JP6172466B2 - Filter failure detection device and particulate matter detection device - Google Patents

Filter failure detection device and particulate matter detection device Download PDF

Info

Publication number
JP6172466B2
JP6172466B2 JP2014053769A JP2014053769A JP6172466B2 JP 6172466 B2 JP6172466 B2 JP 6172466B2 JP 2014053769 A JP2014053769 A JP 2014053769A JP 2014053769 A JP2014053769 A JP 2014053769A JP 6172466 B2 JP6172466 B2 JP 6172466B2
Authority
JP
Japan
Prior art keywords
component
filter
particulate matter
sensor
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053769A
Other languages
Japanese (ja)
Other versions
JP2015175321A (en
Inventor
学 吉留
学 吉留
祐人 勝野
祐人 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014053769A priority Critical patent/JP6172466B2/en
Priority to DE102015103176.0A priority patent/DE102015103176A1/en
Publication of JP2015175321A publication Critical patent/JP2015175321A/en
Application granted granted Critical
Publication of JP6172466B2 publication Critical patent/JP6172466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/22Monitoring or diagnosing the deterioration of exhaust systems of electric heaters for exhaust systems or their power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1631Heat amount provided to exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関から排出される排気ガス中の粒子状物質を捕集するフィルタの故障検出装置及び粒子状物質を検出する粒子状物質検出装置に関する。   The present invention relates to a failure detection device for a filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and a particulate matter detection device that detects particulate matter.

従来、内燃機関から排出される排気ガス中の粒子状物質(パティキュレートマター、PM)を捕集するフィルタの故障検出装置の提案がある(例えば特許文献1参照)。特許文献1の故障検出装置では、排気ガス中の粒子状物質の量に応じた出力を発生する電気抵抗式のセンサを利用して、フィルタの故障検出を行っている。電気抵抗式のセンサは、一対の電極を有した絶縁体の素子を備え、その一対の電極間に電圧を印加する形で使用される。粒子状物質は主に導電性を有するSoot成分(煤)から構成されているので、素子に一定量以上の粒子状物質が捕集されると一対の電極間が導通し、この導通時に粒子状物質の量に応じた検出値を出力するというものである。   Conventionally, there has been proposed a filter failure detection device that collects particulate matter (particulate matter, PM) in exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). In the failure detection device of Patent Literature 1, a failure of a filter is detected using an electric resistance sensor that generates an output corresponding to the amount of particulate matter in exhaust gas. The electric resistance type sensor includes an insulating element having a pair of electrodes, and is used in such a manner that a voltage is applied between the pair of electrodes. Since the particulate matter is mainly composed of a conductive soot component (soot), when a certain amount or more of particulate matter is collected in the element, the pair of electrodes become conductive. The detection value corresponding to the amount of the substance is output.

特許文献1の故障検出装置では、このセンサをフィルタより下流に配置し、センサ出力が立ち上がる時期(導通開始時期)に基づいてフィルタの故障の有無を判定している。具体的には、フィルタが故障判定の基準となる故障フィルタである場合におけるセンサ出力が立ち上がる時期(基準時期)を推定する。そして、センサ出力が実際に立ち上がる時期(実際時期)と基準時期とを比較して、実際時期が基準時期より先の場合にフィルタが故障であると判定している。   In the failure detection device of Patent Document 1, this sensor is arranged downstream of the filter, and the presence or absence of a filter failure is determined based on the timing when the sensor output rises (conduction start timing). Specifically, the time (reference time) when the sensor output rises when the filter is a failure filter serving as a criterion for failure determination is estimated. Then, the time when the sensor output actually rises (actual time) is compared with the reference time, and when the actual time is earlier than the reference time, it is determined that the filter is faulty.

特許第5115873号公報Japanese Patent No. 5115873

ところで、粒子状物質には、Soot成分の他に、未燃燃料、オイル等の有機溶剤可溶成分(SOF:Soluble Organic Fraction)やサルフェート(硫化物)等の導電性が低い成分(低導電性成分)も含まれている。しかしながら、電気抵抗式のセンサで検出できるのは主に導電性が高いSoot成分であり、低導電性成分は検出が困難である。よって、センサで検出した量は、粒子状物質量の全てではなく一部(主にSoot成分量)であるため、正確にDPFの故障を検出できない可能性がある。   By the way, in addition to the soot component, the particulate matter has a low conductivity component (low conductivity) such as an unburned fuel, an organic solvent soluble component (SOF) such as oil, or a sulfate (sulfide). Ingredients) are also included. However, what can be detected by an electric resistance type sensor is mainly a soot component having high conductivity, and a low conductivity component is difficult to detect. Therefore, since the amount detected by the sensor is a part (mainly the amount of soot components) of the particulate matter amount, it may not be possible to accurately detect a DPF failure.

また、低導電性成分がセンサに捕集されると、その低導電性成分によりSoot成分の導電を阻害することになるため、センサの検出感度が低下する可能性がある。センサの検出感度が低下すると、フィルタの故障を正確に検出できなくなる。さらに、低導電性成分のうちのSOF成分は粘着性が強いため、その粘着性によりセンサ素子上で粒子状物質を動きにくくしてしまい、SOF成分の割合によってセンサ検出感度がばらついたり、一対の電極間にうまく粒子状物質が捕集されない可能性がある。これによっても、センサの検出感度が低下し、フィルタの故障を正確に検出できなくなる。   In addition, when a low-conductivity component is collected by the sensor, the low-conductivity component inhibits the conduction of the Soot component, which may reduce the detection sensitivity of the sensor. When the detection sensitivity of the sensor is lowered, a filter failure cannot be detected accurately. Further, since the SOF component of the low-conductivity component is highly sticky, the stickiness makes it difficult for the particulate matter to move on the sensor element, and the sensor detection sensitivity varies depending on the ratio of the SOF component. Particulate matter may not be successfully collected between the electrodes. This also lowers the detection sensitivity of the sensor and makes it impossible to accurately detect a filter failure.

本発明は上記事情に鑑みてなされたものであり、フィルタの故障検出の際に低導電性成分の存在を考慮することで、正確にフィルタの故障を検出できるフィルタの故障検出装置を提供することを課題とする。また、低導電性成分の存在によるセンサの検出感度がばらついたり低下したりすることを防止できる粒子状物質検出装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a filter failure detection device capable of accurately detecting a filter failure by considering the presence of a low-conductivity component when detecting a filter failure. Is an issue. It is another object of the present invention to provide a particulate matter detection device that can prevent the detection sensitivity of a sensor from varying or decreasing due to the presence of a low-conductivity component.

上記課題を解決するために、本発明のフィルタの故障検出装置は、内燃機関の排気通路に設けられ、排気ガス中の粒子状物質を捕集するフィルタと、
前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極を有した絶縁体の素子を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサと、
粒子状物質のうちSoot成分が前記素子に捕集された状態での前記センサの出力であるSoot量出力に基づいて前記フィルタの故障の有無を判定する故障判定手段と、
前記故障判定手段が前記フィルタの故障の有無を判定する際に、前記Soot成分が前記素子に残留することを許容し、前記Soot成分よりも導電性が低い低導電性成分が前記素子に残留することを抑制するように制御する捕集制御手段と、
を備えることを特徴とする。
In order to solve the above problems, a filter failure detection device of the present invention is provided in an exhaust passage of an internal combustion engine, and a filter that collects particulate matter in exhaust gas,
An insulating element having a pair of electrodes, which is provided downstream of the filter in the exhaust passage and collects particulate matter in the exhaust gas, and is collected by the element during conduction between the pair of electrodes; A sensor that generates an output in accordance with the amount of particulate matter produced,
A failure determination means for determining the presence or absence of a failure of the filter based on a soot amount output that is an output of the sensor in a state where a soot component of the particulate matter is collected by the element;
When the failure determination means determines the presence or absence of a failure of the filter, the soot component is allowed to remain in the element, and a low conductivity component having lower conductivity than the soot component remains in the element. Collection control means for controlling to suppress this,
It is characterized by providing.

本発明によれば、捕集制御手段により、フィルタの故障の有無を判定する際に、Soot成分はセンサ素子への残留が許容される一方で、低導電性成分の残留は抑制されるので、センサの検出感度のばらつきや低下を防止できる。よって、低導電性成分の残留を許容した状態でフィルタの故障の有無を判定する場合に比べて、正確にフィルタの故障を検出できる。   According to the present invention, the soot component is allowed to remain in the sensor element when the collection control means determines the presence or absence of a filter failure, while the residual low conductivity component is suppressed. It is possible to prevent variation and decrease in detection sensitivity of the sensor. Therefore, it is possible to detect the filter failure more accurately than in the case where the presence or absence of the filter failure is determined in a state where the low conductivity component is allowed to remain.

また、本発明のフィルタの故障検出装置は、内燃機関の排気通路に設けられ、排気ガス中の粒子状物質を捕集するフィルタと、
前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極を有した絶縁体の素子を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサと、
前記内燃機関の運転状態に基づいて、前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力を推定する出力推定手段と、
前記出力推定手段が推定した出力を閾値としてその閾値と前記センサの実際の出力との比較に基づいて前記フィルタの故障の有無を判定する比較判定手段とを備え、
前記出力推定手段は、前記フィルタが故障判定の基準となるフィルタである場合における前記素子に捕集される粒子状物質のうちのSoot成分の量である捕集Soot量を前記内燃機関の運転状態に基づいて推定するSoot量推定手段を備え、前記捕集Soot量に基づいて前記閾値を推定することを特徴とする。
Further, the filter failure detection device of the present invention is provided in the exhaust passage of the internal combustion engine, a filter for collecting particulate matter in the exhaust gas,
An insulating element having a pair of electrodes, which is provided downstream of the filter in the exhaust passage and collects particulate matter in the exhaust gas, and is collected by the element during conduction between the pair of electrodes; A sensor that generates an output in accordance with the amount of particulate matter produced,
Output estimating means for estimating the output of the sensor when the filter is a filter that is a criterion for failure determination based on the operating state of the internal combustion engine;
Comparing and determining means for determining the presence or absence of a failure of the filter based on a comparison between the threshold and the actual output of the sensor with the output estimated by the output estimating means as a threshold;
The output estimation means calculates the collected soot amount, which is the amount of the soot component of the particulate matter collected by the element, when the filter is a filter that serves as a criterion for failure determination, as an operating state of the internal combustion engine. And a soot amount estimating means for estimating the threshold based on the collected soot amount.

本発明によれば、フィルタの故障判定の閾値を捕集Soot量に基づいて推定するので、低導電性成分の影響を排除したSoot成分の量に応じた閾値を得ることができる。また、実際のセンサ出力は、導電性が高いSoot成分の量に応じた値となる。つまり、故障判定の閾値と、実際のセンサ出力とをSoot成分の量に応じた値で揃えることができる。よって、これらを比較してフィルタの故障判定をするので、正確にフィルタの故障を検出できる。   According to the present invention, since the threshold value for determining the failure of the filter is estimated based on the collected soot amount, it is possible to obtain a threshold value corresponding to the amount of the soot component excluding the influence of the low conductivity component. Further, the actual sensor output is a value corresponding to the amount of the soot component having high conductivity. That is, the failure determination threshold value and the actual sensor output can be aligned with a value corresponding to the amount of the Soot component. Therefore, since the filter failure is determined by comparing these, the filter failure can be accurately detected.

