JP2011169757A - Resistive oxygen sensor element - Google Patents

Resistive oxygen sensor element Download PDF

Info

Publication number
JP2011169757A
JP2011169757A JP2010034126A JP2010034126A JP2011169757A JP 2011169757 A JP2011169757 A JP 2011169757A JP 2010034126 A JP2010034126 A JP 2010034126A JP 2010034126 A JP2010034126 A JP 2010034126A JP 2011169757 A JP2011169757 A JP 2011169757A
Authority
JP
Japan
Prior art keywords
partial pressure
pressure detection
oxygen partial
oxygen
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010034126A
Other languages
Japanese (ja)
Inventor
Makoto Katsuta
信 勝田
Kenji Saito
賢二 斉藤
Maki Inoue
真希 井上
Toshimasa Suzuki
利昌 鈴木
Mitsuhisa Kondo
光央 近藤
Masaki Ito
雅樹 伊藤
Takayuki Murai
孝之 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2010034126A priority Critical patent/JP2011169757A/en
Publication of JP2011169757A publication Critical patent/JP2011169757A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistive oxygen sensor element stably detecting oxygen concentration of gas discharged from an internal combustion engine. <P>SOLUTION: A pair of oxygen partial pressure detection electrodes 2 and an oxygen partial pressure detection layer 3 containing CeO<SB>2</SB>are formed at one main surface side of an insulating substrate 1, and a heater electrode 4 and a heater protective layer 5 are provided on the other main surface. The amount of Si included in the insulating substrate is not more than 15 ppm for the weight of the substrate, and the amount of Si included in the oxygen partial pressure detection electrode 2 is not more than 1 wt.% for the weight of the oxygen partial pressure detection layer 3, thus reducing a change in a value of resistance of the oxygen partial pressure detection layer with time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の空燃比の計測に用いられる抵抗型酸素センサ素子に関するものであり、特に、酸素センサ素子に形成される酸素分圧検出層の抵抗値の経時変化を小さくすることを可能とした抵抗型酸素センサ素子に関するものである。   The present invention relates to a resistance-type oxygen sensor element used for measuring an air-fuel ratio of an internal combustion engine, and in particular, it is possible to reduce a change with time of a resistance value of an oxygen partial pressure detection layer formed in the oxygen sensor element. This relates to the resistance type oxygen sensor element.

環境問題やエネルギー問題の観点から、内燃機関の燃費を向上させたり、内燃機関の排気ガス中に含まれる規制物質(NOxなど)の排出量を低減したりすることが求められている。このためには、常に最適な条件で燃料の燃焼が行えるよう、燃焼状態に応じて燃料と空気との比率を適切に制御する必要がある。空気と燃料との比率は空燃比(A/F)と呼ばれ、三元触媒を用いる場合、最適な空燃比は理論空燃比である。理論空燃比とは、空気と燃料とが過不足なく燃焼する空燃比である。   From the viewpoint of environmental problems and energy problems, it is required to improve the fuel consumption of an internal combustion engine and to reduce the emission amount of regulated substances (such as NOx) contained in the exhaust gas of the internal combustion engine. For this purpose, it is necessary to appropriately control the ratio of fuel to air in accordance with the combustion state so that the fuel can always be burned under optimum conditions. The ratio of air to fuel is called the air / fuel ratio (A / F), and when using a three-way catalyst, the optimum air / fuel ratio is the stoichiometric air / fuel ratio. The stoichiometric air-fuel ratio is an air-fuel ratio in which air and fuel burn without excess or deficiency.

理論空燃比で燃料が燃焼している場合、排気ガス中には一定の酸素が含まれる。空燃比が理論空燃比よりも小さい場合、つまり、燃料の濃度が高い場合には、排気ガス中の酸素量が、理論空燃比の場合の酸素量に比べて減少する。一方、空燃比が理論空燃比よりも大きい(燃料の濃度が低い)場合には、排気ガス中の酸素量は増加する。このため、排気ガス中の酸素量あるいは酸素濃度を計測することによって、空燃比が理論空燃比からどの程度ずれているかを推定し、空燃比を調節して最適な条件で燃料が燃焼するように制御することが可能となる。   When the fuel is burned at the stoichiometric air-fuel ratio, certain oxygen is contained in the exhaust gas. When the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, that is, when the fuel concentration is high, the oxygen amount in the exhaust gas decreases compared to the oxygen amount in the case of the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio is larger than the stoichiometric air-fuel ratio (fuel concentration is low), the amount of oxygen in the exhaust gas increases. Therefore, by measuring the amount of oxygen or oxygen concentration in the exhaust gas, it is estimated how much the air-fuel ratio deviates from the stoichiometric air-fuel ratio, and the fuel is combusted under optimum conditions by adjusting the air-fuel ratio. It becomes possible to control.

排気ガス中の酸素濃度を計測するための酸素センサとしては、固体電解質を用いた酸素センサや、抵抗型の酸素センサが知られている。固体電解質を用いた酸素センサは、基準極および測定極間での酸素分圧の違いを起電力として検出することによって酸素濃度を測定する。このため、この方式の酸素センサでは、測定極および基準極を排気ガスおよび空気にそれぞれ曝す必要がある。従って、酸素センサ自体の構造が複雑になるとともに、排気管に酸素センサを取り付けるための構造も複雑化してしまう。また、構造が複雑になるために、酸素センサを小型化し難いという問題も生じる。   As an oxygen sensor for measuring the oxygen concentration in the exhaust gas, an oxygen sensor using a solid electrolyte and a resistance type oxygen sensor are known. An oxygen sensor using a solid electrolyte measures an oxygen concentration by detecting a difference in oxygen partial pressure between a reference electrode and a measurement electrode as an electromotive force. For this reason, in this type of oxygen sensor, it is necessary to expose the measurement electrode and the reference electrode to exhaust gas and air, respectively. Therefore, the structure of the oxygen sensor itself is complicated, and the structure for attaching the oxygen sensor to the exhaust pipe is also complicated. Further, since the structure is complicated, there is a problem that it is difficult to reduce the size of the oxygen sensor.

これに対して、抵抗型酸素センサは、排気ガスに接するように設けられた酸素分圧検出層の抵抗率の変化を検出する。排気ガス中の酸素分圧が変化すると、酸化物半導体中の酸素空孔濃度が変動するので、酸素分圧検出層の抵抗率が変化する。従って、この抵抗率の変化を検出することにより、酸素濃度を測定することができる。抵抗型酸素センサは、基準極を必要としないため、酸素センサ自体の構造を簡単にすることができる。また、排気管に酸素センサを取り付けるための構造も簡単にすることができる。   On the other hand, the resistance type oxygen sensor detects a change in the resistivity of the oxygen partial pressure detection layer provided in contact with the exhaust gas. When the oxygen partial pressure in the exhaust gas changes, the oxygen vacancy concentration in the oxide semiconductor changes, so that the resistivity of the oxygen partial pressure detection layer changes. Therefore, the oxygen concentration can be measured by detecting this change in resistivity. Since the resistance-type oxygen sensor does not require a reference electrode, the structure of the oxygen sensor itself can be simplified. Further, the structure for attaching the oxygen sensor to the exhaust pipe can be simplified.

