WO2010125636A1 - Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine - Google Patents

Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine Download PDF

Info

Publication number
WO2010125636A1
WO2010125636A1 PCT/JP2009/058295 JP2009058295W WO2010125636A1 WO 2010125636 A1 WO2010125636 A1 WO 2010125636A1 JP 2009058295 W JP2009058295 W JP 2009058295W WO 2010125636 A1 WO2010125636 A1 WO 2010125636A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
oxygen concentration
amount
exhaust gas
output
Prior art date
Application number
PCT/JP2009/058295
Other languages
French (fr)
Japanese (ja)
Inventor
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/058295 priority Critical patent/WO2010125636A1/en
Priority to JP2011511207A priority patent/JP5196012B2/en
Priority to DE112009004746T priority patent/DE112009004746B4/en
Priority to US13/147,515 priority patent/US20120031077A1/en
Priority to CN2009801589453A priority patent/CN102414551A/en
Publication of WO2010125636A1 publication Critical patent/WO2010125636A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a PM sensor, an exhaust gas PM amount detection device, and an internal combustion engine abnormality detection device.
  • the conventional internal combustion engine includes a pressure sensor that detects the differential pressure of the filter.
  • a pressure sensor that detects the differential pressure of the filter.
  • configurations of Japanese Patent Application Laid-Open No. 2007-32490 and Japanese Patent Application Laid-Open No. 2008-64621 are known as configurations for detecting the particulate amount.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a PM sensor capable of detecting the amount of particulate matter and a PM amount detection device for exhaust gas.
  • Another object of the present invention is to provide an abnormality detection device for an internal combustion engine capable of detecting an abnormality of a particulate filter.
  • a first invention is a PM sensor, An inflow port for extracting and flowing in part of the gas in the exhaust passage of the internal combustion engine; A filter for filtering particulate matter (PM) in the gas flowing into the inlet; A heater attached to the filter and capable of changing a temperature of the filter; An outlet for allowing the gas that has passed through the filter to flow into the exhaust passage; An oxygen concentration sensor element that is arranged on the outlet side and changes an output according to the oxygen concentration of the gas that has passed through the filter; It is characterized by providing.
  • PM particulate matter
  • the second invention is the first invention, wherein An oxygen concentration sensor element that is disposed on the inlet side and changes an output according to an oxygen concentration of a gas flowing into the filter from the inlet is further provided.
  • the third invention is the second invention, wherein The oxygen concentration sensor element on the outlet side and the oxygen concentration sensor element on the inlet side are air-fuel ratio sensor elements.
  • the air-fuel ratio sensor element includes a heater and is heated to a predetermined temperature by the heater during operation, When the temperature of the air-fuel ratio sensor element is the predetermined temperature, the filter and the air-fuel ratio sensor element are separated from each other so that the filter has a temperature at which particulate matter in the filter is not removed. It is characterized by being.
  • a fifth invention is an exhaust gas PM amount detection device, A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage; An oxygen concentration sensor element that is disposed downstream of the filter in the exhaust passage and changes an output according to the oxygen concentration of the gas that has passed through the filter; A heater attached to the filter; Heating control means for controlling the heater so that the filter is heated until the particulate matter in the filter is removed; Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than the temperature at which the particulate matter in the filter is not removed after the control of the heating control means; Obtaining means for obtaining an output of the oxygen concentration sensor element after the temperature of the filter becomes equal to or lower than the temperature; Calculation means for calculating the particulate matter amount of the exhaust gas based on the output acquired by the acquisition means; It is characterized by providing.
  • the sixth invention is the fifth invention, wherein
  • the acquisition means acquires the output of the oxygen concentration sensor element when a predetermined time has elapsed after the temperature of the filter becomes equal to or lower than the temperature, Means for calculating an integrated value of the amount of exhaust gas flowing into the filter by the acquisition timing of the output of the acquisition means after the temperature of the filter becomes equal to or lower than the temperature;
  • the calculation means calculates the particulate matter amount of the exhaust gas per unit time and per unit volume based on the output acquired by the acquisition means, the predetermined time, and the integrated value. It is characterized by that.
  • the seventh invention is the fifth or sixth invention, wherein An oxygen concentration sensor element disposed upstream of the filter in the exhaust passage and capable of changing an output according to an oxygen concentration of exhaust gas flowing into the filter;
  • the calculating means calculates a particulate matter amount of the exhaust gas based on a difference between an output of the oxygen concentration sensor element upstream of the filter and an output of the oxygen concentration sensor element downstream of the filter;
  • the eighth invention is the seventh invention, wherein The oxygen concentration sensor element on the downstream side of the filter and the oxygen concentration sensor element on the upstream side of the filter are air-fuel ratio sensor elements.
  • the ninth invention is the eighth invention, wherein The apparatus further comprises calibration means for calibrating an output deviation between the air-fuel ratio sensor on the downstream side of the filter and the air-fuel ratio sensor on the upstream side of the filter.
  • a tenth aspect of the invention is an exhaust gas PM amount detection device, A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage; A heater attached to the filter; Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than a temperature at which particulate matter in the filter is not removed; The temperature of the filter becomes equal to or higher than the temperature at which the particulate matter in the filter is removed after a lapse of a predetermined period from when the temperature of the filter becomes equal to or lower than the temperature by the control of the temperature reduction control means.
  • PM particulate matter
  • Heating control means for controlling the heater;
  • a power amount detecting means for detecting a power consumption amount consumed by the heater to remove particulate matter in the filter when the control of the heating control means is performed;
  • Calculation means for calculating a particulate matter amount of the exhaust gas based on the power consumption detected by the power detection means; It is characterized by providing.
  • the eleventh aspect of the invention is the tenth aspect of the invention.
  • the power amount detection means Determination means for determining whether or not the particulate matter in the filter has been removed after the start of the control of the heating control means;
  • a power amount calculating means for calculating a power consumption amount of the heater during a period from the start of the control of the heating control means until it is determined that the particulate matter in the filter has been removed;
  • the twelfth invention is the eleventh invention, in which An upstream oxygen concentration sensor that is disposed upstream of the filter in the exhaust passage and changes an output according to an oxygen concentration of a gas flowing into the filter; A downstream oxygen concentration sensor disposed downstream of the filter in the exhaust passage and changing an output according to an oxygen concentration of a gas flowing out from the filter, The determination means determines whether or not the particulate matter in the filter has been removed based on the difference between the output of the upstream oxygen concentration sensor and the output of the downstream oxygen concentration sensor. .
  • a thirteenth aspect of the invention is an abnormality detection device for an internal combustion engine, in order to achieve the above other object,
  • An oxygen concentration sensor that is arranged downstream of a particulate filter provided in an exhaust passage of an internal combustion engine and changes an output in accordance with an oxygen concentration of a gas flowing out of the particulate filter; Heating means for heating the particulate filter so as to regenerate the particulate filter; Detecting means for detecting an abnormality of the particulate filter based on an output of the downstream oxygen concentration sensor after the regeneration of the particulate filter; It is characterized by providing.
  • the fourteenth invention is the thirteenth invention, in which An oxygen concentration sensor disposed upstream of the particulate filter and configured to change an output according to the oxygen concentration of the exhaust gas;
  • the detection means detects an abnormality of the particulate filter based on a difference between an output of the downstream oxygen concentration sensor and an output of the upstream oxygen concentration sensor.
  • the fifteenth aspect of the invention is the fourteenth aspect of the invention.
  • the oxygen concentration sensors respectively disposed upstream and downstream of the particulate filter are air-fuel ratio sensors.
  • the oxygen concentration sensor element exhibits a lower oxygen concentration output as the amount of particulates in the filter increases. Based on the output of the oxygen concentration sensor element, it is possible to detect the particulate amount of the gas flowing into the filter. Further, the particulate matter of the filter can be heated and removed by the heater, so that the particulate amount detection can be repeatedly performed.
  • the oxygen concentration sensor elements are provided on the upstream side and the downstream side of the filter, respectively.
  • the output difference between these oxygen concentration sensor elements corresponds to the amount of particulates in the filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
  • the air-fuel ratio sensor element is used as the oxygen concentration sensor element.
  • an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor element, the particulate quantity of the exhaust gas can be detected with high reliability.
  • the air-fuel ratio sensor generally operates in a state where it is heated to a predetermined activation temperature.
  • the temperature of the filter becomes higher than a specific temperature, the particulates are burned without accumulating in the filter.
  • the filter can reliably hold the particulates even while the temperature of the air-fuel ratio sensor is the activation temperature. As a result, the particulate matter amount of the exhaust gas can be detected while the air-fuel ratio sensor is at the activation temperature.
  • the heater is controlled such that the temperature of the filter is lowered to a level where particulates can be collected.
  • particulates are collected by the filter, and the output of the oxygen concentration sensor element is acquired.
  • the greater the amount of particulates in the filter the lower the oxygen concentration of the gas downstream of the filter and the lower the oxygen concentration sensor element output will be. Therefore, the particulate quantity of the inflow gas to the filter can be calculated based on the output of the oxygen concentration sensor element. Thereby, the particulate quantity of exhaust gas can be detected.
  • the exhaust gas particulate quantity per unit time and per unit volume can be calculated.
  • the oxygen concentration sensor elements are provided on the upstream side and the downstream side of the filter, respectively.
  • the output difference between these oxygen concentration sensor elements corresponds to the amount of particulates in the filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
  • the air-fuel ratio sensor element is used as the oxygen concentration sensor element.
  • an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor element, the particulate quantity of the exhaust gas can be detected with high reliability.
  • the ninth aspect it is possible to calibrate the output deviation between the plurality of air-fuel ratio sensors. Thereby, the particulate quantity detection with higher accuracy can be performed.
  • the amount of particulates can be detected.
  • the greater the amount of particulates in the exhaust gas the greater the amount of particulates collected by the filter within a unit time.
  • the power consumption consumed by the heater before the particulates in the filter are removed can be accurately calculated.
  • the twelfth aspect it is possible to determine with high accuracy whether or not the particulates in the filter have been removed.
  • the oxygen concentration sensor is provided downstream of the particulate filter. If the particulate filter can normally collect the particulates, the particulates will accumulate in the filter, and the influence of the particulate accumulation should appear in the output of this oxygen concentration sensor. Therefore, the abnormality of the particulate filter can be detected based on the output of the oxygen concentration sensor.
  • the oxygen concentration sensor elements are provided upstream and downstream of the particulate filter, respectively.
  • the output difference between these oxygen concentration sensor elements corresponds to the particulate quantity in the particulate filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, the abnormality of the particulate filter can be detected with high reliability.
  • the air-fuel ratio sensor is used as an oxygen concentration sensor.
  • an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor, it is possible to detect abnormality of the particulate filter with high reliability.
  • FIG. 1 is a diagram illustrating a configuration of a PM sensor and an exhaust gas PM amount detection apparatus according to a first embodiment of the present invention.
  • FIG. It is the figure which looked at the structure of FIG. 1 in the direction of arrow A.
  • 3 is a time chart for explaining the PM amount detection operation according to the first embodiment;
  • 3 is a flowchart of a routine that is executed by the ECU 50 in the first embodiment. It is a diagram showing an example of a map of the correlation line between values and particulates amount of [Delta] I L and (PM amount).
  • It is a flowchart of the routine which ECU50 performs in Embodiment 2 of this invention.
  • 10 is a flowchart of a routine that the ECU executes in the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a PM sensor and an exhaust gas PM amount detection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view of the configuration of FIG.
  • the PM sensor and the exhaust gas PM amount detection apparatus according to the first embodiment are suitable for an internal combustion engine for a vehicle.
  • the PM sensor and the PM amount detection device of Embodiment 1 are mounted on the exhaust pipe 10 of the internal combustion engine 2. There is no limitation on the number of cylinders and the method of the internal combustion engine 2. Note that the internal combustion engine 2 of FIG. 1 is illustrated in a simplified manner for convenience. An air-fuel ratio sensor 22, a filter 30, and an air-fuel ratio sensor 24 are sequentially attached to the exhaust pipe 10 in the exhaust gas flow direction. In the following description, the air-fuel ratio sensor is also referred to as “A / F sensor” for simplification.
  • the partition 20 shown in FIG. 1 is provided. The partition 20 has an opening on the left side and the right side in FIG. The exhaust gas flows from the left side of FIG. 1 through the partition 20 to the right side of FIG.
  • the filter 30 is a small particle collecting filter.
  • the filter 30 is a miniaturized so-called diesel particulate filter (Diesel particulate filter: DPF).
  • DPF diesel particulate filter
  • PM particulate matter
  • the filter 30 can filter the particulates of the inflowing exhaust gas. As a result, particulates accumulate in the filter 30. As a result, the filter 30 can capture and collect the particulates (that is, can collect the particulates).
  • the filter 30 can be formed by imitating the material and specific configuration of a DPF and making its outer shape smaller than that of the DPF.
  • the detailed structure of the filter 30 is not necessarily the same as or similar to the DPF.
  • the outer dimension of the filter 30 is smaller than the inner diameter of the exhaust pipe 10. For this reason, some of the exhaust gas flows into the filter 30, and the remaining gas does not flow into the filter 30 and flows directly downstream of the exhaust pipe 10.
  • the A / F sensors 22 and 24 are limit current type A / F sensors.
  • the limit current type A / F sensor exhibits different limit current values depending on the oxygen concentration of the atmosphere, in other words, the oxygen concentration of the gas to be detected. This limit current value changes in proportion to the oxygen concentration. For this reason, the A / F sensor 22 changes the output according to the oxygen concentration of the exhaust gas upstream of the filter 30.
  • the A / F sensor 24 also changes the output according to the oxygen concentration of the exhaust gas downstream of the filter 30.
  • the A / F sensors 22 and 24 include an outer electrode exposed to a detection gas, that is, an exhaust gas, an inner electrode exposed to standby, and an oxygen ion conductive electrolyte sandwiched between the outer electrode and the inner electrode. Yes.
  • a detection gas that is, an exhaust gas
  • an inner electrode exposed to standby and an oxygen ion conductive electrolyte sandwiched between the outer electrode and the inner electrode.
  • oxygen ion conductive electrolyte for example, highly reliable ZrO 2 is preferably used. Since the specific configuration of the A / F sensors 22 and 24 is not particularly limited, further description thereof is omitted.
  • the A / F sensors 22 and 24 are heated to a predetermined activation temperature when the engine is started by a built-in heater, and then perform air-fuel ratio sensing at the activation temperature. As shown in FIG. 1, the filter 30 and the A / F sensors 22 and 24 are separated by a predetermined distance. The distance between the filter 30 and the A / F sensors 22 and 24 is large enough that the particulates can exist in the filter 30 without burning even when the A / F sensors 22 and 24 are at the activation temperature. is there.
  • the filter 30 includes a heater 32 that is a small heater.
  • the heater 32 is connected to the heater control unit 34.
  • the inside of the filter 30 can be heated to a high temperature by the heater 32 and the particulates in the filter 30 can be removed. Thereby, the amount of particulates in the filter 30 can be made zero, and the filter 30 can be regenerated (recovery of the collection ability).
  • an ECU (Electronic Control Unit) 50 is connected to the A / F sensors 22 and 24 and the heater control unit 34.
  • the ECU 50 can acquire the outputs of the A / F sensors 22 and 24, respectively.
  • the limit current value of the A / F sensor 22 also referred to as output current value I L1 or the output I L1
  • the limit current value of the A / F sensor 24 the output current value I L2 or both output I L2 Call it.
  • the ECU 50 stores in advance a calculation process for calculating the difference between the output I L1 and the output I L2 .
  • the difference between the output I L1 and the output I L2 also referred to as [Delta] I L.
  • the ECU 50 can issue a control signal to the heater control unit 34 to turn on / off the heater 32 and adjust the heat generation amount.
  • the ECU 50 is also connected to a sensor (for example, an intake pressure sensor or an air flow meter) for measuring the intake air amount of the internal combustion engine 2 upstream of the exhaust pipe 10.
  • the ECU 50 can measure the intake air amount Ga of the internal combustion engine 2 based on the output of this sensor.
  • the ECU 50 stores a routine for calculating the exhaust gas amount Gexh based on the intake air amount Ga.
  • Embodiment 1 (PM detection principle according to the first embodiment)
  • the inventor of the present application has come up with a particulate amount detection method based on a novel detection principle that has not been known. That is, when the particulates are filtered by a small filter such as the filter 30, the diffusion distance of the gas (oxygen: O 2 ) passing through the small filter changes.
  • the amount of particulates in the filter increases, the amount of O 2 that can pass through the small filter decreases, and as a result, the oxygen concentration downstream of the small filter decreases. Therefore, it is possible to detect the particulate amount of the gas flowing into the small filter based on the oxygen concentration downstream of the small filter.
  • the small filter plays the same role as the diffusion-controlled layer in the limiting current type A / F sensor.
  • the oxygen diffusion distance in the total layer of the small filter and the diffusion-controlling layer of the limiting current type A / F sensor is determined by the parameter in the filter. It increases as the amount of curate increases. As a result, the limit current value of the downstream limit current type A / F sensor decreases as the amount of particulates in the filter increases.
  • the output difference between the upstream and downstream limiting current type A / F sensors increases as the amount of particulates in the filter increases. Go. Therefore, it is possible to detect the particulate amount of the inflowing gas to the small filter based on the output difference between the upstream and downstream limiting current type A / F sensors.
  • the A / F sensor 22 shows a specific output corresponding to the air-fuel ratio.
  • the output of the A / F sensor 24 changes according to the amount of particulates in the filter 30 as described above.
  • the amount of particulates in the filter 30 increases.
  • the ambient oxygen concentration of the A / F sensor 24 decreases, and IL2 decreases.
  • the output I L1 is constant while the output I L2 is decreased, ⁇ I L is increased.
  • FIG. 3 is a time chart for explaining the PM amount detection operation according to the first embodiment.
  • the three steps A, B, and C are repeatedly performed.
  • the A / F sensors 22 and 24 are kept constant at the activation temperature.
  • step A first, a control signal is sent from the ECU 50 to the heater control unit 34, and the heater 32 is heated.
  • the particulate matter in the filter 30 is removed (burned) by the heating of the heater 32, and the particulate matter in the filter 30 once becomes zero.
  • the output zero point correction is also performed in step A in order to eliminate the output deviation (output deviation) between the A / F sensor 22 and the A / F sensor 24.
  • the output zero point correction, [Delta] I L indicates a value corresponding to the particulate amount in the filter 30 with high accuracy.
  • step B the heater 32 is turned off. As a result, the temperature of the filter 30 decreases and particulates begin to accumulate in the filter 30. In Step B, a standby state is maintained until a predetermined time elapses in this state.
  • Step C when a predetermined time has elapsed from Step B, the ECU 50 acquires the output I L1 and the output I L2 and calculates ⁇ I L. Based on the predetermined time (that is, the particulate collection period) between the above steps B ⁇ C and the total amount of the exhaust gas amount Gexh that has flowed during this time, the particulate amount per unit time and per unit gas amount Is calculated.
  • the predetermined time that is, the particulate collection period
  • step A step A is continued. Thereafter, steps A, B, and C are repeatedly performed, so that the amount of particulates can be continuously detected.
  • the quantitative detection of the exhaust gas particulates can be continuously performed every predetermined time (predetermined cycle).
  • the output variation of the A / F sensor 24 (an output decrease) that is based on [Delta] I L, to detect the particulate amount of the exhaust gas flowing into the filter 30 Can do.
  • a / F sensors can be provided on the upstream side of the filter 30 and the downstream side of the filter 30, respectively. By measuring the difference [Delta] I L of the A / F sensor 22 can detect the particulate amount of increase in the filter 30 with high accuracy. As a result, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
