JP6505578B2 - Filter failure detection device, particulate matter detection device - Google Patents

Filter failure detection device, particulate matter detection device Download PDF

Info

Publication number
JP6505578B2
JP6505578B2 JP2015211610A JP2015211610A JP6505578B2 JP 6505578 B2 JP6505578 B2 JP 6505578B2 JP 2015211610 A JP2015211610 A JP 2015211610A JP 2015211610 A JP2015211610 A JP 2015211610A JP 6505578 B2 JP6505578 B2 JP 6505578B2
Authority
JP
Japan
Prior art keywords
concentration
sensor
correction
value
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015211610A
Other languages
Japanese (ja)
Other versions
JP2017083288A (en
Inventor
弘宣 下川
弘宣 下川
学 吉留
学 吉留
田村 昌之
昌之 田村
貴司 荒木
貴司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015211610A priority Critical patent/JP6505578B2/en
Publication of JP2017083288A publication Critical patent/JP2017083288A/en
Application granted granted Critical
Publication of JP6505578B2 publication Critical patent/JP6505578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関から排出される排気ガス中の粒子状物質を捕集するフィルタの故障検出装置及び排気ガス中の粒子状物質の量を検出する粒子状物質検出装置に関する。   The present invention relates to a failure detection device for a filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and a particulate matter detection device that detects the amount of particulate matter in exhaust gas.

従来、内燃機関から排出される排気ガス中の粒子状物質(パティキュレートマター、PM)の量を検出する装置の提案がある(例えば特許文献1参照)。特許文献1では、排気ガス中の粒子状物質の量に応じた値を出力する電気抵抗式のセンサの出力値を、排気温度、センサの温度や排気流量を用いて補正することが開示されている。これによれば、温度や排気流量の影響を受けずに、高精度な粒子状物質の量を検出できるとしている。   Conventionally, there has been proposed a device for detecting the amount of particulate matter (particulate matter, PM) in exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). Patent Document 1 discloses that the output value of an electrical resistance sensor that outputs a value corresponding to the amount of particulate matter in exhaust gas is corrected using the exhaust temperature, the temperature of the sensor, and the exhaust flow rate. There is. According to this, it is possible to detect the amount of particulate matter with high accuracy without being affected by the temperature and the exhaust flow rate.

ここで、電気抵抗式のセンサは、排気ガス中の粒子状物質を付着させる被付着部と、その被付着部に互いに離間して設けられる一対の対向電極とを有する。粒子状物質(Soot)は導電性を有するので、被付着部に付着した粒子状物質の量が多くなるほど一対の対向電極間の抵抗値が小さくなる。センサは、対向電極間の抵抗値に応じた値、つまり被付着部に付着した粒子状物質の量に応じた値を出力する。   Here, the electrical resistance type sensor has an adherend to which particulate matter in exhaust gas adheres, and a pair of counter electrodes provided apart from each other on the adherend. Since the particulate matter (Soot) has conductivity, the resistance value between the pair of counter electrodes decreases as the amount of the particulate matter adhering to the adherend increases. The sensor outputs a value corresponding to the resistance value between the opposing electrodes, that is, a value corresponding to the amount of particulate matter adhering to the adherend.

特許第5240679号公報Patent No. 5240679 gazette

ところで、本発明者らが調査した結果によると、排気ガス中の特定の支燃性ガスの共存下では、センサ(被付着部)に捕集された粒子状物質の一部が燃焼除去され、センサ出力が、粒子状物質量が少ないことを示す値側に大きく変化することがわかった。また、粒子状物質を捕集するフィルタの下流にセンサを配置して、そのセンサの出力値に基づきフィルタの故障判定を行う場合には、支燃性ガスの影響によりセンサ出力が変化してしまうと、フィルタの故障判定の精度が低下してしまう。   By the way, according to the results investigated by the present inventors, under the coexistence of a specific combustion supporting gas in the exhaust gas, a part of the particulate matter collected by the sensor (adhered portion) is burned and removed, It has been found that the sensor output largely changes to the value side indicating that the particulate matter mass is small. In addition, when a sensor is disposed downstream of the filter that collects particulate matter and the failure of the filter is determined based on the output value of the sensor, the sensor output changes due to the influence of the combustion supporting gas. As a result, the accuracy of the failure determination of the filter is reduced.

本発明は上記問題に鑑みてなされたものであり、支燃性ガスの影響でフィルタの故障判定の精度が低下するのを抑制できるフィルタの故障検出装置及び支燃性ガスの影響で粒子状物質量の検出精度が低下するのを抑制できる粒子状物質検出装置を提供することを課題とする。   The present invention has been made in view of the above problems, and it is possible to suppress the decrease in the accuracy of the failure determination of the filter due to the effect of the supporting gas, and the particulate matter under the influence of the supporting gas and the supporting gas. It is an object of the present invention to provide a particulate matter detection device capable of suppressing the decrease in the detection accuracy of the amount.

上記課題を解決するため、第1発明は、内燃機関(20)の排気通路(23)に設けられた排気ガス中の粒子状物質を捕集するフィルタ(12)より下流に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S2、S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S3、S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する補正手段(S5、S76、S77、S81、17)と、
前記補正手段による補正後の前記出力値に基づき前記フィルタの故障判定を行う故障判定手段(S6〜S8、S82〜S84)と、
を備え
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とする。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, an exhaust gas is provided downstream of a filter (12) for collecting particulate matter in exhaust gas provided in an exhaust passage (23) of an internal combustion engine (20) A sensor (13) having an attached portion (52) to which the particulate matter in the inner portion adheres, and outputting a value according to the amount of the particulate matter attached to the attached portion;
Concentration acquisition means (S2, S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S3, S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas;
Correction means (S5, S76, S77) for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition means and the temperature acquired by the temperature acquisition means , S81, 17),
Failure determination means (S6 to S8, S82 to S84) for performing failure determination of the filter based on the output value corrected by the correction means;
Equipped with
The concentration acquiring means is characterized in acquiring at least one concentration of NO, NO 2 and O 2 .

本発明者らの調査結果によると、排気ガス中に共存する支燃性ガス(NO、NO 及びO の少なくとも1つ)の濃度及びガス温度に応じた分だけ被付着部に付着した粒子状物質が燃焼除去され、センサ出力が変化してしまうことがわかった。本発明は、この調査結果に基づいてなされたものであり、支燃性ガスの濃度と排気ガスの温度とを取得し、これら濃度及び温度に基づいてセンサの出力値を、粒子状物質の量を多くする方向に補正する。これにより、センサの出力値を、支燃性ガスによる燃焼が行われる前の値に近づけることができる。そして、補正後の出力値に基づいてフィルタの故障判定を行うので、支燃性ガスによる燃焼の影響を抑制した形でその故障判定を行うことができ、故障判定の精度低下を抑制できる。 According to the investigation results of the present inventors, particles adhered to the adherend by an amount corresponding to the concentration of the combustion supporting gas ( at least one of NO, NO 2 and O 2 ) and the gas temperature coexisting in the exhaust gas Substances were burned out, and it was found that the sensor output was changed. The present invention has been made based on the results of this investigation, acquires the concentration of the combustion supporting gas and the temperature of the exhaust gas, and based on the concentration and the temperature, outputs the sensor value, the amount of particulate matter To make more Thereby, the output value of the sensor can be made close to the value before the combustion by the combustion supporting gas is performed. And since failure determination of a filter is performed based on the output value after correction, failure determination can be performed in the form which suppressed the influence of the combustion by supporting gas, and the accuracy fall of failure determination can be suppressed.

第2発明は、内燃機関(20)の排気通路(23)に設けられた排気ガス中の粒子状物質を捕集するフィルタ(12)より下流に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力値を推定する推定手段(S17、S38、S58、S78、17)と、
前記推定手段が推定した値と、前記センサの実際の出力値との比較に基づき前記フィルタの故障判定を行う故障判定手段(S22〜S24、S42〜S44、S62〜S64、S82〜S84、17)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する出力値補正と、前記推定手段の推定値を、粒子状物質の量を少なくする方向に補正する推定値補正とのいずれかを行う補正手段(S16、S18、S19、S76、S77、S81、17)とを備え、
前記故障判定手段は、前記補正手段による補正後の値を用いて前記フィルタの故障判定を行い、
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とする。
The second invention is provided downstream of a filter (12) for collecting particulate matter in exhaust gas provided in an exhaust passage (23) of an internal combustion engine (20), and adheres particulate matter in exhaust gas A sensor (13) having an attached portion (52) to be caused to output, and outputting a value corresponding to the amount of particulate matter attached to the attached portion;
Estimation means (S17, S38, S58, S78, 17) for estimating the output value of the sensor in the case where the filter is a filter serving as a reference for failure determination;
Failure determination means (S22 to S24, S42 to S44, S62 to S64, S82 to S84, 17) for determining the failure of the filter based on comparison between the value estimated by the estimation means and the actual output value of the sensor When,
Concentration acquisition means (S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas,
Output value correction for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition unit and the temperature acquired by the temperature acquisition unit, and the estimation unit Correction means (S16, S18, S19, S76, S77, S81, 17) for performing either of the estimated value correction for correcting the estimated value of P.sub.2 in the direction to reduce the amount of particulate matter.
Said failure determining means, have line failure determination of the filter by using a value corrected by the correction means,
The concentration acquiring means is characterized in acquiring at least one concentration of NO, NO 2 and O 2 .

第2発明によれば、フィルタが故障判定の基準となるフィルタである場合におけるセンサの出力値を推定し、その推定値と、実際のセンサの出力値との比較に基づきフィルタの故障判定を行う。このとき、支燃性ガス(NO、NO 及びO の少なくとも1つ)の濃度及び排気ガスの温度に基づいて、センサの出力値を粒子状物質の量を多くする方向に補正する出力値補正と、センサ出力の推定値を、粒子状物質の量を少なくする方向に補正する推定値補正とのいずれかを行う。出力値補正を行った場合には、センサの出力値を支燃性ガスによる燃焼前の値に近づけることができ、支燃性ガスによる燃焼前の状態で、センサの出力値と推定値とを比較できる。他方、推定値補正を行った場合には、推定値を、支燃性ガスによる燃焼後の値に近づけることができ、燃焼後の状態でセンサの出力値と推定値とを比較できる。これにより、支燃性ガスによる燃焼の影響を抑制した形でその故障判定を行うことができ、故障判定の精度低下を抑制できる。 According to the second aspect of the invention, the output value of the sensor in the case where the filter is a reference for failure determination is estimated, and the failure determination of the filter is performed based on a comparison between the estimated value and the actual output value of the sensor. . At this time, based on the concentration of the combustion supporting gas ( at least one of NO, NO 2 and O 2 ) and the temperature of the exhaust gas, the output value of the sensor is corrected to increase the amount of particulate matter. Either the correction or the estimated value correction for correcting the estimated value of the sensor output in the direction of reducing the amount of particulate matter is performed. When output value correction is performed, the output value of the sensor can be made close to the value before combustion by the combustion supporting gas, and the output value and the estimated value of the sensor can be It can compare. On the other hand, when the estimated value correction is performed, the estimated value can be made close to the value after the combustion by the combustion supporting gas, and the output value of the sensor can be compared with the estimated value in the state after the combustion. Thereby, the failure determination can be performed in the form which suppressed the influence of the combustion by the combustion supporting gas, and the precision fall of failure determination can be suppressed.

第3発明は、内燃機関(20)の排気通路(23)に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S2、S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S3、S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する補正手段(S5、S76、S77、S81、17)と、
を備え
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とする。
The third aspect of the present invention is a particulate matter provided in an exhaust passage (23) of an internal combustion engine (20) and adhering the particulate matter in the exhaust gas to the adherend (52). A sensor (13) that outputs a value according to the amount of
Concentration acquisition means (S2, S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S3, S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas;
Correction means (S5, S76, S77) for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition means and the temperature acquired by the temperature acquisition means , S81, 17),
Equipped with
The concentration acquiring means is characterized in acquiring at least one concentration of NO, NO 2 and O 2 .