こうした抵抗型酸素センサに用いられる酸素分圧検出層には、酸化セリウムなどのn型酸化物半導体を用いた多孔質膜が用いられる。n型酸化物半導体は、電子伝導性を有しており、多孔質状に連鎖した粒子間を電子が移動する。また、抵抗型酸素センサは内燃機関から排出される高温の気体に直接さらされる為、その酸素分圧検出層は、高温下で絶縁性をもつ、アルミナなどの耐熱基板上に形成されている。
従来、こうした酸化セリウムなどのn型酸化物半導体を用いた多孔質膜を用いた抵抗型酸素センサ素子については、その検出精度を向上させるために種々の検討がなされている。
例えば、特許文献1では、セリウムを含む酸化物にジルコニウムを添加することにより、酸素分圧検出層の電子伝導度が上がり、検出精度が向上するとしている。
また、特許文献2では、酸素分圧検出層が、アルミナを含むアルミナ含有層を含んでおり、検出電極をこのアルミナ含有層に接触するように設けることにより、検出精度が向上するとしている。
A porous film using an n-type oxide semiconductor such as cerium oxide is used for the oxygen partial pressure detection layer used in such a resistance oxygen sensor. An n-type oxide semiconductor has electron conductivity, and electrons move between particles chained in a porous shape. Further, since the resistance type oxygen sensor is directly exposed to a high-temperature gas exhausted from the internal combustion engine, the oxygen partial pressure detection layer is formed on a heat-resistant substrate such as alumina having insulation at high temperatures.
Conventionally, various studies have been made on resistance oxygen sensor elements using a porous film using an n-type oxide semiconductor such as cerium oxide in order to improve the detection accuracy.
For example, in Patent Document 1, adding zirconium to an oxide containing cerium increases the electron conductivity of the oxygen partial pressure detection layer and improves detection accuracy.
Further, in Patent Document 2, the oxygen partial pressure detection layer includes an alumina-containing layer containing alumina, and the detection accuracy is improved by providing the detection electrode so as to contact the alumina-containing layer.

一方、特許文献3には、アルミナの含有量が99.99重量%以上のアルミナ粉末を用いることにより、高温での焼成を必要とせずにアルミナ質焼結体が得られること、及びこのアルミナ質焼結体を基板とし、これに固体電解質体を設けたガスセンサ素子は、固体電解質に亀裂を生ずることがなく、耐久性に優れていることが記載されている。   On the other hand, in Patent Document 3, by using an alumina powder having an alumina content of 99.99% by weight or more, an alumina sintered body can be obtained without requiring firing at a high temperature, and the alumina material. It is described that a gas sensor element in which a sintered body is used as a substrate and a solid electrolyte body is provided thereon has excellent durability without causing cracks in the solid electrolyte.

特許第3870261号公報Japanese Patent No. 3870261 特開2007−327941号公報JP 2007-327941 A 特開2001−348265号公報JP 2001-348265 A

本発明者らは、内燃機関の空燃比の計測に用いられる抵抗型酸素センサ素子についてさらに検討したところ、抵抗型酸素センサを用いて内燃機関から排出される気体の酸素濃度を検出する場合、酸素分圧検出層の抵抗値が時間の経過と共に変化し、安定した抵抗値を得ることができない場合があることが判明した。
本発明は、以上のような事情に鑑みてなされたものであって、内燃機関の空燃比の計測に用いられる抵抗型酸素センサ素子において、酸素センサ素子に形成される酸素分圧検出層の抵抗値の経時変化を小さくすることを可能とした抵抗型酸素センサ素子を提供することを目的とするものである。
The present inventors further examined a resistance-type oxygen sensor element used for measuring the air-fuel ratio of the internal combustion engine. When the oxygen concentration of the gas discharged from the internal combustion engine is detected using the resistance-type oxygen sensor, It has been found that the resistance value of the partial pressure detection layer may change with time and a stable resistance value may not be obtained.
The present invention has been made in view of the above circumstances, and is a resistance-type oxygen sensor element used for measuring an air-fuel ratio of an internal combustion engine, and a resistance of an oxygen partial pressure detection layer formed in the oxygen sensor element. An object of the present invention is to provide a resistance-type oxygen sensor element capable of reducing the change with time of the value.

本発明は、上記課題を解決する為に、実験を重ねた結果、抵抗型酸素センサ素子に用いられる、アルミナからなる絶縁基板及び電極に含まれるSiに起因することが判明した。
すなわち、アルミナからなる基板上に形成した酸素分圧検出層は、高温下に長時間曝されることになるため、アルミナからなる基板に含まれるSiが酸素分圧検出層に拡散することになる。Siが酸素分圧検出層に拡散すると、多孔質状に連鎖したn型酸化物半導体粒子間にSiが析出し、電子の移動経路を阻害することになり、酸素分圧検出層の抵抗値を安定して得ることができない。
また、酸素分圧検出電極、及びヒータ電極、アルミナからなるヒータ保護層を形成させる部材にSiが含有した場合には、それぞれをアルミナ基板上で焼成させる工程で、それぞれに含まれるSiがアルミナ基板の表面に拡散し、上記同様の結果をもたらす。
As a result of repeated experiments to solve the above-described problems, the present invention has been found to be caused by Si contained in an insulating substrate made of alumina and an electrode used in a resistance-type oxygen sensor element.
That is, since the oxygen partial pressure detection layer formed on the substrate made of alumina is exposed to a high temperature for a long time, Si contained in the substrate made of alumina diffuses into the oxygen partial pressure detection layer. . When Si diffuses into the oxygen partial pressure detection layer, Si is deposited between the n-type oxide semiconductor particles chained in a porous state, which obstructs the electron movement path, and the resistance value of the oxygen partial pressure detection layer is reduced. It cannot be obtained stably.
Further, when Si is contained in the oxygen partial pressure detecting electrode, the heater electrode, and the member for forming the heater protective layer made of alumina, each of the Si contained in the alumina substrate is a step of firing on the alumina substrate. Diffuses to the surface of the surface, yielding the same results as above.