本発明の粒子状物質検出装置は、内燃機関の排気通路に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極を有した絶縁体の素子を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサと、
粒子状物質のうちSoot成分が前記素子に捕集されることは許容し、Soot成分よりも導電性が低い低導電性成分が前記素子に捕集されることは禁止するように捕集制御する捕集制御手段と、
を備えることを特徴とする。
A particulate matter detection device according to the present invention includes an insulating element having a pair of electrodes, which is provided in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas, and between the pair of electrodes. A sensor that generates an output in accordance with the amount of particulate matter collected by the element during conduction;
The soot component of particulate matter is allowed to be collected by the element, and the collection control is performed so as to prohibit the low conductive component having lower conductivity than the soot component from being collected by the element. Collection control means;
It is characterized by providing.

本発明によれば、捕集制御手段により、Soot成分はセンサ素子への捕集が許容される一方で、低導電性成分の捕集は禁止されるので、センサの検出感度のばらつきや低下を防止できる。   According to the present invention, the collection control means allows the soot component to be collected in the sensor element, while the collection of the low-conductivity component is prohibited. Can be prevented.

エンジンシステムの構成図である。It is a block diagram of an engine system. PMセンサの構造を模式的に示した図である。It is the figure which showed the structure of PM sensor typically. センサ素子における一対の電極付近の様子を示しており、PMセンサによるPM量の検出原理を説明する図である。FIG. 4 is a diagram illustrating a state in the vicinity of a pair of electrodes in a sensor element and explaining a principle of detection of a PM amount by a PM sensor. PMの成分構成の模式図である。It is a schematic diagram of the component structure of PM. 故障判定処理のフローチャートである。It is a flowchart of a failure determination process. 故障判定処理に関連する各種状態の時間変化を示した図である。It is the figure which showed the time change of the various states relevant to a failure determination process. 冷却水温又は排気温度の変化に対してSoot成分の割合、SOF成分の割合がどのように変化するかを例示した図である。It is the figure which illustrated how the ratio of a Soot component and the ratio of a SOF component changed with respect to the change of cooling water temperature or exhaust temperature. SOF再生制御におけるPMセンサでのPM捕集状態の様子を示した図である。It is the figure which showed the mode of the PM collection state in PM sensor in SOF regeneration control.

以下、本発明の実施形態を図面を参照しながら説明する。図1は、本発明が適用された車両のエンジンシステム1の構成図である。そのエンジンシステム1は、本発明の「フィルタの故障検出装置」に相当する。エンジンシステム1は、内燃機関としてのディーゼルエンジン2(以下、単にエンジンという)を備えている。そのエンジン2には、燃焼室内に燃料を噴射するインジェクタが設けられている。エンジン2は、そのインジェクタから噴射された燃料が燃焼室で自己着火することで、車両を駆動するための動力を生み出している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a vehicle engine system 1 to which the present invention is applied. The engine system 1 corresponds to a “filter failure detection device” of the present invention. The engine system 1 includes a diesel engine 2 (hereinafter simply referred to as an engine) as an internal combustion engine. The engine 2 is provided with an injector that injects fuel into the combustion chamber. The engine 2 generates power for driving the vehicle by the fuel injected from the injector self-igniting in the combustion chamber.

エンジン2の排気通路3には、本発明の「フィルタ」としてのディーゼルパティキュレートフィルタ(DPF)4が設置されている。DPF4は公知の構造のセラミック製フィルタであり、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、ガス流路となる多数のセルを入口側または出口側が互い違いとなるように目封じして構成される。エンジン2から排出された排気ガスは、DPF4の多孔性の隔壁を通過しながら下流へ流れ、その間に排気ガスに含まれるPM(パティキュレートマター、粒子状物質)が捕集されて次第に堆積する。   A diesel particulate filter (DPF) 4 as a “filter” of the present invention is installed in the exhaust passage 3 of the engine 2. The DPF 4 is a ceramic filter having a known structure. For example, heat resistant ceramics such as cordierite is formed into a honeycomb structure so that a large number of cells serving as gas flow paths are staggered on the inlet side or the outlet side. Contained and configured. Exhaust gas discharged from the engine 2 flows downstream while passing through the porous partition walls of the DPF 4, and PM (particulate matter, particulate matter) contained in the exhaust gas is collected and gradually accumulated.

排気通路3のDPF4よりも下流には、排気ガス中のPM量を検出する本発明の「センサ」としての電気抵抗式のPMセンサ5が設けられている。ここで、図2は、PMセンサ5の構造を模式的に示した図である。図2に示すように、PMセンサ5は、内部が中空にされた例えば金属製のカバー51とそのカバー51内の配置されたセンサ素子52とを備えている。カバー51には多数の孔511が形成されており、排気通路3を流れる排気ガスの一部がそれら孔511からカバー51内に侵入できるようになっている。また、カバー51には、カバー51内に侵入した排気ガスを排出するための排出孔512が形成されている。なお、図2では、排出孔512は、カバー51の先端に形成された例を示している。   An electrical resistance PM sensor 5 as a “sensor” of the present invention for detecting the amount of PM in the exhaust gas is provided downstream of the DPF 4 in the exhaust passage 3. Here, FIG. 2 is a diagram schematically showing the structure of the PM sensor 5. As shown in FIG. 2, the PM sensor 5 includes, for example, a metal cover 51 whose inside is hollow, and a sensor element 52 disposed in the cover 51. A number of holes 511 are formed in the cover 51, and a part of the exhaust gas flowing through the exhaust passage 3 can enter the cover 51 from the holes 511. Further, the cover 51 is formed with a discharge hole 512 for discharging the exhaust gas that has entered the cover 51. FIG. 2 shows an example in which the discharge hole 512 is formed at the tip of the cover 51.

センサ素子52は絶縁体基板から構成されている。センサ素子52(絶縁体基板)の一方の面には、互いに離間し、かつ対向した一対の電極53が設けられている。なお、図3は、PMセンサ5によるPM量の検出原理を説明する図であり、一対の電極53付近におけるPM付着の様子を示している。図3に示すように、センサ素子52には、後述のECU6の指令に基づき一対の電極53間に所定の直流電圧を印加する電圧印加回路54が接続されている。カバー51内に侵入した排気ガス中のPMの一部は自身が持つ粘着性によってセンサ素子52に捕集(付着)される。センサ素子52に捕集されなかったPMが排出孔512から排出される。   The sensor element 52 is composed of an insulating substrate. On one surface of the sensor element 52 (insulator substrate), a pair of electrodes 53 spaced apart from each other and facing each other are provided. FIG. 3 is a diagram for explaining the principle of detection of the PM amount by the PM sensor 5 and shows the state of PM adhesion in the vicinity of the pair of electrodes 53. As shown in FIG. 3, the sensor element 52 is connected to a voltage application circuit 54 that applies a predetermined DC voltage between a pair of electrodes 53 based on a command from the ECU 6 described later. Part of the PM in the exhaust gas that has entered the cover 51 is collected (attached) to the sensor element 52 due to its own adhesiveness. PM that has not been collected by the sensor element 52 is discharged from the discharge hole 512.

また、電圧印加回路54により電極53間に電圧が印加されると、各電極53はそれぞれ正、負に帯電する。これにより、電極53の近傍を通過するPMを帯電させて、センサ素子52への捕集が促進される。本実施形態では、電極53間に電圧が印加されていない時のセンサ素子52へのPM捕集量は、電圧印加時に比べて無視できる程度に少ない量であるとしている。以下では、電極53間に電圧を印加することによるセンサ素子52へのPM捕集を「静電捕集」という。   Further, when a voltage is applied between the electrodes 53 by the voltage application circuit 54, each electrode 53 is charged positively and negatively, respectively. Thereby, PM passing through the vicinity of the electrode 53 is charged, and collection into the sensor element 52 is promoted. In the present embodiment, the amount of PM trapped in the sensor element 52 when no voltage is applied between the electrodes 53 is assumed to be negligibly small compared to when a voltage is applied. Hereinafter, PM collection on the sensor element 52 by applying a voltage between the electrodes 53 is referred to as “electrostatic collection”.

PMセンサ5の出力特性を説明すると、PMセンサ5はセンサ素子52に捕集されたPMによって電極53間の抵抗が変化することを利用して、センサ素子52に捕集されたPM量に応じた出力を発生する。詳細には、センサ素子52へのPM捕集量が少ないうちはセンサ出力は発生しない(厳密には、センサ出力が立ち上がったとみなせる閾値出力よりも小さい出力しか発生しない)。PMに含まれるSoot成分はカーボン粒子から構成されており高い導電性を有するので、PM捕集量が一定以上の量になった時に一対の電極53間が導通して、センサ出力が立ち上がる(閾値出力以上の出力が発生する)。   The output characteristics of the PM sensor 5 will be described. The PM sensor 5 uses the fact that the resistance between the electrodes 53 is changed by the PM collected by the sensor element 52, and according to the amount of PM collected by the sensor element 52. Output. Specifically, the sensor output does not occur while the amount of PM trapped in the sensor element 52 is small (strictly, only an output smaller than a threshold output that can be regarded as the sensor output rising) is generated. Since the soot component contained in the PM is composed of carbon particles and has high conductivity, when the amount of collected PM becomes a certain amount or more, the pair of electrodes 53 conducts and the sensor output rises (threshold value) Output more than output).

センサ出力の立ち上がり後は、PM捕集量が多くなるほど一対の電極53間の抵抗が小さくなるので、電極53間に流れる電流、つまりセンサ出力が大きくなっていく。エンジンシステム1には、この電極53間に流れる電流を計測する電流計55(図3参照)が備えられ、この電流計55の計測値が、PMセンサ5の出力となる。   After the sensor output rises, the resistance between the pair of electrodes 53 decreases as the amount of collected PM increases, so that the current flowing between the electrodes 53, that is, the sensor output increases. The engine system 1 is provided with an ammeter 55 (see FIG. 3) that measures the current flowing between the electrodes 53, and the measured value of the ammeter 55 becomes the output of the PM sensor 5.

また、図2に示すように、センサ素子52には、センサ素子52に捕集されたPMを燃焼除去してPMセンサ5を再生させるためにセンサ素子52を加熱するヒータ56が設けられている。そのヒータ56は、例えばセンサ素子52(絶縁体基板)の電極53が設けられていない方の面に設けられている。ヒータ56は、例えば白金(Pt)等の電熱線から構成されている。PMセンサ5の再生においては、PMを構成する各成分(Soot成分、SOF成分等)の全てを燃焼除去できる温度となるようにセンサ素子52を加熱する必要がある。SOF成分は200〜300℃以上で燃焼するのに対し、Soot成分は500〜600℃以上で燃焼する。そのため、ヒータ56は、PMセンサ5の再生の際には、センサ素子52を500〜600℃以上の温度(例えば、700℃程度)に加熱する。なお、ヒータ56が本発明の「加熱手段」に相当する。   As shown in FIG. 2, the sensor element 52 is provided with a heater 56 that heats the sensor element 52 in order to regenerate the PM sensor 5 by burning and removing the PM collected by the sensor element 52. . The heater 56 is provided on the surface where the electrode 53 of the sensor element 52 (insulator substrate) is not provided, for example. The heater 56 is composed of a heating wire such as platinum (Pt). In the regeneration of the PM sensor 5, it is necessary to heat the sensor element 52 so as to reach a temperature at which all the components (Soot component, SOF component, etc.) constituting the PM can be burned and removed. The SOF component burns at 200 to 300 ° C or higher, while the Soot component burns at 500 to 600 ° C or higher. Therefore, the heater 56 heats the sensor element 52 to a temperature of 500 to 600 ° C. or higher (for example, about 700 ° C.) when the PM sensor 5 is regenerated. The heater 56 corresponds to the “heating means” of the present invention.