第3発明によれば、支燃性ガス(NO、NO 及びO の少なくとも1つ)の濃度と排気ガスの温度とに基づいてセンサの出力値を、粒子状物質の量を多くする方向に補正するので、センサの出力値を、支燃性ガスによる燃焼が行われる前の値に近づけることができる。よって、支燃性ガスの影響で、センサで検出される粒子状物質量の精度が低下するのを抑制できる。 According to the third invention, the output value of the sensor is increased based on the concentration of the combustion supporting gas ( at least one of NO, NO 2 and O 2 ) and the temperature of the exhaust gas, and the direction in which the amount of particulate matter is increased. Therefore, the output value of the sensor can be made close to the value before combustion by the combustion supporting gas is performed. Therefore, it can suppress that the precision of the particulate matter mass detected by a sensor falls by the influence of the gas supporting gas.

エンジンシステムの構成図である。It is a block diagram of an engine system. PMセンサの構造を模式的に示した図である。It is the figure which showed the structure of PM sensor typically. センサ素子における一対の対向電極付近の様子を示しており、PMセンサによるPM量の検出原理を説明する図である。It is a figure which shows the mode of a pair of opposing electrodes vicinity in a sensor element, and is a figure explaining the detection principle of PM amount by PM sensor. 支燃性ガスの種類ごとに、ガス濃度と、PMセンサの出力減少率とを示した図である。It is the figure which showed the gas concentration and the output reduction rate of PM sensor for every kind of combustion supporting gas. NO、O、NOのガス種ごとに、ガス温度に対する、PMセンサに捕集されたPMの燃焼量に相当するCO生成量の変化を示した図である。 NO, indicating for each O 2, NO 2 gas species, for the gas temperature is a diagram showing a change in the CO 2 generation amount corresponding to the combustion amount of PM trapped in the PM sensor. ガス温度及びNO濃度と出力補正値ANOとの関係データを示した図である。It is the figure which showed the relationship data of gas temperature, NO density | concentration, and output correction value ANO . ガス温度及びNO濃度と出力補正値ANO2との関係データを示した図である。Is a diagram showing the relationship data between the gas temperature and the NO 2 concentration and the output correction value A NO2. ガス温度及びO濃度と出力補正値AO2との関係データを示した図である。Is a diagram showing the relationship data between the gas temperature and the O 2 concentration and the output correction value A O2. 第1実施形態におけるDPFの故障判定処理を示したフローチャートである。It is the flowchart which showed the failure determination processing of DPF in 1st Embodiment. 捕集時間に対するセンサ出力の変化を示し、第1実施形態における補正の様子を示した図である。It is the figure which showed the change of the sensor output with respect to collection time, and showed the mode of the correction | amendment in 1st Embodiment. 捕集時間に対するPMセンサの出力の変化を示し、実際のセンサ出力と、DPFが基準故障DPFの場合におけるPMセンサの推定出力とを示した図である。It is a figure showing change of the output of PM sensor to collection time, and showing the actual sensor output and the presumed output of PM sensor in case DPF is reference fault DPF. 第2実施形態におけるDPFの故障判定処理を示したフローチャートである。It is the flow chart which showed failure determination processing of DPF in a 2nd embodiment. 捕集時間に対するセンサ出力の変化を示し、第2実施形態における補正の様子を示した図である。It is the figure which showed the change of the sensor output with respect to collection time, and showed the mode of the correction | amendment in 2nd Embodiment. 第3実施形態におけるDPFの故障判定処理を示したフローチャートである。It is the flow chart which showed failure determination processing of DPF in a 3rd embodiment. 捕集時間に対するセンサ出力の変化を示し、第3実施形態における補正の様子を示した図である。It is the figure which showed the change of the sensor output with respect to collection time, and showed the mode of the correction | amendment in 3rd Embodiment. 第4実施形態におけるDPFの故障判定処理を示したフローチャートである。It is the flow chart which showed failure determination processing of DPF in a 4th embodiment. 捕集時間に対するセンサ出力の変化を示し、第4実施形態における補正の様子を示した図である。It is the figure which showed the change of the sensor output with respect to collection time, and showed the mode of the correction | amendment in 4th Embodiment. 第5実施形態におけるDPFの故障判定処理を示したフローチャートである。It is the flowchart which showed the failure determination processing of DPF in 5th Embodiment. 捕集時間に対するセンサ出力の変化を示し、第5実施形態における補正の様子を示した図である。It is the figure which showed the change of the sensor output with respect to collection time, and showed the mode of the correction | amendment in 5th Embodiment.

(第1実施形態)
以下、本発明の第1実施形態を図面を参照しながら説明する。図1は、本発明が適用された車両のエンジンシステム100の構成図である。エンジンシステム100は、内燃機関としての多気筒型(図1では4気筒)のディーゼルエンジン20(以下、単にエンジンという)を備えている。そのエンジン20には、気筒7内に燃料を噴射するインジェクタ6が設けられている。エンジン20は、そのインジェクタ6から噴射された燃料が気筒7内で自己着火することで、車両を駆動するための動力を生み出している。
First Embodiment
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a vehicle engine system 100 to which the present invention is applied. The engine system 100 includes a multi-cylinder (four cylinders in FIG. 1) diesel engine 20 (hereinafter simply referred to as an engine) as an internal combustion engine. The engine 20 is provided with an injector 6 for injecting fuel into the cylinder 7. The engine 20 generates power for driving a vehicle by self-ignition of fuel injected from the injector 6 in the cylinder 7.

エンジン20の吸気通路10には、上流側から、空気を圧縮する過給機1、過給機1で圧縮された空気を冷却するインタークーラー2及び空気量を調整するスロットルバルブ3が設けられている。吸気通路10は、各気筒7に繋がる分岐通路を有したインテークマニホールド5に接続されている。   The intake passage 10 of the engine 20 is provided with a supercharger 1, which compresses air, an intercooler 2, which cools air compressed by the supercharger 1, and a throttle valve 3, which adjusts the amount of air, from the upstream side. . The intake passage 10 is connected to an intake manifold 5 having a branch passage connected to each cylinder 7.

各気筒7には、各気筒7から排出される排気ガスをまとめて排気通路23に渡すためのエキゾーストマニホールド8が接続されている。排気通路23には、過給機1のタービンが設けられ、そのタービンの上流側には、排気ガスの一部を吸気系に還流させるためのEGR(Exhaust Gas Recirculation)通路19が接続されている。EGR通路19は、スロットルバルブ3とエアフロメータ4の間の位置で吸気通路10に繋がっている。EGR通路19には、吸気系に還流させる排気ガスの量(EGR量)を調整するEGRバルブ9が設けられている。   An exhaust manifold 8 is connected to each of the cylinders 7 for collectively delivering the exhaust gas discharged from each of the cylinders 7 to the exhaust passage 23. The exhaust passage 23 is provided with a turbine of the turbocharger 1, and on the upstream side of the turbine, an EGR (Exhaust Gas Recirculation) passage 19 for returning a part of the exhaust gas to the intake system is connected. . The EGR passage 19 is connected to the intake passage 10 at a position between the throttle valve 3 and the air flow meter 4. The EGR passage 19 is provided with an EGR valve 9 for adjusting the amount of exhaust gas (EGR amount) to be recirculated to the intake system.

排気通路23には、EGR通路19が接続された位置より下流において、排気ガス中のCO、HC等を酸化して除去する酸化触媒(DOC:Diesel Oxidation Catalyst)11が設けられている。その酸化触媒11より下流には、本発明のフィルタに相当するディーゼルパティキュレートフィルタ(DPF)12が設けられている。DPF12は公知の構造のセラミック製フィルタであり、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、ガス流路となる多数のセルを入口側または出口側が互い違いとなるように目封じして構成される。エンジン20から排出された排気ガスは、DPF12の多孔性の隔壁を通過しながら下流へ流れ、その間に排気ガスに含まれるPM(パティキュレートマター、粒子状物質)が捕集されて次第に堆積する。   The exhaust passage 23 is provided with an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 11 for oxidizing and removing CO, HC and the like in the exhaust gas downstream of the position where the EGR passage 19 is connected. Downstream from the oxidation catalyst 11, a diesel particulate filter (DPF) 12 corresponding to the filter of the present invention is provided. The DPF 12 is a ceramic filter having a known structure. For example, a heat-resistant ceramic such as cordierite is formed into a honeycomb structure so that a large number of cells serving as gas flow paths are alternately arranged on the inlet side or the outlet side. Sealed and configured. Exhaust gas discharged from the engine 20 flows downstream while passing through the porous partition walls of the DPF 12, and PM (particulate matter, particulate matter) contained in the exhaust gas is collected and accumulated gradually during that time.

排気通路23のDPF12よりも下流には、排気ガス中のPM量を検出する本発明のセンサとしての電気抵抗式のPMセンサ13が設けられている。ここで、図2は、PMセンサ13の構造を模式的に示した図である。図2に示すように、PMセンサ13は、内部が中空にされた例えば金属製のカバー51とそのカバー51内に配置されたセンサ素子52とを備えている。カバー51には多数の孔511が形成されており、排気通路23を流れる排気ガスの一部がそれら孔511からカバー51内に導入されるようになっている。また、カバー51には、カバー51内に導入された排気ガスを排出するための排出孔512が形成されている。なお、図2では、排出孔512は、カバー51の先端に形成された例を示している。   An electric resistance type PM sensor 13 as a sensor of the present invention for detecting the amount of PM in exhaust gas is provided downstream of the DPF 12 of the exhaust passage 23. Here, FIG. 2 is a view schematically showing the structure of the PM sensor 13. As shown in FIG. 2, the PM sensor 13 includes, for example, a metal cover 51 whose inside is hollow and a sensor element 52 disposed in the cover 51. A large number of holes 511 are formed in the cover 51, and a part of the exhaust gas flowing through the exhaust passage 23 is introduced into the cover 51 from the holes 511. Further, the cover 51 is formed with a discharge hole 512 for discharging the exhaust gas introduced into the cover 51. In addition, in FIG. 2, the discharge hole 512 has shown the example formed in the front-end | tip of the cover 51. As shown in FIG.

センサ素子52はセラミックス等の絶縁体基板から構成されている。センサ素子52(絶縁体基板)の一方の面には、互いに離間し、かつ対向した一対の対向電極53が設けられている。ここで、図3は、PMセンサ13によるPM量の検出原理を説明する図であり、一対の対向電極53付近におけるPM付着の様子を示している。図3に示すように、センサ素子52には、一対の対向電極53間に所定の直流電圧を印加する電圧印加回路55が接続されている。カバー51内に導入された排気ガス中のPMの一部は自身が持つ粘着性によってセンサ素子52に捕集(付着)される。   The sensor element 52 is composed of an insulator substrate such as ceramics. On one surface of the sensor element 52 (insulator substrate), a pair of opposing electrodes 53 which are separated from each other and opposed to each other are provided. Here, FIG. 3 is a view for explaining the detection principle of the amount of PM by the PM sensor 13, and shows a state of PM adhesion in the vicinity of the pair of opposing electrodes 53. As shown in FIG. As shown in FIG. 3, the sensor element 52 is connected to a voltage application circuit 55 that applies a predetermined DC voltage between the pair of opposing electrodes 53. A part of the PM in the exhaust gas introduced into the cover 51 is collected (adhered) on the sensor element 52 by its own adhesiveness.

また、電圧印加回路55により対向電極53間に電圧が印加されると、各対向電極53はそれぞれ正、負に帯電する。これにより、対向電極53の近傍を通過するPMを帯電させて、センサ素子52への捕集が促進される。以下では、対向電極53間に電圧を印加することによるセンサ素子52へのPM捕集を静電捕集という。   When a voltage is applied between the opposing electrodes 53 by the voltage application circuit 55, each opposing electrode 53 is charged positively and negatively. As a result, PM passing through the vicinity of the counter electrode 53 is charged, and collection on the sensor element 52 is promoted. In the following, collection of PM on the sensor element 52 by applying a voltage between the opposing electrodes 53 is referred to as electrostatic collection.