  • the particulate matter of the filter 30 can be heated and removed by the heater 32, the detection of the particulate amount can be repeated.
  • the filter 30 is small, and the power consumption of the heater 32 is small even if the particulates are repeatedly removed by heating. Therefore, the influence on the fuel consumption can be reduced.
  • the particulate amount of the exhaust gas using the A / F sensors 22 and 24.
  • an air-fuel ratio sensor As a sensor for detecting the oxygen concentration of exhaust gas, an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor, the particulate quantity of the exhaust gas can be detected with high reliability.
  • the air-fuel ratio sensor generally operates in a state heated to a predetermined activation temperature.
  • the filter 30 reaches a temperature higher than a specific temperature (particulate combustion temperature)
  • the particulates burn without being accumulated in the filter 30.
  • the A / F sensors 22 and 24 and the filter 30 are separated from each other. Therefore, the filter 30 can reliably hold the particulates even while the temperature of the A / F sensors 22 and 24 is the activation temperature. As a result, the particulate matter amount of the exhaust gas can be detected while the A / F sensors 22 and 24 are at the activation temperature.
  • the temperatures of the A / F sensors 22 and 24 are kept constant at the activation temperature, and the temperature dependence of the outputs of the A / F sensors 22 and 24 is small. Therefore, there is an advantage that output temperature correction and a temperature sensor for temperature correction are not required.
  • FIG. 4 is a flowchart of a routine executed by ECU 50 in the first embodiment.
  • the routine of FIG. 4 is executed when the internal combustion engine 2 is started.
  • Figure 5 is a diagram showing an example of a map of the correlation line between values and particulates amount of [Delta] I L (PM amount).
  • step S100 A / F sensor heating and heater control are performed (step S100).
  • the heaters built in the sensors are heated until the A / F sensors 22 and 24 are activated.
  • the heater 32 is also controlled, and the filter 30 is heated to the particulate combustion temperature.
  • step S102 output zero point correction of the A / F sensor is performed (step S102).
  • step S102 it is first determined whether or not the A / F sensors 22 and 24 are active. The sensor activity determination can be made based on, for example, whether or not the output error of the A / F sensors 22 and 24 is within a predetermined range.
  • step S102 PM combustion determination is also performed. The PM combustion determination is performed to determine whether or not the attached particulates of the filter 30 are completely burned. In the first embodiment, when the heating of the filter 30 by the heater 32 is continued for a predetermined time, it is determined that the particulates are completely burned.
  • step S102 output zero point correction of the A / F sensor is also performed.
  • the output zero point correction of the A / F sensor is performed in order to eliminate the output deviation (output deviation) between the A / F sensor 22 and the A / F sensor 24.
  • This output zero point correction can be performed as follows, for example. First, a coefficient k to be multiplied by the output current of the A / F sensor 24 is derived so that the output of the A / F sensor 22 matches the output of the A / F sensor 24. The coefficient k is multiplied by the output current of the A / F sensor 24. Thereby, every time the process of step S102 is performed, the output difference is canceled and the output zero point correction is realized.
  • step S104 the heater 32 is turned off.
  • the temperature of the filter 30 is lowered, and the filter 30 is sufficiently cooled to a temperature at which the particulates can be accumulated in the filter 30. Thereafter, particulates accumulate in the filter 30.
  • the ECU 50 executes a filter temperature determination process for determining whether or not the temperature of the filter 30 has become low enough to accumulate particulates.
  • this filter temperature determination for example, it may be determined whether the temperature of the heater 32 has become sufficiently low based on a comparison between the resistance value of the heater 32 and a predetermined value. When the heater 32 is sufficiently low in temperature, it can be determined that the temperature of the filter 30 is sufficiently low. Alternatively, if the [Delta] I L is increased to a predetermined determination amount, it may be determined that the temperature of the filter 30 is sufficiently low. If the filter temperature determination process is satisfied, the time is measured from the time when the condition is satisfied.
  • step S106 a process of calculating the integrated exhaust gas amount is started.
  • the ECU 50 accumulates the exhaust gas amount Gexh.
  • the integrated value of Gexh is also referred to as an integrated exhaust gas amount “Gexh_itg”.
  • a / F sensor output storage and exhaust gas amount storage are performed (step S108).
  • the outputs of the A / F sensors 22 and 24 when the predetermined time T 0 has elapsed after the start of time measurement in step S104 are stored.
  • the exhaust gas amount Gexh is also stored at the timing when the outputs of the A / F sensors 22 and 24 are stored.
  • the exhaust gas amount Gexh stored here is used to correct the exhaust gas pressure dependency of the A / F sensors 22 and 24.
  • the A / F sensor output storage and the exhaust gas amount storage are performed after a predetermined time has elapsed since it was confirmed that the particulates started to accumulate in the filter 30. it can.
  • the internal combustion engine 2 may be operated under predetermined operating conditions during steps S104 to S108. Under this predetermined operating condition, the output storage of the A / F sensors 22 and 24 and the exhaust gas amount storage may be performed after the predetermined time T 0 has elapsed. If the engine operating area where you want to detect the PM amount has been determined, or if you want to detect the PM amount when there is a certain amount of particulate generation from the viewpoint of detection accuracy, the operating conditions for detecting the PM amount are It may be determined in advance.
  • step S110 [Delta] I L calculation process is executed (step S110).
  • the difference between the output values stored in step S108 is calculated.
  • the difference obtained by this calculation is converted into a reference current value according to the air-fuel ratio and the exhaust gas amount Gexh.
  • step S112 a process for calculating the PM amount from the correlation line is executed (step S112).
  • step S114 the PM amount corresponding to the exhaust gas amount is calculated.
  • the integrated exhaust gas amount Gexh_itg stored in step S108 based on the predetermined time T 0, per and per unit amount of gas per unit time, the particulate amount is calculated. Thereby, quantitative evaluation of particulates in exhaust gas can be performed.
  • step S116 the heater 32 is heated again, and the particulates in the filter 30 are removed (step S116). Thereafter, the process returns to step S102, and the processes after step S102 are repeatedly executed.
  • the amount of exhaust gas particulates can be detected.
  • the map that defines the relationship between [Delta] I L and PM amount to be stored in ECU50 is correlation line for each of a plurality of air-fuel ratio of 20, 25 and other is determined, it may be a so-called multi-dimensional map.
  • the PM amount may be calculated by directly referring to the correlation line for each air-fuel ratio without converting to the reference current value in step S110.
  • the ECU 50 calculates the exhaust gas amount Gexh based on the intake air amount Ga. For this reason, the integrated value of the intake air amount Ga can be used instead of the integrated exhaust gas amount Gexh_itg.
  • the filter 30 is the “filter” in the first invention
  • the heater 32 is the “heater” in the first invention
  • the A / F sensor 24 is the first filter.
  • the A / F sensor 22 corresponds to the “oxygen concentration sensor element” in the second invention.
  • the filter 30 is the “filter” in the fifth invention
  • the air-fuel ratio sensor 24 is the “oxygen concentration sensor element” in the fifth invention
  • the heater 32 is This corresponds to the “heater” in the fifth invention.
  • the ECU 50 executes the process of step S100 or step S116 in the routine of FIG. 4, so that the “heating control means” in the fifth aspect of the invention causes the ECU 50 to execute the process of step S104.
  • the “temperature reduction control means” in the fifth invention causes the ECU 50 to execute the process of step S108
  • the “acquisition means” in the fifth invention enables the ECU 50 to execute the processes of steps S110 to S114. By executing this, the “calculation means” in the fifth aspect of the present invention is realized.
  • the predetermined time T 0 corresponds to the “predetermined time” in the sixth invention
  • the accumulated exhaust gas amount Gexh_itg corresponds to the “integrated value” in the sixth invention.
  • the “calibration means” is implemented by the ECU 50 executing the process of step S102 in the routine of FIG.
  • the A / F sensors 22 and 24 are limit current type air-fuel ratio sensors.
  • the present invention is not limited to this.
  • an air-fuel ratio sensor of a system other than the limit current type for example, a so-called 2-cell type air-fuel ratio sensor may be used instead of the A / F sensors 22 and 24.
  • An oxygen concentration sensor that can measure the oxygen concentration of gas other than the air-fuel ratio sensor may be used instead of the A / F sensors 22 and 24.
  • one A / F sensor is provided upstream and downstream of the filter 30.
  • the present invention is not limited to this.
  • the output reduction of the A / F sensor (hereinafter, [Delta] I Ld) may be used in place of the in [Delta] I L.
  • the air-fuel ratio or oxygen concentration calculated based on the operating condition of the internal combustion engine 2 the difference between the output of the filter downstream of the A / F sensor or an oxygen concentration sensor may be a [Delta] I L .
  • the “PM sensor” according to the first aspect of the present invention is configured by combining the A / F sensors 22 and 24, the filter 30, and the heater 32 as individual components.
  • the present invention is not limited to this.
  • One PM sensor in which the functions of the A / F sensors 22 and 24, the filter 30, and the heater 32 are integrated (integrated) may be manufactured.
  • a filter for filtering PM is provided in a PM sensor case having an exhaust gas inlet and an exhaust gas outlet. Further, an air-fuel ratio sensor element part or an oxygen concentration sensor element part is provided upstream and downstream of the filter, respectively.
  • a heater for heating the filter is also incorporated.
  • a PM sensor including an exhaust gas inlet and an outlet and including a filter, an oxygen concentration sensor element portion, and a heater is provided.
  • this PM sensor is disposed in the exhaust passage, a part of the exhaust gas is extracted through the inlet and flows into the PM sensor case. The exhaust gas flowing in from the inflow port passes through the filter and then flows out again from the outflow port into the exhaust passage.
  • the output difference of the oxygen concentration sensor element of the filter upstream and downstream similarly to the [Delta] I L of the first embodiment, it is possible to detect the particulate matter of the exhaust gas.
  • the influence of the exhaust gas flow rate and the air-fuel ratio can be reduced as compared with the configuration of the first embodiment. Detection can be performed.
  • the heat insulation around the filter is sufficiently secured so that the filter can maintain the particulates even while the temperature of the air-fuel ratio sensor element is the active temperature.
  • the air-fuel ratio sensor element unit or the oxygen concentration sensor element unit may be provided only downstream of the filter.
  • the ECU 50 stores a map (first map) between the values of I L1 and I L2 and the oxygen concentration.
  • the ECU 50 also stores a correlation line map (second map) that defines the relationship between the oxygen concentration difference ⁇ O 2 upstream and downstream of the filter 30 and the PM amount. This second map can be determined so that the PM amount increases as the oxygen concentration difference ⁇ O 2 increases.
  • an oxygen concentration value corresponding to these values is calculated according to the first map.
  • the PM amount is calculated according to the second map.
  • the processing in steps S110 and S112 may be replaced by such a calculation process.
  • Embodiment 2 The PM amount detection device of the second embodiment has a configuration in which a circuit for measuring the power consumption of the heater 32 is added to the configuration of the first embodiment.
  • the specific configuration of this circuit is not particularly limited, and a circuit provided with a current sensor and a voltage sensor for measuring the current and applied voltage of the heater 32 may be used. Except for this point, the hardware configurations of the first and second embodiments are the same, and therefore the hardware configuration of the second embodiment is not shown for the sake of simplicity of explanation.
  • the PM amount detection apparatus according to the second embodiment is realized by causing the ECU 50 to execute the routine of FIG.
  • the power consumption of the heater 32 is also referred to as “P H ”.
  • Embodiment 2 As the amount of particulates in the exhaust gas increases, the amount of particulates collected by the filter 30 within a unit time increases. The greater the amount of particulates in the filter 30, the greater the power consumption of the heater 32 required to remove the particulates in the filter 30. Therefore, in the second embodiment, the particulate amount of the gas flowing into the filter 30 is calculated based on the power consumption amount of the heater 32.
  • FIG. 6 is a flowchart of a routine executed by the ECU 50 in the second embodiment of the present invention.
  • a map of a correlation line between WH and the PM amount is stored in the ECU 50 in advance. This map, like the map of FIG. 5 in the first embodiment, can be defined as such amount of PM increases W H is large.
  • step S100 described in the first embodiment is executed.
  • step S208 storage of I L1 , I L2 , and Gexh and calculation of ⁇ I L are performed (step S208).
  • the ECU 50 is provided with a sequential storage process for repeatedly storing (sampling) the outputs I L1 and I L2 of the A / F sensors 22 and 24 at predetermined intervals (for example, every 8 milliseconds).
  • the ECU 50 is also provided with a sequential storage process for storing the exhaust gas amount Gexh at the same timing as the storage of the outputs I L1 and I L2 .
  • the ⁇ I L calculation process in steps S108 and S110 is repeatedly performed based on the stored values I L1 , I L2 , and Gexh of the sequential storage process.
  • ECU 50 performs continue these processes in step S208 and subsequent, [Delta] I L is sequentially updated to the latest values.
  • step S104 described in the first embodiment is executed, and the heater is turned off. Thereafter, in response to the gradually accumulated particulate filter 30, the value of [Delta] I L being sequentially calculated, gradually increases.
  • step S213 time counting is started when a predetermined degree of particulates is accumulated in the filter 30.
  • time counting is started when a predetermined degree of particulates is accumulated in the filter 30.
  • step S214 when the time at which the counting is started in step S213 reaches a predetermined time (hereinafter, “T 1 ”), the heater is turned on (step S214). After ON of the heater 32, the power supplied to the heater 32 at a predetermined amplitude P 0 and a predetermined duty ratio D H. At this time, the heater 32 is controlled so that at least the filter 30 can be heated to the particulate combustion start temperature or higher. In the second embodiment, the time is counted after the heater 32 is turned on.
  • the filter 30 is heated by the heater 32, and the particulates in the filter 30 are combusted and removed. Along with this, the value of ⁇ I L gradually decreases.
  • step S216 the power consumption until ⁇ I L becomes zero is calculated.
  • the heater 32 is turned ON, the determination process of whether [Delta] I L becomes zero is performed.
  • [Delta] I L 0 the time counted by the timing established is stopped, the time T H from ON time of the heater 32 to the [Delta] I L becomes zero is obtained.
  • the calculated power consumption amount WH is the amount of power consumed by the heater 32 in order to remove the particulates in the filter 30.
  • step S228 the PM amount corresponding to the exhaust gas amount is calculated.
  • a map of correlation lines between the WH and the PM amount stored in the ECU 50 is referred to calculate the PM amount corresponding to the WH .
  • the integrated exhaust gas amount Gexh_itg on the basis of a predetermined time T 0, per and per unit amount of gas per unit time, the particulate amount is calculated.
  • step S220 the heater 32 is heated again, and the particulates in the filter 30 are removed. Thereafter, the process returns to step S208, and the processes after step S208 are repeatedly executed.
  • the amount of exhaust gas particulates can be detected.
  • the filter 30 corresponds to the “filter” in the tenth invention
  • the heater 32 corresponds to the “heater” in the tenth invention.
  • the ECU 50 executes the process of step S212 in the routine shown in FIG. 6, so that the “temperature reduction control” in the tenth aspect of the invention causes the ECU 50 to execute the processes of steps S213 and S214.
  • the “heating control means” in the tenth aspect of the invention causes the ECU 50 to execute the process of step S216
  • the “power amount detection means” in the tenth aspect of the invention causes the ECU 50 to execute the process of step S220.
  • the “calculation means” in the tenth aspect of the present invention is realized.
  • step S216 of the routine of FIG 6, by [Delta] I L is zero process of determining whether or not the ECU50 executes, the "determination means" in the eleventh aspect of the present invention, time T H and by ECU50 calculation processing for calculating a power consumption amount W H on the basis of the above P 0 and the duty ratio D H is executed, the first 11 "electric power calculation means" in the invention of, be implemented respectively Yes.
  • the A / F sensor 22 is the “upstream oxygen concentration sensor” in the twelfth invention, and the A / F sensor 24 (not shown) is the first sensor. This corresponds to the “downstream oxygen concentration sensor” in each of the 12 inventions.
  • the control of the heater 32 is not necessarily limited to the duty control as in step S214.
  • electric power may be applied to the heater 32 so that the resistance value of the heater 32 (temperature of the heater 32) shows a predetermined value.
  • the power consumption may be calculated by monitoring the power consumption of the heater 32.
  • FIG. 7 is a diagram showing the configuration of the abnormality detection apparatus for an internal combustion engine according to the third embodiment of the present invention.
  • the abnormality detection device of the third embodiment can detect an abnormality of the diesel particulate filter (DPF) 130 provided in the exhaust pipe 10.
  • DPF diesel particulate filter
  • This abnormality detection device can be used for OBD (On-board diagnosis) when mounted on a vehicle.
  • the internal combustion engine 2 is assumed to be a diesel engine, and a heating mechanism (not shown) for regenerating the DPF 130 is provided.
  • the ECU 50 can regenerate the DPF 130 by controlling the heating mechanism.
  • an exhaust system fuel addition valve may be provided in the exhaust passage of the internal combustion engine 2.
  • the exhaust system fuel addition valve is provided to add fuel to the exhaust gas flowing through the exhaust passage.
  • the DPF 130 can be regenerated by adding fuel with an exhaust system fuel addition valve at an appropriate timing.
  • so-called post injection may be performed to add fuel.
  • a heater may be attached to the DPF 130 and the DPF 130 may be heated by this heater.
  • a / F sensors 22 and 24 are provided upstream and downstream of the DPF 130, as in the case of the filter 30 of the first embodiment. Also in DPF130, like the filter 30, in accordance with the increase particulates, [Delta] I L is increased. DPF130 is if successfully collecting particulates, particulates continue to accumulate in the DPF130, the influence of the particulate accumulation should appear in ⁇ I L. Therefore, based on [Delta] I L, it is possible to detect the abnormality of DPF130.
  • FIG. 8 is a flowchart of a routine executed by ECU 50 in the third embodiment.
  • the routine in FIG. 8 is executed when the internal combustion engine 2 is started.
  • the description overlapping with the contents of the above-described first and second embodiments will be omitted or simplified as appropriate.
  • step S300 heating for activating the A / F sensor is performed (step S300) as in step S100 of the first embodiment.
  • DPF regeneration control is executed (step S302).
  • the ECU 50 controls the heating mechanism described above, and the particulates in the DPF 130 are removed.
  • steps S102, S106, S108, and S110 are executed as in the first embodiment.
  • activity determination processing of the A / F sensor, PM combustion determination process in DPF130, outputs the zero point correction process of the A / F sensor, calculation of the integrated exhaust gas amount Gexh_itg, and calculation of [Delta] I L are sequentially performed Is done.
  • step S304 the PM amount is calculated (step S304).
  • step S112 of the first embodiment based on [Delta] I L, in accordance with the correlation lines, PM amount is calculated.
  • step S112 of the first embodiment based on [Delta] I L, in accordance with the correlation lines, PM amount is calculated.
  • a map of correlation lines as shown in FIG. 5 is created in advance, and this map is stored in the ECU 50.
  • step S306 it is determined whether the PM amount is equal to or less than a predetermined value. As described above, if the DPF 130 can normally collect the particulates, the particulates should be accumulated in the DPF 130. Contrary to this expectation, if the amount of PM in the DPF 130 shows a predetermined value or less, it is considered that some abnormality has occurred in the DPF 130. Therefore, in the third embodiment, it is determined whether the PM amount is equal to or less than a predetermined value. If this condition is negative, it is determined that the DPF 130 is normally collecting particulates, and the current routine is terminated.
  • step S306 If the condition of step S306 is satisfied, it is determined that there is an abnormality in the DPF 130 (step S308).
  • the abnormality detection apparatus according to the third embodiment is used for OBD, for example, a warning is given to the driver by lighting a warning lamp.
  • the abnormality of the particulate filter can be detected.
  • the present invention is not limited to this. Without conversion to the PM amount, by comparing the [Delta] I L with a predetermined value, it may be performed comparison determination.
  • the DPF 130 corresponds to the “particulate filter” in the thirteenth invention
  • the A / F sensor 24 corresponds to the “oxygen concentration sensor” in the thirteenth invention.
  • the ECU 50 executes the process of step S302 of the routine of FIG. 8, so that the “heating means” in the thirteenth aspect of the invention is changed to steps S110, S304, S306 of the routine of FIG.
  • the “detection means” in the thirteenth aspect of the present invention is realized.
  • the A / F sensor 22 corresponds to the “oxygen concentration sensor” in the fourteenth aspect of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Provided are a PM sensor and a device for sensing the amount of PM in exhaust gas, the sensor and the device being capable of detecting the amount of particulate matter.  Also provided is an abnormality sensing device for an internal combustion engine, capable of sensing abnormality of a particulate filter. A PM sensor and a PM amount sensing device are mounted in an exhaust pipe (10) of an internal combustion engine (2).  In the exhaust pipe (10) are arranged an air-fuel ratio sensor (22), a filter (30), and an air-fuel ratio sensor (24) in that order in the direction of flow of exhaust gas.  The filter (30) is a small-sized particulate capturing filter.  An ECU (50) can obtain outputs from the air-fuel ratio sensors (22, 24).  The ECU (50) has a function of calculating a difference ∆IL between an output IL1 and an output IL2.  The ECU (50) can calculate, based on ∆IL, the amount of particulate matter in exhaust gas currently flowing into the filter (30).