図1の説明に戻り、エンジンシステム1には、PMセンサ5の他に、エンジン2の運転に必要な各種センサが設けられている。具体的には、例えばエンジン2の回転数を検出する回転数センサ71、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検出するアクセルペダルセンサ72、排気ガスの温度(排気温度)を検出する排気温センサ73、エンジン2に吸入する新気量を検出するエアフロメータ74、エンジン2を冷却するための冷却水の温度を検出する水温センサ75などが設けられている。   Returning to the description of FIG. 1, the engine system 1 is provided with various sensors necessary for the operation of the engine 2 in addition to the PM sensor 5. Specifically, for example, a rotational speed sensor 71 that detects the rotational speed of the engine 2, an accelerator pedal sensor 72 that detects an operation amount (depression amount) of an accelerator pedal for notifying the vehicle side of the torque required by the driver of the vehicle, An exhaust temperature sensor 73 for detecting the temperature of exhaust gas (exhaust temperature), an air flow meter 74 for detecting the amount of fresh air sucked into the engine 2, a water temperature sensor 75 for detecting the temperature of cooling water for cooling the engine 2, and the like. Is provided.

また、エンジンシステム1は、そのエンジンシステム1の全体制御を司るECU6を備えている。そのECU6は、通常のコンピュータの構造を有するものとし、各種演算を行うCPU(図示外)や各種情報の記憶を行うメモリ61を備えている。ECU6は、例えば上記各種センサからの検出信号に基づきエンジン2の運転状態を検出し、運転状態に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、エンジン2への燃料噴射を制御する。   The engine system 1 also includes an ECU 6 that controls the entire engine system 1. The ECU 6 has a normal computer structure, and includes a CPU (not shown) for performing various calculations and a memory 61 for storing various information. The ECU 6 detects the operating state of the engine 2 based on detection signals from the various sensors, for example, calculates the optimal fuel injection amount, injection timing, injection pressure, etc. according to the operating state, and injects fuel into the engine 2. To control.

また、ECU6は、PMセンサ5の検出値に基づいて、DPF4の故障の有無を判定する故障判定処理を実行する。ここで、上記「発明が解決しようとする課題」の欄でも説明したが、PMセンサ5を用いたDPF4の故障検出には以下の問題点を有する。図4はPMの成分構成の模式図であるが、図4に示すように、PMは、主に、煤を構成するSoot成分とSOF成分とサルフェート成分とから構成されている。SOF成分は、燃料や潤滑油が未燃のまま単独またはSoot成分に含浸された形で排出されたものである。サルフェート成分は、燃料中の硫黄分の酸化生成物(硫化物)が排気ガス中の水分に溶けて霧滴化したものである。   Further, the ECU 6 executes a failure determination process for determining whether or not the DPF 4 has failed based on the detection value of the PM sensor 5. Here, as described above in the section “Problems to be Solved by the Invention”, the failure detection of the DPF 4 using the PM sensor 5 has the following problems. FIG. 4 is a schematic diagram of the component composition of PM, but as shown in FIG. 4, PM is mainly composed of a soot component, an SOF component, and a sulfate component that constitute the soot. The SOF component is a fuel or lubricating oil discharged without being burned alone or impregnated with a Soot component. The sulfate component is a product in which the oxidation product (sulfide) of the sulfur content in the fuel dissolves in the moisture in the exhaust gas and is atomized.

Soot成分は高い導電性を有する一方で、SOF成分やサルフェート成分は導電性が低い。そのため、PMセンサ5で検出できるのは、主に導電性が高いSoot成分であり、SOF成分やサルフェート成分は検出が困難である。つまり、PMセンサ5で検出したPM量は、PMセンサ5に捕集されたPM量の全てではなく一部である。また、PMセンサ5に捕集されたSOF成分やサルフェート成分は、Soot成分の導電(一対の電極53間の導通)を阻害する方向に働くので、PMセンサ5の検出感度が低下、つまり、微量のPM量を検出できなくなる。さらに、SOF成分は、自身の強い粘着性によりセンサ素子52上でPMを動きにくくし、静電捕集時にPMを一対の電極53間に整列させるのを阻害してしまう。これによっても、PMセンサ5の検出感度が低下し、また、SOF成分の割合によってその検出感度がばらついてしまう。   While the Soot component has high conductivity, the SOF component and the sulfate component have low conductivity. Therefore, what can be detected by the PM sensor 5 is mainly a soot component having high conductivity, and it is difficult to detect the SOF component and the sulfate component. That is, the PM amount detected by the PM sensor 5 is a part rather than all of the PM amount collected by the PM sensor 5. Further, since the SOF component and the sulfate component collected by the PM sensor 5 act in the direction of inhibiting the conduction of the soot component (conduction between the pair of electrodes 53), the detection sensitivity of the PM sensor 5 is lowered, that is, a trace amount. The amount of PM cannot be detected. Further, the SOF component makes the PM difficult to move on the sensor element 52 due to its strong adhesiveness, and prevents the PM from being aligned between the pair of electrodes 53 during electrostatic collection. This also decreases the detection sensitivity of the PM sensor 5, and the detection sensitivity varies depending on the ratio of the SOF component.

このように、PMセンサ5で検出されるPM量は、捕集されたPM量の全てではなく一部であることや、SOF成分やサルフェート成分の存在によりPMセンサ5の検出感度が低下したり、ばらつくことが原因で、正確にDPF4の故障の有無を判定できない可能性がある。なお、PMにおけるSoot成分とSOF成分とサルフェート成分の割合は、エンジン2の運転状態によっても変わるが、Soot成分は60%〜100%、SOF成分は0%〜35%、サルフェート成分は5%程度である。このように、SOF成分は運転状態によって無視できない割合まで増加する一方で、サルフェート成分はPMセンサ5の出力に影響をほとんど与えない程度に少ない割合となっている。よって、ECU6による故障判定処理では、Soot成分よりも導電性が低い低導電性成分のうちでも特にSOF成分の影響を排除したうえで、DPF4の故障判定を行う。以下、この故障判定処理の詳細を説明する。以下に説明する故障判定処理では、PMは、Soot成分とSOF成分とで構成されているものとして、説明する。   As described above, the PM amount detected by the PM sensor 5 is a part rather than all of the collected PM amount, and the detection sensitivity of the PM sensor 5 decreases due to the presence of the SOF component and the sulfate component. Because of the variation, there is a possibility that the presence or absence of the failure of the DPF 4 cannot be accurately determined. The ratio of the soot component, the SOF component, and the sulfate component in the PM varies depending on the operating state of the engine 2, but the soot component is 60% to 100%, the SOF component is 0% to 35%, and the sulfate component is about 5%. It is. Thus, while the SOF component increases to a rate that cannot be ignored depending on the operating state, the sulfate component is a small rate that hardly affects the output of the PM sensor 5. Therefore, in the failure determination process by the ECU 6, the failure determination of the DPF 4 is performed after excluding the influence of the SOF component even among the low conductivity components having lower conductivity than the Soot component. Hereinafter, details of the failure determination process will be described. In the failure determination process described below, the PM is assumed to be composed of a soot component and an SOF component.

図5は、故障判定処理のフローチャートを示している。また、図6は、故障判定処理に関連する各種状態の時間変化を示しており、詳細には、上から、車両が排気ガス規制を満たしているか否かの認証モード時の車速パターン(時間経過に対する車速変化)、時間経過に対するPMセンサ5の出力の変化、時間経過に対する静電捕集のオンオフ変化、時間経過に対するヒータ56のオンオフ変化を示している。なお、図6の上から2段目には、PMセンサ5の出力変化として、DPF4が故障の場合の出力変化101と、正常の場合の出力変化102とを示している。   FIG. 5 shows a flowchart of the failure determination process. FIG. 6 shows time changes of various states related to the failure determination processing. Specifically, from the top, the vehicle speed pattern (time elapse) in the authentication mode whether or not the vehicle satisfies the exhaust gas regulations is shown from above. The change in the output of the PM sensor 5 over time, the on / off change in electrostatic collection over time, and the on / off change of the heater 56 over time. The second stage from the top of FIG. 6 shows the output change 101 when the DPF 4 is faulty and the output change 102 when the DPF 4 is normal as changes in the output of the PM sensor 5.

図5の故障判定処理は、例えば図6最上段の車速パターンで示される認証モード時において、図6の2段目に示す準備期間が経過した後に開始する。この準備期間は、PMセンサ5に対する被水を防止するために排気ガス中の水分が少なくなるまで待機する期間(被水防止期間)と、ヒータ56によりPMセンサ5を再生させる期間(ヒータ再生期間、図6最下段参照)と、センサ再生により高温となったPMセンサ5が冷却するまで待機する期間(センサ冷却期間)とから構成される。準備期間では電極53間には未だ電圧は印加されていない。なお、故障判定処理は、認証モード時以外の何時に実行されたとしても良く、具体的には通常走行時に実行されたとしても良い。   The failure determination process in FIG. 5 starts after the preparation period shown in the second row in FIG. 6 has elapsed, for example, in the authentication mode indicated by the vehicle speed pattern in the uppermost row in FIG. The preparation period includes a period of waiting until moisture in the exhaust gas decreases to prevent the PM sensor 5 from getting wet (a wet prevention period), and a period of regenerating the PM sensor 5 by the heater 56 (heater regeneration period). , And the period of waiting until the PM sensor 5 that has become high temperature due to sensor regeneration cools (sensor cooling period). In the preparation period, no voltage is applied between the electrodes 53 yet. Note that the failure determination process may be executed at any time other than during the authentication mode, and specifically, may be executed during normal travel.

図5の処理が開始すると、ECU6は、先ず、静電捕集の実施を許可する条件として予め定められた捕集許可条件が成立したか否かを判断する(S1)。具体的には、捕集許可条件は、SOF成分がほとんど発生しないエンジン2の運転状態、つまりPMのうちのSoot成分の割合が100%に近くなるエンジン2の運転状態(不発生運転状態)に設定される。SOF成分は、エンジン2の燃焼室内で発生したとしても200〜300℃以上では酸化する。そこで、捕集許可条件(不発生運転状態)は、例えばSOF成分が酸化除去される所定温度以上(例えば250℃以上)に設定される。排気温度は排気温センサ73から得ることができる。   When the process of FIG. 5 starts, the ECU 6 first determines whether or not a collection permission condition that is set in advance as a condition for permitting the implementation of electrostatic collection is satisfied (S1). Specifically, the collection permission condition is an operation state of the engine 2 in which almost no SOF component is generated, that is, an operation state of the engine 2 in which the proportion of the Soot component in PM is close to 100% (non-occurrence operation state). Is set. Even if the SOF component is generated in the combustion chamber of the engine 2, it is oxidized at 200 to 300 ° C. or higher. Therefore, the collection permission condition (non-occurring operation state) is set to, for example, a predetermined temperature or higher (for example, 250 ° C. or higher) at which the SOF component is oxidized and removed. The exhaust temperature can be obtained from the exhaust temperature sensor 73.

排気温度が所定温度未満の場合には(S1:No)、捕集許可条件が成立しないとして静電捕集を停止する(S2)。つまり、一対の電極53間への電圧印加をオフにする。これによって、SOF成分を含んだPMがPMセンサ5に捕集されるのを防ぐことができる。言い換えると、後述のS9〜S11でDPF4の故障の有無を判定する際に、PMセンサ5(センサ素子52)にSOF成分が残留するのを抑制できる。さらに、S2では、静電捕集の停止後に、センサ素子52を予め定められた再生温度(例えば700℃)に加熱するようにヒータ56を制御して、PMセンサ5を再生させる。これによって、静電捕集の停止中に微量ながらも捕集されてしまったPMをセンサ素子52上から除去することができ、S3以降の処理でDPF4の故障判定を正確に行うことができる。S2の後、S1に戻る。   When the exhaust temperature is lower than the predetermined temperature (S1: No), the electrostatic collection is stopped because the collection permission condition is not satisfied (S2). That is, voltage application between the pair of electrodes 53 is turned off. As a result, PM containing the SOF component can be prevented from being collected by the PM sensor 5. In other words, it is possible to suppress the SOF component from remaining in the PM sensor 5 (sensor element 52) when determining whether or not the DPF 4 has failed in S9 to S11 described later. Further, in S2, the PM sensor 5 is regenerated by controlling the heater 56 so that the sensor element 52 is heated to a predetermined regeneration temperature (for example, 700 ° C.) after the electrostatic collection is stopped. As a result, a small amount of PM that has been collected while electrostatic collection is stopped can be removed from the sensor element 52, and the failure determination of the DPF 4 can be performed accurately in the processing after S3. After S2, the process returns to S1.