PMセンサ13の出力特性を説明すると、PMセンサ13はセンサ素子52に捕集されたPMによって対向電極53間の抵抗が変化することを利用して、センサ素子52に捕集されたPM量(各時点のPM付着量を積算した積算量)に応じた出力を発生する。つまり、PMセンサ13は、対向電極53間の抵抗値に応じた値をPM量として出力する。詳細には、センサ素子52へのPM捕集量が少ないうちはセンサ出力は発生しない(厳密には、センサ出力が立ち上がったとみなせる閾値出力よりも小さい出力しか発生しない)。PMに含まれるSoot成分はカーボン粒子から構成されており導電性を有するので、PM捕集量が一定以上の量になった時に一対の対向電極53間が導通して、センサ出力が立ち上がる(閾値出力以上の出力が発生する)。   The output characteristic of the PM sensor 13 can be described as follows. The PM sensor 13 uses the fact that the resistance between the opposing electrodes 53 is changed by the PM collected by the sensor element 52, and the PM amount collected by the sensor element 52 ( An output corresponding to the integrated amount obtained by integrating the PM adhesion amount at each time point is generated. That is, the PM sensor 13 outputs a value according to the resistance value between the opposing electrodes 53 as the PM amount. In detail, the sensor output does not occur while the amount of PM collected on the sensor element 52 is small (strictly, an output smaller than a threshold output which can be regarded as rising of the sensor output is generated). Since the Soot component contained in PM is composed of carbon particles and has conductivity, when the amount of collected PM reaches a certain amount or more, the pair of opposite electrodes 53 conduct and the sensor output rises (threshold Output more than output occurs).

センサ出力の立ち上がり後は、PM捕集量が多くなるほど一対の対向電極53間の抵抗が小さくなるので、対向電極53間に流れる電流、つまりセンサ出力が大きくなっていく。エンジンシステム1には、この対向電極53間に流れる電流又はその電流を電圧に変換してその電圧を検出する検出部56(図3参照)が備えられ、この検出部56の計測値がPMセンサ13の出力となる。なお、対向電極53間を流れる電流に相関する値として例えば一対の対向電極53間の抵抗値を測定して、その抵抗値をPMセンサ13の出力としても良い。   After the rise of the sensor output, the resistance between the pair of opposing electrodes 53 decreases as the amount of collected PM increases, so the current flowing between the opposing electrodes 53, that is, the sensor output increases. The engine system 1 is provided with a detection unit 56 (see FIG. 3) for converting the current flowing between the counter electrodes 53 or the current into a voltage and detecting the voltage, and the measurement value of the detection unit 56 is a PM sensor It becomes 13 outputs. Note that, for example, a resistance value between a pair of opposing electrodes 53 may be measured as a value correlated to the current flowing between the opposing electrodes 53, and the resistance value may be used as an output of the PM sensor 13.

また、センサ素子52には、センサ素子52を加熱するヒータ54が設けられている。そのヒータ54は、例えばセンサ素子52に捕集されたPMを燃焼除去してPMセンサ13を再生させるために用いられる。ヒータ54は、例えばセンサ素子52(絶縁体基板)の対向電極53が設けられていない方の面又はセンサ素子52の内部に設けられている。ヒータ54は、例えば白金(Pt)等の電熱線から構成されている。PMセンサ13の再生においては、PMを構成する各成分(Soot成分、SOF成分等)の全てを燃焼除去できる温度、具体的には例えば600℃以上の温度(例えば700℃)となるように、ヒータ54は制御される。ヒータ54はSCU14に接続されている。なお、センサ素子52が本発明における被付着部に相当する。   In addition, the sensor element 52 is provided with a heater 54 for heating the sensor element 52. The heater 54 is used, for example, to burn off the PM collected by the sensor element 52 and regenerate the PM sensor 13. The heater 54 is provided, for example, on the surface of the sensor element 52 (insulator substrate) on which the counter electrode 53 is not provided or inside the sensor element 52. The heater 54 is made of, for example, a heating wire such as platinum (Pt). In the regeneration of the PM sensor 13, the temperature at which all the components (Soot component, SOF component, etc.) constituting the PM can be burned and removed, specifically, for example, a temperature of 600 ° C. or more (eg 700 ° C.) The heater 54 is controlled. The heater 54 is connected to the SCU 14. The sensor element 52 corresponds to the adherend in the present invention.

図1の説明に戻り、エンジンシステム100には、PMセンサ13の他に、エンジン20の運転に必要な各種センサが設けられている。具体的には、例えば気筒7内に吸入する空気量を検出するエアフロメータ4、エンジン20の回転数を検出する回転数センサ15(例えばクランク角を検出するクランク角センサ)、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検出するアクセルペダルセンサ24、などが設けられている。さらに、DPF12の下流の排気通路23には、排気ガスの温度を検出する排気温センサ21が設けられている。これら各センサの検出信号はECU17に入力されるようになっている。   Returning to the description of FIG. 1, the engine system 100 is provided with various sensors necessary for the operation of the engine 20 in addition to the PM sensor 13. Specifically, for example, an air flow meter 4 that detects the amount of air drawn into the cylinder 7, a rotation speed sensor 15 that detects the rotation speed of the engine 20 (for example, a crank angle sensor that detects a crank angle) An accelerator pedal sensor 24 for detecting an operation amount (depression amount) of an accelerator pedal for informing the vehicle side of a required torque is provided. Furthermore, an exhaust gas temperature sensor 21 for detecting the temperature of the exhaust gas is provided in the exhaust passage 23 downstream of the DPF 12. Detection signals from these sensors are input to the ECU 17.

また、エンジンシステム100には、インジェクタ6を制御するEDU16(電子駆動装置)が設けられている。EDU16は、ECU17から指令された噴射条件(噴射時期、噴射量等)で燃料が噴射されるようにインジェクタ6を駆動する。   Further, the engine system 100 is provided with an EDU 16 (electronic drive device) that controls the injector 6. The EDU 16 drives the injector 6 so that fuel is injected under the injection conditions (injection timing, injection amount, etc.) instructed from the ECU 17.

また、エンジンシステム100にはSCU(Sensor Control Unit)14が設けられている。SCU14は、図3の電圧印加回路55及び検出部56を有し、電圧印加回路55により対向電極53間の電圧印加を制御、つまり静電捕集の実施を制御したり、ヒータ54の通電を制御したりするなど、PMセンサ13の動作を制御する。SCU14は、ヒータ54を制御する際には、ヒータ54に流す電流(通電量)や通電時間を調整する。また、SCU14は、対向電極53間に流れる電流又はそれに相関する値を検出部56により検出する。SCU14とECU17とは、CAN(Controller Area Network)等の通信線で接続されており、双方向に通信が可能となっている。   In addition, the engine system 100 is provided with a sensor control unit (SCU) 14. The SCU 14 has the voltage application circuit 55 and the detection unit 56 shown in FIG. 3, and controls the voltage application between the opposing electrodes 53 by the voltage application circuit 55, that is, controls the implementation of electrostatic collection or energizes the heater 54. It controls the operation of the PM sensor 13 such as control. When controlling the heater 54, the SCU 14 adjusts the current (energization amount) to be supplied to the heater 54 and the energization time. Further, the SCU 14 detects the current flowing between the counter electrodes 53 or the value correlated thereto by the detection unit 56. The SCU 14 and the ECU 17 are connected by a communication line such as CAN (Controller Area Network), and can communicate bi-directionally.

エンジンシステム100にはエンジンシステム100の全体制御を司るECU(Electronic Control Unit)17が備えられている。ECU17は、通常のコンピュータの構造を有するものとし、各種演算を行うCPU(図示外)や各種情報の記憶を行うROM、RAM、フラッシュメモリ等のメモリ18を備えている。ECU17は、例えば上記各種センサからの検出信号に基づきエンジン20の運転条件を検出し、運転条件に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、エンジン20への燃料噴射を制御する。さらに、ECU17は、PMセンサ13の検出値に基づいてDPF12の故障の有無を判定する故障判定処理を実行する。この故障判定処理の詳細は後述する。また、メモリ18には、ECU17(CPU)が実行する処理の制御プログラムや、後述の図6〜図8に示す関係データなどの各種情報が記憶されている。   The engine system 100 is provided with an ECU (Electronic Control Unit) 17 that controls the overall control of the engine system 100. The ECU 17 has a normal computer structure, and includes a CPU (not shown) that performs various calculations, and a memory 18 such as a ROM, a RAM, and a flash memory that stores various information. The ECU 17 detects the operating condition of the engine 20, for example, based on detection signals from the various sensors described above, calculates the optimal fuel injection amount, injection timing, injection pressure, etc. according to the operating condition, and injects fuel into the engine 20. Control. Furthermore, the ECU 17 executes a failure determination process of determining the presence or absence of a failure of the DPF 12 based on the detection value of the PM sensor 13. The details of the failure determination process will be described later. The memory 18 also stores various information such as control programs for processing executed by the ECU 17 (CPU) and related data shown in FIGS. 6 to 8 described later.

ところで、PMが特定のガスと共存下にあるときにそのガスによりPMが燃焼除去され、PMセンサ13の出力が減少してしまう。ここで、図4、図5は、酸素原子を含有した酸化性ガス(支燃性ガス)のうち、排気ガス中に含まれるNO、O、NOの共存下では、PMセンサに捕集されたPMの一部が燃焼(酸化)して、PMセンサの出力が減少することの実験結果を示している。図4は、NO、O、又はNOの共存下でのPMセンサの出力減少率を示している。図4の実験条件を説明すると、エンジンの排気ガスの環境下にPMセンサを設置して、PMセンサの出力が所定値に達した時に、そのPMセンサを電気炉に持っていく。電気炉において400℃に保持した状態でPMセンサの出力が安定するのを待ってから、支燃性ガスとしてNO、O、又はNOのいずれか1種のガスを供給し、その供給開始から所定時間経過後のPMセンサの出力減少率を確認する。この出力減少率は、ガス供給開始時におけるPMセンサの出力値に対する減少率である。供給ガスの濃度は、NOの場合は2000ppm、Oの場合は20%、NOの場合は500ppmである。図4に示すように、NO、O、NOのいずれの場合であっても、センサ出力が減少してしまう。また、センサ出力の減少率はガス種によって異なる。 By the way, when PM is in coexistence with a specific gas, the PM burns off by the gas, and the output of the PM sensor 13 decreases. Here, FIG. 4 and FIG. 5 show that the PM sensor collects the NO, O 2 and NO 2 contained in the exhaust gas among the oxidizing gas (fuel supporting gas) containing oxygen atoms. The experimental results show that part of the PM that has been burned burns (oxidizes) and the output of the PM sensor decreases. FIG. 4 shows the power reduction rate of the PM sensor in the coexistence of NO, O 2 or NO 2 . The experimental conditions of FIG. 4 will be described. A PM sensor is installed in the environment of exhaust gas of the engine, and when the output of the PM sensor reaches a predetermined value, the PM sensor is brought to the electric furnace. After waiting for the output of the PM sensor to stabilize in a state held at 400 ° C. in an electric furnace, any one of NO, O 2 , and NO 2 is supplied as a combustion supporting gas, and the supply start After that, the output decrease rate of the PM sensor after a predetermined time has elapsed is confirmed. The power reduction rate is a reduction rate with respect to the output value of the PM sensor at the time of gas supply start. The concentration of the feed gas is 2000 ppm for NO, 20% for O 2 and 500 ppm for NO 2 . As shown in FIG. 4, the sensor output decreases in any of NO, O 2 and NO 2 . Also, the rate of decrease in sensor output differs depending on the gas type.