Description

PMセンサ、排気ガスのPM量検知装置、内燃機関の異常検出装置PM sensor, exhaust gas PM amount detection device, internal combustion engine abnormality detection device
 この発明は、PMセンサ、排気ガスのPM量検知装置、内燃機関の異常検出装置に関する。 The present invention relates to a PM sensor, an exhaust gas PM amount detection device, and an internal combustion engine abnormality detection device.
 従来、例えば、特開平8-284644号公報に開示されているように、排気ガス中のパティキュレートマターをフィルタリングするためのパティキュレートフィルタを備えた内燃機関が知られている。以下、パティキュレートマター(Particulate matter:PM:粒子状物質)を、単に「パティキュレート」あるいは「PM」とも呼称する。 Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-284644, there is known an internal combustion engine including a particulate filter for filtering particulate matter in exhaust gas. Hereinafter, the particulate matter (PM) is also simply referred to as “particulate” or “PM”.
 上記従来の内燃機関は、フィルタの差圧を検知する圧力センサを備えている。パティキュレート量の多い排気ガスがフィルタに流れ込むと、これに応じてフィルタ内のパティキュレート量は増加する。フィルタの差圧も、これに追随して変化する。従って、フィルタの差圧を検知することによって、排気ガスのパティキュレート量を検知することができる。 The conventional internal combustion engine includes a pressure sensor that detects the differential pressure of the filter. When exhaust gas with a large amount of particulates flows into the filter, the amount of particulates in the filter increases accordingly. The differential pressure of the filter also changes following this. Therefore, the particulate matter amount of the exhaust gas can be detected by detecting the differential pressure of the filter.
 他に、パティキュレート量検知用の構成として、特開2007-32490号公報や特開2008-64621号公報の構成が公知である。 In addition, configurations of Japanese Patent Application Laid-Open No. 2007-32490 and Japanese Patent Application Laid-Open No. 2008-64621 are known as configurations for detecting the particulate amount.
特開平8-284644号公報JP-A-8-284644 特開2007-32490号公報JP 2007-32490 A 特開2008-64621号公報JP 2008-64621 A
 近年のエミッション規制強化に伴い、パティキュレート量を検知するためのセンサのニーズが高まっている。しかし、現在の技術水準において、実用に耐えうるオンボード用のPMセンサやPM量検知装置は、未だ登場していない。パティキュレート量を検知するためのPMセンサやPM量検知装置の開発が急務である。また、内燃機関のパティキュレートフィルタに異常が発生した場合には、速やかに対策を取る必要がある。パティキュレートフィルタの異常検知技術も、更なる技術進歩が望まれている。 With the recent tightening of emission regulations, there is an increasing need for sensors for detecting the amount of particulates. However, on-board PM sensors and PM amount detection devices that can withstand practical use have not yet appeared in the current technical level. There is an urgent need to develop a PM sensor and a PM amount detection device for detecting the particulate amount. Further, when an abnormality occurs in the particulate filter of the internal combustion engine, it is necessary to take measures immediately. Further advancement in the technology for detecting abnormalities in particulate filters is also desired.
 この発明は、上記のような課題を解決するためになされたもので、パティキュレートマター量を検知することのできるPMセンサ、排気ガスのPM量検知装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a PM sensor capable of detecting the amount of particulate matter and a PM amount detection device for exhaust gas.
 この発明の他の目的は、パティキュレートフィルタの異常検出を行うことのできる、内燃機関の異常検出装置を提供することである。 Another object of the present invention is to provide an abnormality detection device for an internal combustion engine capable of detecting an abnormality of a particulate filter.
 第1の発明は、上記の目的を達成するため、PMセンサであって、
 内燃機関の排気通路のガスのうち一部を摘出して流入させる流入口と、
 前記流入口に流入したガスの中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
 前記フィルタに取り付けられ、前記フィルタの温度を変化させることができるヒータと、
 前記フィルタを通過したガスを前記排気通路へと流出させる流出口と、
 前記流出口側に配置され、前記フィルタを通過したガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子と、
 を備えることを特徴とする。
In order to achieve the above object, a first invention is a PM sensor,
An inflow port for extracting and flowing in part of the gas in the exhaust passage of the internal combustion engine;
A filter for filtering particulate matter (PM) in the gas flowing into the inlet;
A heater attached to the filter and capable of changing a temperature of the filter;
An outlet for allowing the gas that has passed through the filter to flow into the exhaust passage;
An oxygen concentration sensor element that is arranged on the outlet side and changes an output according to the oxygen concentration of the gas that has passed through the filter;
It is characterized by providing.
 また、第2の発明は、第1の発明において、
 前記流入口側に配置され、前記流入口から前記フィルタに流れ込むガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子を、さらに備えることを特徴とする。
The second invention is the first invention, wherein
An oxygen concentration sensor element that is disposed on the inlet side and changes an output according to an oxygen concentration of a gas flowing into the filter from the inlet is further provided.
 また、第3の発明は、第2の発明において、
 前記流出口側の前記酸素濃度センサ素子および前記流入口側の前記酸素濃度センサ素子が、空燃比センサ素子であることを特徴とする。
The third invention is the second invention, wherein
The oxygen concentration sensor element on the outlet side and the oxygen concentration sensor element on the inlet side are air-fuel ratio sensor elements.
 また、第4の発明は、第3の発明において、
 前記空燃比センサ素子は、ヒータを備え、作動時に該ヒータにより所定温度に加熱され、
 前記空燃比センサ素子の温度が前記所定温度であるときに、前記フィルタが前記フィルタ内のパティキュレートマターが除去されない程度の温度になるように、前記フィルタと前記空燃比センサ素子とが離間されていることを特徴とする。
Moreover, 4th invention is set in 3rd invention,
The air-fuel ratio sensor element includes a heater and is heated to a predetermined temperature by the heater during operation,
When the temperature of the air-fuel ratio sensor element is the predetermined temperature, the filter and the air-fuel ratio sensor element are separated from each other so that the filter has a temperature at which particulate matter in the filter is not removed. It is characterized by being.
 第5の発明は、上記の目的を達成するため、排気ガスのPM量検知装置であって、
 内燃機関の排気通路に備えられ、前記排気通路を流れる排気ガス中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
 前記排気通路内における前記フィルタの下流に配置され、前記フィルタを通過したガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子と、
 前記フィルタに取り付けられたヒータと、
 前記フィルタ内のパティキュレートマターが除去されるまで前記フィルタが加熱されるように、前記ヒータを制御する加熱制御手段と、
 前記加熱制御手段の前記制御後に、前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去されない温度以下になるように、前記ヒータを制御する温度低減制御手段と、
 前記フィルタの温度が前記温度以下になったあと、前記酸素濃度センサ素子の出力を取得する取得手段と、
 前記取得手段により取得された前記出力に基づいて、前記排気ガスのパティキュレートマター量を算出する算出手段と、
 を備えることを特徴とする。
In order to achieve the above object, a fifth invention is an exhaust gas PM amount detection device,
A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage;
An oxygen concentration sensor element that is disposed downstream of the filter in the exhaust passage and changes an output according to the oxygen concentration of the gas that has passed through the filter;
A heater attached to the filter;
Heating control means for controlling the heater so that the filter is heated until the particulate matter in the filter is removed;
Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than the temperature at which the particulate matter in the filter is not removed after the control of the heating control means;
Obtaining means for obtaining an output of the oxygen concentration sensor element after the temperature of the filter becomes equal to or lower than the temperature;
Calculation means for calculating the particulate matter amount of the exhaust gas based on the output acquired by the acquisition means;
It is characterized by providing.
 また、第6の発明は、第5の発明において、
 前記取得手段が、前記フィルタの温度が前記温度以下になったあと、所定時間が経過したときに、前記酸素濃度センサ素子の出力を取得し、
 前記フィルタの温度が前記温度以下になったあと、前記取得手段の前記出力の取得タイミングまでに前記フィルタに流れ込んだ排気ガス量の積算値を算出する手段を備え、
 前記算出手段が、前記取得手段により取得された前記出力と、前記所定時間と、前記積算値と、に基づいて、単位時間当たりおよび単位体積当たりの、前記排気ガスのパティキュレートマター量を算出することを特徴とする。
The sixth invention is the fifth invention, wherein
The acquisition means acquires the output of the oxygen concentration sensor element when a predetermined time has elapsed after the temperature of the filter becomes equal to or lower than the temperature,
Means for calculating an integrated value of the amount of exhaust gas flowing into the filter by the acquisition timing of the output of the acquisition means after the temperature of the filter becomes equal to or lower than the temperature;
The calculation means calculates the particulate matter amount of the exhaust gas per unit time and per unit volume based on the output acquired by the acquisition means, the predetermined time, and the integrated value. It is characterized by that.
 また、第7の発明は、第5または6の発明において、
 前記排気通路内における前記フィルタの上流に配置され、前記フィルタに流れ込む排気ガスの酸素濃度に応じて出力を変化させることのできる酸素濃度センサ素子を、さらに備え、
 前記算出手段が、前記フィルタ上流側の前記酸素濃度センサ素子の出力と前記フィルタ下流側の前記酸素濃度センサ素子の出力との差に基づいて、前記排気ガスのパティキュレートマター量を算出することを特徴とする。
The seventh invention is the fifth or sixth invention, wherein
An oxygen concentration sensor element disposed upstream of the filter in the exhaust passage and capable of changing an output according to an oxygen concentration of exhaust gas flowing into the filter;
The calculating means calculates a particulate matter amount of the exhaust gas based on a difference between an output of the oxygen concentration sensor element upstream of the filter and an output of the oxygen concentration sensor element downstream of the filter; Features.
 また、第8の発明は、第7の発明において、
 前記フィルタ下流側の前記酸素濃度センサ素子および前記フィルタ上流側の前記酸素濃度センサ素子が、空燃比センサ素子であることを特徴とする。
The eighth invention is the seventh invention, wherein
The oxygen concentration sensor element on the downstream side of the filter and the oxygen concentration sensor element on the upstream side of the filter are air-fuel ratio sensor elements.
 また、第9の発明は、第8の発明において、
 前記フィルタ下流側の前記空燃比センサと、前記フィルタ上流側の前記空燃比センサと、の間の出力偏差を校正する校正手段をさらに備えることを特徴とする。
The ninth invention is the eighth invention, wherein
The apparatus further comprises calibration means for calibrating an output deviation between the air-fuel ratio sensor on the downstream side of the filter and the air-fuel ratio sensor on the upstream side of the filter.
 第10の発明は、上記の目的を達成するため、排気ガスのPM量検知装置であって、
 内燃機関の排気通路に備えられ、前記排気通路を流れる排気ガス中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
 前記フィルタに取り付けられたヒータと、
 前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去されない温度以下になるように、前記ヒータを制御する温度低減制御手段と、
 前記温度低減制御手段の前記制御により前記フィルタの温度が前記温度以下になったときから所定期間が経過した後に、前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去される温度以上になるように、前記ヒータを制御する加熱制御手段と、
 前記加熱制御手段の前記制御が行われているときに、前記フィルタ内のパティキュレートマターを除去するために前記ヒータが消費した電力消費量を検知する電力量検知手段と、
 前記電力量検知手段により検知された前記電力消費量に基づいて、前記排気ガスのパティキュレートマター量を算出する算出手段と、
 を備えることを特徴とする。
In order to achieve the above object, a tenth aspect of the invention is an exhaust gas PM amount detection device,
A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage;
A heater attached to the filter;
Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than a temperature at which particulate matter in the filter is not removed;
The temperature of the filter becomes equal to or higher than the temperature at which the particulate matter in the filter is removed after a lapse of a predetermined period from when the temperature of the filter becomes equal to or lower than the temperature by the control of the temperature reduction control means. Heating control means for controlling the heater;
A power amount detecting means for detecting a power consumption amount consumed by the heater to remove particulate matter in the filter when the control of the heating control means is performed;
Calculation means for calculating a particulate matter amount of the exhaust gas based on the power consumption detected by the power detection means;
It is characterized by providing.
 また、第11の発明は、第10の発明において、
 前記電力量検知手段は、
 前記加熱制御手段の前記制御の開始後に、前記フィルタ内のパティキュレートマターが除去されたか否かを判定する判定手段と、
 前記加熱制御手段の前記制御の開始から前記フィルタ内のパティキュレートマターが除去されたと判定されるまでの期間の、前記ヒータの電力消費量を算出する電力量算出手段と、
 前記電力量算出手段が算出した前記電力消費量に基づいて、前記フィルタ内のパティキュレートマターを除去するために前記ヒータが消費した前記電力消費量を算出する手段と、
 を含むことを特徴とする。
The eleventh aspect of the invention is the tenth aspect of the invention,
The power amount detection means
Determination means for determining whether or not the particulate matter in the filter has been removed after the start of the control of the heating control means;
A power amount calculating means for calculating a power consumption amount of the heater during a period from the start of the control of the heating control means until it is determined that the particulate matter in the filter has been removed;
Means for calculating the power consumption consumed by the heater to remove particulate matter in the filter based on the power consumption calculated by the power consumption calculating means;
It is characterized by including.
 また、第12の発明は、第11の発明において、
 前記排気通路内における前記フィルタの上流に配置され、前記フィルタに流入するガスの酸素濃度に応じて出力を変化させる上流側酸素濃度センサと、
 前記排気通路内における前記フィルタの下流に配置され、前記フィルタから流出するガスの酸素濃度に応じて出力を変化させる下流側酸素濃度センサと、を備え、
 前記判定手段は、前記上流側酸素濃度センサの出力と前記下流側酸素濃度センサの出力との差に基づいて、前記フィルタ内のパティキュレートマターが除去されたか否かを判定することを特徴とする。
The twelfth invention is the eleventh invention, in which
An upstream oxygen concentration sensor that is disposed upstream of the filter in the exhaust passage and changes an output according to an oxygen concentration of a gas flowing into the filter;
A downstream oxygen concentration sensor disposed downstream of the filter in the exhaust passage and changing an output according to an oxygen concentration of a gas flowing out from the filter,
The determination means determines whether or not the particulate matter in the filter has been removed based on the difference between the output of the upstream oxygen concentration sensor and the output of the downstream oxygen concentration sensor. .
 第13の発明は、上記の他の目的を達成するため、内燃機関の異常検出装置であって、
 内燃機関の排気通路に備えられたパティキュレートフィルタの下流に配置され、前記パティキュレートフィルタから流出するガスの酸素濃度に応じて出力を変化させる酸素濃度センサと、
 前記パティキュレートフィルタを再生するように、前記パティキュレートフィルタを加熱する加熱手段と、
 前記パティキュレートフィルタの前記再生後における前記下流の前記酸素濃度センサの出力に基づいて、前記パティキュレートフィルタの異常を検出する検出手段と、
 を備えることを特徴とする。
A thirteenth aspect of the invention is an abnormality detection device for an internal combustion engine, in order to achieve the above other object,
An oxygen concentration sensor that is arranged downstream of a particulate filter provided in an exhaust passage of an internal combustion engine and changes an output in accordance with an oxygen concentration of a gas flowing out of the particulate filter;
Heating means for heating the particulate filter so as to regenerate the particulate filter;
Detecting means for detecting an abnormality of the particulate filter based on an output of the downstream oxygen concentration sensor after the regeneration of the particulate filter;
It is characterized by providing.
 また、第14の発明は、第13の発明において、
 前記パティキュレートフィルタの上流に配置され、排気ガスの酸素濃度に応じて出力を変化させる酸素濃度センサを、さらに備え、
 前記検出手段が、前記上流の前記酸素濃度センサの出力に対する前記下流の前記酸素濃度センサの出力の差に基づいて、前記パティキュレートフィルタの異常を検出することを特徴とする。
The fourteenth invention is the thirteenth invention, in which
An oxygen concentration sensor disposed upstream of the particulate filter and configured to change an output according to the oxygen concentration of the exhaust gas;
The detection means detects an abnormality of the particulate filter based on a difference between an output of the downstream oxygen concentration sensor and an output of the upstream oxygen concentration sensor.
 また、第15の発明は、第14の発明において、
 前記パティキュレートフィルタの前記上流と前記下流とにそれぞれ配置された前記酸素濃度センサが、空燃比センサであることを特徴とする。
The fifteenth aspect of the invention is the fourteenth aspect of the invention,
The oxygen concentration sensors respectively disposed upstream and downstream of the particulate filter are air-fuel ratio sensors.
 第1の発明によれば、酸素濃度センサ素子が、フィルタ内のパティキュレート量が多いほど、低い酸素濃度の出力を示す。酸素濃度センサ素子の出力に基づいて、フィルタへの流入ガスのパティキュレート量を検知することができる。更に、ヒータによってフィルタのパティキュレートを加熱除去できるため、パティキュレート量検知を繰り返し行うことができる。 According to the first invention, the oxygen concentration sensor element exhibits a lower oxygen concentration output as the amount of particulates in the filter increases. Based on the output of the oxygen concentration sensor element, it is possible to detect the particulate amount of the gas flowing into the filter. Further, the particulate matter of the filter can be heated and removed by the heater, so that the particulate amount detection can be repeatedly performed.
 第2の発明によれば、フィルタ上流側とフィルタ下流側に、それぞれ酸素濃度センサ素子が備えられる。これらの酸素濃度センサ素子の出力差が、フィルタ内のパティキュレート量に高精度に対応する。これらの酸素濃度センサ素子の出力差に基づいて、フィルタへの流入ガスのパティキュレート量を高い精度で検知することができる。 According to the second invention, the oxygen concentration sensor elements are provided on the upstream side and the downstream side of the filter, respectively. The output difference between these oxygen concentration sensor elements corresponds to the amount of particulates in the filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
 第3の発明によれば、第1または2の発明において、空燃比センサ素子が、酸素濃度センサ素子として用いられる。排気ガスの酸素濃度を検知するセンサとしては、空燃比センサが高い実績を持っている。空燃比センサ素子を利用することにより、高い信頼度で、排気ガスのパティキュレート量を検知することができる。 According to the third invention, in the first or second invention, the air-fuel ratio sensor element is used as the oxygen concentration sensor element. As a sensor for detecting the oxygen concentration of exhaust gas, an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor element, the particulate quantity of the exhaust gas can be detected with high reliability.
 第4の発明によれば、次の効果が得られる。空燃比センサは、一般に、所定の活性温度に加熱された状態で作動する。一方、フィルタが特定温度以上に高温になると、パティキュレートが、フィルタ内に蓄積されることなく燃焼してしまう。第4の発明によれば、空燃比センサの温度が活性温度である間も、フィルタがパティキュレートを保持することが確実に可能である。その結果、空燃比センサが活性温度である間も、排気ガスのパティキュレート量を検知することができる。 According to the fourth invention, the following effects can be obtained. The air-fuel ratio sensor generally operates in a state where it is heated to a predetermined activation temperature. On the other hand, when the temperature of the filter becomes higher than a specific temperature, the particulates are burned without accumulating in the filter. According to the fourth aspect of the invention, the filter can reliably hold the particulates even while the temperature of the air-fuel ratio sensor is the activation temperature. As a result, the particulate matter amount of the exhaust gas can be detected while the air-fuel ratio sensor is at the activation temperature.
 第5の発明によれば、フィルタが十分に高温に加熱された後、フィルタの温度がパティキュレート捕集可能な程度まで低下するように、ヒータが制御される。このヒータ制御の後、フィルタにパティキュレートが捕集されていくとともに、酸素濃度センサ素子の出力が取得される。フィルタ内のパティキュレート量が多ければ多いほど、フィルタ下流のガスの酸素濃度はより低くなり、酸素濃度センサ素子の出力がより低い酸素濃度の値を示す。従って、酸素濃度センサ素子の出力に基づいて、フィルタへの流入ガスのパティキュレート量を算出することができる。これにより、排気ガスのパティキュレート量を検知することができる。 According to the fifth invention, after the filter is heated to a sufficiently high temperature, the heater is controlled such that the temperature of the filter is lowered to a level where particulates can be collected. After this heater control, particulates are collected by the filter, and the output of the oxygen concentration sensor element is acquired. The greater the amount of particulates in the filter, the lower the oxygen concentration of the gas downstream of the filter and the lower the oxygen concentration sensor element output will be. Therefore, the particulate quantity of the inflow gas to the filter can be calculated based on the output of the oxygen concentration sensor element. Thereby, the particulate quantity of exhaust gas can be detected.
 第6の発明によれば、単位時間当たりおよび単位体積当たりの、排気ガスのパティキュレート量を算出することができる。 According to the sixth aspect of the present invention, the exhaust gas particulate quantity per unit time and per unit volume can be calculated.
 第7の発明によれば、フィルタ上流側とフィルタ下流側に、それぞれ酸素濃度センサ素子が備えられる。これらの酸素濃度センサ素子の出力差が、フィルタ内のパティキュレート量に高精度に対応する。これらの酸素濃度センサ素子の出力差に基づいて、フィルタへの流入ガスのパティキュレート量を高い精度で検知することができる。 According to the seventh invention, the oxygen concentration sensor elements are provided on the upstream side and the downstream side of the filter, respectively. The output difference between these oxygen concentration sensor elements corresponds to the amount of particulates in the filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
 第8の発明によれば、空燃比センサ素子が、酸素濃度センサ素子として用いられる。排気ガスの酸素濃度を検知するセンサとしては、空燃比センサが高い実績を持っている。空燃比センサ素子を利用することにより、高い信頼度で、排気ガスのパティキュレート量を検知することができる。 According to the eighth aspect of the invention, the air-fuel ratio sensor element is used as the oxygen concentration sensor element. As a sensor for detecting the oxygen concentration of exhaust gas, an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor element, the particulate quantity of the exhaust gas can be detected with high reliability.
 第9の発明によれば、複数の空燃比センサの間の出力ずれを校正することができる。これにより、より精度の高いパティキュレート量検知を行うことができる。 According to the ninth aspect, it is possible to calibrate the output deviation between the plurality of air-fuel ratio sensors. Thereby, the particulate quantity detection with higher accuracy can be performed.
 第10の発明によれば、パティキュレートの量を検知することができる。排気ガス中のパティキュレート量が多ければ多いほど、単位時間内にフィルタに捕集されるパティキュレート量がより多くなる。フィルタ内のパティキュレート量が多ければ多いほど、フィルタ内のパティキュレートを除去するために必要なヒータ電力消費量もより多くなる。従って、フィルタへの流入ガスのパティキュレート量を、ヒータ電力消費量に基づいて算出することができる。 According to the tenth aspect, the amount of particulates can be detected. The greater the amount of particulates in the exhaust gas, the greater the amount of particulates collected by the filter within a unit time. The greater the amount of particulate in the filter, the greater the heater power consumption required to remove the particulate in the filter. Therefore, the particulate amount of the inflow gas to the filter can be calculated based on the heater power consumption.
 第11の発明によれば、フィルタ内のパティキュレートが除去されるまでにヒータで消費された消費電力量を、正確に算出することができる。 According to the eleventh aspect, the power consumption consumed by the heater before the particulates in the filter are removed can be accurately calculated.
 第12の発明によれば、フィルタ内のパティキュレートが除去されたか否かを、高精度に判定することができる。 According to the twelfth aspect, it is possible to determine with high accuracy whether or not the particulates in the filter have been removed.