一方、排気温度が所定温度以上の場合には(S1:Yes)、捕集許可条件が成立したとして静電捕集を開始する(S3)。つまり、電圧印加回路54(図3参照)により一対の電極53間に所定電圧を印加させる。これによって、SOF成分をほとんど含まないPM、つまりSoot成分の割合≒100%のPMをセンサ素子52上に捕集させることができる。なお、S1〜S3の処理を実行するECU6が本発明の「捕集制御手段」に相当する。S1の処理を実行するECU6が本発明の「状態判定手段」に相当する。S2、S3の処理を実行するECU6が本発明の「実施制御手段」に相当する。   On the other hand, when the exhaust temperature is equal to or higher than the predetermined temperature (S1: Yes), electrostatic collection is started assuming that the collection permission condition is satisfied (S3). That is, a predetermined voltage is applied between the pair of electrodes 53 by the voltage application circuit 54 (see FIG. 3). As a result, PM containing almost no SOF component, that is, PM with a proportion of the Soot component≈100% can be collected on the sensor element 52. In addition, ECU6 which performs the process of S1-S3 corresponds to the "collection control means" of this invention. The ECU 6 that executes the process of S1 corresponds to the “state determination means” of the present invention. The ECU 6 that executes the processes of S2 and S3 corresponds to the “execution control means” of the present invention.

次に、エンジン2の状態に基づいて、DPF4が基準故障DPFである場合におけるPMセンサ5に捕集される単位時間当たりのPM量(PM捕集量)Aを推定する(S4)。なお、本実施形態における基準故障DPFとは、具体的には、故障によりDPF4の捕集率が著しく低下し、DPF4を通過するPM量が自己故障診断(OBD:On−board−diagnostics)の規制値相当の量であるDPFを言う。OBD規制値は、EURO6等のEM規制値(排ガス規制値)より大きい値に設定される。例えば、特定の走行モードにおいて、EM規制値におけるPM量=4.5mg/kmとしたときに、OBD規制値は例えばその約2.67倍のPM量=12.0mg/kmに設定される。   Next, based on the state of the engine 2, the PM amount (PM trapping amount) A collected by the PM sensor 5 when the DPF 4 is the reference failure DPF is estimated (S4). Note that the reference failure DPF in the present embodiment specifically means that the collection rate of the DPF 4 is significantly reduced due to the failure, and the amount of PM passing through the DPF 4 is regulated by self-failure diagnosis (OBD). The DPF is an amount corresponding to the value. The OBD regulation value is set to a value larger than the EM regulation value (exhaust gas regulation value) such as EURO6. For example, in a specific travel mode, when the PM amount in the EM regulation value = 4.5 mg / km, the OBD regulation value is set to, for example, about 2.67 times the PM amount = 12.0 mg / km.

S4では、具体的には、特許文献1と同様に、エンジン2の回転数やトルク(燃料噴射量)等のエンジン2の状態に基づいてエンジン2から排出されるPM量、言い換えると、基準故障DPFに流入するPM量(流入PM量)を推定する。なお、エンジン2の回転数は回転数センサ71から得られる。トルク(燃料噴射量)は、アクセルペダルセンサ72の検出値やエンジン回転数などから得られる。エンジン2の状態(回転数、トルク等)に対する流入PM量のマップをメモリ61(図1参照)に予め記憶しておく。そして、そのマップから、今回のエンジン2の状態に対応する流入PM量を読み出せばよい。   In S4, specifically, similarly to Patent Document 1, the amount of PM discharged from the engine 2 based on the state of the engine 2 such as the rotational speed and torque (fuel injection amount) of the engine 2, in other words, the reference failure The amount of PM flowing into the DPF (inflow PM amount) is estimated. The rotational speed of the engine 2 is obtained from the rotational speed sensor 71. The torque (fuel injection amount) is obtained from the detection value of the accelerator pedal sensor 72, the engine speed, and the like. A map of the inflow PM amount with respect to the state of the engine 2 (revolution, torque, etc.) is stored in advance in the memory 61 (see FIG. 1). Then, the inflow PM amount corresponding to the current state of the engine 2 may be read from the map.

また、基準故障DPFのPM捕集率を推定する。具体的には例えば、基準故障DPFのPM捕集率として予め定められた値αを用いる。また、DPFのPM捕集率は、DPF内に堆積されているPM量(PM堆積量)や排気ガス流量によっても変わってくるので、それらPM堆積量、排気ガス流量に応じて上記PM捕集率αを補正しても良い。なお、PM堆積量は、例えば、DPF4の前後差圧に基づいて推定すれば良い。また、排気ガス流量は、例えば、エアフロメータ74(図1参照)で検出される新気量に基づいて排気ガスの体積流量として推定すれば良い。この際、排気温センサ73(図1参照)で検出される排気温度に応じた排気ガスの膨張分や、圧力センサ(図示外)で検出される圧力に応じた排気ガスの圧縮分を考慮して、排気ガス流量を推定する。   In addition, the PM collection rate of the reference failure DPF is estimated. Specifically, for example, a predetermined value α is used as the PM collection rate of the reference failure DPF. Further, since the PM collection rate of the DPF also varies depending on the amount of PM accumulated in the DPF (PM accumulation amount) and the exhaust gas flow rate, the PM collection rate depends on the PM accumulation amount and the exhaust gas flow rate. The rate α may be corrected. Note that the PM accumulation amount may be estimated based on, for example, the differential pressure across the DPF 4. Further, the exhaust gas flow rate may be estimated as the volume flow rate of the exhaust gas based on, for example, the amount of fresh air detected by the air flow meter 74 (see FIG. 1). At this time, the exhaust gas expansion corresponding to the exhaust temperature detected by the exhaust temperature sensor 73 (see FIG. 1) and the exhaust gas compression corresponding to the pressure detected by the pressure sensor (not shown) are taken into consideration. To estimate the exhaust gas flow rate.

そして、推定した流入PM量と基準故障DPFのPM捕集率とに基づいて、基準故障DPFから流出するPM量(流出PM量)が得られる。次に、その流出PM量のうちのPMセンサ5に捕集されるPM量を、単位時間当たりのPM捕集量Aとして推定する。具体的には、例えばPMセンサ5の外側を流れるPMのうちどの程度のPMが孔511(図2参照)からカバー51内に侵入するか、カバー51内に侵入したPMのうちどの程度のPMがセンサ素子52に付着するか等を考慮して、PMセンサ5へのPM捕集率βを推定する。PM捕集率βは、排気ガス流量、λ(空気過剰率)、排気温度、センサ素子52の温度等の各種状態にかかわらず一定の予め定められた値を用いても良いし、各種状態に応じて補正した値を用いても良い。例えば、排気ガス流量が大きいほどPMはカバー51内に侵入しにくくなり、カバー51に侵入したPMはセンサ素子52に付着しにくくなり、付着したとしてもセンサ素子52から離脱しやすくなる。また、λが小さくなるほど、つまりリッチになってPM濃度が高くなるほど、PMセンサ5に捕集されないPMの割合が高くなる。よって、例えば、排気ガス流量が大きいほど、又はλが小さいほど、小さい値となるようにPM捕集率βを推定する。また、排気温度やセンサ素子52の温度に応じて、センサ素子52に作用する熱動力が変化するので、PM捕集率βが変わってくる。そして、上記流出PM量とPM捕集率βとに基づいて、単位時間当たりのPM捕集量Aを得ることができる。 Then, based on the estimated inflow PM amount and the PM collection rate of the reference failure DPF, the PM amount flowing out from the reference failure DPF (outflow PM amount) is obtained. Next, the PM amount collected by the PM sensor 5 in the outflow PM amount is estimated as the PM collection amount A per unit time. Specifically, for example, how much of the PM flowing outside the PM sensor 5 enters the cover 51 from the hole 511 (see FIG. 2), or how much PM of the PM that has entered the cover 51 The PM collection rate β to the PM sensor 5 is estimated in consideration of whether the sensor element 52 is attached to the sensor element 52 or the like. As the PM collection rate β, a constant predetermined value may be used regardless of various states such as the exhaust gas flow rate, λ (excess air ratio), the exhaust temperature, the temperature of the sensor element 52, and the like. A value corrected accordingly may be used. For example, the larger the exhaust gas flow rate, the more difficult it is for PM to enter the cover 51, and PM that has entered the cover 51 is less likely to adhere to the sensor element 52, and even if it adheres, it is likely to be detached from the sensor element 52. Further, the smaller λ is, that is, the richer the PM concentration becomes, the higher the ratio of PM not collected by the PM sensor 5 becomes. Therefore, for example, the PM collection rate β is estimated such that the larger the exhaust gas flow rate or the smaller λ, the smaller the value. Further, according to the temperature of the exhaust temperature and the sensor element 52, the heat swimming power which acts on the sensor element 52 is changed, PM collection efficiency β is varies. Based on the outflow PM amount and the PM collection rate β, the PM collection amount A per unit time can be obtained.

なお、λは、例えばエンジン2の運転状態(エンジン回転数、燃料噴射量等)から推定しても良いし、排気通路3にλを検出するセンサを設け、そのセンサの検出値を用いても良い。また、排気温度は、排気温センサ73から得られる。また、センサ素子52の温度は、例えばセンサ素子52に温度センサを設け、その温度センサの検出値を用いれば良い。   Λ may be estimated from, for example, the operating state of the engine 2 (engine speed, fuel injection amount, etc.), or a sensor for detecting λ may be provided in the exhaust passage 3 and the detection value of that sensor may be used. good. The exhaust temperature is obtained from the exhaust temperature sensor 73. Further, the temperature of the sensor element 52 may be, for example, a temperature sensor provided in the sensor element 52 and the detection value of the temperature sensor used.

このように、PM捕集量Aは、エンジン2の基本的な運転状態(エンジン回転数、トルク等)から定まる基本捕集量a1と、その基本捕集量a1を補正するための、排気ガスの状態(排気ガス流量、λ、排気温度等)から定まる補正捕集量a2(補正係数)とから求めることができる。   Thus, the PM collection amount A is the exhaust gas for correcting the basic collection amount a1 determined from the basic operating state (engine speed, torque, etc.) of the engine 2 and the basic collection amount a1. (Corrected collection amount a2 (correction coefficient)) determined from the state (exhaust gas flow rate, λ, exhaust temperature, etc.).