また、図5は、図4とは別の実験結果を示し、NO、O、又はNOの共存下における、温度に対する、PMセンサに捕集されたPMの燃焼量に相当するCO生成量の変化を示している。図5の実験条件を説明すると、ある程度の量のPMを捕集したPMセンサを実機から取り外して電気炉に持っていく。そして、電気炉内にNO、O、又はNOのいずれか1種のガスを供給し、且つ電気炉内の温度を0℃〜800℃の範囲で変化させたときの、各温度でのCO生成量を検出する。このCO生成量は、供給ガス(NO、O、又はNO)とPMとが酸化反応することにより生成されたCO生成量であり、PMセンサに捕集されたPMのうち供給ガスにより燃焼除去された量に相当する。供給ガスの濃度は、NOの場合は1%、Oの場合は10%、NOの場合は1%である。 Further, FIG. 5 shows an experimental result different from FIG. 4, and CO 2 generation corresponding to the combustion amount of PM collected by the PM sensor with respect to temperature in the coexistence of NO, O 2 or NO 2 It shows the change of quantity. To explain the experimental conditions of FIG. 5, the PM sensor which has collected a certain amount of PM is removed from the actual machine and brought to the electric furnace. Then, any one gas of NO, O 2 , or NO 2 is supplied into the electric furnace, and the temperature in the electric furnace is changed in the range of 0 ° C. to 800 ° C. at each temperature. Detect CO 2 production. The CO 2 generation amount, the feed gas (NO, O 2, or NO 2) and a CO 2 generation amount generated by the PM is oxidized reaction, the feed gas of the PM trapped in the PM sensor It corresponds to the amount burned and removed by The concentration of the feed gas is 1% for NO, 10% for O 2 and 1% for NO 2 .

図5に示すように、ガス種に応じて温度に対するCO生成量(PM燃焼量)の変化の傾向が異なっている。具体的には、供給ガスがNOの場合には、0℃〜400℃の範囲ではCO生成量が少なくなっており、400℃以上の範囲では温度が高くなるにつれてゆるやかにCO生成量が多くなっていく。 As shown in FIG. 5, the tendency of the change of the CO 2 generation amount (PM combustion amount) to the temperature differs depending on the gas type. Specifically, when the feed gas is NO, the amount of CO 2 generation decreases in the range of 0 ° C. to 400 ° C., and in the range of 400 ° C. or more, the amount of CO 2 generation gradually as the temperature increases. It will increase.

また、供給ガスがNOの場合には、0℃〜200℃の範囲ではCO生成量が少なく、200℃の辺りから温度が高くなるにつれてCO生成量は徐々に多くなっていく。そして、400℃辺りの温度でCO生成量はピーク値をとり、それ以上の温度範囲では温度が高くなるにつれてCO生成量は徐々に少なくなっていく。なお、800℃の辺りでも、CO生成量は多少増加している。 When the supplied gas is NO 2, the amount of CO 2 produced is small in the range of 0 ° C. to 200 ° C., and the amount of CO 2 produced gradually increases as the temperature rises from around 200 ° C. Then, the CO 2 production amount takes a peak value at a temperature around 400 ° C., and in a temperature range higher than that, the CO 2 production amount gradually decreases as the temperature rises. Even at around 800 ° C., the amount of CO 2 produced increases somewhat.

また、共存ガスがOの場合には、0℃〜400℃の範囲ではCO生成量が少なく、400℃を超えた辺りから急激にCO生成量が増加し、650℃辺りでCO生成量のピーク値をとり、そのピーク値をとる温度を超えると急激にCO生成量が減少している。 When the coexisting gas is O 2, the amount of CO 2 generation is small in the range of 0 ° C. to 400 ° C., and the amount of CO 2 generation rapidly increases from around 400 ° C., and CO 2 around 650 ° C. The peak value of the amount of production is taken, and when the temperature at which the peak value is taken is exceeded, the amount of CO 2 production decreases rapidly.

また、本発明者は、支燃性ガスの濃度が高いほど、燃焼除去されるPM量が増加して、PMセンサの出力減少率が大きくなることを確認している。さらに、本発明者は、同じ種類のガス、濃度及び温度の共存時であっても、共存している時間が長いほど燃焼除去されるPM量が増加し、PMセンサの出力減少率が大きくなることを確認している。   In addition, the inventors of the present invention have confirmed that the amount of PM removed by combustion increases and the output reduction rate of the PM sensor increases as the concentration of the combustion supporting gas increases. Furthermore, even if the same type of gas, concentration, and temperature coexist, the inventor of the present invention increases the amount of PM removed by combustion as the coexistence time increases, and the output reduction rate of the PM sensor increases. Have confirmed that.

これらの実験結果により、PMと共存する支燃性ガスにより、PMセンサに捕集されたPMの一部が燃焼除去され、PMセンサの出力が減少し、どの程度出力が減少するかは、支燃性ガスの種類、濃度及び温度によって変わることが分かる。この知見に基づき、ECU17のメモリ18には、図6〜図8の、支燃性ガスの種類、濃度及び温度と、PMセンサの出力補正値との関係データが記憶されている。なお、SCU14のメモリにこの関係データが記憶されたとしても良い。出力補正値は、PMが捕集されたPMセンサを各支燃性ガスの共存下に置いた時に、基準時でのセンサ出力O1に対する、基準時から所定時間経過した時におけるセンサ出力O2の減少割合(=(O1−O2)/O1)に相当する値である。別の言い方をすると、出力補正値は、NO、NO及びOの各ガスが共存しなかった場合のセンサ出力に対する、各ガスが各濃度及び各温度で共存した場合のセンサ出力の減少割合に相当する値である。図6〜図8の各出力補正値は1より小さい値である。 According to these experimental results, part of the PM collected by the PM sensor is burned and removed by the combustion supporting gas coexisting with PM, the output of the PM sensor decreases, and to what extent the output decreases. It can be seen that it varies with the type, concentration and temperature of the combustible gas. Based on this finding, the memory 18 of the ECU 17 stores the relationship data between the type, concentration, and temperature of the combustion supporting gas and the output correction value of the PM sensor, as shown in FIGS. Note that the related data may be stored in the memory of the SCU 14. The output correction value is a decrease in the sensor output O2 when a predetermined time has elapsed from the reference time with respect to the sensor output O1 at the reference time when the PM sensor in which PM is collected is placed in the coexistence of each combustion supporting gas It is a value corresponding to a ratio (= (O1-O2) / O1). In other words, the output correction value is the reduction ratio of the sensor output when each gas coexists at each concentration and temperature to the sensor output when each gas of NO, NO 2 and O 2 does not coexist Is a value corresponding to Each output correction value of FIGS. 6-8 is a value smaller than one.

図6は、NO共存時における、温度及びNO濃度と出力補正値ANOとの関係データを示している。支燃性ガスの共存時におけるPMセンサの出力減少は、PMセンサに捕集されたPMが支燃性ガスにより燃焼除去された量に相関する。したがって、図6の出力補正値ANOと温度との関係は、図5における温度とNO共存時のCO生成量との関係と同様となっている。また、同一温度においてはNO濃度が高いほど出力補正値ANOは大きい値となっている。 6, during the NO coexist, shows the relationship data between the temperature and NO concentrations and output correction value A NO. The decrease in the output of the PM sensor at the coexistence of the combustion supporting gas correlates with the amount by which the PM collected by the PM sensor is burned off by the combustion supporting gas. Therefore, the relationship between the output correction value A NO and the temperature in FIG. 6 is the same as the relationship between the temperature in FIG. 5 and the CO 2 generation amount when NO coexists. Further, at the same temperature, the output correction value ANO is a larger value as the NO concentration is higher.

図7は、NO共存時における、温度及びNO濃度と出力補正値ANO2との関係データを示している。図7の出力補正値ANO2と温度との関係は、図5における温度とNO共存時のCO生成量との関係と同様となっている。また、同一温度においてはNO濃度が高いほど出力補正値ANO2は大きい値となっている。 7, when NO 2 coexist, shows the relationship data between the temperature and the NO 2 concentration and the output correction value A NO2. The relationship between the output correction value A NO2 and the temperature in FIG. 7 is the same as the relationship between the temperature in FIG. 5 and the CO 2 generation amount when NO 2 coexists. Further, at the same temperature, the output correction value A NO2 is a larger value as the NO 2 concentration is higher.

図8は、O共存時における、温度及びO濃度と出力補正値AO2との関係データを示している。図8の出力補正値AO2と温度との関係は、図5における温度とO共存時のCO生成量との関係と同様となっている。また、同一温度においてはO濃度が高いほど出力補正値AO2は大きい値となっている。図6〜図8の関係データは、図4や図5の実験と同様の方法により得ることができる。 8, the O 2 when coexistence shows the relationship data between the temperature and the O 2 concentration and the output correction value A O2. The relationship between the output correction value A 02 and the temperature in FIG. 8 is the same as the relationship between the temperature in FIG. 5 and the CO 2 generation amount when O 2 coexists. Further, at the same temperature, the output correction value A 02 has a larger value as the O 2 concentration is higher. Relational data in FIGS. 6 to 8 can be obtained by the same method as the experiment in FIGS. 4 and 5.

次に、ECU17のCPUが実行する故障判定処理を説明する。図9はその故障判定処理のフローチャートを示している。図9の処理は、エンジン20の始動後、PMセンサ13(特にセンサ素子52)が被水しない程度に排気管内が乾燥したか否かの乾燥判定が成立した後、ヒータ54(図2、図3参照)を通電してセンサ素子52に捕集されたPMを燃焼除去するセンサ再生を実施した後に、開始する。なお、乾燥判定においては、例えば排気温センサ21が検出する排気ガスの温度が、結露水が蒸発により消失する所定温度(例えば100℃)以上か否かを判定する。   Next, failure determination processing executed by the CPU of the ECU 17 will be described. FIG. 9 shows a flowchart of the failure determination process. In the process of FIG. 9, after the start of the engine 20, the drying judgment as to whether or not the exhaust pipe has been dried to the extent that the PM sensor 13 (especially the sensor element 52) does not get wet is established. 3), and the sensor regeneration for burning and removing the PM collected by the sensor element 52 is performed and then started. In the drying determination, for example, it is determined whether the temperature of the exhaust gas detected by the exhaust temperature sensor 21 is equal to or higher than a predetermined temperature (for example, 100 ° C.) at which dew condensation water disappears due to evaporation.

図9の処理を開始すると、ECU17は、SCU14にPMセンサ13の静電捕集を実施させる(S1)。これにより、PMセンサ13へのPM捕集が開始する。   When the process of FIG. 9 is started, the ECU 17 causes the SCU 14 to perform electrostatic collection of the PM sensor 13 (S1). Thereby, PM collection to the PM sensor 13 is started.

次に、DPF12を通過した排気ガス中のNO、NO及びOの各濃度を検出する(S2)。排気ガス中の組成はエンジン20の運転条件によって変わるので、例えばエンジン20の運転条件に基づいて、NO、NO及びOの各濃度を推定する。具体的には、実機と同じ条件で、ガス種ごとに、エンジン運転条件とDPF下流のガス濃度との関係データを予め調べて、メモリ18に記憶しておく。そして、今回のエンジン運転条件を取得して、取得した運転条件に対応するガス濃度を関係データから求める。エンジン運転条件は、具体的にはエンジン回転数、筒内への燃料噴射条件(燃料噴射量、噴射時期等)、吸入空気量、EGR率(吸入空気量に対するEGR量の割合)などである。エンジン回転数は回転数センサ15により得られる。燃料噴射条件は、エンジン回転数及びアクセルペダルセンサ24の検出値(エンジン負荷)に基づきECU17自身が設定した指令値とすれば良い。また、吸入空気量はエアフロメータ4により得られる。EGR率は、エンジン回転数、エンジン負荷などからECU17自身が設定した目標値又はEGRバルブ9の開度とすれば良い。 Next, the concentrations of NO, NO 2 and O 2 in the exhaust gas that has passed through the DPF 12 are detected (S 2). Since the composition in the exhaust gas changes depending on the operating conditions of the engine 20, the concentrations of NO, NO 2 and O 2 are estimated based on the operating conditions of the engine 20, for example. Specifically, under the same conditions as in the actual machine, relationship data between engine operating conditions and gas concentration downstream of the DPF are checked in advance and stored in the memory 18 for each gas type. Then, the engine operating condition of this time is acquired, and the gas concentration corresponding to the acquired operating condition is determined from the relational data. Specifically, the engine operating conditions are engine rotational speed, fuel injection conditions into the cylinder (fuel injection amount, injection timing, etc.), intake air amount, EGR rate (ratio of EGR amount to intake air amount), and the like. The engine speed is obtained by a speed sensor 15. The fuel injection condition may be a command value set by the ECU 17 based on the engine speed and the detected value of the accelerator pedal sensor 24 (engine load). Further, the amount of intake air can be obtained by the air flow meter 4. The EGR rate may be a target value set by the ECU 17 itself or the opening degree of the EGR valve 9 from the engine rotational speed, the engine load, and the like.