上記特許文献3の発明は、アルミナ基板中のSiの濃度が限定されたものであるが、該文献では、SiOがアルミナ基板の緻密化を阻害するものとして書かれており、基板に含有するSiが抵抗型酸素センサにおける酸素分圧検出層の特性に影響することなどは、全く考慮されていない。また、アルミナ基板以外の、素子を形成する部材におけるSi含有量については全く考慮されていない。さらに、特許文献3には、固体電解質を用いた酸素センサについては記載があるが、n型酸化物半導体からなる酸素分圧検出層を備えた抵抗型酸素センサについては記載がない。 The invention of the above-mentioned Patent Document 3 is that the concentration of Si in the alumina substrate is limited, but in this document, SiO 2 is written as inhibiting the densification of the alumina substrate and is contained in the substrate. The influence of Si on the characteristics of the oxygen partial pressure detection layer in the resistance oxygen sensor is not considered at all. Further, no consideration is given to the Si content in members forming the element other than the alumina substrate. Further, Patent Document 3 describes an oxygen sensor using a solid electrolyte, but does not describe a resistance oxygen sensor including an oxygen partial pressure detection layer made of an n-type oxide semiconductor.

本発明は、前述の知見に基づき更に実験を重ねた結果、抵抗型酸素センサ素子に用いられる、アルミナからなる絶縁基板に含まれるSi量をSiO換算で15ppm以下とし、酸素分圧検出電極の各部に含まれるSi量が、SiOとして換算した場合に、酸素分圧検出層の重量に対して1重量%以下とすれば、抵抗型酸素センサ素子が長時間高温下に曝された場合や、センサ素子を作製する工程で、アルミナからなる絶縁基板あるいは酸素分圧検出電極から、酸素分圧検出層へのSiの拡散を抑制することができ、それにより、Siの拡散によって引き起こされるn型半導体酸化物からなる酸素分圧検出層の抵抗値の変動を抑制することができることが確認された。 According to the present invention, as a result of further experiments based on the above-described knowledge, the amount of Si contained in an insulating substrate made of alumina used for a resistance type oxygen sensor element is 15 ppm or less in terms of SiO 2 , and the oxygen partial pressure detection electrode When the amount of Si contained in each part is converted to SiO 2 and it is 1% by weight or less with respect to the weight of the oxygen partial pressure detection layer, the resistance oxygen sensor element is exposed to a high temperature for a long time or In the process of producing the sensor element, it is possible to suppress the diffusion of Si from the insulating substrate made of alumina or the oxygen partial pressure detection electrode to the oxygen partial pressure detection layer, thereby causing the n-type caused by the diffusion of Si. It was confirmed that fluctuations in the resistance value of the oxygen partial pressure detection layer made of a semiconductor oxide can be suppressed.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
アルミナ焼結体からなる絶縁基板と、
該絶縁基板の一方の主面側に形成された一対の酸素分圧検出電極と、
前記一方の主面側に前記一対の電極と接するように形成されたCeOを含有する酸化物半導体からなる酸素分圧検出層と、
前記絶縁基板の他方の主面上に形成されたヒータ電極と、
前記他方の主面側に、前記ヒータ電極を被覆するように形成されたAlを主成分とする焼付け膜からなるヒータ保護層とを有し、
前記絶縁基板中に含まれるSi量が、SiOとして換算した場合に、基板の重量に対して15ppm以下でかつ、前記酸素分圧検出電極に含まれるSi量が、SiOとして換算した場合に、前記酸素分圧検出層の重量に対して1重量%以下であることを特徴とする、内燃機関の空燃比の計測に用いられる抵抗型酸素センサ素子。
The present invention has been completed based on these findings, and is as follows.
An insulating substrate made of an alumina sintered body;
A pair of oxygen partial pressure detection electrodes formed on one main surface side of the insulating substrate;
An oxygen partial pressure detection layer made of an oxide semiconductor containing CeO 2 formed on the one main surface side so as to be in contact with the pair of electrodes;
A heater electrode formed on the other main surface of the insulating substrate;
On the other main surface side, a heater protective layer made of a baking film mainly composed of Al 2 O 3 formed so as to cover the heater electrode,
When the amount of Si contained in the insulating substrate is converted to SiO 2 , and when the amount of Si contained in the oxygen partial pressure detection electrode is converted to SiO 2 is 15 ppm or less with respect to the weight of the substrate. A resistance-type oxygen sensor element used for measuring an air-fuel ratio of an internal combustion engine, characterized in that the content is 1% by weight or less with respect to the weight of the oxygen partial pressure detection layer.

本発明の抵抗型酸素センサ素子は、絶縁基板中に含まれるSi量が、SiOとして換算した場合に、基板の重量に対して15ppm以下でかつ、酸素分圧検出電極に含まれるSi量が、SiOとして換算した場合に、酸素分圧検出層の重量に対して1重量%以下とすることにより、抵抗値の経時変化を小さくし、内燃機関から排出された気体の酸素濃度を安定して検出することができる。 In the resistance type oxygen sensor element of the present invention, when the amount of Si contained in the insulating substrate is converted to SiO 2 , the amount of Si contained in the oxygen partial pressure detection electrode is 15 ppm or less with respect to the weight of the substrate. When converted to SiO 2 , by making the oxygen partial pressure detection layer 1% by weight or less with respect to the weight of the oxygen partial pressure detection layer, the change in resistance value with time is reduced, and the oxygen concentration of the gas discharged from the internal combustion engine is stabilized. Can be detected.

本発明の抵抗型酸素センサ素子を模式的に示す断面図Sectional drawing which shows typically the resistance type oxygen sensor element of this invention 本発明の抵抗型酸素センサ素子の分解斜視図The exploded perspective view of the resistance type oxygen sensor element of the present invention

以下、図面により、本発明の抵抗型酸素センサ素子について説明する。
図1は、本発明の抵抗型酸素センサ素子を模式的に示す断面図であり、図2は、本発明の抵抗型酸素センサ素子の分解斜視図である。
図1、2に示すとおり、本発明の抵抗型酸素センサ素子は、アルミナ焼結体からなる絶縁基板1と、該絶縁基板1の一方の主面側に形成された一対の酸素分圧検出電極2と、前記一方の主面側に前記一対の電極2に接するように形成された酸素分圧検出層3とを有し、また、絶縁基板1の裏面側には、酸素分圧検出部を昇温させるためのヒータ電極4及びヒータ保護層5が設けられている。
The resistance oxygen sensor element of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view schematically showing a resistance type oxygen sensor element of the present invention, and FIG. 2 is an exploded perspective view of the resistance type oxygen sensor element of the present invention.
As shown in FIGS. 1 and 2, the resistance oxygen sensor element of the present invention includes an insulating substrate 1 made of an alumina sintered body and a pair of oxygen partial pressure detection electrodes formed on one main surface side of the insulating substrate 1. 2 and an oxygen partial pressure detection layer 3 formed on the one main surface side so as to be in contact with the pair of electrodes 2, and an oxygen partial pressure detection unit is provided on the back side of the insulating substrate 1. A heater electrode 4 and a heater protective layer 5 for increasing the temperature are provided.