 第13の発明によれば、パティキュレートフィルタ下流に、酸素濃度センサが備えられる。パティキュレートフィルタがパティキュレートを正常に捕集できていれば、フィルタ内にパティキュレートが蓄積していき、パティキュレート蓄積の影響がこの酸素濃度センサの出力に表れるはずである。従って、この酸素濃度センサの出力に基づいて、パティキュレートフィルタの異常を検出することができる。 According to the thirteenth invention, the oxygen concentration sensor is provided downstream of the particulate filter. If the particulate filter can normally collect the particulates, the particulates will accumulate in the filter, and the influence of the particulate accumulation should appear in the output of this oxygen concentration sensor. Therefore, the abnormality of the particulate filter can be detected based on the output of the oxygen concentration sensor.
 第14の発明によれば、パティキュレートフィルタの上流と下流に、それぞれ酸素濃度センサ素子が備えられる。これらの酸素濃度センサ素子の出力差が、パティキュレートフィルタ内のパティキュレート量に高精度に対応する。これらの酸素濃度センサ素子の出力差に基づいて、高い信頼度で、パティキュレートフィルタの異常を検出することができる。 According to the fourteenth aspect, the oxygen concentration sensor elements are provided upstream and downstream of the particulate filter, respectively. The output difference between these oxygen concentration sensor elements corresponds to the particulate quantity in the particulate filter with high accuracy. Based on the output difference between these oxygen concentration sensor elements, the abnormality of the particulate filter can be detected with high reliability.
 第15の発明によれば、第14の発明において、空燃比センサが、酸素濃度センサとして用いられる。排気ガスの酸素濃度を検知するセンサとしては、空燃比センサが高い実績を持っている。空燃比センサを利用することにより、高い信頼度で、パティキュレートフィルタの異常を検出することができる。 According to the fifteenth aspect, in the fourteenth aspect, the air-fuel ratio sensor is used as an oxygen concentration sensor. As a sensor for detecting the oxygen concentration of exhaust gas, an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor, it is possible to detect abnormality of the particulate filter with high reliability.
本発明の実施の形態1にかかるPMセンサおよび排気ガスのPM量検知装置の構成を示す図である。1 is a diagram illustrating a configuration of a PM sensor and an exhaust gas PM amount detection apparatus according to a first embodiment of the present invention. FIG. 図1の構成を矢印Aの向きに見た図である。It is the figure which looked at the structure of FIG. 1 in the direction of arrow A. 実施の形態1にかかるPM量検知動作を説明するためのタイムチャートである。3 is a time chart for explaining the PM amount detection operation according to the first embodiment; 実施の形態1においてECU50が実行するルーチンのフローチャートである。3 is a flowchart of a routine that is executed by the ECU 50 in the first embodiment. ΔIの値とパティキュレート量(PM量)との間の相関線のマップの一例を示す図である。It is a diagram showing an example of a map of the correlation line between values and particulates amount of [Delta] I L and (PM amount). 本発明の実施の形態2においてECU50が実行するルーチンのフローチャートである。It is a flowchart of the routine which ECU50 performs in Embodiment 2 of this invention. 本発明の実施の形態3にかかる内燃機関の異常検出装置の構成を示す図である。It is a figure which shows the structure of the abnormality detection apparatus of the internal combustion engine concerning Embodiment 3 of this invention. 実施の形態3においてECUが実行するルーチンのフローチャートである。10 is a flowchart of a routine that the ECU executes in the third embodiment.
2 内燃機関
10 排気管
20 仕切
22、24 空燃比センサ(A/Fセンサ)
30 フィルタ
32 ヒータ
34 ヒータ制御部
50 ECU(Electronic Control Unit)
130 DPF
2 Internal combustion engine 10 Exhaust pipe 20 Partitions 22, 24 Air-fuel ratio sensor (A / F sensor)
30 Filter 32 Heater 34 Heater Control Unit 50 ECU (Electronic Control Unit)
130 DPF
実施の形態1. 
[実施の形態1の構成]
 図1は、本発明の実施の形態1にかかるPMセンサおよび排気ガスのPM量検知装置の構成を示す図である。図2は、図1の構成を矢印Aの向きに見た図である。実施の形態1にかかるPMセンサおよび排気ガスのPM量検知装置は、車両用内燃機関に好適である。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram illustrating a configuration of a PM sensor and an exhaust gas PM amount detection apparatus according to a first embodiment of the present invention. FIG. 2 is a view of the configuration of FIG. The PM sensor and the exhaust gas PM amount detection apparatus according to the first embodiment are suitable for an internal combustion engine for a vehicle.
 実施の形態1のPMセンサおよびPM量検知装置は、内燃機関2の排気管10に搭載される。内燃機関2の気筒数や方式に限定は無い。なお、図1の内燃機関2は、便宜上、簡略に図示してある。排気管10には、空燃比センサ22、フィルタ30、空燃比センサ24が、排気ガスの流れ方向に順次取り付けられている。以下の説明では、簡略化のため、空燃比センサを「A/Fセンサ」とも称す。実施の形態1では、図1に示す仕切20が備えられる。仕切20は、図1の紙面左側と紙面右側がそれぞれ開口している。排気ガスが、図1紙面左側から仕切20の内部を通って図1紙面右側へと流れる。 The PM sensor and the PM amount detection device of Embodiment 1 are mounted on the exhaust pipe 10 of the internal combustion engine 2. There is no limitation on the number of cylinders and the method of the internal combustion engine 2. Note that the internal combustion engine 2 of FIG. 1 is illustrated in a simplified manner for convenience. An air-fuel ratio sensor 22, a filter 30, and an air-fuel ratio sensor 24 are sequentially attached to the exhaust pipe 10 in the exhaust gas flow direction. In the following description, the air-fuel ratio sensor is also referred to as “A / F sensor” for simplification. In Embodiment 1, the partition 20 shown in FIG. 1 is provided. The partition 20 has an opening on the left side and the right side in FIG. The exhaust gas flows from the left side of FIG. 1 through the partition 20 to the right side of FIG.
 フィルタ30は、小型の微粒子捕集用フィルタである。フィルタ30は、所謂ディーゼルパティキュレートフィルタ(Diesel particulate filter:DPF)を小型化したものである。以下、パティキュレートマター(Particulate matter:PM:粒子状物質)を、単に「パティキュレート」あるいは「PM」とも呼称する。 The filter 30 is a small particle collecting filter. The filter 30 is a miniaturized so-called diesel particulate filter (Diesel particulate filter: DPF). Hereinafter, the particulate matter (PM) is also simply referred to as “particulate” or “PM”.
 フィルタ30には、内燃機関2の排気管10を流れる排気ガスの一部が流入する。フィルタ30は、流入した排気ガスのパティキュレートをフィルタリングすることができる。これに伴い、フィルタ30内部にはパティキュレートが蓄積していく。その結果、フィルタ30が、パティキュレートを、捕まえて集めることができる(つまり、捕集することができる)。 A part of the exhaust gas flowing through the exhaust pipe 10 of the internal combustion engine 2 flows into the filter 30. The filter 30 can filter the particulates of the inflowing exhaust gas. As a result, particulates accumulate in the filter 30. As a result, the filter 30 can capture and collect the particulates (that is, can collect the particulates).
 フィルタ30は、材質や具体的構成をDPFに模して、その外形をDPFよりも小さくすることによって、形成することができる。フィルタ30の詳細な構造は、必ずしもDPFと同一または相似でなくともよい。図2に示すように、フィルタ30の外形寸法は、排気管10の内径と比べて小さい。このため、排気ガスのうち、一部のガスはフィルタ30へと流入し、残りのガスはフィルタ30へ流入せずにそのまま排気管10下流へと流れる。 The filter 30 can be formed by imitating the material and specific configuration of a DPF and making its outer shape smaller than that of the DPF. The detailed structure of the filter 30 is not necessarily the same as or similar to the DPF. As shown in FIG. 2, the outer dimension of the filter 30 is smaller than the inner diameter of the exhaust pipe 10. For this reason, some of the exhaust gas flows into the filter 30, and the remaining gas does not flow into the filter 30 and flows directly downstream of the exhaust pipe 10.
 A/Fセンサ22、24は、限界電流式のA/Fセンサである。限界電流式のA/Fセンサは、雰囲気の酸素濃度言い換えれば被検出ガスの酸素濃度に応じて異なる限界電流値を示す。この限界電流値は、酸素濃度に応じて比例的に変化する。このため、A/Fセンサ22は、フィルタ30の上流の排気ガスの酸素濃度に応じて、出力を変化させる。また、A/Fセンサ24も、フィルタ30の下流の排気ガスの酸素濃度に応じて、出力を変化させる。 The A / F sensors 22 and 24 are limit current type A / F sensors. The limit current type A / F sensor exhibits different limit current values depending on the oxygen concentration of the atmosphere, in other words, the oxygen concentration of the gas to be detected. This limit current value changes in proportion to the oxygen concentration. For this reason, the A / F sensor 22 changes the output according to the oxygen concentration of the exhaust gas upstream of the filter 30. The A / F sensor 24 also changes the output according to the oxygen concentration of the exhaust gas downstream of the filter 30.
 A/Fセンサ22、24は、被検出ガスつまり排気ガスに晒される外側電極と、待機に晒される内側電極と、この外側電極および内側電極に挟まれた酸素イオン導電性電解質と、を備えている。酸素イオン導電性電解質は、例えば信頼性の高いZrOが好ましく用いられる。A/Fセンサ22、24の具体的構成に特に限定は無いため、これ以上の説明は省略する。 The A / F sensors 22 and 24 include an outer electrode exposed to a detection gas, that is, an exhaust gas, an inner electrode exposed to standby, and an oxygen ion conductive electrolyte sandwiched between the outer electrode and the inner electrode. Yes. As the oxygen ion conductive electrolyte, for example, highly reliable ZrO 2 is preferably used. Since the specific configuration of the A / F sensors 22 and 24 is not particularly limited, further description thereof is omitted.
 A/Fセンサ22、24は、内蔵のヒータによりエンジン始動時に所定の活性温度まで加熱され、その後この活性温度で空燃比のセンシングを行う。図1に示すように、フィルタ30とA/Fセンサ22、24は、所定距離を離間されている。フィルタ30とA/Fセンサ22、24との間の距離は、A/Fセンサ22、24が活性温度にあるときでもフィルタ30内にパティキュレートが燃焼せずに存在できる程度に、大きい距離である。 The A / F sensors 22 and 24 are heated to a predetermined activation temperature when the engine is started by a built-in heater, and then perform air-fuel ratio sensing at the activation temperature. As shown in FIG. 1, the filter 30 and the A / F sensors 22 and 24 are separated by a predetermined distance. The distance between the filter 30 and the A / F sensors 22 and 24 is large enough that the particulates can exist in the filter 30 without burning even when the A / F sensors 22 and 24 are at the activation temperature. is there.
 フィルタ30は、小型のヒータであるヒータ32を備えている。ヒータ32は、ヒータ制御部34に接続している。ヒータ32によりフィルタ30内を高温にし、フィルタ30内のパティキュレートを除去することができる。これにより、フィルタ30内のパティキュレート量を零にすることができ、フィルタ30の再生(捕集能力の再生)を行うことができる。 The filter 30 includes a heater 32 that is a small heater. The heater 32 is connected to the heater control unit 34. The inside of the filter 30 can be heated to a high temperature by the heater 32 and the particulates in the filter 30 can be removed. Thereby, the amount of particulates in the filter 30 can be made zero, and the filter 30 can be regenerated (recovery of the collection ability).
 実施の形態1では、ECU(Electronic Control Unit)50が、A/Fセンサ22、24、およびヒータ制御部34と接続している。ECU50は、A/Fセンサ22、24の出力をそれぞれ取得できる。以下、説明の便宜上、A/Fセンサ22の限界電流値を、出力電流値IL1あるいは出力IL1とも称し、A/Fセンサ24の限界電流値を、出力電流値IL2あるいは出力IL2とも称す。また、実施の形態1では、ECU50が、出力IL1と出力IL2の差を算出する演算処理を、予め記憶している。以下、出力IL1と出力IL2の差を、ΔIとも称す。 In the first embodiment, an ECU (Electronic Control Unit) 50 is connected to the A / F sensors 22 and 24 and the heater control unit 34. The ECU 50 can acquire the outputs of the A / F sensors 22 and 24, respectively. For convenience of explanation, the limit current value of the A / F sensor 22, also referred to as output current value I L1 or the output I L1, the limit current value of the A / F sensor 24, the output current value I L2 or both output I L2 Call it. In the first embodiment, the ECU 50 stores in advance a calculation process for calculating the difference between the output I L1 and the output I L2 . Hereinafter, the difference between the output I L1 and the output I L2, also referred to as [Delta] I L.
 また、ECU50は、ヒータ制御部34に対して制御信号を発してヒータ32のオンオフおよび発熱量調節を行うことができる。 Further, the ECU 50 can issue a control signal to the heater control unit 34 to turn on / off the heater 32 and adjust the heat generation amount.
 なお、図示しないが、実施の形態1では、ECU50が、排気管10の上流にある内燃機関2の吸気量計測用のセンサ(例えば、吸気圧センサあるいはエアフローメータ)にも接続する。ECU50は、このセンサの出力に基づいて、内燃機関2の吸入空気量Gaを計測することができる。実施の形態1では、ECU50が、この吸入空気量Gaに基づいて排気ガス量Gexhを算出するルーチンを記憶している。 Although not shown, in the first embodiment, the ECU 50 is also connected to a sensor (for example, an intake pressure sensor or an air flow meter) for measuring the intake air amount of the internal combustion engine 2 upstream of the exhaust pipe 10. The ECU 50 can measure the intake air amount Ga of the internal combustion engine 2 based on the output of this sensor. In the first embodiment, the ECU 50 stores a routine for calculating the exhaust gas amount Gexh based on the intake air amount Ga.
[実施の形態1の動作]
(実施の形態1にかかるPM検出原理)
 本願発明者は、鋭意研究を重ねた結果、従来知られていなかった新規な検出原理に基づくパティキュレート量検知手法に想到した。すなわち、フィルタ30のような小型フィルタにパティキュレートがフィルタリングされたとき、この小型フィルタ内を通過するガス(酸素:O)の拡散距離が変化する。
[Operation of Embodiment 1]
(PM detection principle according to the first embodiment)
As a result of intensive research, the inventor of the present application has come up with a particulate amount detection method based on a novel detection principle that has not been known. That is, when the particulates are filtered by a small filter such as the filter 30, the diffusion distance of the gas (oxygen: O 2 ) passing through the small filter changes.
 フィルタ内のパティキュレート量が多ければ多いほど、小型フィルタを通過するガスの拡散距離が長くなる。フィルタ内のパティキュレート量増大に応じて、小型フィルタを通過できるO量が減少し、その結果、小型フィルタ下流の酸素濃度が低下していく。従って、小型フィルタ下流の酸素濃度に基づいて、小型フィルタへの流入ガスのパティキュレート量を検知できる。 The greater the amount of particulates in the filter, the longer the diffusion distance of gas passing through the small filter. As the amount of particulates in the filter increases, the amount of O 2 that can pass through the small filter decreases, and as a result, the oxygen concentration downstream of the small filter decreases. Therefore, it is possible to detect the particulate amount of the gas flowing into the small filter based on the oxygen concentration downstream of the small filter.
 上記の一連の現象においては、小型フィルタが、限界電流式A/Fセンサにおける拡散律速層と、同じ役割を果たしている。小型フィルタの下流に限界電流式A/Fセンサを配置した場合、小型フィルタとこの限界電流式A/Fセンサの拡散律速層とを合計した層内における、酸素の拡散距離が、フィルタ内のパティキュレート量の増加に応じて増大する。その結果、フィルタ内のパティキュレート量の増加に応じて、下流の限界電流式A/Fセンサの限界電流値が低下していく。 In the above series of phenomena, the small filter plays the same role as the diffusion-controlled layer in the limiting current type A / F sensor. When the limiting current type A / F sensor is arranged downstream of the small filter, the oxygen diffusion distance in the total layer of the small filter and the diffusion-controlling layer of the limiting current type A / F sensor is determined by the parameter in the filter. It increases as the amount of curate increases. As a result, the limit current value of the downstream limit current type A / F sensor decreases as the amount of particulates in the filter increases.
 小型フィルタの上流と下流にそれぞれ限界電流式A/Fセンサを配置した場合、フィルタ内のパティキュレート量の増加に応じて、上流、下流の限界電流式A/Fセンサの出力差が増大していく。従って、上流、下流の限界電流式A/Fセンサの出力差に基づいて、小型フィルタへの流入ガスのパティキュレート量を検知できる。 When limiting current type A / F sensors are arranged upstream and downstream of the small filter, the output difference between the upstream and downstream limiting current type A / F sensors increases as the amount of particulates in the filter increases. Go. Therefore, it is possible to detect the particulate amount of the inflowing gas to the small filter based on the output difference between the upstream and downstream limiting current type A / F sensors.
(実施の形態1の具体的動作)
 フィルタ30にある空燃比かつあるパティキュレート量の排気ガスが流入している場合、A/Fセンサ22は、その空燃比に応じた特定出力を示す。一方、A/Fセンサ24の出力は、前述したように、フィルタ30内のパティキュレート量に応じて変化する。排気ガスがフィルタ30に流入し続けることにより、フィルタ30内のパティキュレート量が増大する。フィルタ30内のパティキュレート量が増大すると、A/Fセンサ24の雰囲気酸素濃度が低下し、IL2が低下する。この結果、出力IL1が一定であるのに対して出力IL2が低下していくため、ΔIが増大する。
(Specific operation of the first embodiment)
When exhaust gas having an air-fuel ratio and a certain particulate amount in the filter 30 flows in, the A / F sensor 22 shows a specific output corresponding to the air-fuel ratio. On the other hand, the output of the A / F sensor 24 changes according to the amount of particulates in the filter 30 as described above. As the exhaust gas continues to flow into the filter 30, the amount of particulates in the filter 30 increases. When the amount of particulates in the filter 30 increases, the ambient oxygen concentration of the A / F sensor 24 decreases, and IL2 decreases. As a result, since the output I L1 is constant while the output I L2 is decreased, ΔI L is increased.
 同じ時間、同じ排気ガス流量では、排気ガスが含有するパティキュレート量が多ければ多いほど、ΔIがより大きく増大する。従って、ΔIに基づいて、フィルタ30に現在流れ込んでいる排気ガスのパティキュレート量を、算出することができる。これに伴い、内燃機関2のパティキュレート発生量を検知できる。 Same time, the same exhaust gas flow rate, exhaust gas is the more particulate content contained, [Delta] I L Gayori greatly increased. Therefore, based on [Delta] I L, the particulates of the exhaust gas which flows the current to the filter 30 can be calculated. Accordingly, it is possible to detect the particulate generation amount of the internal combustion engine 2.
 図3を用いて、実施の形態1のPM量検知手法をより具体的に説明する。図3は、実施の形態1にかかるPM量検知動作を説明するためのタイムチャートである。実施の形態1のPM量検知動作では、A、B、Cの3つのステップが繰り返し行われる。実施の形態1では、A/Fセンサ22、24は活性温度で一定に保たれているものとする。 The PM amount detection method according to the first embodiment will be described more specifically with reference to FIG. FIG. 3 is a time chart for explaining the PM amount detection operation according to the first embodiment. In the PM amount detection operation of the first embodiment, the three steps A, B, and C are repeatedly performed. In the first embodiment, it is assumed that the A / F sensors 22 and 24 are kept constant at the activation temperature.
 ステップAでは、先ず、ECU50からヒータ制御部34に制御信号が送られ、ヒータ32の加熱が行われる。ヒータ32の加熱によって、フィルタ30内のパティキュレートの除去(燃焼)が行われ、フィルタ30内のパティキュレートが一旦零になる。また、実施の形態1においては、A/Fセンサ22とA/Fセンサ24の間の出力のずれ(出力偏差)を解消するために、ステップAにおいて出力ゼロ点補正も行われる。この出力ゼロ点補正により、ΔIが、フィルタ30内のパティキュレート量に応じた値を高精度に示す。 In step A, first, a control signal is sent from the ECU 50 to the heater control unit 34, and the heater 32 is heated. The particulate matter in the filter 30 is removed (burned) by the heating of the heater 32, and the particulate matter in the filter 30 once becomes zero. In the first embodiment, the output zero point correction is also performed in step A in order to eliminate the output deviation (output deviation) between the A / F sensor 22 and the A / F sensor 24. The output zero point correction, [Delta] I L indicates a value corresponding to the particulate amount in the filter 30 with high accuracy.
 ステップBでは、ヒータ32がオフにされる。これにより、フィルタ30の温度が低下し、パティキュレートがフィルタ30内に蓄積され始める。ステップBでは、この状態のまま所定時間が経過するまで、待機状態となる。 In step B, the heater 32 is turned off. As a result, the temperature of the filter 30 decreases and particulates begin to accumulate in the filter 30. In Step B, a standby state is maintained until a predetermined time elapses in this state.
 ステップCでは、ステップBから所定時間が経過したら、ECU50が、出力IL1および出力IL2を取得し、ΔIを算出する。上記のステップB→Cの間の所定時間(つまりパティキュレート捕集期間)と、この時間に流れた排気ガス量Gexhの総量とに基づいて、単位時間当たりおよび単位ガス量当たりの、パティキュレート量が算出される。 In Step C, when a predetermined time has elapsed from Step B, the ECU 50 acquires the output I L1 and the output I L2 and calculates ΔI L. Based on the predetermined time (that is, the particulate collection period) between the above steps B → C and the total amount of the exhaust gas amount Gexh that has flowed during this time, the particulate amount per unit time and per unit gas amount Is calculated.
 ステップCの後、引き続きステップAが行われる。その後、ステップA、B、Cが繰り返し行われることによって、パティキュレート量を継続的に検知することができる。実施の形態1によれば、内燃機関2の運転中に、排気ガスのパティキュレートの量的な検知を、所定時間(所定サイクル)ごとに継続的に行うことができる。 After step C, step A is continued. Thereafter, steps A, B, and C are repeatedly performed, so that the amount of particulates can be continuously detected. According to the first embodiment, during the operation of the internal combustion engine 2, the quantitative detection of the exhaust gas particulates can be continuously performed every predetermined time (predetermined cycle).
 以上説明したように、実施の形態1によれば、A/Fセンサ24の出力変化量(出力低下量)つまりΔIに基づいて、フィルタ30へ流入する排気ガスのパティキュレート量を検知することができる。また、実施の形態1によれば、フィルタ30上流側とフィルタ30下流側にそれぞれA/Fセンサを備えることができる。A/Fセンサ22、24の差ΔIを計測することにより、フィルタ30内のパティキュレート増加量を高精度に検知することができる。その結果、フィルタへの流入ガスのパティキュレート量を高い精度で検知することができる。 As described above, according to the first embodiment, the output variation of the A / F sensor 24 (an output decrease) that is based on [Delta] I L, to detect the particulate amount of the exhaust gas flowing into the filter 30 Can do. Further, according to the first embodiment, A / F sensors can be provided on the upstream side of the filter 30 and the downstream side of the filter 30, respectively. By measuring the difference [Delta] I L of the A / F sensor 22 can detect the particulate amount of increase in the filter 30 with high accuracy. As a result, it is possible to detect the particulate amount of the gas flowing into the filter with high accuracy.
 また、実施の形態1によれば、ヒータ32によってフィルタ30のパティキュレートを加熱除去できるため、パティキュレート量の検知を繰り返すことが可能となる。フィルタ30は小型であり、パティキュレートの加熱除去を繰り返したとしてもヒータ32の電力消費量は小さい。よって、燃費への影響も少なく抑えることができる。 Further, according to the first embodiment, since the particulate matter of the filter 30 can be heated and removed by the heater 32, the detection of the particulate amount can be repeated. The filter 30 is small, and the power consumption of the heater 32 is small even if the particulates are repeatedly removed by heating. Therefore, the influence on the fuel consumption can be reduced.
 また、実施の形態1によれば、A/Fセンサ22、24を利用して、排気ガスのパティキュレート量を検知することができる。排気ガスの酸素濃度を検知するセンサとしては、空燃比センサが高い実績を持っている。空燃比センサを利用することにより、高い信頼度で、排気ガスのパティキュレート量を検知することができる。 Further, according to the first embodiment, it is possible to detect the particulate amount of the exhaust gas using the A / F sensors 22 and 24. As a sensor for detecting the oxygen concentration of exhaust gas, an air-fuel ratio sensor has a proven track record. By using the air-fuel ratio sensor, the particulate quantity of the exhaust gas can be detected with high reliability.
 また、空燃比センサは、一般に、所定の活性温度に加熱された状態で作動する。フィルタ30が特定温度(パティキュレートの燃焼温度)以上に高温になると、パティキュレートが、フィルタ30内に蓄積されることなく燃焼してしまう。この点、実施の形態1によれば、A/Fセンサ22、24とフィルタ30とが離間されている。従って、A/Fセンサ22、24の温度が活性温度である間も、フィルタ30がパティキュレートを保持することが確実に可能である。その結果、A/Fセンサ22、24が活性温度である間も、排気ガスのパティキュレート量を検知することができる。さらに、実施の形態1によれば、A/Fセンサ22、24の温度が活性温度で一定に保たれており、A/Fセンサ22、24の出力の温度依存性も少ない。このため、出力の温度補正や、温度補正用の温度センサを、必要としないという利点がある。 Also, the air-fuel ratio sensor generally operates in a state heated to a predetermined activation temperature. When the filter 30 reaches a temperature higher than a specific temperature (particulate combustion temperature), the particulates burn without being accumulated in the filter 30. In this regard, according to the first embodiment, the A / F sensors 22 and 24 and the filter 30 are separated from each other. Therefore, the filter 30 can reliably hold the particulates even while the temperature of the A / F sensors 22 and 24 is the activation temperature. As a result, the particulate matter amount of the exhaust gas can be detected while the A / F sensors 22 and 24 are at the activation temperature. Furthermore, according to the first embodiment, the temperatures of the A / F sensors 22 and 24 are kept constant at the activation temperature, and the temperature dependence of the outputs of the A / F sensors 22 and 24 is small. Therefore, there is an advantage that output temperature correction and a temperature sensor for temperature correction are not required.