なお、図1に示すように、DPF12下流のPMセンサ13が設置された辺りに、共存ガスの濃度を検出するセンサ22を設けて、そのセンサ22からガス濃度を取得しても良い。センサ22として、具体的にはNOx濃度を検出するNOxセンサや、O濃度を検出するOセンサ(例えば空燃比センサ)を用いることができる。また、NO、NO及びOのうち一部のガスについてはエンジン運転条件に基づいて濃度を推定し、残りのガスについてはセンサから濃度を取得するようにしても良い。このとき、NOxセンサではNO濃度とNO濃度とを区別して検出できない場合には、NO濃度及びNO濃度についてはエンジン運転条件から推定し、O濃度はOセンサから取得しても良い。 As shown in FIG. 1, a sensor 22 for detecting the concentration of the coexisting gas may be provided in the vicinity of the PM sensor 13 downstream of the DPF 12 and the gas concentration may be acquired from the sensor 22. As the sensor 22, in particular it can be used and NOx sensor for detecting the NOx concentration, the O 2 sensor for detecting the O 2 concentration (e.g., air-fuel ratio sensor). The concentration of some of the NO, NO 2 and O 2 may be estimated based on the engine operating conditions, and the concentration of the remaining gas may be obtained from a sensor. At this time, if the NOx sensor can not be detected by distinguishing between NO concentration and NO 2 concentration is estimated from the engine operating conditions for NO concentration and NO 2 concentration, O 2 concentration may be obtained from the O 2 sensor .

次に、DPF12下流の排気ガスの温度を検出する(S3)。この温度は、排気温センサ21から取得しても良いし、エンジン20の運転条件に基づいて推定しても良い。エンジン運転条件からガス温度を推定する場合には、エンジン運転条件(エンジン回転数、エンジン負荷等)とガス温度との関係データをメモリ18に記憶して、今回のエンジン運転条件に対応するガス温度をその関係データから求める。また、ヒータ54による加熱が行われていない時のセンサ素子52の温度は排気ガスの温度と同様の値となる。そこで、PMセンサ13に、センサ素子52の温度を検出する温度センサが設けられている場合には、その温度センサの検出値に基づいて排気ガスの温度を推定しても良い。   Next, the temperature of the exhaust gas downstream of the DPF 12 is detected (S3). This temperature may be acquired from the exhaust temperature sensor 21 or may be estimated based on the operating conditions of the engine 20. When estimating the gas temperature from the engine operating conditions, the relationship data between the engine operating conditions (engine speed, engine load, etc.) and the gas temperature is stored in the memory 18, and the gas temperature corresponding to the current engine operating conditions is stored. Is determined from the related data. Further, the temperature of the sensor element 52 when the heating by the heater 54 is not performed becomes the same value as the temperature of the exhaust gas. Therefore, when the PM sensor 13 is provided with a temperature sensor that detects the temperature of the sensor element 52, the temperature of the exhaust gas may be estimated based on the detection value of the temperature sensor.

次に、SCU14にPMセンサ13の出力Eを検出させて、その出力EをSCU14から取得する(S4)。 Next, SCU14 in by detecting the output E 1 of the PM sensor 13, acquires the output E 1 from SCU14 (S4).

次に、S2、S3で検出したガス種、ガス濃度及びガス温度に基づいて、S4で検出したセンサ出力Eを、PM量を多くする方向に補正する(S5)。具体的には、S2、S3で検出したガス種、ガス濃度及びガス温度と、図6〜図8の関係データとに基づいて出力補正値Aを算出する。図6〜図8では、ガス種ごとの出力補正値ANO、ANO2、AO2を示しているが、S5では、それら出力補正値ANO、ANO2、AO2の全てを反映した一つの総合補正値Aを求める。そのために、例えば、メモリ18に、図6〜図8の関係データに基づいて得られる、ガス種、ガス濃度及びガス温度と総合補正値Aとの関係データ(A=f(ガス種、濃度、温度))を記憶しておき、その関係データに基づいて総合補正値Aを求める。総合補正値Aは、例えば、図6〜図8の出力補正値ANO、ANO2、AO2を足し合わせた値とすることができる。 Then, S2, S3 detects the gas species, based on the gas concentration and gas temperature, the sensor output E 1 detected in S4, the correction in a direction to increase the PM amount (S5). Specifically, the output correction value A is calculated based on the gas type, the gas concentration, and the gas temperature detected in S2 and S3, and the relationship data of FIGS. 6 to 8 show the output correction values A NO , A NO2 and A O2 for each gas type, but in S5, one of the output correction values A NO , A NO2 and A O2 is reflected. A total correction value A is determined. For that purpose, for example, the relationship data (A = f (gas species, concentration, etc.) between the gas type, the gas concentration and the gas temperature, and the overall correction value A obtained in the memory 18 based on the relationship data of FIGS. Temperature) is stored, and a total correction value A is obtained based on the related data. The total correction value A can be, for example, a value obtained by adding the output correction values A NO , A NO2 , and A O2 shown in FIGS.

また、図6〜図8の各関係データに基づいて、先ず、ガス種ごとの出力補正値ANO、ANO2、AO2を個別に求め、それら出力補正値ANO、ANO2、AO2を所定の演算(例えば足し算)を施すことで総合補正値Aを求めても良い。 Also, based on the respective relationship data in FIGS. 6 to 8, first, the output correction values A NO , A NO2 and A O2 for each gas type are individually determined, and those output correction values A NO , A NO2 and A O2 are calculated . The overall correction value A may be determined by performing a predetermined operation (for example, addition).

求めた総合補正値Aは、NO、NO及びOの各ガスが共存しなかった場合のセンサ出力に対する、NO、NO及びOがS2、S3で検出した濃度及び温度で共存した場合のセンサ出力の減少割合に相当する値である。そこで、S5では、総合補正値Aを用いて、この減少割合を相殺するようにセンサ出力Eを補正する。具体的には、補正後のセンサ出力をE1Rとして、E1R=(1+A)×Eを計算する。 The total correction value A determined is when NO, NO 2 and O 2 coexist at the concentration and temperature detected in S 2 and S 3 with respect to the sensor output when each gas of NO, NO 2 and O 2 does not coexist Is a value corresponding to the rate of decrease of the sensor output. Therefore, in S5, with the total correction value A, to correct the sensor output E 1 so as to offset this reduction ratio. Specifically, E 1 R = (1 + A) × E 1 is calculated, where the corrected sensor output is E 1 R.

ここで、図10は、S5の補正の様子を示した図として、静電捕集の開始からの経過時間(捕集時間)に対するセンサ出力を、補正前(細い実線)と、補正後(太い実線)とで示した図である。また、図10では、異なる3つの補正前のセンサ出力(1)、(2)、(3)と、3つの補正後のセンサ出力とを示している。このように、S5の補正を行うことで、補正後のセンサ出力は、補正前から大きい値となる。   Here, FIG. 10 is a diagram showing a state of correction of S5, in which the sensor output with respect to the elapsed time (collection time) from the start of electrostatic collection is corrected (thick solid line) before correction (thin solid line) And solid lines). Further, FIG. 10 shows three different sensor outputs (1), (2), and (3) before correction and three sensor outputs after correction. As described above, by performing the correction of S5, the sensor output after the correction becomes a large value before the correction.

次に、補正後のセンサ出力E1Rに基づいて、DPF12の故障判定を行う(S6)。具体的には、例えば静電捕集の開始からの経過時間が所定時間における補正後のセンサ出力E1Rが所定の閾値Kより大きいか否かを判断する。また、例えば、出力発生後のセンサ出力1Rの時間経過に対する変化度合い、すなわち図11の補正後のセンサ出力のライン(太い実線)の傾きが所定の閾値より大きいか否かを判断しても良い。 Then, on the basis of the sensor output E 1R corrected, the failure determination of the DPF 12 (S6). Specifically, for example, it is determined whether or not the sensor output E 1 R after correction in the predetermined time is larger than a predetermined threshold K, for the elapsed time from the start of electrostatic collection. Also, for example, it may be determined whether the degree of change with time of sensor output 1R after output generation, that is, the slope of the sensor output line (thick solid line) after correction in FIG. 11 is larger than a predetermined threshold. .

センサ出力1Rが閾値Kより大きい場合には(S6:YES)、DPF12から流出するPM量が想定よりも多いとして、DPF12が正常に機能していない、つまりDPF12の故障と判定する(S7)。これに対し、センサ出力1Rが閾値K以下の場合には(S6:NO)、DPF12から流出するPM量が少ないとして、DPF12の正常と判定する(S8)。図10の例では、例えば、補正後の(1)、(2)のセンサ出力はDPF故障と判定され、(3)のセンサ出力はDPF正常と判定される。S7、S8の後、図9の処理を終了する。 If the sensor output 1R is larger than the threshold K (S6: YES), it is determined that the DPF 12 is not functioning normally, that is, the DPF 12 is malfunctioning (S7), assuming that the amount of PM flowing out of the DPF 12 is larger than expected. On the other hand, when the sensor output 1R is less than or equal to the threshold value K (S6: NO), it is determined that the DPF 12 is normal as the amount of PM flowing out of the DPF 12 is small (S8). In the example of FIG. 10, for example, the sensor outputs of (1) and (2) after correction are determined to be DPF failure, and the sensor output of (3) is determined to be DPF normal. After S7 and S8, the process of FIG. 9 is ended.

このように、本実施形態では、支燃性ガス(NO、NO、O)の種類、濃度及び温度に応じて、センサ出力をPM量を多くする方向に補正するので、補正後のセンサ出力を、共存ガスによるPM燃焼が行われる前の値に近づけることができ、支燃性ガスの影響でPM量の検出精度が低下してしまうのを抑制できる。また、補正後のセンサ出力に基づきDPFの故障判定を行うので、支燃性ガスの影響で故障判定の精度が低下してしまうのを抑制できる。 As described above, in the present embodiment, the sensor output is corrected in the direction of increasing the amount of PM according to the type, concentration, and temperature of the combustion supporting gas (NO, NO 2 , O 2 ). The output can be made close to the value before PM combustion by the coexisting gas is performed, and deterioration in detection accuracy of the PM amount due to the influence of the combustion supporting gas can be suppressed. Further, since the failure determination of the DPF is performed based on the sensor output after the correction, it is possible to suppress the decrease in the accuracy of the failure determination due to the influence of the combustion supporting gas.

(第2実施形態)
次に本発明の第2実施形態を上記実施形態と異なる部分を中心に説明する。本実施形態の構成は図1の構成と同じである。ECU17が実行する故障判定処理が上記実施形態と異なっている。
Second Embodiment
Next, a second embodiment of the present invention will be described focusing on differences from the above embodiment. The configuration of the present embodiment is the same as that of FIG. The failure determination process executed by the ECU 17 is different from that of the above embodiment.