アルミナ焼結体からなる絶縁基板1は、900℃においても高絶縁性を保持し、かつ機械的強度が保たれるものである。
本発明では、後述する実施例及び比較例の記載から明らかなように、得られる抵抗値の経時変化をなくして、安定した抵抗値を得るためには、アルミナ焼結体からなる絶縁基板中に含まれるSi量が、SiOとして換算した場合に、基板の重量に対して15ppm以下であることが必要である。
The insulating substrate 1 made of an alumina sintered body maintains high insulation even at 900 ° C. and maintains mechanical strength.
In the present invention, as is apparent from the description of Examples and Comparative Examples described later, in order to obtain a stable resistance value by eliminating the change over time of the obtained resistance value, an insulating substrate made of an alumina sintered body is used. The amount of Si contained is required to be 15 ppm or less with respect to the weight of the substrate when converted as SiO 2 .

酸素分圧検出電極2は、導電性を有する材料から形成されており、好ましくは白金を主体とするものであるが、基板との十分な密着性が確保され、酸素分圧に依存しない高い電子伝導性を有し、高温酸素雰囲気下で安定であり、かつ三相界面で酸化物イオン空孔の生成消滅が生じるものであれば選択は任意に可能である。また、対向電極構造としては抵抗値を低減するため、櫛型に形成されていることが好ましい。
本発明では、後述する実施例及び比較例の記載から明らかなように、得られる抵抗値の経時変化をなくして、安定した抵抗値を得るためには、該酸素分圧検出電極に含まれるSi量が、SiOとして換算した場合に、前記酸素分圧検出層の重量に対して1重量%以下であることが必要である。
The oxygen partial pressure detection electrode 2 is made of a conductive material, and is preferably mainly composed of platinum. However, it has sufficient electrons to ensure sufficient adhesion with the substrate and does not depend on the oxygen partial pressure. Any material can be selected as long as it has conductivity, is stable in a high-temperature oxygen atmosphere, and generates and disappears oxide ion vacancies at the three-phase interface. The counter electrode structure is preferably formed in a comb shape in order to reduce the resistance value.
In the present invention, as is apparent from the description of Examples and Comparative Examples described later, in order to obtain a stable resistance value by eliminating the change in resistance value obtained over time, Si contained in the oxygen partial pressure detection electrode is used. When converted to SiO 2 , the amount needs to be 1% by weight or less with respect to the weight of the oxygen partial pressure detection layer.

酸素分圧検出層3を構成する酸化物半導体は、多孔質構造を有し、雰囲気の酸素分圧に応じて酸素を放出あるいは吸収する。これにより、酸化物半導体層中の酸素空孔濃度が変化し、酸素分圧検出層の抵抗率が変化するので、この抵抗率の変化を前述の酸素分圧検出電極2で計測することにより、酸素濃度を検出することができる。
酸素分圧検出層としては、例えば、酸化セリウムや、酸化セリウムと酸化ジルコニウムの複合体を用いることができる。セリウムに加えてジルコニウムを含む酸化物を用いることにより、特許文献1に記載されているように検出精度が向上する。酸素分圧検出層は、典型的には、主として酸化セリウムを(つまり50mol%以上)含んでいる。
また、多孔質構造を構成する粒子径は、平均粒径を200nm以下にすることにより抵抗型酸素センサの応答性を改善することができ、好ましくは30〜50nmである。また、細孔径は、10〜100nmに分布をもち、好ましくは細孔径の平均値が100nmである。さらに、細孔容積は、0.1cm/g以上1cm/g以下で、好ましくは約0.5cm/gである。
The oxide semiconductor constituting the oxygen partial pressure detection layer 3 has a porous structure, and releases or absorbs oxygen according to the oxygen partial pressure of the atmosphere. As a result, the oxygen vacancy concentration in the oxide semiconductor layer changes, and the resistivity of the oxygen partial pressure detection layer changes. By measuring this change in resistivity with the aforementioned oxygen partial pressure detection electrode 2, The oxygen concentration can be detected.
As the oxygen partial pressure detection layer, for example, cerium oxide or a composite of cerium oxide and zirconium oxide can be used. By using an oxide containing zirconium in addition to cerium, detection accuracy is improved as described in Patent Document 1. The oxygen partial pressure detection layer typically contains mainly cerium oxide (that is, 50 mol% or more).
Moreover, the particle diameter which comprises a porous structure can improve the responsiveness of a resistance type oxygen sensor by making an average particle diameter 200 nm or less, Preferably it is 30-50 nm. The pore diameter has a distribution of 10 to 100 nm, and the average pore diameter is preferably 100 nm. Furthermore, the pore volume is 0.1 cm 3 / g or more and 1 cm 3 / g or less, preferably about 0.5 cm 3 / g.

ヒータ電極4は、抵抗損失を利用して加熱を行う抵抗加熱型の発熱素子である。ヒータ電極から引き延ばされた電極に電圧を印加すると、所定の形状に形成された発熱体に電流が流れて発熱体が発熱し、そのことによって加熱が行われる。熱は、絶縁基板1を介して酸素分圧検出層3に伝達される。ヒータ電極によって酸素分圧検出層を昇温させて酸素分圧検出層3を速やかに活性化させることにより、内燃機関の始動時における検出精度を向上させることができる。
また、ヒータ保護層5は、前述のヒータ電極4を保護するために設けられるものであり、アルミナペースト等を用いて形成できる。
The heater electrode 4 is a resistance heating type heating element that performs heating using resistance loss. When a voltage is applied to the electrode extended from the heater electrode, a current flows through the heating element formed in a predetermined shape, and the heating element generates heat, whereby heating is performed. Heat is transferred to the oxygen partial pressure detection layer 3 through the insulating substrate 1. By raising the temperature of the oxygen partial pressure detection layer with the heater electrode and quickly activating the oxygen partial pressure detection layer 3, the detection accuracy at the start of the internal combustion engine can be improved.
The heater protection layer 5 is provided to protect the heater electrode 4 described above, and can be formed using alumina paste or the like.

なお、以上の説明では、セリアを含有する酸化物半導体からなる酸素分圧検出層とは異なる面に搭載される、ヒータ電極4、及びヒータ保護層5については、Si含有量を特に限定していないが、それぞれを、アルミナ焼結体からなる絶縁基板1に約1400℃で焼き付ける工程において、Siが揮発し、その蒸気が絶縁基板表面を汚染する可能性があるため、当然ヒータ電極4、及びヒータ保護層5のいずれにおいても、使用する部材中のSi含有量はともに50ppm以下であることが望ましい。   In the above description, the Si content is particularly limited for the heater electrode 4 and the heater protective layer 5 mounted on a different surface from the oxygen partial pressure detection layer made of an oxide semiconductor containing ceria. However, in the process of baking each at about 1400 ° C. on the insulating substrate 1 made of an alumina sintered body, Si volatilizes and the vapor may contaminate the surface of the insulating substrate. In any of the heater protective layers 5, the Si content in the member to be used is preferably 50 ppm or less.