[実施の形態1の具体的処理]
 以下、図4を用いて、実施の形態1の排気ガスのPM量検知装置が行う具体的処理を説明する。図4は、実施の形態1においてECU50が実行するルーチンのフローチャートである。図4のルーチンは、内燃機関2の始動時に実行される。図5は、ΔIの値とパティキュレート量(PM量)との間の相関線のマップの一例を示す図である。図5には、空燃比=20、25について、それぞれ相関線が記載されている。実施の形態1では、ECU50に、予め、図5に示す空燃比=20の相関マップを記憶させておく。
[Specific Processing in First Embodiment]
Hereinafter, a specific process performed by the exhaust gas PM amount detection apparatus according to the first embodiment will be described with reference to FIG. FIG. 4 is a flowchart of a routine executed by ECU 50 in the first embodiment. The routine of FIG. 4 is executed when the internal combustion engine 2 is started. Figure 5 is a diagram showing an example of a map of the correlation line between values and particulates amount of [Delta] I L (PM amount). FIG. 5 shows correlation lines for air-fuel ratio = 20 and 25, respectively. In the first embodiment, the ECU 50 stores a correlation map of air-fuel ratio = 20 shown in FIG. 5 in advance.
 図4に示すルーチンでは、先ず、A/Fセンサ加熱およびヒータ制御が行われる(ステップS100)。このステップでは、内燃機関2の始動後、A/Fセンサ22、24が活性と成るまでそれらのセンサが内蔵するヒータが加熱制御される。同時に、ヒータ32も制御され、フィルタ30がパティキュレート燃焼温度まで加熱される。 In the routine shown in FIG. 4, first, A / F sensor heating and heater control are performed (step S100). In this step, after the internal combustion engine 2 is started, the heaters built in the sensors are heated until the A / F sensors 22 and 24 are activated. At the same time, the heater 32 is also controlled, and the filter 30 is heated to the particulate combustion temperature.
 続いて、センサ活性およびPM燃焼の判定の後、A/Fセンサの出力ゼロ点補正が行われる(ステップS102)。このステップS102では、先ず、A/Fセンサ22、24が活性であるか否かが判定される。センサ活性判定は、例えば、A/Fセンサ22、24の出力の誤差が所定範囲内にあるか否かにより判定することができる。また、このステップS102では、PM燃焼判定も行われる。PM燃焼判定は、フィルタ30の付着パティキュレートが完全に燃焼したか否かを判定するために行われる。実施の形態1では、ヒータ32によるフィルタ30の加熱が所定時間だけ継続されたら、パティキュレートが完全に燃焼したと判定する。 Subsequently, after determination of sensor activity and PM combustion, output zero point correction of the A / F sensor is performed (step S102). In this step S102, it is first determined whether or not the A / F sensors 22 and 24 are active. The sensor activity determination can be made based on, for example, whether or not the output error of the A / F sensors 22 and 24 is within a predetermined range. In step S102, PM combustion determination is also performed. The PM combustion determination is performed to determine whether or not the attached particulates of the filter 30 are completely burned. In the first embodiment, when the heating of the filter 30 by the heater 32 is continued for a predetermined time, it is determined that the particulates are completely burned.
 ステップS102では、A/Fセンサの出力ゼロ点補正も行われる。A/Fセンサの出力ゼロ点補正は、A/Fセンサ22とA/Fセンサ24の間の出力のずれ(出力偏差)を解消するために行われる。この出力ゼロ点補正は、例えば、次のように行うことができる。先ず、A/Fセンサ22の出力とA/Fセンサ24の出力とが合うように、A/Fセンサ24の出力電流に乗ずるべき係数kを導出する。この係数kを、A/Fセンサ24の出力電流に乗算する。これにより、ステップS102の処理を経るごとに、出力差がキャンセルされ、出力ゼロ点補正が実現される。 In step S102, output zero point correction of the A / F sensor is also performed. The output zero point correction of the A / F sensor is performed in order to eliminate the output deviation (output deviation) between the A / F sensor 22 and the A / F sensor 24. This output zero point correction can be performed as follows, for example. First, a coefficient k to be multiplied by the output current of the A / F sensor 24 is derived so that the output of the A / F sensor 22 matches the output of the A / F sensor 24. The coefficient k is multiplied by the output current of the A / F sensor 24. Thereby, every time the process of step S102 is performed, the output difference is canceled and the output zero point correction is realized.
 続いて、ヒータ32がオフにされる(ステップS104)。ヒータ32がオフされると、フィルタ30の温度は低下し、やがてパティキュレートがフィルタ30内部に蓄積されうる温度まで、フィルタ30が十分に冷える。これ以降、フィルタ30内にパティキュレートが溜まっていく。 Subsequently, the heater 32 is turned off (step S104). When the heater 32 is turned off, the temperature of the filter 30 is lowered, and the filter 30 is sufficiently cooled to a temperature at which the particulates can be accumulated in the filter 30. Thereafter, particulates accumulate in the filter 30.
 ヒータオフの後、ECU50が、フィルタ30の温度がパティキュレート蓄積可能なほどに低くなったか否かを判定するための、フィルタ温度判定処理を実行する。このフィルタ温度判定では、例えば、ヒータ32の抵抗値と所定値との比較に基づいて、ヒータ32の温度が十分に低くなったか否かが判定されてもよい。ヒータ32が十分に低温の場合に、フィルタ30の温度が十分に低いと判定することができる。或いは、ΔIが所定判定量まで大きくなった場合に、フィルタ30の温度が十分に低くなっていると判定しても良い。フィルタ温度判定処理の条件成立が認められた場合には、その条件成立時点から時間が計測される。 After the heater is turned off, the ECU 50 executes a filter temperature determination process for determining whether or not the temperature of the filter 30 has become low enough to accumulate particulates. In this filter temperature determination, for example, it may be determined whether the temperature of the heater 32 has become sufficiently low based on a comparison between the resistance value of the heater 32 and a predetermined value. When the heater 32 is sufficiently low in temperature, it can be determined that the temperature of the filter 30 is sufficiently low. Alternatively, if the [Delta] I L is increased to a predetermined determination amount, it may be determined that the temperature of the filter 30 is sufficiently low. If the filter temperature determination process is satisfied, the time is measured from the time when the condition is satisfied.
 ステップS104の時間計測開始後、同時に、積算排気ガス量を算出する処理が開始される(ステップS106)。このステップでは、ECU50が、排気ガス量Gexhを積算していく。以下、Gexhの積算値を、積算排気ガス量「Gexh_itg」とも称す。 At the same time after the start of time measurement in step S104, a process of calculating the integrated exhaust gas amount is started (step S106). In this step, the ECU 50 accumulates the exhaust gas amount Gexh. Hereinafter, the integrated value of Gexh is also referred to as an integrated exhaust gas amount “Gexh_itg”.
 その後、A/Fセンサ出力記憶および排気ガス量記憶が行われる(ステップS108)。このステップでは、ステップS104の時間計測開始以降に、所定時間Tが経過したときのA/Fセンサ22、24のそれぞれの出力が記憶される。また、A/Fセンサ22、24の出力を記憶したタイミングで、排気ガス量Gexhも記憶される。実施の形態1では、ここで記憶された排気ガス量Gexhが、A/Fセンサ22、24の排気ガス圧力依存性の補正のために用いられるものとする。 Thereafter, A / F sensor output storage and exhaust gas amount storage are performed (step S108). In this step, the outputs of the A / F sensors 22 and 24 when the predetermined time T 0 has elapsed after the start of time measurement in step S104 are stored. Further, the exhaust gas amount Gexh is also stored at the timing when the outputs of the A / F sensors 22 and 24 are stored. In the first embodiment, the exhaust gas amount Gexh stored here is used to correct the exhaust gas pressure dependency of the A / F sensors 22 and 24.
 ステップS104~S108の一連の処理によれば、フィルタ30にパティキュレートが溜り始めたことを確認できた時点から所定時間が経過した後に、A/Fセンサ出力記憶および排気ガス量記憶を行うことができる。 According to the series of processing in steps S104 to S108, the A / F sensor output storage and the exhaust gas amount storage are performed after a predetermined time has elapsed since it was confirmed that the particulates started to accumulate in the filter 30. it can.
 なお、ステップS104~108の間、内燃機関2を所定運転条件で運転するようにしてもよい。この所定運転条件において、所定時間Tの経過後に、A/Fセンサ22、24の出力記憶および排気ガス量記憶を行ってもよい。PM量検知を行いたいエンジン運転領域が決まっている場合や、検知精度の観点からパティキュレート発生量がある程度多いときにPM量検知を行いたい場合などは、PM量検知を行う際の運転条件を予め定めておいてもよい。 Note that the internal combustion engine 2 may be operated under predetermined operating conditions during steps S104 to S108. Under this predetermined operating condition, the output storage of the A / F sensors 22 and 24 and the exhaust gas amount storage may be performed after the predetermined time T 0 has elapsed. If the engine operating area where you want to detect the PM amount has been determined, or if you want to detect the PM amount when there is a certain amount of particulate generation from the viewpoint of detection accuracy, the operating conditions for detecting the PM amount are It may be determined in advance.
 ステップS108の後、ΔI算出処理が実行される(ステップS110)。このステップでは、先ず、ステップS108で記憶された出力値の差が計算される。次いで、実施の形態1では、この計算により得た差を、空燃比および排気ガス量Gexhに応じて、基準電流値に換算する。基準電流値は、実施の形態1では、空燃比=20、排気ガス量10g/sの時のA/Fセンサ22、24の出力電流値とする。この換算により基準が統一され、最終的なΔIが算定される。 After step S108, [Delta] I L calculation process is executed (step S110). In this step, first, the difference between the output values stored in step S108 is calculated. Next, in the first embodiment, the difference obtained by this calculation is converted into a reference current value according to the air-fuel ratio and the exhaust gas amount Gexh. In the first embodiment, the reference current value is the output current value of the A / F sensors 22 and 24 when the air-fuel ratio = 20 and the exhaust gas amount is 10 g / s. Reference is unified by the terms of the final [Delta] I L is calculated.
 次に、相関線からPM量を算出する処理が実行される(ステップS112)。ステップS112では、図5に示した、空燃比=20の相関線が定められたマップが参照されることにより、換算後のΔIに応じたPM量が算定される。具体的には、この処理では、図5のマップに示すように、ΔIが大きいほどPM量が多く算出される。 Next, a process for calculating the PM amount from the correlation line is executed (step S112). In step S112, as shown in FIG. 5, by map correlation line of the air-fuel ratio = 20 have been established is referenced, PM amount corresponding to [Delta] I L after conversion is calculated. Specifically, in this process, as shown in the map of FIG. 5, as the PM amount is large [Delta] I L is often calculated.
 上記のステップS110およびS112の処理により、次の効果が得られる。例えば図5に示すように、空燃比=25のときに得られた差ΔIL2は、基準電流値に換算されることにより空燃比=20のときのΔIL1に一致する。PM量とΔIの関係は、排気ガスの空燃比に応じて異なる。図5に示すように、空燃比が20のときΔIL1が得られた場合、このΔIL1に応じたPM量が定まる。一方、空燃比が25でΔIL2が得られた場合、ΔIL2がΔIL1よりも大きな値でも、PM量としては空燃比=20のときのΔIL1と同じ値になる。実施の形態1では、ステップS110の換算処理により、異なる排気ガス空燃比で得られたA/Fセンサ22、24の出力差が、空燃比=20に応じた値に換算される。この換算が行われた上で、空燃比=20の相関線が定められたマップが参照される。これにより、空燃比が刻々と変化する状況下でも、A/Fセンサ22、24の出力に基づいて、精度良くPM量を検知することができる。 The following effects can be obtained by the processes in steps S110 and S112. For example, as shown in FIG. 5, the difference ΔI L2 obtained when the air-fuel ratio = 25 coincides with ΔI L1 when the air-fuel ratio = 20 by being converted into a reference current value. Relation PM amount and the [Delta] I L will vary according to the air-fuel ratio of the exhaust gas. As shown in FIG. 5, when ΔI L1 is obtained when the air-fuel ratio is 20, the amount of PM corresponding to this ΔI L1 is determined. On the other hand, when ΔI L2 is obtained when the air-fuel ratio is 25, even if ΔI L2 is larger than ΔI L1 , the PM amount is the same as ΔI L1 when air-fuel ratio = 20. In the first embodiment, the output difference of the A / F sensors 22 and 24 obtained at different exhaust gas air-fuel ratios is converted into a value corresponding to the air-fuel ratio = 20 by the conversion process in step S110. After this conversion is performed, a map in which a correlation line of air-fuel ratio = 20 is defined is referred to. As a result, the PM amount can be accurately detected based on the outputs of the A / F sensors 22 and 24 even in a situation where the air-fuel ratio changes every moment.
 続いて、排気ガス量に応じたPM量が算出される(ステップS114)。このステップでは、ステップS108で記憶された積算排気ガス量Gexh_itgと、所定時間Tに基づいて、単位時間当たりおよび単位ガス量当たりの、パティキュレート量が算出される。これにより、排気ガス中のパティキュレートの量的な評価を行うことができる。 Subsequently, the PM amount corresponding to the exhaust gas amount is calculated (step S114). In this step, the integrated exhaust gas amount Gexh_itg stored in step S108, based on the predetermined time T 0, per and per unit amount of gas per unit time, the particulate amount is calculated. Thereby, quantitative evaluation of particulates in exhaust gas can be performed.
 続いて、ヒータ32が再度加熱されて、フィルタ30内のパティキュレートが除去される(ステップS116)。その後、ステップS102へと処理が戻り、ステップS102以降の処理が繰り返し実行される。 Subsequently, the heater 32 is heated again, and the particulates in the filter 30 are removed (step S116). Thereafter, the process returns to step S102, and the processes after step S102 are repeatedly executed.
 以上の処理によれば、排気ガスのパティキュレート量を検知することができる。 According to the above processing, the amount of exhaust gas particulates can be detected.
 なお、ECU50に記憶するΔIとPM量との関係を定めたマップは、20、25およびそれ以外の複数の空燃比ごとに相関線が定められた、いわゆる多次元マップでもよい。これにより、ステップS110の基準電流値への換算をせず、空燃比ごとの相関線を直接参照してPM量を算出しても良い。また、実施の形態1では、ECU50が、吸入空気量Gaに基づいて排気ガス量Gexhを算出している。このため、吸入空気量Gaの積算値を、積算排気ガス量Gexh_itgに代えて用いることもできる。 Incidentally, the map that defines the relationship between [Delta] I L and PM amount to be stored in ECU50 is correlation line for each of a plurality of air-fuel ratio of 20, 25 and other is determined, it may be a so-called multi-dimensional map. Thus, the PM amount may be calculated by directly referring to the correlation line for each air-fuel ratio without converting to the reference current value in step S110. In the first embodiment, the ECU 50 calculates the exhaust gas amount Gexh based on the intake air amount Ga. For this reason, the integrated value of the intake air amount Ga can be used instead of the integrated exhaust gas amount Gexh_itg.
 なお、上述した実施の形態1においては、フィルタ30が前記第1の発明における「フィルタ」に、ヒータ32が、前記第1の発明における「ヒータ」に、A/Fセンサ24が、前記第1の発明における「酸素濃度センサ素子」に、それぞれ相当している。また、実施の形態1においては、A/Fセンサ22が、前記第2の発明における「酸素濃度センサ素子」に相当している。 In the first embodiment described above, the filter 30 is the “filter” in the first invention, the heater 32 is the “heater” in the first invention, and the A / F sensor 24 is the first filter. Corresponds to the “oxygen concentration sensor element” in the invention. In the first embodiment, the A / F sensor 22 corresponds to the “oxygen concentration sensor element” in the second invention.
 なお、上述した実施の形態1においては、フィルタ30が、前記第5の発明における「フィルタ」に、空燃比センサ24が、前記第5の発明における「酸素濃度センサ素子」に、ヒータ32が、前記第5の発明における「ヒータ」に、それぞれ相当している。また、実施の形態1では、図4のルーチンにおいて、ECU50がステップS100またはステップS116の処理を実行することにより、前記第5の発明における「加熱制御手段」が、ECU50がステップS104の処理を実行することにより、前記第5の発明における「温度低減制御手段」が、ECU50がステップS108の処理を実行することにより、前記第5の発明における「取得手段」が、ECU50がステップS110~S114の処理を実行することにより、前記第5の発明における「算出手段」が、それぞれ実現されている。 In the first embodiment described above, the filter 30 is the “filter” in the fifth invention, the air-fuel ratio sensor 24 is the “oxygen concentration sensor element” in the fifth invention, and the heater 32 is This corresponds to the “heater” in the fifth invention. In the first embodiment, the ECU 50 executes the process of step S100 or step S116 in the routine of FIG. 4, so that the “heating control means” in the fifth aspect of the invention causes the ECU 50 to execute the process of step S104. Thus, the “temperature reduction control means” in the fifth invention causes the ECU 50 to execute the process of step S108, and the “acquisition means” in the fifth invention enables the ECU 50 to execute the processes of steps S110 to S114. By executing this, the “calculation means” in the fifth aspect of the present invention is realized.
 また、実施の形態1では、所定時間Tが、前記第6の発明における「所定時間」に、積算排気ガス量Gexh_itgが、前記第6の発明における「積算値」に、それぞれ相当している。 In the first embodiment, the predetermined time T 0 corresponds to the “predetermined time” in the sixth invention, and the accumulated exhaust gas amount Gexh_itg corresponds to the “integrated value” in the sixth invention. .
 また、実施の形態1では、図4のルーチンにおいて、ECU50がステップS102の処理を実行することにより、前記第9の発明における「校正手段」が実現されている。 In the first embodiment, the “calibration means” according to the ninth aspect of the present invention is implemented by the ECU 50 executing the process of step S102 in the routine of FIG.
[実施の形態1の変形例]
(第1変形例)
 実施の形態1では、A/Fセンサ22、24を、限界電流式の空燃比センサとした。しかしながら、本発明はこれに限られない。前述したように、フィルタ30内のパティキュレート量増大に応じて、小型フィルタを通過できるO量が減少し、その結果、フィルタ30下流の酸素濃度が低下していく。実施の形態1では、この事象を利用して、フィルタ30下流の酸素濃度に基づいて、フィルタ30への流入ガスのパティキュレート量を検知している。そこで、限界電流式以外の他の方式の空燃比センサ、例えばいわゆる2セル式の空燃比センサが、A/Fセンサ22、24の代わりに用いられても良い。また、空燃比センサ以外の、ガスの酸素濃度をリニアに計測できる酸素濃度センサが、A/Fセンサ22、24の代わりに用いられてもよい。
[Modification of Embodiment 1]
(First modification)
In the first embodiment, the A / F sensors 22 and 24 are limit current type air-fuel ratio sensors. However, the present invention is not limited to this. As described above, as the amount of particulates in the filter 30 increases, the amount of O 2 that can pass through the small filter decreases, and as a result, the oxygen concentration downstream of the filter 30 decreases. In the first embodiment, this phenomenon is used to detect the particulate amount of the inflow gas to the filter 30 based on the oxygen concentration downstream of the filter 30. Therefore, an air-fuel ratio sensor of a system other than the limit current type, for example, a so-called 2-cell type air-fuel ratio sensor may be used instead of the A / F sensors 22 and 24. An oxygen concentration sensor that can measure the oxygen concentration of gas other than the air-fuel ratio sensor may be used instead of the A / F sensors 22 and 24.
(第2変形例)
 実施の形態1では、フィルタ30の上流と下流に、1つずつA/Fセンサを設けた。しかしながら、本発明はこれに限られない。前述したように、フィルタ30内のパティキュレート量増大に応じて、小型フィルタを通過できるO量が減少し、その結果、フィルタ30下流の酸素濃度が低下していく。従って、フィルタ30下流のみにA/Fセンサを設けて、このA/Fセンサの出力低下量(以下、ΔILd)をΔIに代えて用いてもよい。但し、フィルタ下流のみにA/Fセンサや酸素濃度センサを設ける場合には、フィルタ30の上流の排気ガスの酸素濃度をセンサにより感知することができない。この場合には、例えば、内燃機関2の運転条件に基づいて算出した空燃比あるいは酸素濃度と、フィルタ下流のA/Fセンサや酸素濃度センサの出力との差を、ΔIとすることができる。
(Second modification)
In the first embodiment, one A / F sensor is provided upstream and downstream of the filter 30. However, the present invention is not limited to this. As described above, as the amount of particulates in the filter 30 increases, the amount of O 2 that can pass through the small filter decreases, and as a result, the oxygen concentration downstream of the filter 30 decreases. Accordingly, only the filter 30 downstream provided A / F sensor, the output reduction of the A / F sensor (hereinafter, [Delta] I Ld) may be used in place of the in [Delta] I L. However, when an A / F sensor or an oxygen concentration sensor is provided only downstream of the filter, the oxygen concentration of the exhaust gas upstream of the filter 30 cannot be detected by the sensor. In this case, for example, the air-fuel ratio or oxygen concentration calculated based on the operating condition of the internal combustion engine 2, the difference between the output of the filter downstream of the A / F sensor or an oxygen concentration sensor may be a [Delta] I L .
(第3変形例)
 実施の形態1では、A/Fセンサ22、24、フィルタ30、およびヒータ32が、それぞれ単体の部品として組み合わせられることにより、前記第1の発明にかかる「PMセンサ」が構成されている。しかしながら、本発明はこれに限られない。A/Fセンサ22、24の素子部、フィルタ30およびヒータ32の機能を集約(一体化)させた1つのPMセンサを作製しても良い。
(Third Modification)
In the first embodiment, the “PM sensor” according to the first aspect of the present invention is configured by combining the A / F sensors 22 and 24, the filter 30, and the heater 32 as individual components. However, the present invention is not limited to this. One PM sensor in which the functions of the A / F sensors 22 and 24, the filter 30, and the heater 32 are integrated (integrated) may be manufactured.
 具体的には、排気ガスの流入口と排気ガスの流出口とを備えたPMセンサ用ケース内に、PMをフィルタリングするためのフィルタが設けられる。さらに、このフィルタ上流及び下流に、それぞれ、空燃比センサ素子部あるいは酸素濃度センサ素子部が設けられる。フィルタを熱するためのヒータも内蔵される。以上により、排気ガスの流入口および流出口を備え、フィルタ、酸素濃度センサ素子部、およびヒータを内蔵したPMセンサが提供される。このPMセンサを排気通路に配置した場合には、流入口を介して排気ガスの一部が摘出されてPMセンサ用ケース内部に流入する。流入口から流入した排気ガスは、フィルタを通過した後、流出口から再び排気通路内に流出する。この構成において、フィルタ上流と下流の酸素濃度センサ素子部の出力差を実施の形態1のΔIと同様に取り扱うことにより、排気ガスのパティキュレート量を検知することができる。 Specifically, a filter for filtering PM is provided in a PM sensor case having an exhaust gas inlet and an exhaust gas outlet. Further, an air-fuel ratio sensor element part or an oxygen concentration sensor element part is provided upstream and downstream of the filter, respectively. A heater for heating the filter is also incorporated. As described above, a PM sensor including an exhaust gas inlet and an outlet and including a filter, an oxygen concentration sensor element portion, and a heater is provided. When this PM sensor is disposed in the exhaust passage, a part of the exhaust gas is extracted through the inlet and flows into the PM sensor case. The exhaust gas flowing in from the inflow port passes through the filter and then flows out again from the outflow port into the exhaust passage. In this configuration, by treating the output difference of the oxygen concentration sensor element of the filter upstream and downstream similarly to the [Delta] I L of the first embodiment, it is possible to detect the particulate matter of the exhaust gas.
 本変形例にかかる一体化されたPMセンサによれば、実施の形態1の構成に比して排気ガス流量や空燃比の影響を小さくできるため、それらの影響を受けずに高精度なPM量検知を行うことができる。上記の一体化を行う場合には、空燃比センサ素子の温度が活性温度である間もフィルタがパティキュレートを保持できるように、フィルタ周囲の断熱が十分に確保されていることが好ましい。なお、上記の第2変形例で述べたように、フィルタ下流のみに空燃比センサ素子部あるいは酸素濃度センサ素子部を設けてもよい。 According to the integrated PM sensor according to the present modification, the influence of the exhaust gas flow rate and the air-fuel ratio can be reduced as compared with the configuration of the first embodiment. Detection can be performed. In the case of performing the above integration, it is preferable that the heat insulation around the filter is sufficiently secured so that the filter can maintain the particulates even while the temperature of the air-fuel ratio sensor element is the active temperature. Note that, as described in the second modification, the air-fuel ratio sensor element unit or the oxygen concentration sensor element unit may be provided only downstream of the filter.
(第4変形例)