次に、エンジン2から排出される単位時間当たりのPM量のうちSoot成分が占める割合B(以下、Soot割合という)を推定する(S5)。具体的には、Soot割合Bは、エンジン2での燃焼状態(エンジン2の運転状態)によって変わるので、S5では現在の燃焼状態に基づいてSoot割合Bを推定する。エンジン2の回転数及び要求トルクにより燃料噴射量やエア系制御値(吸入空気量、EGR量等)が決まるので、基本的な燃焼状態が決まる。その基本的な燃焼状態は、エンジン2を冷却する冷却水の温度(冷却水温)や、排気温度等の環境条件によって変化する。   Next, a ratio B (hereinafter referred to as a soot ratio) occupied by the soot component in the PM amount per unit time discharged from the engine 2 is estimated (S5). Specifically, since the soot ratio B changes depending on the combustion state in the engine 2 (the operating state of the engine 2), in S5, the soot ratio B is estimated based on the current combustion state. Since the fuel injection amount and the air system control value (intake air amount, EGR amount, etc.) are determined by the rotational speed of the engine 2 and the required torque, the basic combustion state is determined. The basic combustion state varies depending on environmental conditions such as the temperature of cooling water (cooling water temperature) for cooling the engine 2 and the exhaust gas temperature.

そこで、S5では、例えば、先ずエンジン2の回転数及び要求トルクに基づいて基本となるSoot割合b1(基本Soot割合)を求める。具体的には、エンジン2の回転数及び要求トルクに対する基本Soot割合b1のマップをメモリ61に予め記憶しておく。そして、そのマップから、今回のエンジン2の状態に対応する基本Soot割合b1を読み出す。その後、環境条件(冷却水温、排気温度等)によって、この基本Soot割合b1を補正する。具体的には、例えば環境条件に対する基本Soot割合b1を補正するための係数b2(補正係数)を設定する。   Therefore, in S5, for example, a basic soot ratio b1 (basic soot ratio) is first obtained based on the rotational speed of the engine 2 and the required torque. Specifically, a map of the basic soot ratio b1 with respect to the rotation speed of the engine 2 and the required torque is stored in the memory 61 in advance. And the basic soot ratio b1 corresponding to the current state of the engine 2 is read from the map. Thereafter, the basic soot ratio b1 is corrected according to environmental conditions (cooling water temperature, exhaust temperature, etc.). Specifically, for example, a coefficient b2 (correction coefficient) for correcting the basic soot ratio b1 with respect to the environmental condition is set.

ここで図7は、冷却水温、排気温度に対する補正係数b2の考え方の一例を説明する図であり、詳細には、冷却水温又は排気温度の変化に対してSoot割合、SOF成分の割合がどのように変化するかを例示している。冷却水温や排気温度が高いほど燃焼室での燃焼が効果的に行われたことになるので、エンジン2から排出される未燃燃料量は少なくなる。ゆえに、図7では、冷却水温又は排気温度が高くなるほど、未燃燃料に起因したSOF成分の割合が小さくなる。SOF成分の割合が小さくなると、相対的に、Soot割合が大きくなる。よって、補正係数b2は、例えば冷却水温又は排気温度が高くなるほど、大きい値となるように設定する。その後、基本Soot割合b1に補正係数b2を乗算することで、Soot割合Bを求める。   Here, FIG. 7 is a diagram for explaining an example of the concept of the correction coefficient b2 with respect to the cooling water temperature and the exhaust gas temperature. Specifically, how the soot ratio and the SOF component ratio are changed with respect to the change in the cooling water temperature or the exhaust gas temperature. It is illustrated how it changes. As the cooling water temperature and the exhaust gas temperature are higher, the combustion in the combustion chamber is effectively performed, so the amount of unburned fuel discharged from the engine 2 is reduced. Therefore, in FIG. 7, the higher the cooling water temperature or the exhaust gas temperature, the smaller the ratio of the SOF component due to unburned fuel. When the ratio of the SOF component is decreased, the soot ratio is relatively increased. Therefore, the correction coefficient b2 is set so as to increase as the cooling water temperature or the exhaust gas temperature increases, for example. Thereafter, the soot ratio B is obtained by multiplying the basic soot ratio b1 by the correction coefficient b2.

なお、図7の関係は説明にために簡単化した例であって、冷却水温又は排気温度以外の他の条件(燃焼室内の圧力など)によっても燃焼状態が変わるので、冷却水温又は排気温度が高くなったとしても他の条件によっては必ずしもSoot割合が大きくなるとは限らない。S5では、燃焼状態に影響する各種条件(エンジン回転数、要求トルク、冷却水温、排気温度、圧力等)のうちのできるだけ多くの条件を考慮することで、より正確な補正係数b2を得ることができ、ひいてはより正確なSoot割合を得ることができる。   The relationship in FIG. 7 is a simplified example for explanation, and the combustion state changes depending on conditions other than the cooling water temperature or the exhaust temperature (pressure in the combustion chamber, etc.). Even if it becomes higher, the soot ratio does not necessarily increase depending on other conditions. In S5, more accurate correction coefficient b2 can be obtained by considering as many conditions as possible among various conditions (engine speed, required torque, cooling water temperature, exhaust temperature, pressure, etc.) that affect the combustion state. As a result, a more accurate soot ratio can be obtained.

次に、DPF4が基準故障DPFである場合におけるPMセンサ5に捕集されたSoot成分の累積量C(以下、捕集Soot量という)を推定する(S6)。具体的には、先ず、S4で推定したPM捕集量AとS5で推定したSoot割合Bとを乗算して、現時点におけるPMセンサ5に捕集される単位時間当たりのSoot成分の量(=A×B)を求める。次に、この単位時間当たりのSoot成分の量を、前回のS6で得られた前の時点での捕集Soot量C(i−1)に加えることで、現時点での捕集Soot量Cを求める。   Next, the cumulative amount C of the Soot component collected by the PM sensor 5 when the DPF 4 is the reference failure DPF (hereinafter referred to as the collected soot amount) is estimated (S6). Specifically, first, the amount of soot components per unit time collected by the PM sensor 5 at the present time is multiplied by multiplying the PM collection amount A estimated in S4 by the soot ratio B estimated in S5 (= A × B) is obtained. Next, by adding the amount of the soot component per unit time to the collected soot amount C (i−1) at the previous time obtained in the previous S6, the currently collected soot amount C is obtained. Ask.

次に、SOF成分は燃焼するが、Soot成分は燃焼しない温度でセンサ素子52を加熱するようにヒータ56を制御するSOF再生制御を実行する(S7)。具体的には、上述したように、SOF成分は200〜300℃以上で燃焼するのに対し、Soot成分は500〜600℃以上でなければ燃焼しない。そこで、SOF再生制御においては、200〜300℃以上、かつ、500〜600℃未満の温度(例えば300℃程度。以下、SOF再生温度という)でセンサ素子52を加熱する。これによって、PMセンサ5に捕集されるPMからSOF成分を排除することができる。言い換えると、Soot成分のみPMセンサ5に捕集させることができ、DPF4の故障の有無を判定する際に、PMセンサ5(センサ素子52)にSOF成分が残留するのを抑制できる。   Next, SOF regeneration control is performed to control the heater 56 so as to heat the sensor element 52 at a temperature at which the SOF component burns but the Soot component does not burn (S7). Specifically, as described above, the SOF component burns at 200 to 300 ° C. or higher, whereas the Soot component does not burn unless it is 500 to 600 ° C. or higher. Therefore, in the SOF regeneration control, the sensor element 52 is heated at a temperature of 200 to 300 ° C. or more and less than 500 to 600 ° C. (for example, about 300 ° C., hereinafter referred to as SOF regeneration temperature). Thus, the SOF component can be excluded from the PM collected by the PM sensor 5. In other words, only the Soot component can be collected by the PM sensor 5, and the SOF component can be prevented from remaining in the PM sensor 5 (sensor element 52) when determining whether or not the DPF 4 has failed.

また、SOF再生制御において、常時、ヒータ56をオンにしておくと、センサ素子52が常時SOF再生温度に加熱されることになるため、センサ素子52から離れる方向に熱動力が作用する頻度が高くなり、この熱動力の影響によりPMセンサ5のPM捕集効率が低下してしまう。そこで、SOF再生制御においては、ヒータ56をオフにする期間103(図6の最下段参照)を設ける。そして、そのオフ期間103で静電捕集を実施することで(図6の3段目参照)、PMセンサ5にSOF成分の捕集を許容する形で一旦PMの捕集を行う。図8は、SOF再生制御におけるPMセンサ5でのPM捕集状態の様子を示しており、図8の左側にオフ期間103での様子を示している。その後、ヒータ56をオンにしてセンサ素子52をSOF再生温度に加熱する期間104(図6の最下段参照)を設けて、その加熱期間104でPMセンサ5に捕集されているSOF成分を燃焼除去する。図8の真ん中には加熱期間104での様子を示している。これによって、効率的にSoot成分のみを捕集することができる。なお、本実施形態では、加熱期間104では静電捕集の実施を停止しているが(図6の3段目参照)、加熱期間104でも静電捕集を実施しても良い。

Further, the SOF regeneration control, at all times, when you turn on the heater 56, since the sensor element 52 is to be heated constantly SOF regeneration temperature, the frequency of acts heat swimming power away from the sensor element 52 increases, PM trapping efficiency of the PM sensor 5 is lowered by the influence of the thermal swimming power. Therefore, in the SOF regeneration control, a period 103 (see the lowermost stage in FIG. 6) for turning off the heater 56 is provided. Then, by performing electrostatic collection in the off period 103 (see the third stage in FIG. 6), PM is once collected in a form that allows the PM sensor 5 to collect SOF components. FIG. 8 shows a state of PM collection by the PM sensor 5 in the SOF regeneration control, and shows a state in the off period 103 on the left side of FIG. Thereafter, the heater 56 is turned on to provide a period 104 (see the lowermost stage in FIG. 6) for heating the sensor element 52 to the SOF regeneration temperature, and the SOF component collected by the PM sensor 5 is combusted during the heating period 104. Remove. A state in the heating period 104 is shown in the middle of FIG. Thereby, only the Soot component can be collected efficiently. In the present embodiment, electrostatic collection is stopped during the heating period 104 (see the third stage in FIG. 6), but electrostatic collection may be performed during the heating period 104 as well.

加熱期間104の後、ヒータ56をオフにしたうえで、一対の電極53間に電圧を印加、つまり静電捕集を実施する。これによって、図8の右側の様子に示すように、SOF再生後に残ったSoot成分を静電捕集による静電力により一対の電極53間に整列させることができ、Soot成分の量が一定量以上の場合には、一対の電極53間を導通させることができる。   After the heating period 104, the heater 56 is turned off, and a voltage is applied between the pair of electrodes 53, that is, electrostatic collection is performed. As a result, as shown in the right side of FIG. 8, the soot component remaining after the SOF regeneration can be aligned between the pair of electrodes 53 by electrostatic force due to electrostatic collection, and the amount of the soot component is a certain amount or more. In this case, the pair of electrodes 53 can be electrically connected.

Soot成分の量が、導通が開始する一定量に未だ達していない場合には、再度、上述のオフ期間103と加熱期間104とを繰り返して、PMの捕集→SOF成分の燃焼除去を繰り返す。結局、図6の最下段に示すように、SOF再生制御においては、オフ期間103と加熱期間104とが交互に繰り返される。本実施形態では、オフ期間103の幅は各オフ期間103の間で一定とし、加熱期間104の幅は各加熱期間104の間で一定としている。また、オフ期間103の幅と、加熱期間104の幅は、同じであっても良いし、異なっていたとしても良い。オフ期間103の幅、加熱期間104の幅は、長くしすぎると、PMセンサ5の出力が発生する時期(立ち上がり時期)を正確に把握できなくなる可能性がある。つまり、オフ期間103、加熱期間104を経て、PMセンサ5の出力を確認した時には、出力発生から相当時間が経過している可能性がある。そのため、オフ期間103、加熱期間104の幅は、長くしすぎないようにするのが好ましい。なお、S7の処理を実行するECU6が本発明の「捕集制御手段」、「加熱制御手段」に相当する。   When the amount of the Soot component has not yet reached a certain amount at which conduction starts, the above-described off period 103 and heating period 104 are repeated again, and PM collection → SOF component combustion removal is repeated. Eventually, as shown in the bottom of FIG. 6, in the SOF regeneration control, the off period 103 and the heating period 104 are alternately repeated. In the present embodiment, the width of the off period 103 is constant during each off period 103, and the width of the heating period 104 is constant between each heating period 104. Further, the width of the off period 103 and the width of the heating period 104 may be the same or may be different. If the width of the off period 103 and the width of the heating period 104 are too long, there is a possibility that the timing (rising time) when the output of the PM sensor 5 occurs cannot be accurately grasped. That is, when the output of the PM sensor 5 is confirmed after the off period 103 and the heating period 104, there is a possibility that a considerable time has elapsed since the generation of the output. Therefore, it is preferable not to make the widths of the off period 103 and the heating period 104 too long. The ECU 6 that executes the process of S7 corresponds to “collection control means” and “heating control means” of the present invention.