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
アルミナ純度が99.95重量%でSi含有量がSiOとして換算した場合に15ppmのアルミナ基板1上に、SiOを36ppm含有し90重量%の固形分を持つ白金ペーストを用いて、スクリーン印刷法によって酸素分圧検出電極パターンを印刷した後、1400℃で焼成して酸素分圧検出電極2を形成した。
アルミナ基板1を挟むような形で一対の酸素分圧検出電極2の酸素分圧検出層形成部の裏面に、白金ペーストを用いてスクリーン印刷法によってヒータ電極パターンを印刷した後、1400℃で焼成してヒータ電極4を形成した。
ヒータ電極4を被覆するように、ヒータ電極の上部に、アルミナ純度が99.9重量%以上のアルミナ粉末から調製したアルミナペーストを用いて、スクリーン印刷法によりヒータ保護層パターンを印刷した後、1400℃で焼成してヒータ保護層5を形成した。
酸素分圧検出電極パターン2の上部に、Si含有量がSiOとして換算した場合に10ppmの酸化セリウムペーストを用いて、スクリーン印刷方によって酸素分圧検出層パターンを印刷した後、1050℃で焼成して酸素分圧電出層3を形成した。これら一連の工程を経て抵抗型酸素センサ素子を作製した。
酸素分圧検出電極を形成する前のアルミナ基板重量、酸素分圧検出電極形成後のアルミナ基板重量、酸素分圧検出電極及び酸素分圧検出層を形成した後のアルミナ基板重量、それぞれの値から算出したアルミナ基板、酸素分圧検出電極、酸素分圧検出層の重量はそれぞれ、0.4g、0.025g、0.0001gであった。前記白金ペーストに含まれる10重量%の溶媒成分は、酸素分圧検出電極を焼成する工程で全て揮発するため、焼成後の酸素分圧検出電極のSiO含有量を計算すると40ppmであった。前記のSi含有量、及び重量値をもとに、酸素分圧検出層の重量に対する酸素分圧検出電極に含まれるSiO重量を換算したところ、1.00重量%であった。表1これらの一覧を示す。
Example 1
On the alumina substrate 1 of 15ppm when the Si content in alumina purity 99.95 wt% was calculated as SiO 2, using a platinum paste having a SiO 2 containing 36 ppm 90% by weight solids, screen printing After the oxygen partial pressure detection electrode pattern was printed by the method, it was baked at 1400 ° C. to form the oxygen partial pressure detection electrode 2.
A heater electrode pattern is printed by a screen printing method using platinum paste on the back surface of the oxygen partial pressure detection layer forming portion of the pair of oxygen partial pressure detection electrodes 2 so as to sandwich the alumina substrate 1 and then fired at 1400 ° C. Thus, the heater electrode 4 was formed.
After the heater protective layer pattern is printed on the upper portion of the heater electrode using an alumina paste prepared from alumina powder having an alumina purity of 99.9% by weight or more by screen printing so as to cover the heater electrode 4, 1400 The heater protective layer 5 was formed by baking at ° C.
An oxygen partial pressure detection layer pattern is printed on the upper part of the oxygen partial pressure detection electrode pattern 2 by screen printing using a 10 ppm cerium oxide paste when the Si content is converted to SiO 2 , and then fired at 1050 ° C. As a result, the oxygen content piezoelectric output layer 3 was formed. A resistance-type oxygen sensor element was manufactured through these series of steps.
From the values of the alumina substrate weight before forming the oxygen partial pressure detection electrode, the alumina substrate weight after forming the oxygen partial pressure detection electrode, the alumina substrate weight after forming the oxygen partial pressure detection electrode and the oxygen partial pressure detection layer, The calculated weights of the alumina substrate, the oxygen partial pressure detection electrode, and the oxygen partial pressure detection layer were 0.4 g, 0.025 g, and 0.0001 g, respectively. Since 10% by weight of the solvent component contained in the platinum paste volatilizes in the step of firing the oxygen partial pressure detection electrode, the SiO 2 content of the oxygen partial pressure detection electrode after firing was calculated to be 40 ppm. Based on the Si content and the weight value, the SiO 2 weight contained in the oxygen partial pressure detection electrode relative to the weight of the oxygen partial pressure detection layer was converted to 1.00% by weight. Table 1 shows a list of these.

一対の酸素分圧検出電極2に、スポット溶接によって白金線を接続した抵抗型酸素センサ素子を、管状炉に設置し、白金線の一端を管状炉の外に引き出し、デジタルマルチメータに接続した。管状炉内を大気雰囲気のまま500℃に昇温させた後、管状炉内に水素を0.1体積%含有した窒素ガスを導入して5分待機した後に、抵抗型酸素センサ素子の酸素分圧検出層3の抵抗値の変化を30分間測定した。抵抗値測定開始1秒後、酸素分圧検出層3の抵抗値は、650Ωを示し、30分経過後の抵抗値は640Ωを示した。酸素分圧検出層3が示した、測定1秒後と測定30分経過後に示した抵抗値の対数の比は1.00であり、抵抗値の対数の変化率は0%であった。なお、上記測定中の管状炉内の酸素分圧をジルコニア酸素濃度計にて測定したところ、測定中の酸素分圧は一定して1×10−20atmあり、酸素分圧の変動は見られなかった。 A resistance type oxygen sensor element in which a platinum wire was connected to a pair of oxygen partial pressure detection electrodes 2 by spot welding was installed in a tubular furnace, and one end of the platinum wire was pulled out of the tubular furnace and connected to a digital multimeter. After raising the temperature inside the tubular furnace to 500 ° C. in the air atmosphere, after introducing nitrogen gas containing 0.1% by volume of hydrogen into the tubular furnace and waiting for 5 minutes, the oxygen content of the resistance oxygen sensor element The change in resistance value of the pressure detection layer 3 was measured for 30 minutes. One second after the start of the resistance measurement, the resistance value of the oxygen partial pressure detection layer 3 showed 650Ω, and the resistance value after 30 minutes showed 640Ω. The ratio of the logarithm of the resistance value indicated by the oxygen partial pressure detection layer 3 after 1 second of measurement and 30 minutes after the measurement was 1.00, and the change rate of the logarithm of the resistance value was 0%. In addition, when the oxygen partial pressure in the tubular furnace under measurement was measured with a zirconia oxygen concentration meter, the oxygen partial pressure during measurement was constant 1 × 10 −20 atm, and fluctuations in oxygen partial pressure were observed. There wasn't.