 なお、実施の形態1では、次のような計算プロセスの変形も可能である。先ず、IL1の値やIL2の値と、酸素濃度とのマップ(第1のマップ)をECU50が記憶しておく。また、ECU50に、フィルタ30の上流と下流の酸素濃度差ΔOと、PM量との関係を定めた相関線のマップ(第2のマップ)も記憶させておく。この第2のマップは、酸素濃度差ΔOが大きいほどPM量が多くなるように定めることができる。ステップS108でECU50がIL1やIL2を取得した後、それらの値に応じた酸素濃度値が上記第1のマップに従って算出される。次いで、その酸素濃度値の差に基づいて、上記第2のマップに従って、PM量が算出される。このような計算プロセスによって、ステップS110、S112の処理を代替してもよい。
(Fourth modification)
In the first embodiment, the following calculation process can be modified. First, the ECU 50 stores a map (first map) between the values of I L1 and I L2 and the oxygen concentration. The ECU 50 also stores a correlation line map (second map) that defines the relationship between the oxygen concentration difference ΔO 2 upstream and downstream of the filter 30 and the PM amount. This second map can be determined so that the PM amount increases as the oxygen concentration difference ΔO 2 increases. After the ECU 50 acquires I L1 and I L2 in step S108, an oxygen concentration value corresponding to these values is calculated according to the first map. Next, based on the difference in oxygen concentration value, the PM amount is calculated according to the second map. The processing in steps S110 and S112 may be replaced by such a calculation process.
実施の形態2.
[実施の形態2の構成]
 実施の形態2のPM量検知装置は、実施の形態1の構成に対して、ヒータ32の消費電力を計測する回路が加えられた構成を有する。この回路の具体的構成には特に限定は無く、ヒータ32の電流および印加電圧を計測する電流センサおよび電圧センサを備えた回路を用いればよい。この点を除き実施の形態1、2のハードウェア構成は同じであるから、説明の簡略化のため実施の形態2のハードウェア構成は図示しない。実施の形態2のPM量検知装置は、上記の構成において、ECU50の図6のルーチンを実行させることにより実現される。
Embodiment 2. FIG.
[Configuration of Embodiment 2]
The PM amount detection device of the second embodiment has a configuration in which a circuit for measuring the power consumption of the heater 32 is added to the configuration of the first embodiment. The specific configuration of this circuit is not particularly limited, and a circuit provided with a current sensor and a voltage sensor for measuring the current and applied voltage of the heater 32 may be used. Except for this point, the hardware configurations of the first and second embodiments are the same, and therefore the hardware configuration of the second embodiment is not shown for the sake of simplicity of explanation. The PM amount detection apparatus according to the second embodiment is realized by causing the ECU 50 to execute the routine of FIG.
 以下の説明では、ヒータ32の消費電力を「P」とも称す。また、ヒータ32の消費電力Pを時間で積分した量、つまりヒータ32の電力消費量を、「W」とも称す。 In the following description, the power consumption of the heater 32 is also referred to as “P H ”. The amount obtained by integrating the power P H at the time of the heater 32, that is, the power consumption of the heater 32, also referred to as "W H".
[実施の形態2の動作]
 排気ガス中のパティキュレート量が多ければ多いほど、単位時間内にフィルタ30に捕集されるパティキュレート量がより多くなる。フィルタ30内のパティキュレート量が多ければ多いほど、フィルタ30内のパティキュレートを除去するために必要なヒータ32の電力消費量もより多くなる。そこで、実施の形態2では、フィルタ30への流入ガスのパティキュレート量を、ヒータ32の電力消費量に基づいて算出することとした。
[Operation of Embodiment 2]
As the amount of particulates in the exhaust gas increases, the amount of particulates collected by the filter 30 within a unit time increases. The greater the amount of particulates in the filter 30, the greater the power consumption of the heater 32 required to remove the particulates in the filter 30. Therefore, in the second embodiment, the particulate amount of the gas flowing into the filter 30 is calculated based on the power consumption amount of the heater 32.
[実施の形態2の具体的処理]
 以下、図6を用いて、実施の形態2にかかる排気ガスのPM量検知装置が行う具体的処理を説明する。図6は、本発明の実施の形態2においてECU50が実行するルーチンのフローチャートである。実施の形態2では、ECU50に、予め、WとPM量との相関線のマップを記憶しておく。このマップは、実施の形態1の図5のマップと同じように、Wが大きいほどPM量が多くなるように定めることができる。
[Specific Processing of Embodiment 2]
A specific process performed by the exhaust gas PM amount detection apparatus according to the second embodiment will be described below with reference to FIG. FIG. 6 is a flowchart of a routine executed by the ECU 50 in the second embodiment of the present invention. In the second embodiment, a map of a correlation line between WH and the PM amount is stored in the ECU 50 in advance. This map, like the map of FIG. 5 in the first embodiment, can be defined as such amount of PM increases W H is large.
 図6のルーチンでは、先ず、実施の形態1で述べたステップS100が実行される。 In the routine of FIG. 6, first, step S100 described in the first embodiment is executed.
 次いで、IL1、IL2、Gexhの記憶およびΔIの算出が行われる(ステップS208)。実施の形態2では、A/Fセンサ22、24の出力IL1、IL2を、それぞれ、所定周期(例えば8ミリ秒毎)で繰り返し記憶(サンプリング)する逐次記憶処理がECU50に備えられている。また、実施の形態2では、出力IL1、IL2の記憶と同じタイミングで、排気ガス量Gexhを記憶する逐次記憶処理も、ECU50に備えられている。ステップS208では、これらの逐次記憶処理の記憶値IL1、IL2、Gexhに基づいて、ステップS108、S110のΔI算出処理が繰り返し行われる。実施の形態2では、ECU50はこれらの処理をステップS208以降に継続実行し、ΔIが最新の値に逐次更新される。 Next, storage of I L1 , I L2 , and Gexh and calculation of ΔI L are performed (step S208). In the second embodiment, the ECU 50 is provided with a sequential storage process for repeatedly storing (sampling) the outputs I L1 and I L2 of the A / F sensors 22 and 24 at predetermined intervals (for example, every 8 milliseconds). . In the second embodiment, the ECU 50 is also provided with a sequential storage process for storing the exhaust gas amount Gexh at the same timing as the storage of the outputs I L1 and I L2 . In step S208, the ΔI L calculation process in steps S108 and S110 is repeatedly performed based on the stored values I L1 , I L2 , and Gexh of the sequential storage process. In the second embodiment, ECU 50 performs continue these processes in step S208 and subsequent, [Delta] I L is sequentially updated to the latest values.
 次いで、実施の形態1で述べたステップS104が実行され、ヒータがオフにされる。この後、フィルタ30内にパティキュレートが溜まっていくのに応じて、逐次算出されているΔIの値は、徐々に大きくなる。 Next, step S104 described in the first embodiment is executed, and the heater is turned off. Thereafter, in response to the gradually accumulated particulate filter 30, the value of [Delta] I L being sequentially calculated, gradually increases.
 次いで、ΔIが所定値に達したら、時間カウントが開始される(ステップS213)。このステップにより、所定の程度のパティキュレートがフィルタ30内に溜まった段階で、時間カウントが開始される。これにより、パティキュレートがフィルタ30内に確実に捕集されている状況下で、以降の処理を進めることができる。結果、PM量算出の推定精度確保と、パティキュレートが捕集されていない条件下でのヒータ消費電力量の低減が実現される。 Then, if [Delta] I L reaches a predetermined value, time counting is started (step S213). By this step, time counting is started when a predetermined degree of particulates is accumulated in the filter 30. As a result, the subsequent processing can proceed under a situation where the particulates are reliably collected in the filter 30. As a result, it is possible to ensure the estimation accuracy of the PM amount calculation and to reduce the heater power consumption under the condition that the particulates are not collected.
 続いて、ステップS213でカウント開始された時間が所定時間(以下、「T」)に達したら、ヒータがONにされる(ステップS214)。ヒータ32のONの後は、所定振幅Pかつ所定のデューティ比Dでヒータ32に電力が与えられる。このとき、ヒータ32は、少なくともフィルタ30をパティキュレート燃焼開始温度以上に加熱できるように制御される。また、実施の形態2では、ヒータ32がONにされた後、時間がカウントされる。 Subsequently, when the time at which the counting is started in step S213 reaches a predetermined time (hereinafter, “T 1 ”), the heater is turned on (step S214). After ON of the heater 32, the power supplied to the heater 32 at a predetermined amplitude P 0 and a predetermined duty ratio D H. At this time, the heater 32 is controlled so that at least the filter 30 can be heated to the particulate combustion start temperature or higher. In the second embodiment, the time is counted after the heater 32 is turned on.
 ステップS214におけるヒータ32の制御開始後、ヒータ32によってフィルタ30が加熱され、フィルタ30内のパティキュレートが燃焼、除去されてゆく。これに伴い、ΔIの値は徐々に小さくなる。 After starting the control of the heater 32 in step S214, the filter 30 is heated by the heater 32, and the particulates in the filter 30 are combusted and removed. Along with this, the value of ΔI L gradually decreases.
 その後、ΔIが零となるまでの消費電力量が計算される(ステップS216)。実施の形態2では、先ず、ヒータ32がONにされた後、ΔIが零になったか否かの判定処理が行われる。ΔI=0が成立したタイミングで時間のカウントが停止され、ヒータ32のON時刻からΔIが零になるまでの時間Tが得られる。続いて、この時間Tと上記のPおよびデューティ比Dとに基づいて消費電力量Wを計算する計算処理(具体的には例えばT×P×D=Wの乗算)が実行される。計算された消費電力量Wが、フィルタ30内のパティキュレートを除去するためにヒータ32が消費した電力量とされる。 Thereafter, the power consumption until ΔI L becomes zero is calculated (step S216). In the second embodiment, first, the heater 32 is turned ON, the determination process of whether [Delta] I L becomes zero is performed. [Delta] I L = 0 the time counted by the timing established is stopped, the time T H from ON time of the heater 32 to the [Delta] I L becomes zero is obtained. Subsequently, the multiplication of the time T H and the above P 0 and calculation process of calculating the power consumption W H on the basis of the duty ratio D H (specifically, for example, T H × P 0 × D H = W H ) Is executed. The calculated power consumption amount WH is the amount of power consumed by the heater 32 in order to remove the particulates in the filter 30.
 次いで、排気ガス量に応じたPM量が算出される(ステップS218)。このステップでは、先ず、ECU50が記憶しているWとPM量の相関線のマップが参照され、Wに応じたPM量が算出される。その後、実施の形態1と同様に、積算排気ガス量Gexh_itgと、所定時間Tに基づいて、単位時間当たりおよび単位ガス量当たりの、パティキュレート量が算出される。 Next, the PM amount corresponding to the exhaust gas amount is calculated (step S218). In this step, first, a map of correlation lines between the WH and the PM amount stored in the ECU 50 is referred to calculate the PM amount corresponding to the WH . Thereafter, as in the first embodiment, the integrated exhaust gas amount Gexh_itg, on the basis of a predetermined time T 0, per and per unit amount of gas per unit time, the particulate amount is calculated.
 その後、ヒータ32が再度加熱されてフィルタ30内のパティキュレートが除去される(ステップS220)。その後、ステップS208へと処理が戻り、ステップS208以降の処理が繰り返し実行される。 Thereafter, the heater 32 is heated again, and the particulates in the filter 30 are removed (step S220). Thereafter, the process returns to step S208, and the processes after step S208 are repeatedly executed.
 以上の処理によれば、排気ガスのパティキュレート量を検知することができる。 According to the above processing, the amount of exhaust gas particulates can be detected.
 なお、上述した実施の形態2においては、フィルタ30が、前記第10の発明における「フィルタ」に、ヒータ32が、前記第10の発明における「ヒータ」に、それぞれ相当している。また、実施の形態2では、図6のルーチンにおいて、ECU50がステップS212の処理を実行することにより、前記第10の発明における「温度低減制御」が、ECU50がステップS213およびS214の処理を実行することにより、前記第10の発明における「加熱制御手段」が、ECU50がステップS216の処理を実行することにより、前記第10の発明における「電力量検知手段」が、ECU50がステップS220の処理を実行することにより、前記第10の発明における「算出手段」が、それぞれ実現されている。 In the second embodiment described above, the filter 30 corresponds to the “filter” in the tenth invention, and the heater 32 corresponds to the “heater” in the tenth invention. In the second embodiment, the ECU 50 executes the process of step S212 in the routine shown in FIG. 6, so that the “temperature reduction control” in the tenth aspect of the invention causes the ECU 50 to execute the processes of steps S213 and S214. Thus, the “heating control means” in the tenth aspect of the invention causes the ECU 50 to execute the process of step S216, and the “power amount detection means” in the tenth aspect of the invention causes the ECU 50 to execute the process of step S220. As a result, the “calculation means” in the tenth aspect of the present invention is realized.
 また、実施の形態2では、図6のルーチンのステップS216において、ΔIが零か否かの判定処理をECU50が実行することにより、前記第11の発明における「判定手段」が、時間Tと上記のPおよびデューティ比Dとに基づいて消費電力量Wを計算する計算処理をECU50が実行することにより、前記第11の発明における「電力量算出手段」が、それぞれ実現されている。 In the second embodiment, in step S216 of the routine of FIG 6, by [Delta] I L is zero process of determining whether or not the ECU50 executes, the "determination means" in the eleventh aspect of the present invention, time T H and by ECU50 calculation processing for calculating a power consumption amount W H on the basis of the above P 0 and the duty ratio D H is executed, the first 11 "electric power calculation means" in the invention of, be implemented respectively Yes.
 また、実施の形態2ではハードウェア構成を図示しなかったが、A/Fセンサ22が、前記第12の発明における「上流側酸素濃度センサ」に、図示しないA/Fセンサ24が、前記第12の発明における「下流側酸素濃度センサ」に、それぞれ相当している。 Although the hardware configuration is not shown in the second embodiment, the A / F sensor 22 is the “upstream oxygen concentration sensor” in the twelfth invention, and the A / F sensor 24 (not shown) is the first sensor. This corresponds to the “downstream oxygen concentration sensor” in each of the 12 inventions.
[実施の形態2の変形例]
 実施の形態2の具体的処理では、ステップS214において、所定時間Tが経過したときのA/Fセンサ22、24の出力が記憶される。しかしながら、本発明はこれに限られない。所定時間Tに変えて、積算排気ガス量Gexh_igtが所定量に達したときに、ECU50がA/Fセンサ22、24の出力を記憶してもよい。
[Modification of Embodiment 2]
The specific processing of the second embodiment, at step S214, the output of the A / F sensor 22, 24 when a predetermined time T 1 is passed is stored. However, the present invention is not limited to this. Instead of the predetermined time T 1, when the integrated exhaust gas amount Gexh_igt has reached a predetermined amount, ECU 50 may store the output of the A / F sensor 22, 24.
 ヒータ32の制御は必ずしもステップS214のようなデューティ制御に限られない。例えば、ヒータ32の抵抗値(ヒータ32の温度)が所定値を示すように、ヒータ32に電力を与えても良い。この場合、ヒータ32の消費電力をモニタリングするなどして消費電力量を計算すればよい。 The control of the heater 32 is not necessarily limited to the duty control as in step S214. For example, electric power may be applied to the heater 32 so that the resistance value of the heater 32 (temperature of the heater 32) shows a predetermined value. In this case, the power consumption may be calculated by monitoring the power consumption of the heater 32.
 実施の形態2において、次のような変形例を挙げることもできる。この変形例では、ステップS212のヒータオフから、その後所定時間が経過したら(或いは排気ガス積算量が所定量に達したら)、ステップS214のヒータオン以降の処理が実行される。つまり、この変形例では、ステップS213におけるΔIの所定値比較が除かれている。 In the second embodiment, the following modifications can be given. In this modified example, when a predetermined time has elapsed since the heater was turned off in step S212 (or when the accumulated exhaust gas amount has reached a predetermined amount), processing after the heater is turned on in step S214 is executed. That is, in this modification, the predetermined value comparison [Delta] I L has been removed in step S213.
 また、実施の形態2に、実施の形態1で述べた変形例を組み合わせてもよい。 Further, the modification example described in the first embodiment may be combined with the second embodiment.
 実施の形態3.
[実施の形態3の構成]
 図7は、本発明の実施の形態3にかかる内燃機関の異常検出装置の構成を示す図である。実施の形態3の異常検出装置は、排気管10に設けられたディーゼルパティキュレートフィルタ(DPF)130の異常を検出することができる。この異常検出装置は、車両搭載時のOBD(On-board diagnosis)に使用されることができる。
Embodiment 3 FIG.
[Configuration of Embodiment 3]
FIG. 7 is a diagram showing the configuration of the abnormality detection apparatus for an internal combustion engine according to the third embodiment of the present invention. The abnormality detection device of the third embodiment can detect an abnormality of the diesel particulate filter (DPF) 130 provided in the exhaust pipe 10. This abnormality detection device can be used for OBD (On-board diagnosis) when mounted on a vehicle.
 実施の形態3では、内燃機関2がディーゼルエンジンであるものとし、DPF130を再生するための加熱機構(図示略)が備えられているものとする。ECU50は、加熱機構を制御して、DPF130を再生することができる。 In Embodiment 3, the internal combustion engine 2 is assumed to be a diesel engine, and a heating mechanism (not shown) for regenerating the DPF 130 is provided. The ECU 50 can regenerate the DPF 130 by controlling the heating mechanism.
 DPF再生用の加熱機構は、すでに各種の構成が公知である。このため詳細な説明は行わないが、例えば、所謂ポスト噴射にてDPF130を加熱しても良い。具体的には、内燃機関2の排気通路に、排気系燃料添加弁を備えてもよい。排気系燃料添加弁は、排気通路を流れる排気ガスに燃料を添加するために備えられる。適宜のタイミングで排気系燃料添加弁による燃料添加を行うことで、DPF130を再生することができる。また、所謂ポスト噴射を行って、燃料添加を行っても良い。また、DPF130にヒータを取り付けて、このヒータによりDPF130を加熱してもよい。 Various configurations of the heating mechanism for DPF regeneration are already known. For this reason, although detailed description is not given, you may heat DPF130 by what is called post injection, for example. Specifically, an exhaust system fuel addition valve may be provided in the exhaust passage of the internal combustion engine 2. The exhaust system fuel addition valve is provided to add fuel to the exhaust gas flowing through the exhaust passage. The DPF 130 can be regenerated by adding fuel with an exhaust system fuel addition valve at an appropriate timing. In addition, so-called post injection may be performed to add fuel. Further, a heater may be attached to the DPF 130 and the DPF 130 may be heated by this heater.
 図7に示すように、DPF130の上流と下流には、実施の形態1のフィルタ30のときと同様に、A/Fセンサ22、24が備えられている。DPF130においても、フィルタ30と同様に、パティキュレート量増加に応じて、ΔIが増大する。DPF130がパティキュレートを正常に捕集できていれば、DPF130内にパティキュレートが蓄積していき、パティキュレート蓄積の影響がΔIに表れるはずである。従って、ΔIに基づいて、DPF130の異常を検出することができる。 As shown in FIG. 7, A / F sensors 22 and 24 are provided upstream and downstream of the DPF 130, as in the case of the filter 30 of the first embodiment. Also in DPF130, like the filter 30, in accordance with the increase particulates, [Delta] I L is increased. DPF130 is if successfully collecting particulates, particulates continue to accumulate in the DPF130, the influence of the particulate accumulation should appear in ΔI L. Therefore, based on [Delta] I L, it is possible to detect the abnormality of DPF130.
[実施の形態3の具体的処理]
 図8は、実施の形態3においてECU50が実行するルーチンのフローチャートである。図8のルーチンは、内燃機関2の始動時に実行されるものとする。以下の説明では、上述した実施の形態1、2の内容で重複する点については、適宜に説明を省略ないしは簡略化する。
[Specific Processing of Embodiment 3]
FIG. 8 is a flowchart of a routine executed by ECU 50 in the third embodiment. The routine in FIG. 8 is executed when the internal combustion engine 2 is started. In the following description, the description overlapping with the contents of the above-described first and second embodiments will be omitted or simplified as appropriate.
 図8のルーチンでは、先ず、実施の形態1のステップS100と同様に、A/Fセンサを活性化するための加熱が行われる(ステップS300)。 In the routine of FIG. 8, first, heating for activating the A / F sensor is performed (step S300) as in step S100 of the first embodiment.
 続いて、DPF再生制御が実行される(ステップS302)。このステップでは、ECU50が既述した加熱機構を制御し、DPF130内のパティキュレートが除去される。 Subsequently, DPF regeneration control is executed (step S302). In this step, the ECU 50 controls the heating mechanism described above, and the particulates in the DPF 130 are removed.
 続いて、実施の形態1と同様にステップS102、S106、S108、S110が実行される。これにより、A/Fセンサの活性判定処理、DPF130内のPM燃焼判定処理、A/Fセンサの出力ゼロ点補正処理、積算排気ガス量Gexh_itgの算出処理、およびΔIの算出処理が、順次実行される。 Subsequently, steps S102, S106, S108, and S110 are executed as in the first embodiment. Thus, activity determination processing of the A / F sensor, PM combustion determination process in DPF130, outputs the zero point correction process of the A / F sensor, calculation of the integrated exhaust gas amount Gexh_itg, and calculation of [Delta] I L are sequentially performed Is done.
 次いで、PM量が算出される(ステップS304)。このステップでは、実施の形態1のステップS112の処理と同様に、ΔIに基づいて、相関線に従って、PM量が算出される。実施の形態3においても、図5に示したような相関線のマップが予め作成され、このマップがECU50に記憶されている。 Next, the PM amount is calculated (step S304). In this step, as in step S112 of the first embodiment, based on [Delta] I L, in accordance with the correlation lines, PM amount is calculated. Also in the third embodiment, a map of correlation lines as shown in FIG. 5 is created in advance, and this map is stored in the ECU 50.
 次いで、PM量が所定値以下か否かが判定される(ステップS306)。既述したように、DPF130がパティキュレートを正常に捕集できていれば、DPF130内にパティキュレートが蓄積していくはずである。この予想に反して、DPF130内のPM量が所定値以下を示している場合、DPF130になんらかの異常が発生していると考えられる。よって、実施の形態3では、PM量が所定値以下か否かの判定を行うこととした。この条件が否定されている場合には、DPF130が正常にパティキュレートを捕集していると判断され、今回のルーチンが終了する。 Next, it is determined whether the PM amount is equal to or less than a predetermined value (step S306). As described above, if the DPF 130 can normally collect the particulates, the particulates should be accumulated in the DPF 130. Contrary to this expectation, if the amount of PM in the DPF 130 shows a predetermined value or less, it is considered that some abnormality has occurred in the DPF 130. Therefore, in the third embodiment, it is determined whether the PM amount is equal to or less than a predetermined value. If this condition is negative, it is determined that the DPF 130 is normally collecting particulates, and the current routine is terminated.
 ステップS306の条件が成立した場合には、DPF130に異常があると判定される(ステップS308)。実施の形態3の異常検出装置がOBDに用いられている場合には、例えば、警告ランプ点灯によるドライバへの警告が行われる。 If the condition of step S306 is satisfied, it is determined that there is an abnormality in the DPF 130 (step S308). When the abnormality detection apparatus according to the third embodiment is used for OBD, for example, a warning is given to the driver by lighting a warning lamp.
 以上の処理によれば、パティキュレートフィルタの異常検出を行うことができる。 According to the above processing, the abnormality of the particulate filter can be detected.
 なお実施の形態3では、ΔIからPM量を算出した上で、このPM量と所定値との比較に基づく判定を行った。しかしながら、本発明はこれに限られない。PM量への換算をせずに、ΔIを所定値と比較することによって、比較判定を行っても良い。 Note that in the third embodiment, after calculating the amount of PM from [Delta] I L, was determined based on a comparison between the PM amount and a predetermined value. However, the present invention is not limited to this. Without conversion to the PM amount, by comparing the [Delta] I L with a predetermined value, it may be performed comparison determination.
 なお、上述した実施の形態3では、DPF130が、前記第13の発明における「パティキュレートフィルタ」に、A/Fセンサ24が、前記第13の発明における「酸素濃度センサ」に、それぞれ相当している。また、実施の形態3では、ECU50が図8のルーチンのステップS302の処理を実行することにより、前記第13の発明における「加熱手段」が、ECU50が図8のルーチンのステップS110、S304、S306およびS308の処理を実行することにより、前記第13の発明における「検出手段」が、それぞれ実現されている。 In the third embodiment described above, the DPF 130 corresponds to the “particulate filter” in the thirteenth invention, and the A / F sensor 24 corresponds to the “oxygen concentration sensor” in the thirteenth invention. Yes. Further, in the third embodiment, the ECU 50 executes the process of step S302 of the routine of FIG. 8, so that the “heating means” in the thirteenth aspect of the invention is changed to steps S110, S304, S306 of the routine of FIG. By executing the processing of S308 and S308, the “detection means” in the thirteenth aspect of the present invention is realized.
 また、上述した実施の形態3では、A/Fセンサ22が、前記第14の発明における「酸素濃度センサ」に相当している。 In the third embodiment described above, the A / F sensor 22 corresponds to the “oxygen concentration sensor” in the fourteenth aspect of the invention.