次に、センサ出力の立ち上がり時期に基づくDPF故障の判定タイミングが成立(到来)したか否かを判定する(S8)。具体的には、S6で推定した捕集Soot量Cが、PMセンサ5の出力が立ち上がる(電極53間の導通が開始する)PM捕集量として予め定めた値K1(導通開始捕集量)に達しか否かを判定する。このように、S8では、DPF4が基準故障DPFの場合におけるPMセンサ5の出力が立ち上がる時期t0(基準時期)が到来したか否かを判定している。なお、図6の2段目には、基準時期t0を示している。   Next, it is determined whether or not the DPF failure determination timing based on the rising timing of the sensor output has been established (arrived) (S8). Specifically, the collection soot amount C estimated in S6 is a value K1 (conduction start collection amount) predetermined as the PM collection amount at which the output of the PM sensor 5 rises (conduction between the electrodes 53 starts). It is determined whether or not it is reached. Thus, in S8, it is determined whether or not the time t0 (reference time) when the output of the PM sensor 5 rises when the DPF 4 is the reference failure DPF has arrived. The second stage in FIG. 6 shows the reference time t0.

捕集Soot量Cが未だ導通開始捕集量K1に達していない場合には(S8:No)、基準時期t0(判定タイミング)が未だ到来していないとして、S4に戻る。この場合、捕集Soot量Cを更新し(S4〜S6)、SOF再生制御を実施(S7)した後に、再度、更新後の捕集Soot量Cが導通開始捕集量K1に達したか否かを判定する(S8)。   If the collection soot amount C has not yet reached the conduction start collection amount K1 (S8: No), it is determined that the reference time t0 (determination timing) has not yet arrived, and the process returns to S4. In this case, after the collection soot amount C is updated (S4 to S6) and the SOF regeneration control is performed (S7), the updated collection soot amount C reaches the conduction start collection amount K1 again. Is determined (S8).

捕集Soot量Cが導通開始捕集量K1に達した場合には(S8:Yes)、基準時期t0(判定タイミング)が到来したとして、次に、PMセンサ5の実際の出力(SOF成分が排除された出力(Soot量出力))が既に発生しているか否かを判定する(S9)。具体的には、PMセンサ5の出力が、予め定められた立ち上がり出力値K2(所定値)以上であるか否かを判定する。なお、S9では、実際のPMセンサ5の出力が立ち上がる時期(実際時期)が基準時期t0より先か後かを判定することを意味する。センサ出力が所定値K2未満の場合には(S9:No)、センサ出力は未だ立ち上がっていない、つまり実際のPMセンサ5の立ち上がり時期(実際時期)は基準時期t0よりも後となる。この場合、図6の2段目に示すライン102の出力変化となる。この場合には、DPF4は、基準故障DPFよりもDPFを通過するPM量が少ないので、正常であると判定する(S11)。   When the collection soot amount C reaches the conduction start collection amount K1 (S8: Yes), it is assumed that the reference time t0 (determination timing) has arrived, and then the actual output of the PM sensor 5 (the SOF component is It is determined whether or not the excluded output (Sot amount output) has already occurred (S9). Specifically, it is determined whether the output of the PM sensor 5 is equal to or higher than a predetermined rising output value K2 (predetermined value). In S9, it means that it is determined whether the time (actual time) when the output of the actual PM sensor 5 rises is before or after the reference time t0. When the sensor output is less than the predetermined value K2 (S9: No), the sensor output has not yet risen, that is, the actual rise time (actual time) of the PM sensor 5 is later than the reference time t0. In this case, the output change of the line 102 shown in the second stage of FIG. In this case, the DPF 4 is determined to be normal because the amount of PM passing through the DPF is smaller than that of the reference failure DPF (S11).

これに対して、センサ出力が所定値K2以上の場合には(S9:Yes)、センサ出力は既に立ち上がっている、つまり実際時期は基準時期t0よりも先となる。この場合、図6の2段目に示すライン101の出力変化となる。この場合には、DPF4は、基準故障DPFよりもDPFを通過するPM量が多いので、故障であると判定する(S10)。S10、S11の後、図5のフローチャートの処理を終了する。なお、S4〜S6、S8〜S11の処理を実行するECU6が本発明の「故障判定手段」に相当する。S4〜S6、S8の処理を実行するECU6が本発明の「出力推定手段」に相当する。S9〜S11の処理を実行するECU6が本発明の「比較判定手段」に相当する。S4〜S6の処理を実行するECU6が本発明の「Soot量推定手段」に相当する。また、PMセンサ5及びS1〜S3、S7の処理を実行するECU6が本発明の「粒子状物質検出装置」に相当する。   On the other hand, when the sensor output is equal to or greater than the predetermined value K2 (S9: Yes), the sensor output has already risen, that is, the actual time is ahead of the reference time t0. In this case, the output change of the line 101 shown in the second stage of FIG. In this case, since the amount of PM passing through the DPF is larger than that of the reference failure DPF, the DPF 4 is determined to be a failure (S10). After S10 and S11, the process of the flowchart of FIG. In addition, ECU6 which performs the process of S4-S6 and S8-S11 is equivalent to the "failure determination means" of this invention. The ECU 6 that executes the processes of S4 to S6 and S8 corresponds to the “output estimating means” of the present invention. ECU6 which performs the process of S9-S11 is equivalent to the "comparison determination means" of this invention. The ECU 6 that executes the processes of S4 to S6 corresponds to the “soot amount estimating means” of the present invention. The PM sensor 5 and the ECU 6 that executes the processes of S1 to S3 and S7 correspond to the “particulate matter detection device” of the present invention.

以上説明したように、本実施形態によれば、図5のS1〜S3の処理により、SOF成分がほとんど発生しない時のみに静電捕集を実施しているので、Soot成分のみ(SOF成分を含まないPM)をPMセンサ5に捕集させることができる。よって、SOF成分の存在によるPMセンサ5の検出感度の低下やばらつきを防止でき、PMセンサ5で微量のPM量をも検出できる。結果、正確にDPF4の故障の有無を判定できる。   As described above, according to the present embodiment, electrostatic collection is performed only when the SOF component is hardly generated by the processing of S1 to S3 in FIG. PM not included) can be collected by the PM sensor 5. Therefore, it is possible to prevent a decrease in detection sensitivity and variation of the PM sensor 5 due to the presence of the SOF component, and the PM sensor 5 can detect a very small amount of PM. As a result, it is possible to accurately determine whether or not the DPF 4 has failed.

また、本実施形態によれば、図5のS7の処理でSOF再生制御を実行しているので、S3で静電捕集を開始した際に、微量なSOF成分がPMに含まれていたとしても、そのSOF成分をPMセンサ5の捕集対象から排除できる。よって、より一層、PMセンサ5の検出感度の低下を防止でき、より正確にDPF4の故障の有無を判定できる。   Further, according to the present embodiment, since the SOF regeneration control is executed in the process of S7 in FIG. 5, when electrostatic collection is started in S3, it is assumed that a small amount of SOF component is contained in the PM. Moreover, the SOF component can be excluded from the collection target of the PM sensor 5. Therefore, it is possible to further prevent the detection sensitivity of the PM sensor 5 from being lowered, and more accurately determine whether or not the DPF 4 has failed.

また、本実施形態によれば、図5のS4〜S6、S8の処理により、DPF4の故障判定の閾値となる基準時期を、SOF成分を排除した捕集Soot量に基づいて設定しているので、基準時期と実際のセンサ出力(Soot成分の量に応じた出力)の立ち上がり時期(実際時期)とを、同じ性格の値にそろえることができる。よって、正確にDPF4の故障の有無を判定できる。   In addition, according to the present embodiment, the processing of S4 to S6 and S8 in FIG. 5 sets the reference time as a threshold for determining the failure of the DPF 4 based on the collected soot amount excluding the SOF component. The rise time (actual time) of the reference time and the actual sensor output (output corresponding to the amount of the Soot component) can be made to have the same personality value. Therefore, it is possible to accurately determine whether or not the DPF 4 has failed.

なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、SOF再生制御において、ヒータのオフ期間、加熱期間の幅を、エンジンの運転状態にかかわらず一定としていたが、それら幅をエンジンの運転状態に基づくPMの排出状態に応じて変更しても良い。具体的には、例えばエンジンからのPMの排出量が多い場合には、オフ期間を長くしてより多くのPM量をPMセンサに捕集させる。これによって、エンジンからのPMの排出状態に応じて効率的にPMセンサにPMを捕集できる。また、加熱期間の幅は、オフ期間により捕集されたPM量(SOF成分の量)に応じて変更することで、効率的にSOF成分を燃焼除去できる。   In addition, this invention is not limited to the said embodiment, A various change is possible to the limit which does not deviate from description of a claim. For example, in the above-described embodiment, in the SOF regeneration control, the heater off period and the heating period width are constant regardless of the engine operating state, but the width depends on the PM discharge state based on the engine operating state. May be changed. Specifically, for example, when the amount of PM discharged from the engine is large, the off period is lengthened and a larger amount of PM is collected by the PM sensor. Thereby, PM can be efficiently collected by the PM sensor in accordance with the state of PM emission from the engine. In addition, the SOF component can be efficiently burned and removed by changing the width of the heating period according to the amount of PM (the amount of SOF component) collected during the off period.

また、上記実施形態では、図5の処理において、S1〜S3の処理に基づく第1特徴(SOF成分が発生しない時のみ静電捕集を実施)と、S4〜S6、S8の処理に基づく第2特徴(捕集Soot量(Soot割合)に基づいて故障判定の閾値(基準時期)を設定)と、S7の処理に基づく第3特徴(SOF成分のみ燃焼除去)とを全て実施した例を説明した。しかし、これら3つの特徴を全て実施しなくても良く、いずれか1つ、又は2つのみを実施しても良い。具体的には、例えば第1特徴のみ実施する場合には、図5の処理において、例えばS5〜S7の処理を省略し、S8では、S4で推定したPM捕集量Aの累積値が、導通開始捕集量K1に達したか否かを判定する。つまり、S1〜S3の処理でSOF成分が発生しない時のみ静電捕集を実施し、その後は、特許文献1と同様の方法でセンサ出力の立ち上がり時期に基づいてDPFの故障判定をする。また、第3特徴も実施する場合には、これにS7の処理を追加すれば良い。   Moreover, in the said embodiment, in the process of FIG. 5, the 1st characteristic based on the process of S1-S3 (I carry out electrostatic collection only when an SOF component does not generate | occur | produce) and the process based on the process of S4-S6, S8. An example in which all of the two features (the failure judgment threshold (reference time) is set based on the collected soot amount (soot ratio)) and the third feature (combustion removal of only the SOF component) based on the processing of S7 will be described. did. However, all three of these features need not be implemented, and any one or only two may be implemented. Specifically, for example, when only the first feature is performed, in the process of FIG. 5, for example, the processes of S5 to S7 are omitted, and in S8, the accumulated value of the PM collection amount A estimated in S4 is It is determined whether or not the starting collection amount K1 has been reached. That is, electrostatic collection is performed only when no SOF component is generated in the processes of S1 to S3, and thereafter, a failure determination of the DPF is performed based on the rising timing of the sensor output by the same method as in Patent Document 1. Moreover, what is necessary is just to add the process of S7 to this, also when implementing a 3rd characteristic.