(比較例1)
実施例1で酸素分圧検出電極の作製に用いた白金ペーストに、SiOを350ppm含有した純度が99.5重量%のアルミナ粉末を、ペースト中の白金重量に対して30重量%添加して、白金ペースト全体にSiO換算で140ppmのSiを含有した白金ペーストを調製した。このように調製した白金ペーストを用いて酸素分圧検出電極を形成した以外は、実施例1で使用したものと同一の、アルミナ基板、白金ペースト、酸化セリウムペースト、アルミナペーストを用いて、実施例1と同一の工程で、ヒータ電極、酸素分圧検出層、ヒータ保護層を形成し、抵抗型酸素センサ素子を作製した。
電極を形成する前のアルミナ基板重量、電極形成後のアルミナ基板重量、電極及び酸素分圧検出層を形成した後のアルミナ基板重量、それぞれの値から算出したアルミナ基板、酸素分圧検出電極、酸素分圧検出層の重量はそれぞれ、0.4g、0.025g、0.0001gであった。前記白金ペーストに含まれる10重量%の溶媒成分は酸素分圧検出電極を焼成する工程で全て揮発するため、焼成後の酸素分圧検出電極のSiO含有量を計算すると107ppmであった。前記の使用した部材中のSi含有量、及び重量値から、酸素分圧検出層の重量に対する酸素分圧検出電極に含まれるSiO重量を換算したところ、2.75重量%であった。
(Comparative Example 1)
30% by weight of alumina powder having a purity of 99.5% by weight containing 350 ppm of SiO 2 was added to the platinum paste used in the production of the oxygen partial pressure detection electrode in Example 1 with respect to the platinum weight in the paste. A platinum paste containing 140 ppm Si in terms of SiO 2 was prepared over the entire platinum paste. Except that the oxygen partial pressure detection electrode was formed using the platinum paste prepared in this way, the same examples as those used in Example 1 were used, and the examples using the alumina substrate, platinum paste, cerium oxide paste, and alumina paste were used. In the same process as in No. 1, a heater electrode, an oxygen partial pressure detection layer, and a heater protective layer were formed, and a resistance type oxygen sensor element was produced.
Alumina substrate weight before electrode formation, alumina substrate weight after electrode formation, alumina substrate weight after electrode and oxygen partial pressure detection layer formation, alumina substrate calculated from each value, oxygen partial pressure detection electrode, oxygen The weights of the partial pressure detection layers were 0.4 g, 0.025 g, and 0.0001 g, respectively. Since 10% by weight of the solvent component contained in the platinum paste is completely volatilized in the step of firing the oxygen partial pressure detection electrode, the SiO 2 content of the oxygen partial pressure detection electrode after firing was calculated to be 107 ppm. When the weight of SiO 2 contained in the oxygen partial pressure detection electrode relative to the weight of the oxygen partial pressure detection layer was converted from the Si content and weight value in the used member, it was 2.75% by weight.

一対の酸素分圧検出電極2に、スポット溶接によって白金線を接続した抵抗型酸素センサ素子を、管状炉に設置し、水素を0.1体積%含有した窒素ガスを炉内に導入し、実施例1と同一の温度条件の下で、酸素分圧検出層の抵抗変化を測定した。素子温度500℃において、測定開始1秒後の抵抗値は、10100Ωを示したが、測定開始から30分後には960Ωまで低下した。測定開始1秒後、30分後それぞれの抵抗値の対数比は0.74となり、対数比で26%の変動が確認された。なお、上記測定中の管状炉内の酸素分圧をジルコニア酸素濃度計にて測定したところ、測定中の酸素分圧は一定して1×10−20atmであり、酸素分圧の変動は見られなかった。 A resistance oxygen sensor element in which a platinum wire is connected to a pair of oxygen partial pressure detection electrodes 2 by spot welding is installed in a tubular furnace, and nitrogen gas containing 0.1% by volume of hydrogen is introduced into the furnace. Under the same temperature conditions as in Example 1, the resistance change of the oxygen partial pressure detection layer was measured. At an element temperature of 500 ° C., the resistance value 1 second after the start of measurement was 10100Ω, but it decreased to 960Ω 30 minutes after the start of measurement. One second after the start of measurement and 30 minutes later, the logarithmic ratio of the respective resistance values became 0.74, and a variation of 26% was confirmed in the logarithmic ratio. When the partial pressure of oxygen in the tubular furnace under measurement was measured with a zirconia oxygen concentration meter, the partial pressure of oxygen during measurement was constant 1 × 10 −20 atm, and fluctuations in the partial oxygen pressure were not observed. I couldn't.

(比較例2)
アルミナ純度が99.6重量%で、Si含有量が0.2重量%(2000ppm)のアルミナ基板上に、実施例1と同様の工程で、酸素分圧検出電極、ヒータ電極、ヒータ保護層、酸素分圧検出層を形成し、抵抗型酸素センサ素子を作製した。
一対の酸素分圧検出電極2に、スポット溶接によって白金線を接続した抵抗型酸素センサ素子を、管状炉に設置し、水素を0.1体積%含有した窒素ガスを炉内に導入し、実施例1と同一の温度条件の下で、酸素分圧検出層の抵抗変化を測定した。500℃で測定した抵抗値において、測定開始1秒後の抵抗値は、15000Ωを示したが、測定開始30分後の抵抗値は770Ωを示した。測定開始1秒後、30分後それぞれの抵抗値の対数比は、0.69であり、対数比で31%の変動が確認された。なお、上記測定中の管状炉内の酸素分圧をジルコニア酸素濃度計にて測定したところ、測定中の酸素分圧は一定して1×10−20atmであり、酸素分圧の変動は見られなかった。
(Comparative Example 2)
On an alumina substrate having an alumina purity of 99.6 wt% and an Si content of 0.2 wt% (2000 ppm), an oxygen partial pressure detection electrode, a heater electrode, a heater protective layer, An oxygen partial pressure detection layer was formed to produce a resistance oxygen sensor element.
A resistance oxygen sensor element in which a platinum wire is connected to a pair of oxygen partial pressure detection electrodes 2 by spot welding is installed in a tubular furnace, and nitrogen gas containing 0.1% by volume of hydrogen is introduced into the furnace. Under the same temperature conditions as in Example 1, the resistance change of the oxygen partial pressure detection layer was measured. In the resistance value measured at 500 ° C., the resistance value 1 second after the start of measurement showed 15000Ω, but the resistance value 30 minutes after the start of measurement showed 770Ω. The logarithmic ratio of the respective resistance values was 0.69 after 1 second and 30 minutes after the start of measurement, and a variation of 31% was confirmed in the logarithmic ratio. When the partial pressure of oxygen in the tubular furnace under measurement was measured with a zirconia oxygen concentration meter, the partial pressure of oxygen during measurement was constant 1 × 10 −20 atm, and fluctuations in the partial oxygen pressure were not observed. I couldn't.