先ず、図11を参照して本実施形態の故障判定処理の基本的な考え方を説明する。図11は、静電捕集を開始してからの時間(捕集時間)に対するPMセンサ13の出力の変化を示した図である。詳しくは、図11の一点鎖線のラインは、DPF12が故障判定の基準となるフィルタ(以下、基準故障フィルタという)である場合におけるPMセンサ13の推定出力値Eeを示しており、実線のライン((1)、(2)、(3)のライン)は、実際のPMセンサ13の出力値を示している。   First, the basic concept of the failure determination process of the present embodiment will be described with reference to FIG. FIG. 11 is a diagram showing a change in the output of the PM sensor 13 with respect to the time (collection time) from the start of the electrostatic collection. More specifically, the dashed-dotted line line in FIG. 11 indicates the estimated output value Ee of the PM sensor 13 when the DPF 12 is a filter (hereinafter referred to as a reference fault filter) serving as a reference for failure determination. The lines (1), (2) and (3) indicate actual output values of the PM sensor 13.

本実施形態では、DPF12の故障判定をするために、DPF12が基準故障フィルタの場合におけるPMセンサ13の出力値Eeを推定する。その推定出力値Eeと、実際のPMセンサ13の出力値との比較に基づき、DPF12の故障の有無を判定する。詳しくは、推定出力値Eeが所定の閾値Kに達したタイミングを故障判定タイミングとして、その故障判定タイミングにおける実際のセンサ出力値が閾値Kより大きければDPF故障と判定し、閾値K以下の場合はDPF正常と判定する。このことは、実際のセンサ出力値が推定出力値Eeよりも大きければDPF故障と判定し、推定出力値Eeよりも小さければDPF正常と判定することを意味する。図11の例では、実際の出力値が(1)、(2)のラインの場合にはDPF故障と判定され、(3)のラインの場合にはDPF正常と判定される。   In the present embodiment, in order to determine the failure of the DPF 12, the output value Ee of the PM sensor 13 in the case where the DPF 12 is a reference failure filter is estimated. Based on the comparison between the estimated output value Ee and the actual output value of the PM sensor 13, it is determined whether the DPF 12 has a failure. More specifically, the timing at which the estimated output value Ee reaches the predetermined threshold value K is determined as the failure determination timing, and the DPF failure is determined if the actual sensor output value at the failure determination timing is larger than the threshold K. Determine that DPF is normal. This means that if the actual sensor output value is larger than the estimated output value Ee, it is determined that the DPF failure, and if smaller than the estimated output value Ee, it is determined that the DPF is normal. In the example of FIG. 11, it is determined that DPF failure occurs when the actual output values are the lines (1) and (2), and DPF is determined normal when the line (3).

なお、図11で説明した故障判定方法は特許第5115873号公報に記載の方法と同じである。すなわち、本実施形態の故障判定方法は、DPF12が基準故障フィルタである場合におけるPMセンサ13の出力が立ち上がる時期(基準時期)(図11の故障判定タイミングに相当)を推定する。そして、PMセンサ13の出力が実際に立ち上がる時期(実際時期)が基準時期より先の場合にはDPF12は故障していると判定し、後の場合にはDPF12は正常であると判定することを意味する。   The failure determination method described in FIG. 11 is the same as the method described in Japanese Patent No. 5115873. That is, the failure determination method of the present embodiment estimates the timing (reference timing) (corresponding to the failure determination timing in FIG. 11) in which the output of the PM sensor 13 rises when the DPF 12 is a reference failure filter. Then, it is determined that the DPF 12 is broken when the time when the output of the PM sensor 13 actually rises (actual time) is earlier than the reference time, and it is determined that the DPF 12 is normal in the latter case. means.

また、メモリ18には、第1実施形態と同様に図6〜図8の関係データが記憶されているが、本実施形態の出力補正値ANO、ANO2、AO2は、センサ出力の単位時間Δt秒当たりの減少割合(減少度合い)に相当する値に設定されている。 6 to 8 are stored in the memory 18 as in the first embodiment, but the output correction values A NO , A NO2 and A O2 of this embodiment are units of sensor output The value is set to a value corresponding to the rate of decrease (degree of decrease) per time Δt seconds.

次に、本実施形態の故障判定処理の詳細を説明する。図12は本実施形態の故障判定処理のフローチャートを示している。ECU17は、図9の処理に代えて、図12の処理を実行する。図12の処理は、図9の処理と同様に、排気管の乾燥判定の成立後、センサ再生を実施した後に開始される。   Next, the details of the failure determination process of the present embodiment will be described. FIG. 12 shows a flowchart of failure determination processing of the present embodiment. The ECU 17 executes the process of FIG. 12 instead of the process of FIG. Similar to the process of FIG. 9, the process of FIG. 12 is started after the sensor regeneration is performed after the drying determination of the exhaust pipe is established.

図12の処理を開始すると、先ず、静電捕集の開始からの経過時間tを初期値(=0)に設定した後(S11)、SCU14に指令して静電捕集を実施する(S12)。次に、経過時間tを、所定の単位時間Δt秒だけ進行した時間(t=t+Δt)に更新する(S13)。次に、図9のS2、S3と同様にして、DPF12を通過した排気ガス中のNO、NO及びOの各濃度を検出し(S14)、DPF12下流の排気ガスの温度を検出する(S15)。ここで検出したガス種、ガス濃度及びガス温度は、現在時間tを基準とした単位時間Δtにおけるガス種、ガス濃度及びガス温度である。 When the process of FIG. 12 is started, first, an elapsed time t from the start of electrostatic collection is set to an initial value (= 0) (S11), and the SCU 14 is instructed to perform electrostatic collection (S12). ). Next, the elapsed time t is updated to a time (t = t + Δt) which has advanced by a predetermined unit time Δt seconds (S13). Next, in the same manner as S2 and S3 in FIG. 9, the concentrations of NO, NO 2 and O 2 in the exhaust gas having passed through the DPF 12 are detected (S14), and the temperature of the exhaust gas downstream of the DPF 12 is detected S15). The gas species, the gas concentration and the gas temperature detected here are the gas species, the gas concentration and the gas temperature at a unit time Δt based on the current time t.

次に、S14、S15で検出したガス種、ガス濃度及びガス温度と、メモリ18に記憶された図6〜図8の関係データとに基づいて、検出したガス種、ガス濃度及びガス温度の環境下におけるPMセンサ13の単位時間Δt当たりの出力減少度合いに相当する補正値A(Δt)を算出する(S16)。ここでは、第1実施形態と同様に、ガス種ごとの出力補正値ANO、ANO2、AO2の全てを反映した一つの総合補正値A(=f(ガス種、濃度、温度))を求める。総合補正値A(Δt)は、例えば、図6〜図8の出力補正値ANO、ANO2、AO2を足し合わせた値とすることができる。 Next, the environment of the detected gas type, gas concentration and gas temperature based on the gas type, gas concentration and gas temperature detected in S14 and S15, and the relationship data of FIGS. 6 to 8 stored in the memory 18 A correction value A (Δt) corresponding to the degree of decrease in output per unit time Δt of the PM sensor 13 in the lower part is calculated (S16). Here, as in the first embodiment, one total correction value A (= f (gas type, concentration, temperature)) reflecting all of the output correction values A NO , A NO2 and A O2 for each gas type is calculated . Ask. The total correction value A (Δt) can be, for example, a value obtained by adding the output correction values A NO , A NO2 , and A O2 shown in FIGS.

次に、エンジン20の運転条件に基づいて、DPF12が基準故障DPFである場合におけるPMセンサ13の単位時間Δt当たりの出力変化量E2、Δtを推定する(S17)(図11も参照)。ここで、本実施形態における基準故障DPFとは、具体的には、故障によりDPF12の捕集率が著しく低下し、DPF12を通過するPM量が自己故障診断(OBD:On−board−diagnostics)の規制値相当の量であるDPFを言う。OBD規制値は、EURO6等のEM規制値(排ガス規制値)より大きい値に設定される。例えば、特定の走行モードにおいて、EM規制値におけるPM量=4.5mg/kmとしたときに、OBD規制値は例えばその約2.67倍のPM量=12.0mg/kmに設定される。 Next, based on the operating conditions of the engine 20, the output change amounts E 2 and Δt per unit time Δt of the PM sensor 13 when the DPF 12 is the reference failure DPF are estimated (S17) (see also FIG. 11). Here, specifically, the reference failure DPF in the present embodiment is that the collection rate of the DPF 12 significantly decreases due to a failure, and the amount of PM passing through the DPF 12 is a self failure diagnosis (OBD: on-board-diagnostics). We say DPF, which is the amount equivalent to the regulation value. The OBD regulation value is set to a value larger than the EM regulation value (emission gas regulation value) such as EURO6. For example, when the PM amount in the EM restriction value = 4.5 mg / km in a specific traveling mode, the OBD restriction value is set to, for example, about 2.67 times the PM amount = 12.0 mg / km.

S17では、具体的には、先ず、エンジン20の運転条件に基づいて、DPF12が基準故障DPFである場合におけるDPF12を通過するPMの現在時間tを基準とした単位時間Δt当たりの量fを推定する。具体的には、特許第5115873号公報の方法と同様に、エンジン20の回転数や負荷(燃料噴射量)等のエンジン20の運転条件に基づいてエンジン20から排出される単位時間当たりのPM量、言い換えると、基準故障DPFに流入する単位時間当たりのPM量(流入PM量)を推定する。例えば、エンジン20の運転条件(回転数、負荷等)に対する単位時間当たりの流入PM量のマップをメモリ18に予め記憶しておく。そして、そのマップから、今回のエンジン20の運転条件に対応する流入PM量を読み出せばよい。   In S17, specifically, first, based on the operating conditions of the engine 20, the amount f per unit time Δt is estimated based on the current time t of PM passing through the DPF 12 when the DPF 12 is the reference failure DPF. Do. Specifically, similarly to the method of Japanese Patent No. 5115873, the amount of PM per unit time discharged from the engine 20 based on the operating conditions of the engine 20 such as the rotation speed and load (fuel injection amount) of the engine 20 In other words, the amount of PM per unit time (the amount of inflow PM) flowing into the reference failure DPF is estimated. For example, a map of the inflow PM amount per unit time with respect to the operating conditions (rotation speed, load, etc.) of the engine 20 is stored in advance in the memory 18. Then, the inflow PM amount corresponding to the operating condition of the engine 20 at this time may be read out from the map.

また、基準故障DPFのPM捕集率を推定する。具体的には例えば、基準故障DPFのPM捕集率として予め定められた値αを用いる。また、DPFのPM捕集率は、DPF内に堆積されているPM量(PM堆積量)や排気流量によっても変わってくるので、それらPM堆積量、排気流量に応じて上記PM捕集率αを補正しても良い。なお、PM堆積量は、例えば、DPF12の前後差圧に基づいて推定すれば良い。また、排気流量は、例えば、エアフロメータ4で検出される吸入空気量に基づいて推定すれば良い。   Also, the PM collection rate of the reference failure DPF is estimated. Specifically, for example, a predetermined value α is used as the PM collection rate of the reference failure DPF. Further, the PM collection rate of the DPF also changes depending on the amount of PM deposited in the DPF (PM deposition amount) and the exhaust flow rate, so the PM collection rate α according to the PM deposition amount and the exhaust flow rate You may correct it. The PM deposition amount may be estimated, for example, based on the differential pressure across the DPF 12. Further, the exhaust flow rate may be estimated based on, for example, the intake air amount detected by the air flow meter 4.

そして、推定した流入PM量と基準故障DPFのPM捕集率とに基づいて、基準故障DPFから流出する単位時間当たりのPM量f(流出PM量)が得られる。   Then, based on the estimated inflow PM amount and the PM collection rate of the reference failure DPF, the PM amount f (outflow PM amount) per unit time flowing out from the reference failure DPF is obtained.