また、例えば第1特徴、第2特徴のみ実施する場合には、図5の処理において、S7の処理を省略すれば良い。また、例えば、第2特徴のみ実施する場合には、図5の処理において、S1、S2の処理及びS7の処理を省略すれば良い。第2特徴、第3特徴を実施する場合には、図5の処理において、S1、S2の処理を省略すれば良い。また、例えば第3特徴のみ実施する場合には、図5の処理において、S1、S2の処理及びS5、S6の処理を省略するとともに、S8では、S4で推定したPM捕集量Aの累積値が、導通開始捕集量K1に達したか否かを判定すれば良い。このように、3つの特徴のいずれか1つ、又は2つのみを実施したとしても、正確にDPFの故障を検出できる。   For example, when only the first feature and the second feature are implemented, the process of S7 may be omitted in the process of FIG. Further, for example, when only the second feature is performed, the processes of S1 and S2 and the process of S7 may be omitted in the process of FIG. When implementing the second feature and the third feature, the processing of S1 and S2 may be omitted in the processing of FIG. For example, when only the third feature is performed, the processing of S1 and S2 and the processing of S5 and S6 are omitted in the processing of FIG. 5, and in S8, the cumulative value of the PM collection amount A estimated in S4. However, it may be determined whether or not the conduction start collection amount K1 has been reached. In this way, even if only one or two of the three features are implemented, it is possible to accurately detect a DPF failure.

また、上記実施形態では、センサ出力の立ち上がり時期に基づいてDPFの故障判定をしていたが、立ち上がり後の出力変化(出力の傾き)に基づいてDPFの故障判定をし、その際に本発明の特徴を適用しても良い。具体的には、例えば上記第1特徴(S1〜S3の処理)や第3特徴(S7の処理)を実施しつつ、DPFが基準故障DPFの場合におけるPMセンサの出力変化を故障判定の閾値として推定し、その閾値と実際の出力変化とを比較して、実際の出力変化のほうが閾値より大きければDPF故障と判定し、小さければDPF正常と判定する。これによって、第1特徴や第3特徴の実施により、閾値と比較する実際の出力変化の感度(PMセンサの検出感度)を向上できるので、DPFの故障判定を正確に行うことができる。さらに、この閾値(DPFが基準故障DPFの場合におけるPMセンサの出力変化)を第2特徴に基づいて設定しても良い。つまり、Soot割合に基づいてPMセンサに捕集されたSoot量(捕集Soot量)を推定し(図5のS4〜S6)、推定した捕集Soot量の変化を閾値に設定する。これによって、正確にDPFの故障を検出できる。   In the above embodiment, the DPF failure is determined based on the rise time of the sensor output. However, the DPF failure is determined based on the output change (output slope) after the rise. The features of may be applied. Specifically, for example, while performing the first feature (the processing of S1 to S3) and the third feature (the processing of S7), the output change of the PM sensor when the DPF is the reference failure DPF is used as a failure determination threshold value. Then, the threshold value is compared with the actual output change, and if the actual output change is larger than the threshold value, it is determined that the DPF has failed, and if it is smaller, it is determined that the DPF is normal. Thus, by implementing the first feature and the third feature, the sensitivity of the actual output change compared with the threshold value (PM sensor detection sensitivity) can be improved, so that the DPF failure determination can be performed accurately. Furthermore, this threshold value (PM sensor output change when the DPF is the reference failure DPF) may be set based on the second feature. That is, the soot amount (collected soot amount) collected by the PM sensor is estimated based on the soot ratio (S4 to S6 in FIG. 5), and a change in the estimated collected soot amount is set as a threshold value. As a result, a failure of the DPF can be accurately detected.

また、上記第1特徴、第3特徴に基づくPM量の検出を、DPFの故障判定以外の用途に適用しても良い。具体的には、例えば、PMセンサをDPFの上流に設置して、そのPMセンサの出力に基づきDPFに流入するPM量を推定する用途に、第1特徴(S1〜S3の処理)や第3特徴(S7の処理)を適用しても良い。これによって、PMセンサの検出感度を向上できるので、DPFの流入するPM量を正確に推定できる。   The detection of the PM amount based on the first feature and the third feature may be applied to uses other than the DPF failure determination. Specifically, for example, a PM sensor is installed upstream of the DPF, and the first feature (processing of S1 to S3) or the third is used for estimating the amount of PM flowing into the DPF based on the output of the PM sensor. The feature (the process of S7) may be applied. As a result, the detection sensitivity of the PM sensor can be improved, so that the amount of PM into which the DPF flows can be accurately estimated.

1 エンジンシステム(フィルタの故障検出装置)
2 ディーゼルエンジン(内燃機関)
3 排気通路
4 DPF(フィルタ)
5 PMセンサ(センサ)
52 センサ素子(素子)
53 電極
6 ECU
1 Engine system (filter failure detection device)
2 Diesel engine (internal combustion engine)
3 Exhaust passage 4 DPF (filter)
5 PM sensor (sensor)
52 Sensor element
53 Electrode 6 ECU

Claims (16)