(比較例3)
アルミナ純度が99.9重量%で、Si含有量が90ppmのアルミナ基板上に、実施例1と同様の工程で、酸素分圧検出電極、ヒータ電極、ヒータ保護層、酸素分圧検出層を形成し、抵抗型酸素センサ素子を作製した。
一対の酸素分圧検出電極2に、スポット溶接によって白金線を接続した抵抗型酸素センサ素子を、管状炉に設置し、水素を0.1体積%含有した窒素ガスを炉内に導入し、実施例1と同一の温度条件の下で、酸素分圧検出層の抵抗変化を測定した。500℃で測定した抵抗値において、測定開始1秒後の抵抗値は、5800Ωを示したが、測定開始30分後の抵抗値は820Ωを示した。測定開始1秒後、30分後それぞれの抵抗値の対数比は、0.77であり、対数比で23%の変動が確認された。なお、上記測定中の管状炉内の酸素分圧をジルコニア酸素濃時計にて測定したところ、測定中の酸素分圧は一定して1×10−20atmであり、酸素分圧の変動は見られなかった。
(Comparative Example 3)
An oxygen partial pressure detection electrode, a heater electrode, a heater protective layer, and an oxygen partial pressure detection layer are formed on an alumina substrate having an alumina purity of 99.9% by weight and an Si content of 90 ppm by the same process as in Example 1. Thus, a resistance type oxygen sensor element was produced.
A resistance oxygen sensor element in which a platinum wire is connected to a pair of oxygen partial pressure detection electrodes 2 by spot welding is installed in a tubular furnace, and nitrogen gas containing 0.1% by volume of hydrogen is introduced into the furnace. Under the same temperature conditions as in Example 1, the resistance change of the oxygen partial pressure detection layer was measured. In the resistance value measured at 500 ° C., the resistance value 1 second after the start of measurement showed 5800Ω, but the resistance value 30 minutes after the start of measurement showed 820Ω. The logarithmic ratio of the respective resistance values was 0.77 after 1 second and 30 minutes after the start of measurement, and a fluctuation of 23% was confirmed in the logarithmic ratio. When the partial pressure of oxygen in the tubular furnace under measurement was measured with a zirconia oxygen concentration clock, the partial pressure of oxygen during measurement was constant 1 × 10 −20 atm, and fluctuations in the partial oxygen pressure were not observed. I couldn't.

(比較例4)
実施例1で酸素分圧検出電極の作製に用いた白金ペーストに、SiOを350ppm含有した純度が99.5重量%のアルミナ粉末を、ペースト中の白金重量に対して17重量%添加して、白金ペースト全体にSiO換算で93ppmのSiを含有した白金ペーストを調製した。このように調製した白金ペーストを用いて酸素分圧検出電極を形成した以外は、実施例1で使用したものと同一の、アルミナ基板、白金ペースト、酸化セリウムペースト、アルミナペーストを用いて、実施例1と同一の工程で、ヒータ電極、酸素分圧検出層、ヒータ保護層を形成し、抵抗型酸素センサ素子5を作製した。
酸素分圧検出電極を形成する前のアルミナ基板重量、酸素分圧検出電極形成後のアルミナ基板重量、酸素分圧検出電極及び酸素分圧検出層を形成した後のアルミナ基板重量、それぞれの値から算出したアルミナ基板、酸素分圧検出電極、酸素分圧検出層の重量はそれぞれ、0.4g、0.025g、0.0001gであった。前記白金ペーストに含まれる10重量%溶媒成分は酸素分圧検出電極を焼成する工程で全て揮発するため、焼成後の酸素分圧検出電極のSiO含有量を計算すると79ppmあった。前記の使用した部材中のSi含有量、及び重量値から、酸素分圧検出層の重量に対する酸素分圧検出電極に含まれるSiO重量を換算したところ、1.98重量%であった。
(Comparative Example 4)
In the platinum paste used in the production of the oxygen partial pressure detection electrode in Example 1, alumina powder containing 350 ppm of SiO 2 and having a purity of 99.5 wt% was added by 17 wt% with respect to the platinum weight in the paste. Then, a platinum paste containing 93 ppm Si in terms of SiO 2 was prepared over the entire platinum paste. Except that the oxygen partial pressure detection electrode was formed using the platinum paste prepared in this way, the same examples as those used in Example 1 were used, and the examples using the alumina substrate, platinum paste, cerium oxide paste, and alumina paste were used. 1, a heater electrode, an oxygen partial pressure detection layer, and a heater protective layer were formed, and a resistance-type oxygen sensor element 5 was produced.
From the values of the alumina substrate weight before forming the oxygen partial pressure detection electrode, the alumina substrate weight after forming the oxygen partial pressure detection electrode, the alumina substrate weight after forming the oxygen partial pressure detection electrode and the oxygen partial pressure detection layer, The calculated weights of the alumina substrate, the oxygen partial pressure detection electrode, and the oxygen partial pressure detection layer were 0.4 g, 0.025 g, and 0.0001 g, respectively. The 10 wt% solvent component contained in the platinum paste was completely volatilized in the step of firing the oxygen partial pressure detection electrode. Therefore, the SiO 2 content of the oxygen partial pressure detection electrode after firing was calculated to be 79 ppm. When the SiO 2 weight contained in the oxygen partial pressure detection electrode relative to the weight of the oxygen partial pressure detection layer was converted from the Si content and weight value in the used member, it was 1.98% by weight.

一対の酸素分圧検出電極2に、スポット溶接によって白金線を接続した抵抗型酸素センサ素子を、管状炉に設置し、水素を0.1体積%含有した窒素ガスを炉内に導入し、実施例1と同一の温度条件の下で、酸素分圧検出層の抵抗変化を測定した。素子温度500℃において、測定開始1秒後の抵抗値は、1600Ωを示したが、測定開始から30分後には870Ωまで低下した。測定開始1秒後、30分後それぞれの抵抗値の対数比は0.92となり、対数比で8%の変動が確認された。なお、上記測定中の管状炉内の酸素分圧をジルコニア酸素濃度計にて測定したところ、測定中の酸素分圧は一定して1×10−20atmであり、酸素分圧の変動は見られなかった。 A resistance oxygen sensor element in which a platinum wire is connected to a pair of oxygen partial pressure detection electrodes 2 by spot welding is installed in a tubular furnace, and nitrogen gas containing 0.1% by volume of hydrogen is introduced into the furnace. Under the same temperature conditions as in Example 1, the resistance change of the oxygen partial pressure detection layer was measured. At an element temperature of 500 ° C., the resistance value 1 second after the start of measurement showed 1600Ω, but it decreased to 870Ω 30 minutes after the start of measurement. One second after the start of measurement and 30 minutes later, the logarithmic ratio of the respective resistance values became 0.92, and a fluctuation of 8% was confirmed in the logarithmic ratio. When the partial pressure of oxygen in the tubular furnace under measurement was measured with a zirconia oxygen concentration meter, the partial pressure of oxygen during measurement was constant 1 × 10 −20 atm, and fluctuations in the partial oxygen pressure were not observed. I couldn't.