次に、得られた流出PM量fのうちのPMセンサ13に捕集されるPM量を推定する。具体的には、例えばPMセンサ13の外側を流れるPMのうちどの程度のPMが孔511(図2参照)からカバー51内に侵入するか、カバー51内に侵入したPMのうちどの程度のPMがセンサ素子52に付着するか等を考慮して、PMセンサ13へのPM捕集率βを推定する。PM捕集率βは、排気ガス流量、λ(空気過剰率)、排気温度、センサ素子52の温度等の各種状態にかかわらず一定の予め定められた値を用いても良いし、各種状態に応じて補正した値を用いても良い。例えば、排気ガス流量が大きいほどPMはカバー51内に侵入しにくくなり、カバー51に侵入したPMはセンサ素子52に付着しにくくなり、付着したとしてもセンサ素子52から離脱しやすくなる。また、λが小さくなるほど、つまりリッチになってPM濃度が高くなるほど、PMセンサ13に捕集されないPMの割合が高くなる。よって、例えば、排気ガス流量が大きいほど、又はλが小さいほど、小さい値となるようにPM捕集率βを推定する。また、排気温度やセンサ素子52の温度に応じて、センサ素子52に作用する熱動力が変化するので、PM捕集率βが変わってくる。そして、上記流出PM量fとPM捕集率βとに基づいて、PMセンサ13に捕集されたPM量が得られる。このPM量が多いほどPMセンサ13の出力が大きくなるので、このPM量とPMセンサ13の出力との関係を予め調べてメモリ18に記憶しておく。そして、この関係と今回得られたPM量とに基づいて、DPF12が基準故障DPFの場合におけるPMセンサ13の単位時間当たりの出力変化量の推定値E2、Δtが得られる。
Next, the amount of PM collected by the PM sensor 13 out of the obtained outflow PM amount f is estimated. Specifically, for example, of the PM flowing outside the PM sensor 13, how much PM penetrates into the cover 51 through the hole 511 (see FIG. 2), or how much PM out of the PM that has invaded inside the cover 51 The PM collection rate β to the PM sensor 13 is estimated in consideration of whether the sensor element 52 is attached to the sensor element 52 or the like. The PM collection rate β may use a predetermined predetermined value regardless of various conditions such as the exhaust gas flow rate, λ (excess air ratio), exhaust temperature, temperature of the sensor element 52, etc. The values corrected accordingly may be used. For example, as the exhaust gas flow rate is larger, PM is less likely to intrude into the cover 51, PM which has intruded into the cover 51 is less likely to adhere to the sensor element 52, and may easily detach from the sensor element 52 even if it adheres. Further, the smaller the λ, that is, the richer and the higher the PM concentration, the higher the proportion of PM not collected by the PM sensor 13. Therefore, for example, the PM collection rate β is estimated to be a smaller value as the exhaust gas flow rate is larger or as λ is smaller. Further, according to the temperature of the exhaust temperature and the sensor element 52, the heat swimming power which acts on the sensor element 52 is changed, PM collection efficiency β is varies. Then, the amount of PM collected by the PM sensor 13 is obtained based on the above-mentioned amount of flow-out PM f and the PM collection rate β. Since the output of the PM sensor 13 increases as the PM amount increases, the relationship between the PM amount and the output of the PM sensor 13 is checked in advance and stored in the memory 18. Then, based on this relationship and the amount of PM obtained this time, estimated values E 2 and Δt of the amount of change in output per unit time of the PM sensor 13 when the DPF 12 is the reference failure DPF are obtained.

次に、S16で求めた補正値A(Δt)に基づいて、S17で求めた推定値E2、Δtを、PM量を少なくする方向に補正する(S18)。具体的には、補正後の出力変化量の推定値をE2R、Δtとして、E2R、Δt=(1−A(Δt))×E2、Δtを計算する。 Next, based on the correction value A (Δt) obtained in S16, the estimated values E2 and Δt obtained in S17 are corrected in the direction to reduce the PM amount (S18). Specifically, E 2 R, Δt = (1−A (Δt)) × E 2, Δt is calculated , assuming that the estimated value of the output change amount after correction is E 2 R, Δt .

次に、現在時間tにおける、DPF12が基準故障DPFの場合のPMセンサ13の出力推定値E2R、tを求める(S19)。具体的には、前回のS19で求めた出力推定値E2R、tに、今回のS18で求めた補正後の推定値E2R、Δtを加えて、出力推定値E2R、tを更新する。つまり、E2R、t=E2R、t+E2R、Δtを計算する。 Next, at the current time t, the output estimated value E 2R, t of the PM sensor 13 in the case where the DPF 12 is the reference failure DPF is determined (S19). Specifically, the estimated output value E 2 R, t is updated by adding the corrected estimated value E 2 R, Δt obtained in S18 this time to the estimated output value E 2R, t obtained in S19 of the previous time. That is, E2R, t = E2R, t + E2R,? T are calculated.

次に、S19で求めた出力推定値E2R、tに基づいてDPF故障を判定するタイミング(故障判定タイミング)に到達したか否かを判断する(S20)。具体的には、出力推定値E2R、tが所定の閾値Kより大きい否かを判断する。この閾値Kは、例えばPMセンサ13の出力が立ち上がったとみなせる値に設定される。なお、S20では、DPF12が基準故障DPFの場合におけるPMセンサ13の出力が立ち上がるタイミングが到達したか否かを判定することと同義である。 Next, based on the output estimated values E2R and t obtained in S19, it is determined whether the timing for determining the DPF failure (failure determination timing) has been reached (S20). Specifically, it is determined whether or not the output estimated value E 2R, t is larger than a predetermined threshold value K. The threshold value K is set to, for example, a value that can be regarded as the output of the PM sensor 13 has risen. In S20, it is synonymous with determining whether the timing at which the output of the PM sensor 13 rises in the case where the DPF 12 is a reference failure DPF has arrived.

S20において故障判定タイミングに未だ到達していない場合、つまり出力推定値E2R、tが閾値K以下の場合には(S20:NO)、S12に戻る。このように、故障判定タイミングに到達しない間は、各時間におけるガス種、ガス濃度及びガス温度に基づいてPMセンサ13の各時間における単位時間当たりの出力変化量を補正し、補正後の出力変化量を、静電捕集の開始からの経過時間に亘って積算することで、出力推定値の補正を行う。 If the failure determination timing has not been reached in S20, that is, if the output estimated value E 2 R, t is less than or equal to the threshold K (S20: NO), the process returns to S12. As described above, while the failure determination timing is not reached, the output change amount per unit time at each time of the PM sensor 13 is corrected based on the gas type, gas concentration and gas temperature at each time, and the output change after correction By integrating the amount over the elapsed time from the start of electrostatic collection, the output estimated value is corrected.

これによって、図13に示すように、補正後の推定出力値E2Rが、補正前に比べて小さい値となり、その結果、故障判定タイミングの到達が補正前に比べて遅くなる。 As a result, as shown in FIG. 13, the estimated output value E 2 R after correction becomes a smaller value than before correction, and as a result, the arrival of the failure determination timing becomes later than before correction.

S20において故障判定タイミングが到達した場合、つまり出力推定値E2R、tが閾値Kを超えた場合には(S20:YES)、PMセンサ13の実際の出力EをSCU14から取得する(S21)。そのセンサ出力Eが、S20の閾値Kと同じ値に設定された閾値Kより大きいか否かを判断する(S22)。そして、センサ出力Eが閾値Kより大きい場合には(S22:YES)、DPF12は基準故障DPFよりもPM捕集能力が低下した故障DPFであると判定する(S23)。これに対し、センサ出力Eが閾値K以下の場合には(S22:NO)、DPF12は基準故障DPFよりもPM捕集能力が良好な正常DPFであると判定する(S24)。図13の例では、故障判定タイミング(補正後)において、(1)、(2)の場合はセンサ出力が閾値Kより大きいのでDPF故障と判定され、(3)の場合はセンサ出力が閾値Kより小さいのでDPF正常と判定される。S23、S24の後、図12の処理を終了する。 If the failure determination timing arrives at S20, that is, if the output estimated value E 2 R, t exceeds the threshold K (S20: YES), the actual output E 1 of the PM sensor 13 is acquired from the SCU 14 (S21) . As the sensor output E 1 determines whether larger than the threshold K that is set to the same value as the threshold value K of S20 (S22). Then, when the sensor output E 1 is greater than the threshold value K (S22: YES), DPF12 determines that the PM trapping ability than a reference fault DPF is faulty DPF was reduced (S23). In contrast, if the sensor output E 1 is less than the threshold value K (S22: NO), DPF12 determines that the PM trapping ability than a reference fault DPF is a good normal DPF (S24). In the example of FIG. 13, at the failure determination timing (after correction), the sensor output is larger than the threshold K in the cases of (1) and (2), so it is determined that the DPF failure. In the case of (3), the sensor output is the threshold K Since it is smaller, it is determined that the DPF is normal. After S23 and S24, the process of FIG. 12 ends.

このように、本実施形態では、基準故障DPFの場合におけるセンサ出力を推定し、その推定値と実際のセンサ出力との比較に基づきDPFの故障判定を行うので、DPFが基準よりも故障度合いが高いか低いかを精度よく判定できる。また、センサ出力の推定値を、支燃性ガス(NO、NO、O)の種類、濃度及び温度に応じて、PM量を少なくする方向に補正するので、その推定値を支燃性ガスによるPM燃焼後の値に近づけることができ、燃焼後の状態でセンサの実際の出力値と推定値とを比較できる。結果として、支燃性ガスによる燃焼の影響を抑制した形でDPFの故障判定を行うことができ、故障判定の精度低下を抑制できる。例えば、図13の例では、センサ出力が(2)の場合には、補正前の推定出力値Eに基づく故障判定タイミング(補正前)で故障判定を実施すると、センサ出力と閾値Kとが近い値となって、DPF故障であるにもかかわらず正常であると誤判定する可能性がある。一方、補正後の推定出力値E2Rに基づく故障判定タイミング(補正後)で故障判定を実施すると、センサ出力は明らかに閾値Kより大きいので、DPF故障を高精度に判定できる。 As described above, in this embodiment, the sensor output in the case of the reference failure DPF is estimated, and the failure determination of the DPF is performed based on the comparison between the estimated value and the actual sensor output. It can be determined with high accuracy whether it is high or low. In addition, since the estimated value of the sensor output is corrected in the direction to reduce the PM amount according to the type, concentration and temperature of the flame retardant gas (NO, NO 2 , O 2 ), the estimated value is It can be close to the value after PM combustion with gas, and the actual output value of the sensor can be compared with the estimated value in the state after combustion. As a result, the failure determination of the DPF can be performed in a form in which the influence of the combustion by the combustion supporting gas is suppressed, and the accuracy reduction of the failure determination can be suppressed. For example, in the example of FIG. 13, when the sensor output is (2), when carrying out the failure determination at the failure determination timing based on the estimated output value E 2 before correction (pre-correction), the sensor output and the threshold value K is It becomes a close value, and there is a possibility that it is misjudged as normal despite the DPF failure. On the other hand, when the failure determination is performed at the failure determination timing (after correction) based on the estimated output value E 2 R after correction, the sensor output is clearly larger than the threshold K, so that the DPF failure can be determined with high accuracy.

さらに、センサ出力の推定値の補正として、各時間でのガス種ごとの濃度及び温度に基づく各時間補正を、静電捕集の開始からの経過時間に亘って積算した積算補正を行うので、各時間でのガス種、ガス濃度、及びガス温度と、捕集開始からの経過時間とが反映された、高精度な推定値を得ることができる。よって、より一層、DPFの故障判定の精度低下を抑制できる。   Furthermore, as correction of the estimated value of the sensor output, integration correction is performed by integrating each time correction based on concentration and temperature for each gas type at each time over the elapsed time from the start of electrostatic collection. It is possible to obtain highly accurate estimated values that reflect the gas species, gas concentration, and gas temperature at each time, and the elapsed time from the start of collection. Therefore, it is possible to further suppress the deterioration in the accuracy of the failure determination of the DPF.