内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質を捕集するフィルタ(4)と、
前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極(53)を有した絶縁体の素子(52)を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサ(5)と、
粒子状物質のうちSoot成分が前記素子に捕集された状態での前記センサの出力であるSoot量出力に基づいて前記フィルタの故障の有無を判定する故障判定手段(S4〜S6、S8〜S11)と、
前記故障判定手段が前記フィルタの故障の有無を判定する際に、前記Soot成分が前記素子に残留することを許容し、前記Soot成分よりも導電性が低い低導電性成分が前記素子に残留することを抑制するように制御する捕集制御手段(S1〜S3、S7)と、
を備えることを特徴とするフィルタの故障検出装置(1)。
A filter (4) provided in the exhaust passage (3) of the internal combustion engine (2) for collecting particulate matter in the exhaust gas;
An insulating element (52) having a pair of electrodes (53) that is provided downstream of the filter in the exhaust passage and collects particulate matter in the exhaust gas, and is connected between the pair of electrodes. A sensor (5) that generates an output depending on the amount of particulate matter sometimes collected in the element;
Failure determination means (S4 to S6, S8 to S11) for determining the presence or absence of a failure of the filter based on a soot amount output which is an output of the sensor in a state where a soot component is collected in the element. )When,
When the failure determination means determines the presence or absence of a failure of the filter, the soot component is allowed to remain in the element, and a low conductivity component having lower conductivity than the soot component remains in the element. Collection control means (S1 to S3, S7) for controlling to suppress this,
A filter failure detection apparatus (1), comprising:
前記素子を加熱する加熱手段(56)を備え、
前記捕集制御手段は、前記低導電性成分は燃焼するが、Soot成分は燃焼しない温度として200〜300℃以上且つ500〜600℃未満の温度で前記素子を加熱するように前記加熱手段を制御する加熱制御手段(S7)を備えることを特徴とする請求項1に記載のフィルタの故障検出装置。
Heating means (56) for heating the element;
The collection control means controls the heating means to heat the element at a temperature of 200 to 300 ° C. or more and less than 500 to 600 ° C. as a temperature at which the low-conductivity component burns but the soot component does not burn. The filter failure detection device according to claim 1, further comprising heating control means (S7).
前記加熱制御手段は、前記素子への加熱をオフにした状態で前記素子にSoot成分及び前記低導電性成分を含む粒子状物質の捕集を行った後に、前記温度で前記素子を加熱することで前記センサに捕集された粒子状物質から前記低導電性成分としてのSOF成分を排除することを特徴とする請求項2に記載のフィルタの故障検出装置。 Said heating control means, after the collection of the particulate matter containing Soot component and the low-conductive component in the device while the off heat to the element, heating the element at said temperature 3. The filter failure detection device according to claim 2, wherein the SOF component as the low-conductivity component is excluded from the particulate matter collected by the sensor . 前記加熱制御手段は、前記素子への加熱をオフにした状態で前記素子にSoot成分及び前記低導電性成分を含む粒子状物質の捕集を行うオフ期間(103)と、前記温度で前記素子を加熱して前記素子から前記低導電性成分を燃焼除去する加熱期間(104)とが交互に繰り返されるように、前記素子への加熱を制御することを特徴とする請求項3に記載のフィルタの故障検出装置。   The heating control means includes an off period (103) in which particulate matter containing a soot component and the low-conductivity component is collected in the element in a state where heating to the element is turned off, and the element at the temperature. The filter according to claim 3, wherein heating of the element is controlled so that a heating period (104) in which the low-conductivity component is burned and removed from the element is alternately repeated by heating the element. Failure detection device. 前記捕集制御手段は、
前記低導電性成分が発生しない前記内燃機関の運転状態として予め定められた不発生運転状態が成立したか否かを判定する状態判定手段(S1)と、
前記状態判定手段が前記不発生運転状態が成立と判定した場合に、前記一対の電極間に電圧を印加して前記素子への粒子状物質の捕集を実施する一方で、前記不発生運転状態が成立しないと判定した場合には前記一対の電極間への電圧印加を停止して前記素子への粒子状物質の捕集を停止する実施制御手段(S2、S3)とを備えることを特徴とする請求項1〜4のいずれか1項に記載のフィルタの故障検出装置。
The collection control means includes
State determination means (S1) for determining whether or not a predetermined non-occurrence operating state is established as an operating state of the internal combustion engine in which the low conductivity component is not generated;
When the state determination means determines that the non-occurrence operation state is established, a voltage is applied between the pair of electrodes to collect particulate matter on the element, while the non-occurrence operation state And a control unit (S2, S3) for stopping the application of voltage between the pair of electrodes and stopping the collection of the particulate matter to the element when it is determined that the above is not established. The filter failure detection device according to any one of claims 1 to 4.
前記故障判定手段は、
前記内燃機関の運転状態に基づいて、前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力を推定する出力推定手段(S4〜S6、S8)と、
前記出力推定手段が推定した出力を閾値としてその閾値と前記センサの実際の出力との比較に基づいて前記フィルタの故障の有無を判定する比較判定手段(S9〜S11)とを備えることを特徴とする請求項1〜5のいずれか1項に記載のフィルタの故障検出装置。
The failure determination means includes
Output estimation means (S4 to S6, S8) for estimating the output of the sensor when the filter is a filter that is a criterion for failure determination based on the operating state of the internal combustion engine;
Comparing and determining means (S9 to S11) for determining the presence or absence of a failure of the filter based on a comparison between the threshold value and the actual output of the sensor, using the output estimated by the output estimating means as a threshold value. The filter failure detection device according to any one of claims 1 to 5.
前記出力推定手段は、前記フィルタが故障判定の基準となるフィルタである場合における前記素子に捕集される粒子状物質のうちのSoot成分の量である捕集Soot量を前記内燃機関の運転状態に基づいて推定するSoot量推定手段(S4〜S6)を備え、前記捕集Soot量に基づいて前記閾値を推定することを特徴とする請求項6に記載のフィルタの故障検出装置。   The output estimation means calculates the collected soot amount, which is the amount of the soot component of the particulate matter collected by the element, when the filter is a filter that serves as a criterion for failure determination, as an operating state of the internal combustion engine. 7. A filter failure detection apparatus according to claim 6, further comprising a soot amount estimating means (S4 to S6) for estimating the threshold based on the collected soot amount. 内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質を捕集するフィルタ(4)と、
前記排気通路の前記フィルタより下流に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極(53)を有した絶縁体の素子(52)を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサ(5)と、
前記内燃機関の運転状態に基づいて、前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力を推定する出力推定手段(S4〜S6、S8)と、
前記出力推定手段が推定した出力を閾値としてその閾値と前記センサの実際の出力との比較に基づいて前記フィルタの故障の有無を判定する比較判定手段(S9〜S11)とを備え、
前記出力推定手段は、前記フィルタが故障判定の基準となるフィルタである場合における前記素子に捕集される粒子状物質のうちのSoot成分の量である捕集Soot量を前記内燃機関の運転状態に基づいて推定するSoot量推定手段(S4〜S6)を備え、前記捕集Soot量に基づいて前記閾値を推定することを特徴とするフィルタの故障検出装置(1)。
A filter (4) provided in the exhaust passage (3) of the internal combustion engine (2) for collecting particulate matter in the exhaust gas;
An insulating element (52) having a pair of electrodes (53) that is provided downstream of the filter in the exhaust passage and collects particulate matter in the exhaust gas, and is connected between the pair of electrodes. A sensor (5) that generates an output depending on the amount of particulate matter sometimes collected in the element;
Output estimation means (S4 to S6, S8) for estimating the output of the sensor when the filter is a filter that is a criterion for failure determination based on the operating state of the internal combustion engine;
Comparing and determining means (S9 to S11) for determining the presence or absence of a failure of the filter based on a comparison between the threshold value and the actual output of the sensor, with the output estimated by the output estimating means as a threshold value;
The output estimation means calculates the collected soot amount, which is the amount of the soot component of the particulate matter collected by the element, when the filter is a filter that serves as a criterion for failure determination, as an operating state of the internal combustion engine. And a soot amount estimating means (S4 to S6) for estimating the threshold based on the collected soot amount.
前記出力推定手段(S8)は、前記捕集Soot量に基づいて、前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力が立ち上がる時期である基準時期を前記閾値として推定し、
前記比較判定手段は、前記センサの出力が実際に立ち上がる時期である実際時期と前記基準時期とを比較して、前記実際時期が前記基準時期より先の場合に前記フィルタが故障であると判定し、前記実際時期が前記基準時期より後の場合に前記フィルタが正常であると判定することを特徴とする請求項7又は8に記載のフィルタの故障検出装置。
The output estimating means (S8) estimates, based on the collected soot amount, a reference time, which is a time when the output of the sensor rises when the filter is a filter serving as a reference for failure determination, as the threshold value,
The comparison / determination unit compares the reference time with an actual time when the output of the sensor actually rises, and determines that the filter is faulty when the actual time is earlier than the reference time. The filter failure detection device according to claim 7 or 8, wherein the filter is determined to be normal when the actual time is later than the reference time.
内燃機関(2)の排気通路(3)に設けられ、排気ガス中の粒子状物質を捕集する、一対の電極(53)を有した絶縁体の素子(52)を備え、前記一対の電極間の導通時に前記素子に捕集された粒子状物質の量に応じた出力を発生するセンサ(5)と、
粒子状物質のうちSoot成分が前記素子に捕集されることは許容し、Soot成分よりも導電性が低い低導電性成分が前記素子に捕集されることは禁止するように捕集制御する捕集制御手段(6)と、
を備えることを特徴とする粒子状物質検出装置。
An insulating element (52) having a pair of electrodes (53) that is provided in the exhaust passage (3) of the internal combustion engine (2) and collects particulate matter in the exhaust gas, the pair of electrodes A sensor (5) for generating an output corresponding to the amount of particulate matter collected by the element during conduction between the element and
The soot component of particulate matter is allowed to be collected by the element, and the collection control is performed so as to prohibit the low conductive component having lower conductivity than the soot component from being collected by the element. Collection control means (6);
A particulate matter detection device comprising:
前記素子を加熱する加熱手段(56)を備え、
前記捕集制御手段は、前記低導電性成分は燃焼するが、Soot成分は燃焼しない温度として200〜300℃以上且つ500〜600℃未満の温度で前記素子を加熱するように前記加熱手段を制御する加熱制御手段(S7)を備えることを特徴とする請求項10に記載の粒子状物質検出装置。
Heating means (56) for heating the element;
The collection control means controls the heating means to heat the element at a temperature of 200 to 300 ° C. or more and less than 500 to 600 ° C. as a temperature at which the low-conductivity component burns but the soot component does not burn. The particulate matter detection device according to claim 10, further comprising a heating control unit (S <b> 7).
前記加熱制御手段は、前記素子への加熱をオフにした状態で前記素子にSoot成分及び前記低導電性成分を含む粒子状物質の捕集を行った後に、前記温度で前記素子を加熱することで前記センサに捕集された粒子状物質から前記低導電性成分としてのSOF成分を排除することを特徴とする請求項11に記載の粒子状物質検出装置。 Said heating control means, after the collection of the particulate matter containing Soot component and the low-conductive component in the device while the off heat to the element, heating the element at said temperature The particulate matter detection device according to claim 11, wherein the SOF component as the low-conductivity component is excluded from the particulate matter collected by the sensor . 前記加熱制御手段は、前記素子への加熱をオフにした状態で前記素子にSoot成分及び前記低導電性成分を含む粒子状物質の捕集を行うオフ期間と、前記温度で前記素子を加熱して前記素子から前記低導電性成分を燃焼除去する加熱期間とが交互に繰り返されるように、前記素子への加熱を制御することを特徴とする請求項12に記載の粒子状物質検出装置。   The heating control means heats the element at an off period in which particulate matter including a Soot component and the low-conductivity component is collected in the element in a state where heating to the element is turned off, and the temperature. The particulate matter detection device according to claim 12, wherein heating of the element is controlled so that a heating period for burning and removing the low-conductivity component from the element is alternately repeated. 前記捕集制御手段は、
前記低導電性成分が発生しない前記内燃機関の運転状態として予め定められた不発生運転状態が成立したか否かを判定する状態判定手段(S1)と、
前記状態判定手段が前記不発生運転状態が成立と判定した場合に、前記一対の電極間に電圧を印加して前記素子への粒子状物質の捕集を実施する一方で、前記不発生運転状態が成立しないと判定した場合には前記一対の電極間への電圧印加を停止して前記素子への粒子状物質の捕集を停止する実施制御手段(S2、S3)とを備えることを特徴とする請求項10〜13のいずれか1項に記載の粒子状物質検出装置。
The collection control means includes
State determination means (S1) for determining whether or not a predetermined non-occurrence operating state is established as an operating state of the internal combustion engine in which the low conductivity component is not generated;
When the state determination means determines that the non-occurrence operation state is established, a voltage is applied between the pair of electrodes to collect particulate matter on the element, while the non-occurrence operation state And a control unit (S2, S3) for stopping the application of voltage between the pair of electrodes and stopping the collection of the particulate matter to the element when it is determined that the above is not established. The particulate matter detection device according to any one of claims 10 to 13.
前記低導電性成分は有機溶剤可溶成分であることを特徴とする請求項1〜7のいずれか1項に記載のフィルタの故障検出装置。   The filter failure detection apparatus according to claim 1, wherein the low-conductivity component is an organic solvent-soluble component. 前記低導電性成分は有機溶剤可溶成分であることを特徴とする請求項10〜14のいずれか1項に記載の粒子状物質検出装置。   The particulate matter detection device according to claim 10, wherein the low-conductivity component is an organic solvent-soluble component.
JP2014053769A 2014-03-17 2014-03-17 Filter failure detection device and particulate matter detection device Active JP6172466B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014053769A JP6172466B2 (en) 2014-03-17 2014-03-17 Filter failure detection device and particulate matter detection device
DE102015103176.0A DE102015103176A1 (en) 2014-03-17 2015-03-05 A filter failure detection device and a particulate matter detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053769A JP6172466B2 (en) 2014-03-17 2014-03-17 Filter failure detection device and particulate matter detection device

Publications (2)

Publication Number Publication Date
JP2015175321A JP2015175321A (en) 2015-10-05
JP6172466B2 true JP6172466B2 (en) 2017-08-02

Family

ID=54010322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053769A Active JP6172466B2 (en) 2014-03-17 2014-03-17 Filter failure detection device and particulate matter detection device

Country Status (2)

Country Link
JP (1) JP6172466B2 (en)
DE (1) DE102015103176A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6505578B2 (en) * 2015-10-28 2019-04-24 株式会社Soken Filter failure detection device, particulate matter detection device
JP6630581B2 (en) * 2016-02-01 2020-01-15 日本特殊陶業株式会社 Particle detection system
WO2017163650A1 (en) * 2016-03-22 2017-09-28 株式会社デンソー Particulate matter detecting device
JP6492035B2 (en) * 2016-03-22 2019-03-27 株式会社Soken Particulate matter detector
DE102016206437B4 (en) 2016-04-15 2019-08-14 Continental Automotive Gmbh Process for the regeneration of a particulate filter in the exhaust system of an internal combustion engine
CN106226088B (en) * 2016-07-29 2018-10-02 昆明理工大学 A method of to carbon cake layer sampling without damage and measurement in grain catcher
CN112083715A (en) * 2020-09-30 2020-12-15 中国汽车工程研究院股份有限公司 Method for removing fault code by GPF
CN114370320B (en) * 2022-01-21 2023-04-18 潍柴动力股份有限公司 Method and device for determining SOF (thermal decomposition of Engine oil) pyrolysis temperature and vehicle
CN114738097B (en) * 2022-05-07 2023-05-23 潍柴动力股份有限公司 DPF trapping efficiency monitoring method and device and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106193B2 (en) 1991-05-08 2000-11-06 龍夫 岡崎 Electrolyzed water generator
JP2012012960A (en) * 2010-06-29 2012-01-19 Nippon Soken Inc Particulate matter detection sensor
JP5115873B2 (en) * 2010-12-08 2013-01-09 株式会社デンソー Particulate filter failure detection device
WO2013076869A1 (en) * 2011-11-25 2013-05-30 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2015175321A (en) 2015-10-05
DE102015103176A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6172466B2 (en) Filter failure detection device and particulate matter detection device
JP5115873B2 (en) Particulate filter failure detection device
JP5751330B2 (en) Control device for internal combustion engine
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP5549780B2 (en) Control device for internal combustion engine
JP6197377B2 (en) Exhaust purification device
JP6426072B2 (en) Filter failure detection device, particulate matter detection device
JP5582459B2 (en) Particulate matter detection device and particulate filter failure detection device
JP6361918B2 (en) Filter failure detection device
JP6061203B2 (en) Filter failure detection device
JP2010275977A (en) Failure determining device of particulate matter detecting means
JP2011080439A (en) Device for detecting abnormality of particulate filter
JP6372789B2 (en) Filter fault diagnosis device
JP2008190502A (en) Particulate matter emission detection device of internal combustion engine
JP6004028B2 (en) Failure diagnosis device for exhaust purification system
US20160288037A1 (en) Abnormality diagnosis apparatus for particulate filter
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
JP6481966B2 (en) Control device
JP5924546B2 (en) Filter failure detection device
JP5768892B2 (en) Control device for internal combustion engine
WO2018230570A1 (en) Failure detection apparatus and failure detection method for particulate filter
WO2015053323A1 (en) Exhaust purification system
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
WO2016052734A1 (en) Filter failure detection device, and particulate matter detection device
JP2011089430A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R151 Written notification of patent or utility model registration

Ref document number: 6172466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250