Figure 2011169757
Figure 2011169757

Figure 2011169757
Figure 2011169757

上記実施例及び比較例での実験結果から、絶縁基板のSi含有量は、SiOとして換算した場合に重量比で15ppm以下とし、かつ酸素分圧検出電極に含まれるSiO含有量が酸素分圧検出層の重量に対して1重量%以下であれば、抵抗型酸素センサ素子における酸素分圧検出層の抵抗値は経時で変化することなく安定して得られ、気体の酸素分圧を安定して検出できることが示された。 From the experimental results in the above examples and comparative examples, the Si content of the insulating substrate is 15 ppm or less by weight when converted as SiO 2 , and the SiO 2 content contained in the oxygen partial pressure detection electrode is oxygen content. If it is 1% by weight or less with respect to the weight of the pressure detection layer, the resistance value of the oxygen partial pressure detection layer in the resistance type oxygen sensor element can be obtained stably without changing over time, and the oxygen partial pressure of the gas can be stabilized. It was shown that it can be detected.

1:絶縁基板
2:酸素分圧検出電極
3:酸素分圧検出層
4:ヒータ電極
5:ヒータ保護層
1: Insulating substrate 2: Oxygen partial pressure detection electrode 3: Oxygen partial pressure detection layer 4: Heater electrode 5: Heater protective layer

Claims (1)

アルミナ焼結体からなる絶縁基板と、
該絶縁基板の一方の主面側に形成された一対の酸素分圧検出電極と、
前記一方の主面側に前記一対の電極と接するように形成されたCeOを含有する酸化物半導体からなる酸素分圧検出層と、
前記絶縁基板の他方の主面上に形成されたヒータ電極と、
前記他方の主面側に、前記ヒータ電極を被覆するように形成されたAlを主成分とする焼付け膜からなるヒータ保護層とを有し、
前記絶縁基板中に含まれるSi量が、SiOとして換算した場合に、基板の重量に対して15ppm以下でかつ、前記酸素分圧検出電極に含まれるSi量が、SiOとして換算した場合に、前記酸素分圧検出層の重量に対して1重量%以下であることを特徴とする、内燃機関の空燃比の計測に用いられる抵抗型酸素センサ素子。

An insulating substrate made of an alumina sintered body;
A pair of oxygen partial pressure detection electrodes formed on one main surface side of the insulating substrate;
An oxygen partial pressure detection layer made of an oxide semiconductor containing CeO 2 formed on the one main surface side so as to be in contact with the pair of electrodes;
A heater electrode formed on the other main surface of the insulating substrate;
On the other main surface side, a heater protective layer made of a baking film mainly composed of Al 2 O 3 formed so as to cover the heater electrode,
When the amount of Si contained in the insulating substrate is converted to SiO 2 , and when the amount of Si contained in the oxygen partial pressure detection electrode is converted to SiO 2 is 15 ppm or less with respect to the weight of the substrate. A resistance-type oxygen sensor element used for measuring an air-fuel ratio of an internal combustion engine, characterized in that the content is 1% by weight or less with respect to the weight of the oxygen partial pressure detection layer.

JP2010034126A 2010-02-18 2010-02-18 Resistive oxygen sensor element Withdrawn JP2011169757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034126A JP2011169757A (en) 2010-02-18 2010-02-18 Resistive oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010034126A JP2011169757A (en) 2010-02-18 2010-02-18 Resistive oxygen sensor element

Publications (1)

Publication Number Publication Date
JP2011169757A true JP2011169757A (en) 2011-09-01

Family

ID=44684036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034126A Withdrawn JP2011169757A (en) 2010-02-18 2010-02-18 Resistive oxygen sensor element

Country Status (1)

Country Link
JP (1) JP2011169757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179345A (en) * 2011-09-29 2013-09-09 Semiconductor Energy Lab Co Ltd Oxide semiconductor film
JP2013219368A (en) * 2011-09-29 2013-10-24 Semiconductor Energy Lab Co Ltd Semiconductor device
US8952380B2 (en) 2011-10-27 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9105734B2 (en) 2011-10-27 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179345A (en) * 2011-09-29 2013-09-09 Semiconductor Energy Lab Co Ltd Oxide semiconductor film
JP2013219368A (en) * 2011-09-29 2013-10-24 Semiconductor Energy Lab Co Ltd Semiconductor device
US9029852B2 (en) 2011-09-29 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9219160B2 (en) 2011-09-29 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10290744B2 (en) 2011-09-29 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8952380B2 (en) 2011-10-27 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9105734B2 (en) 2011-10-27 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9530895B2 (en) 2011-10-27 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP4724426B2 (en) Gas sensor sensing element and catalytic combustion gas sensor
JP6752184B2 (en) Gas sensor element and gas sensor
TWI499775B (en) Metal paste for forming gas sensor electrodes
JP6678134B2 (en) Gas sensor element and gas sensor
JP2014190940A (en) Method of producing internal electrode of pump cell, and pump cell
WO2002055987A2 (en) Gas sensor
JP7122958B2 (en) Sensor element and gas sensor
JP2011169757A (en) Resistive oxygen sensor element
US20160215670A1 (en) Exhaust system component including a self-healing ceramic material and internal combustion engine equipped with the component
JP2013238408A (en) Gas sensor element
JP5945113B2 (en) Gas sensor electrode and gas sensor element
JP5387550B2 (en) Method for manufacturing gas sensor element
JP2008306086A (en) Thermistor element and manufacturing method of thermistor element
JP2010256112A (en) Gas sensor element, gas sensor incorporating the same, and method for manufacturing the gas sensor element
JP2004093547A (en) Resistance type oxygen sensor, oxygen sensor system, and air-fuel ratio control system using the same
JP6212328B2 (en) Metal paste for gas sensor electrode formation
JP3903181B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP2009236693A (en) Ammonia concentration measuring sensor element, ammonia concentration measuring instrument, and ammonia concentration measuring method
JP4750574B2 (en) Gas detection element
JP5724832B2 (en) Oxygen concentration sensor
JP7411434B2 (en) Limiting current type gas sensor
WO2021111870A1 (en) Electrical resistance body, honeycomb structure, and electrically-heated catalyst device
JP2013015398A (en) Selective hydrogen oxidation catalyst and gas sensor element
JP3450898B2 (en) Method for manufacturing incomplete combustion detection element for exhaust gas
JP2010256111A (en) Gas sensor element, gas sensor having the same built, and method for manufacturing the gas sensor element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507