Claims (15)

  1.  内燃機関の排気通路のガスのうち一部を摘出して流入させる流入口と、
     前記流入口に流入したガスの中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
     前記フィルタに取り付けられ、前記フィルタの温度を変化させることができるヒータと、
     前記フィルタを通過したガスを前記排気通路へと流出させる流出口と、
     前記流出口側に配置され、前記フィルタを通過したガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子と、
     を備えることを特徴とするPMセンサ。
    An inflow port for extracting and flowing in part of the gas in the exhaust passage of the internal combustion engine;
    A filter for filtering particulate matter (PM) in the gas flowing into the inlet;
    A heater attached to the filter and capable of changing a temperature of the filter;
    An outlet for allowing the gas that has passed through the filter to flow into the exhaust passage;
    An oxygen concentration sensor element that is arranged on the outlet side and changes an output according to the oxygen concentration of the gas that has passed through the filter;
    PM sensor characterized by comprising.
  2.  前記流入口と前記フィルタの間に配置され、前記流入口から流れ込んだガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子を、さらに備えることを特徴とする請求項1記載のPMセンサ。 The PM sensor according to claim 1, further comprising an oxygen concentration sensor element that is disposed between the inlet and the filter and changes an output according to an oxygen concentration of a gas flowing from the inlet.
  3.  前記流出口側の前記酸素濃度センサ素子および前記流入口側の前記酸素濃度センサ素子が、空燃比センサ素子であることを特徴とする請求項2に記載のPMセンサ。 The PM sensor according to claim 2, wherein the oxygen concentration sensor element on the outlet side and the oxygen concentration sensor element on the inlet side are air-fuel ratio sensor elements.
  4.  前記空燃比センサ素子は、ヒータを備え、作動時に該ヒータにより所定温度に加熱され、
     前記空燃比センサ素子の温度が前記所定温度であるときに、前記フィルタが前記フィルタ内のパティキュレートマターが除去されない程度の温度になるように、前記フィルタと前記空燃比センサ素子とが離間されていることを特徴とする請求項3に記載のPMセンサ。
    The air-fuel ratio sensor element includes a heater and is heated to a predetermined temperature by the heater during operation,
    When the temperature of the air-fuel ratio sensor element is the predetermined temperature, the filter and the air-fuel ratio sensor element are separated from each other so that the filter has a temperature at which particulate matter in the filter is not removed. The PM sensor according to claim 3, wherein:
  5.  内燃機関の排気通路に備えられ、前記排気通路を流れる排気ガス中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
     前記排気通路内における前記フィルタの下流に配置され、前記フィルタを通過したガスの酸素濃度に応じて出力を変化させる酸素濃度センサ素子と、
     前記フィルタに取り付けられたヒータと、
     前記フィルタ内のパティキュレートマターが除去されるまで前記フィルタが加熱されるように、前記ヒータを制御する加熱制御手段と、
     前記加熱制御手段の前記制御後に、前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去されない温度以下になるように、前記ヒータを制御する温度低減制御手段と、
     前記フィルタの温度が前記温度以下になったあと、前記酸素濃度センサ素子の出力を取得する取得手段と、
     前記取得手段により取得された前記出力に基づいて、前記排気ガスのパティキュレートマター量を算出する算出手段と、
     を備えることを特徴とする排気ガスのPM量検知装置。
    A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage;
    An oxygen concentration sensor element that is disposed downstream of the filter in the exhaust passage and changes an output according to the oxygen concentration of the gas that has passed through the filter;
    A heater attached to the filter;
    Heating control means for controlling the heater so that the filter is heated until the particulate matter in the filter is removed;
    Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than the temperature at which the particulate matter in the filter is not removed after the control of the heating control means;
    Obtaining means for obtaining an output of the oxygen concentration sensor element after the temperature of the filter becomes equal to or lower than the temperature;
    Calculation means for calculating a particulate matter amount of the exhaust gas based on the output acquired by the acquisition means;
    An exhaust gas PM amount detection device comprising:
  6.  前記取得手段が、前記フィルタの温度が前記温度以下になったあと、所定時間が経過したときに、前記酸素濃度センサ素子の出力を取得し、
     前記フィルタの温度が前記温度以下になったあと、前記取得手段の前記出力の取得タイミングまでに前記フィルタに流れ込んだ排気ガス量の積算値を算出する手段を備え、
     前記算出手段が、前記取得手段により取得された前記出力と、前記所定時間と、前記積算値と、に基づいて、単位時間当たりおよび単位体積当たりの、前記排気ガスのパティキュレートマター量を算出することを特徴とする請求項5に記載の排気ガスのPM量検知装置。
    The acquisition means acquires the output of the oxygen concentration sensor element when a predetermined time has elapsed after the temperature of the filter becomes equal to or lower than the temperature,
    Means for calculating an integrated value of the amount of exhaust gas flowing into the filter by the acquisition timing of the output of the acquisition means after the temperature of the filter becomes equal to or lower than the temperature;
    The calculation means calculates the particulate matter amount of the exhaust gas per unit time and per unit volume based on the output acquired by the acquisition means, the predetermined time, and the integrated value. The exhaust gas PM amount detection device according to claim 5.
  7.  前記排気通路内における前記フィルタの上流に配置され、前記フィルタに流れ込む排気ガスの酸素濃度に応じて出力を変化させることのできる酸素濃度センサ素子を、さらに備え、
     前記算出手段が、前記フィルタ上流側の前記酸素濃度センサ素子の出力と前記フィルタ下流側の前記酸素濃度センサ素子の出力との差に基づいて、前記排気ガスのパティキュレートマター量を算出することを特徴とする請求項5または6に記載の排気ガスのPM量検知装置。
    An oxygen concentration sensor element disposed upstream of the filter in the exhaust passage and capable of changing an output according to an oxygen concentration of exhaust gas flowing into the filter;
    The calculating means calculates a particulate matter amount of the exhaust gas based on a difference between an output of the oxygen concentration sensor element upstream of the filter and an output of the oxygen concentration sensor element downstream of the filter; The exhaust gas PM amount detection device according to claim 5 or 6, characterized in that:
  8.  前記フィルタ下流側の前記酸素濃度センサ素子および前記フィルタ上流側の前記酸素濃度センサ素子が、空燃比センサ素子であることを特徴とする請求項7に記載の排気ガスのPM量検知装置。 The exhaust gas PM amount detection device according to claim 7, wherein the oxygen concentration sensor element on the downstream side of the filter and the oxygen concentration sensor element on the upstream side of the filter are air-fuel ratio sensor elements.
  9.  前記フィルタ下流側の前記空燃比センサと、前記フィルタ上流側の前記空燃比センサと、の間の出力偏差を校正する校正手段をさらに備えることを特徴とする請求項8に記載の排気ガスのPM量検知装置。 The exhaust gas PM according to claim 8, further comprising calibration means for calibrating an output deviation between the air-fuel ratio sensor on the downstream side of the filter and the air-fuel ratio sensor on the upstream side of the filter. Quantity detection device.
  10.  内燃機関の排気通路に備えられ、前記排気通路を流れる排気ガス中のパティキュレートマター(Particulate matter:PM)をフィルタリングするフィルタと、
     前記フィルタに取り付けられたヒータと、
     前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去されない温度以下になるように、前記ヒータを制御する温度低減制御手段と、
     前記温度低減制御手段の前記制御により前記フィルタの温度が前記温度以下になったときから所定期間が経過した後に、前記フィルタの温度が前記フィルタ内のパティキュレートマターが除去される温度以上になるように、前記ヒータを制御する加熱制御手段と、
     前記加熱制御手段の前記制御が行われているときに、前記フィルタ内のパティキュレートマターを除去するために前記ヒータが消費した電力消費量を検知する電力量検知手段と、
     前記電力量検知手段により検知された前記電力消費量に基づいて、前記排気ガスのパティキュレートマター量を算出する算出手段と、
     を備えることを特徴とする排気ガスのPM量検知装置。
    A filter that is provided in an exhaust passage of an internal combustion engine and filters particulate matter (PM) in exhaust gas flowing through the exhaust passage;
    A heater attached to the filter;
    Temperature reduction control means for controlling the heater so that the temperature of the filter is equal to or lower than a temperature at which particulate matter in the filter is not removed;
    The temperature of the filter becomes equal to or higher than the temperature at which the particulate matter in the filter is removed after a lapse of a predetermined period from when the temperature of the filter becomes equal to or lower than the temperature by the control of the temperature reduction control means. Heating control means for controlling the heater;
    A power amount detecting means for detecting a power consumption amount consumed by the heater to remove particulate matter in the filter when the control of the heating control means is performed;
    Calculation means for calculating a particulate matter amount of the exhaust gas based on the power consumption detected by the power detection means;
    An exhaust gas PM amount detection device comprising:
  11.  前記電力量検知手段は、
     前記加熱制御手段の前記制御の開始後に、前記フィルタ内のパティキュレートマターが除去されたか否かを判定する判定手段と、
     前記加熱制御手段の前記制御の開始から前記フィルタ内のパティキュレートマターが除去されたと判定されるまでの期間の、前記ヒータの電力消費量を算出する電力量算出手段と、
     前記電力量算出手段が算出した前記電力消費量に基づいて、前記フィルタ内のパティキュレートマターを除去するために前記ヒータが消費した前記電力消費量を算出する手段と、
     を含むことを特徴とする請求項10に記載の排気ガスのPM量検知装置。
    The power amount detection means
    Determination means for determining whether or not the particulate matter in the filter has been removed after the start of the control of the heating control means;
    A power amount calculating means for calculating a power consumption amount of the heater during a period from the start of the control of the heating control means until it is determined that the particulate matter in the filter has been removed;
    Means for calculating the power consumption consumed by the heater to remove particulate matter in the filter based on the power consumption calculated by the power consumption calculating means;
    The exhaust gas PM amount detection device according to claim 10, comprising:
  12.  前記排気通路内における前記フィルタの上流に配置され、前記フィルタに流入するガスの酸素濃度に応じて出力を変化させる上流側酸素濃度センサと、
     前記排気通路内における前記フィルタの下流に配置され、前記フィルタから流出するガスの酸素濃度に応じて出力を変化させる下流側酸素濃度センサと、を備え、
     前記判定手段は、前記上流側酸素濃度センサの出力と前記下流側酸素濃度センサの出力との差に基づいて、前記フィルタ内のパティキュレートマターが除去されたか否かを判定することを特徴とする請求項11に記載の排気ガスのPM量検知装置。
    An upstream oxygen concentration sensor that is disposed upstream of the filter in the exhaust passage and changes an output according to an oxygen concentration of a gas flowing into the filter;
    A downstream oxygen concentration sensor disposed downstream of the filter in the exhaust passage and changing an output according to an oxygen concentration of a gas flowing out from the filter,
    The determination means determines whether or not the particulate matter in the filter has been removed based on the difference between the output of the upstream oxygen concentration sensor and the output of the downstream oxygen concentration sensor. The exhaust gas PM amount detection device according to claim 11.
  13.  内燃機関の排気通路に備えられたパティキュレートフィルタの下流に配置され、前記パティキュレートフィルタから流出するガスの酸素濃度に応じて出力を変化させる酸素濃度センサと、
     前記パティキュレートフィルタを再生するように、前記パティキュレートフィルタを加熱する加熱手段と、
     前記パティキュレートフィルタの前記再生後における前記下流の前記酸素濃度センサの出力に基づいて、前記パティキュレートフィルタの異常を検出する検出手段と、
     を備えることを特徴とする内燃機関の異常検出装置。
    An oxygen concentration sensor disposed downstream of the particulate filter provided in the exhaust passage of the internal combustion engine and changing an output in accordance with the oxygen concentration of the gas flowing out of the particulate filter;
    Heating means for heating the particulate filter so as to regenerate the particulate filter;
    Detecting means for detecting an abnormality of the particulate filter based on an output of the downstream oxygen concentration sensor after the regeneration of the particulate filter;
    An abnormality detection device for an internal combustion engine, comprising:
  14.  前記パティキュレートフィルタの上流に配置され、排気ガスの酸素濃度に応じて出力を変化させる酸素濃度センサを、さらに備え、
     前記検出手段が、前記上流の前記酸素濃度センサの出力に対する前記下流の前記酸素濃度センサの出力の差に基づいて、前記パティキュレートフィルタの異常を検出することを特徴とする請求項13に記載の内燃機関の異常検出装置。
    An oxygen concentration sensor disposed upstream of the particulate filter and configured to change an output according to the oxygen concentration of the exhaust gas;
    The detection unit detects an abnormality of the particulate filter based on a difference in output of the downstream oxygen concentration sensor with respect to an output of the upstream oxygen concentration sensor. Abnormality detection device for an internal combustion engine.
  15.  前記パティキュレートフィルタの前記上流と前記下流とにそれぞれ配置された前記酸素濃度センサが、空燃比センサであることを特徴とする請求項14に記載の内燃機関の異常検出装置。 15. The abnormality detection device for an internal combustion engine according to claim 14, wherein the oxygen concentration sensors respectively disposed upstream and downstream of the particulate filter are air-fuel ratio sensors.
PCT/JP2009/058295 2009-04-27 2009-04-27 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine WO2010125636A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/058295 WO2010125636A1 (en) 2009-04-27 2009-04-27 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine
JP2011511207A JP5196012B2 (en) 2009-04-27 2009-04-27 PM sensor, exhaust gas PM amount detection device, internal combustion engine abnormality detection device
DE112009004746T DE112009004746B4 (en) 2009-04-27 2009-04-27 PM SENSOR, PM-LOW DETECTION DEVICE FOR EXHAUST GAS AND ANORMALITY DETECTION DEVICE FOR FUEL-POWERED MACHINE
US13/147,515 US20120031077A1 (en) 2009-04-27 2009-04-27 Pm sensor, pm amount sensing device for exhaust gas, and abnormality detection apparatus for internal combustion engine
CN2009801589453A CN102414551A (en) 2009-04-27 2009-04-27 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058295 WO2010125636A1 (en) 2009-04-27 2009-04-27 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2010125636A1 true WO2010125636A1 (en) 2010-11-04

