 (en) Gas sensor element
CN110873748B (en) Sensor element
JP6533426B2 (en) Gas sensor element and gas sensor
JP4014513B2 (en) CERAMIC HEATER, LAMINATED GAS SENSOR ELEMENT AND ITS MANUFACTURING METHOD, AND GAS SENSOR HAVING LAMINATED GAS SENSOR ELEMENT
US20030159928A1 (en) Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multilayered structure including the prismatic ceramic heater, and method for manufacturing the prismatic ceramic heater and prismatic gas sensor element
JP4845111B2 (en) Gas sensor element and gas sensor
JP2010169655A (en) Gas sensor element and gas sensor equipped with it
JP2009080111A (en) Gas concentration detecting element and method of manufacturing the same
JP4172279B2 (en) Gas sensor
JP5218477B2 (en) Gas sensor element and manufacturing method thereof
CN110261462B (en) Gas sensor
JP2006171013A (en) Ceramic heater, layered type gas sensor element, and gas sensor provided with layered type gas sensor element
CN111751424B (en) Sensor element of a gas sensor
JP2007206082A (en) Ceramic heater, laminated type gas sensor element and manufacturing method therefor, and gas sensor having the laminated type gas sensor element
US10837938B2 (en) Gas sensor element and gas sensor unit
JP7339896B2 (en) gas sensor
US20220113276A1 (en) Gas sensor and method of manufacture thereof
US20210389269A1 (en) Sensor element of gas sensor
US11592419B2 (en) Sensor element for gas sensor
US20200309733A1 (en) Sensor element for gas sensor
JP4780686B2 (en) Method for manufacturing gas sensor element and method for manufacturing gas sensor
JP4618681B2 (en) Gas sensor element and gas sensor
JP6438851B2 (en) Gas sensor element and gas sensor
JP5035078B2 (en) Gas sensor element
US20210199617A1 (en) Sensor element for gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5056723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250