Family

ID=43031804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058295 WO2010125636A1 (en) 2009-04-27 2009-04-27 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine

Country Status (5)

Country Link
US (1) US20120031077A1 (en)
JP (1) JP5196012B2 (en)
CN (1) CN102414551A (en)
DE (1) DE112009004746B4 (en)
WO (1) WO2010125636A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154802A1 (en) * 2010-06-10 2011-12-15 Toyota Jidosha Kabushiki Kaisha Particulate matter amount detection system
US20120180458A1 (en) * 2010-05-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
CN102608010A (en) * 2012-03-28 2012-07-25 姚水良 Particulate matter (PM) detecting method and equipment
CN103946492A (en) * 2011-11-15 2014-07-23 丰田自动车株式会社 Method for controlling and device for controlling internal combustion engine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041091A1 (en) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for the treatment of soot particles containing exhaust gas
US9528419B2 (en) * 2011-02-01 2016-12-27 Toyota Jidosha Kabushiki Kaisha Particulate matter controller for an internal combustion engine
KR20130037553A (en) * 2011-10-06 2013-04-16 현대자동차주식회사 Exhaust gas processing device
US9617899B2 (en) * 2012-12-05 2017-04-11 Ford Global Technologies, Llc Methods and systems for a particulate matter sensor
US9466749B1 (en) * 2012-12-10 2016-10-11 Nextracker Inc. Balanced solar tracker clamp
CN104296958A (en) * 2014-09-12 2015-01-21 山东科技大学 Coal mine underground PM2.5 concentration simulation detecting system
DE102014220398A1 (en) * 2014-10-08 2016-04-14 Robert Bosch Gmbh Method for checking the function of a sensor for the detection of particles
CN104747254B (en) * 2015-03-24 2018-01-02 常州君堃电子有限公司 Instant combustion-type particulate matter trap and its capture method
US9846110B2 (en) * 2015-06-02 2017-12-19 GM Global Technology Operations LLC Particulate matter sensor diagnostic system and method
WO2017086942A1 (en) * 2015-11-18 2017-05-26 Volvo Truck Corporation Method and arrangement for correcting for error of particulate matter sensors
JP6956097B2 (en) * 2016-09-30 2021-10-27 京セラ株式会社 Sensor module and detection method
JP2018080642A (en) * 2016-11-16 2018-05-24 株式会社デンソーテン Engine control device
DE102017205343A1 (en) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Method and control device for determining soot loading of a particulate filter
JP7088056B2 (en) * 2019-02-04 2022-06-21 株式会社デンソー Particulate matter detection sensor
CN112973289A (en) * 2019-12-12 2021-06-18 伊利诺斯工具制品有限公司 Exhaust gas purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569312U (en) * 1992-02-28 1993-09-21 三菱自動車工業株式会社 Particulate collection amount measuring device
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP2008157200A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Abnormality detection device for exhaust emission control device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598573B2 (en) * 1995-04-14 2004-12-08 株式会社デンソー Exhaust particulate purification equipment
US6026639A (en) * 1997-11-03 2000-02-22 Engelhard Corporation Apparatus and method for diagnosis of catalyst performance
DE19959870A1 (en) * 1999-12-10 2001-06-21 Heraeus Electro Nite Int Measuring arrangement and method for monitoring the functionality of a soot filter
DE10020539A1 (en) * 2000-04-27 2001-11-08 Heraeus Electro Nite Int Measuring arrangement and method for determining soot concentrations
DE10218218A1 (en) * 2002-04-24 2003-11-06 Bosch Gmbh Robert Device and method for determining a malfunction of a filter
US7776194B2 (en) * 2004-04-16 2010-08-17 Denso Corporation Gas concentration measuring apparatus designed to compensate for output error
JP2007032490A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP4506622B2 (en) * 2005-09-06 2010-07-21 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4622864B2 (en) * 2006-01-10 2011-02-02 株式会社デンソー Overcombustion detection method during particulate filter regeneration processing
US7997069B2 (en) * 2007-06-26 2011-08-16 GM Global Technology Operations LLC Ash reduction system using electrically heated particulate matter filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569312U (en) * 1992-02-28 1993-09-21 三菱自動車工業株式会社 Particulate collection amount measuring device
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP2008157200A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Abnormality detection device for exhaust emission control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180458A1 (en) * 2010-05-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
US8745968B2 (en) * 2010-05-17 2014-06-10 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus for particulate filter
WO2011154802A1 (en) * 2010-06-10 2011-12-15 Toyota Jidosha Kabushiki Kaisha Particulate matter amount detection system
US9354154B2 (en) 2010-06-10 2016-05-31 Toyota Jidosha Kabushiki Kaisha Particulate matter amount detection system
CN103946492A (en) * 2011-11-15 2014-07-23 丰田自动车株式会社 Method for controlling and device for controlling internal combustion engine
EP2781708A1 (en) * 2011-11-15 2014-09-24 Toyota Jidosha Kabushiki Kaisha Method for controlling and device for controlling internal combustion engine
EP2781708A4 (en) * 2011-11-15 2015-04-08 Toyota Motor Co Ltd Method for controlling and device for controlling internal combustion engine
CN102608010A (en) * 2012-03-28 2012-07-25 姚水良 Particulate matter (PM) detecting method and equipment

Also Published As

Publication number Publication date
JP5196012B2 (en) 2013-05-15
DE112009004746T5 (en) 2013-01-24
CN102414551A (en) 2012-04-11
DE112009004746B4 (en) 2013-10-17
JPWO2010125636A1 (en) 2012-10-25
US20120031077A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5196012B2 (en) PM sensor, exhaust gas PM amount detection device, internal combustion engine abnormality detection device
US7587925B2 (en) Method for operating a sensor for recording particles in a gas stream and device for implementing the method
US8561388B2 (en) Failure detection apparatus for particulate filter
EP2061958B1 (en) Catalyst deterioration monitoring system and catalyst deterioration monitoring method
US6966178B2 (en) Internal combustion engine exhaust gas purification system
EP2171226B1 (en) Internal combustion engine exhaust gas control apparatus and control method thereof
US7980060B2 (en) Filter clogging determination apparatus for diesel engine
US10060829B2 (en) Diagnosis device
WO2016125735A1 (en) Internal combustion engine and exhaust-gas-component estimating method
JP2009191694A (en) Exhaust emission control device of internal combustion engine
US20090000274A1 (en) Control oriented model for lnt regeneration
US20100186377A1 (en) Internal combustion engine exhaust gas control apparatus and control method thereof
US7478553B2 (en) Method for detecting excessive burn
JP2005307880A (en) Differential pressure sensor abnormality detecting device for exhaust emission control filter
JP6367735B2 (en) Particulate matter quantity estimation system
US20210348572A1 (en) Control device, engine, and control method of engine
US9354154B2 (en) Particulate matter amount detection system
JP4092485B2 (en) Exhaust gas purification catalyst deterioration diagnosis device
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP2013060871A (en) Fuel property determining device
CN110036184B (en) Method for diagnosing an exhaust system of a combustion motor
JP6287896B2 (en) Catalyst deterioration diagnosis device
JP6201578B2 (en) Diagnostic equipment
JP2016133060A (en) Abnormality diagnosis device of pm sensor
JP2009191789A (en) Device for diagnosing deterioration of catalyst

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158945.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147515

Country of ref document: US

Ref document number: 2011511207

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112009004746

Country of ref document: DE

Ref document number: 1120090047467

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843980

Country of ref document: EP

Kind code of ref document: A1