(第3実施形態)
次に本発明の第3実施形態を上記実施形態と異なる部分を中心に説明する。本実施形態の構成は図1の構成と同じである。ECU17が実行する故障判定処理が上記実施形態と異なっている。第2実施形態では、PMセンサの推定出力値を補正することで結果的に故障判定タイミングを遅いタイミングに補正させたが、本実施形態では、推定出力値と比較する閾値を補正することで、結果的に故障判定タイミングを遅いタイミングに補正させる実施形態である。
Third Embodiment
Next, a third embodiment of the present invention will be described focusing on differences from the above embodiment. The configuration of the present embodiment is the same as that of FIG. The failure determination process executed by the ECU 17 is different from that of the above embodiment. In the second embodiment, the failure determination timing is corrected to a late timing as a result by correcting the estimated output value of the PM sensor, but in the present embodiment, the threshold compared with the estimated output value is corrected, As a result, the failure determination timing is corrected to a later timing.

また、本実施形態においても第2実施形態と同様に、メモリ18に記憶される図6〜図8の関係データにおける出力補正値Aは、センサ出力の単位時間Δt秒当たりの減少割合に相当する値に設定されている。   Further, also in the present embodiment, as in the second embodiment, the output correction value A in the relational data of FIGS. 6 to 8 stored in the memory 18 corresponds to the reduction rate per unit time Δt of sensor output. It is set to a value.

ECU17は、DPFの故障判定処理として図14の処理を実行する。図14の処理は、上記実施形態と同様に排気管の乾燥判定の成立後、センサ再生を実施した後に開始される。図14の処理を開始すると、図12のS11〜S16の処理と同様の処理を実行する(S31〜S36)。   The ECU 17 executes the processing of FIG. 14 as the failure determination processing of the DPF. The process of FIG. 14 is started after sensor regeneration is performed after the drying determination of the exhaust pipe is established as in the above embodiment. When the process of FIG. 14 is started, the same processes as the processes of S11 to S16 of FIG. 12 are executed (S31 to S36).

次に、現在時間tまでの各時間のS36の処理で得られた、PMセンサ13の単位時間Δt当たりの出力減少度合いに相当する補正値A(Δt)を積算した積算補正値A(t)を算出する(S37)。具体的には、前回のS37で求めた積算補正値A(t)に、今回のS36で求めた補正値A(Δt)を加えて、積算補正値A(t)を更新する。つまり、A(t)=A(t)+A(Δt)を計算する。   Next, integrated correction value A (t) obtained by integrating correction value A (Δt) corresponding to the degree of decrease in output per unit time Δt of PM sensor 13 obtained by the processing of S36 of each time up to the current time t Is calculated (S37). Specifically, the integrated correction value A (t) is updated by adding the correction value A (Δt) obtained in the current S36 to the integrated correction value A (t) obtained in the previous S37. That is, A (t) = A (t) + A (Δt) is calculated.

次に、エンジン20の運転条件に基づいて、DPF12が基準故障DPFである場合におけるPMセンサ13の出力Eを推定する(S38)。図12のS17では、PMセンサ13の単位時間Δt当たりの出力変化量E2、Δtを推定した。ここでは、S17と同様に各時間で出力変化量E2、Δtを求め、求めた出力変化量E2、Δtを静電捕集の開始から現在時間tに亘って積算した積算値を、現在時間tにおけるPMセンサ13の出力Eとして推定する。 Then, based on the operating conditions of the engine 20, estimates the output E 2 of the PM sensor 13 when DPF12 is the reference fault DPF (S38). In S17 of FIG. 12, the output change amounts E 2 and Δt per unit time Δt of the PM sensor 13 are estimated. Here, the output variation at each time in the same manner as S17 E 2, seeking Delta] t, the output change amount E 2 was obtained, the integrated value obtained by integrating over the current time t from the start of the electrostatic trapping Delta] t, the current It is estimated as the output E 2 of the PM sensor 13 at time t.

次に、S37で求めた積算補正値A(t)に基づいて、故障判定のタイミングを判定するための閾値K(本発明の第1閾値に相当)を、PM量を多くする方向に補正(本発明の第1の閾値補正に相当)する(S39)。具体的には、補正後の閾値をKとして、K=(1+A(t))×Kを計算する。 Next, based on the integrated correction value A (t) obtained in S37, the threshold K (corresponding to the first threshold of the present invention) for determining the timing of the failure determination is corrected in the direction to increase the PM amount ( Corresponding to the first threshold value correction of the present invention) (S39). Specifically, K R = (1 + A (t)) × K is calculated with the corrected threshold value as K R.

次に、S38で求めた推定出力Eが、S39で求めた補正後の閾値Kより大きいか否かを判断する(S40)。推定出力Eが閾値K以下の場合には(S40:NO)、故障判定タイミングに未だ到達していないとして、S32に戻る。このように、故障判定タイミングに到達しない間は、経過時間に伴って次第に積算補正値A(t)が大きくなり、その結果、閾値Kは次第に大きくなっていく。また、センサ出力の推定値Eも経過時間にともなって次第に大きくなっていく。 Next, the estimated output E 2 obtained in S38, it is determined whether the threshold value K R is greater than or not the corrected calculated in S39 (S40). Estimated output E 2 is the threshold value K in the case of R below (S40: NO), as yet not reached the failure determination timing, the flow returns to S32. As described above, while the failure determination timing is not reached, the integrated correction value A (t) gradually increases with the elapsed time, and as a result, the threshold value K R gradually increases. Also, the estimated value of the sensor output E 2 also gradually increases with the passage of time.

S40において推定出力Eが閾値Kを超えた場合には(S40:YES)、故障判定タイミングが到達したとして、PMセンサ13の実際の出力EをSCU14から取得する(S41)。次に、センサ出力Eが所定の閾値Kより大きいか否かを判断する(S42)。この閾値Kは、S39の補正が実施される前の、故障判定タイミングを判定するための閾値Kと同じ値に設定されている。センサ出力Eが閾値Kより大きい場合には(S42:YES)DPF故障と判定し(S43)、閾値K以下の場合には(S42:NO)DPF正常と判定する(S44)。S43、S44の後、図14の処理を終了する。 If the estimated output E 2 exceeds the threshold value K R in S40 (S40: YES), the failure determination timing has reached, and acquires the actual output E 1 of the PM sensor 13 from SCU14 (S41). Next, the sensor output E 1 determines whether greater than a predetermined threshold value K (S42). The threshold value K is set to the same value as the threshold value K for determining the failure determination timing before the correction of S39 is performed. If the sensor output E 1 is greater than the threshold value K (S42: YES) determines DPF failure and (S43), in the case of less than the threshold value K (S42: NO) DPF normal and determining (S44). After S43 and S44, the process of FIG. 14 ends.

図15を参照して本実施形態の故障判定処理を説明すると、支燃性ガスの種類、濃度、及び温度に基づき、故障判定タイミングを判定するための閾値KをPM量を多くする方向に補正し、推定出力値Eeが補正後の閾値K(故障診断実施判定閾値)を超えたタイミングを故障判定タイミングとして判定する。よって、故障判定タイミングを、閾値Kを補正しない場合の故障判定タイミングよりも遅いタイミングとすることができる。故障判定タイミングが遅くなることで、故障判定タイミングにおけるセンサ出力を大きくすることができ、支燃性ガスの影響によるセンサ出力の減少がDPFの故障判定に影響を及ぼすのを抑制できる。例えば、図15の例では、センサ出力が(2)の場合には、補正前の閾値Kに基づく故障判定タイミング(補正前)で故障判定を実施すると、センサ出力と閾値Kとが近い値となって、DPF故障であるにもかかわらず正常であると誤判定する可能性がある。一方、補正後の閾値Kに基づく故障判定タイミング(補正後)で故障判定を実施すると、センサ出力は明らかに閾値Kより大きいので、DPF故障を高精度に判定できる。 The failure determination process of the present embodiment will be described with reference to FIG. 15. The threshold value K for determining the failure determination timing is corrected to increase the PM amount based on the type, concentration, and temperature of the gas supporting gas. Then, the timing at which the estimated output value Ee exceeds the corrected threshold value K R (fault diagnosis execution determination threshold value) is determined as a failure determination timing. Therefore, the failure determination timing can be made later than the failure determination timing when the threshold value K is not corrected. By delaying the failure determination timing, it is possible to increase the sensor output at the failure determination timing, and it is possible to suppress that the decrease in the sensor output due to the influence of the combustion supporting gas affects the failure determination of the DPF. For example, in the example of FIG. 15, when the sensor output is (2), if the failure determination is performed at the failure determination timing (before correction) based on the threshold K before correction, the sensor output and the threshold K are close to each other Therefore, there is a possibility that the DPF failure may be misjudged as normal despite being a failure. On the other hand, when carrying out the failure determination at the failure determination timing based on the threshold K R after correction (corrected), the sensor output is greater than the obviously threshold K, it can determine DPF failure with high accuracy.

また、閾値Kの補正として、各時間でのガス種ごとの濃度及び温度に基づく単位時間当たりの補正値を、静電捕集の開始からの経過時間に亘って積算した積算補正値に基づいて閾値の補正を行うので、補正後の閾値に、各時間でのガス種、ガス濃度、及びガス温度と、捕集開始からの経過時間とを反映させることができる。この補正後閾値に基づき故障判定タイミングを判定し、この故障判定タイミングで故障判定を実施することで、その故障判定に、各時間でのガス種、ガス濃度、及びガス温度と、捕集開始からの経過時間とを反映させることができる。よって、支燃性ガスの影響を抑制した高精度な判定結果を得ることができる。   In addition, as correction of threshold K, correction value per unit time based on concentration and temperature for each gas type at each time is integrated based on integrated correction value integrated over the elapsed time from the start of electrostatic collection. Since the correction of the threshold is performed, it is possible to reflect the gas type, the gas concentration, and the gas temperature at each time and the elapsed time from the start of collection on the corrected threshold. The failure determination timing is determined based on the corrected threshold value, and the failure determination is performed at the failure determination timing to determine the type of gas at each time, the gas concentration, and the gas temperature, and the collection start from the failure determination. And the elapsed time of Therefore, it is possible to obtain a highly accurate determination result in which the influence of the supporting gas is suppressed.

(第4実施形態)
次に本発明の第4実施形態を上記実施形態と異なる部分を中心に説明する。本実施形態の構成は図1の構成と同じである。ECU17が実行する故障判定処理が上記実施形態と異なっている。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described focusing on differences from the above embodiment. The configuration of the present embodiment is the same as that of FIG. The failure determination process executed by the ECU 17 is different from that of the above embodiment.

ECU17は、DPFの故障判定処理として図16の処理を実行する。図16の処理は、上記実施形態と同様に排気管の乾燥判定の成立後、センサ再生を実施した後に開始される。図16の処理と図14の処理とを比較すると、図16の処理では、図14のS39の処理に相当する処理が省略されており、S61の処理が追加されている点で図14の処理と異なっている。また、S59の処理では、出力推定値Eは、補正未実施の閾値Kと比較している。また、S62の処理では、センサ出力Eと補正後の閾値Kとを比較している。それ以外は図14の処理と同じである。すなわち、図16のS51〜S58の処理は、図14のS31〜S38の処理と同じであり、S60の処理はS41の処理と同じであり、S63、S64の処理はS43、S44の処理と同じである。 The ECU 17 executes the process of FIG. 16 as the failure determination process of the DPF. The process of FIG. 16 is started after the sensor regeneration is performed after the drying determination of the exhaust pipe is established as in the above embodiment. Comparing the process of FIG. 16 with the process of FIG. 14, in the process of FIG. 16, the process corresponding to the process of S39 of FIG. 14 is omitted, and the process of FIG. It is different from Further, in the processing of S59, the output estimate E 2 are compared with the threshold value K of the correction unexecuted. Further, in the processing of S62 is compared with the threshold value K R and the corrected sensor output E 1. Other than that is the same as the processing of FIG. That is, the processes of S51 to S58 of FIG. 16 are the same as the processes of S31 to S38 of FIG. 14, the process of S60 is the same as the process of S41, and the processes of S63 and S64 are the same as the processes of S43 and S44. It is.

図16の処理を開始すると、第3実施形態と同様に積算補正値Aを算出し(S51〜S57)、DPF12が基準故障DPFの場合におけるPMセンサ13の出力Eを推定し(S58)、その推定出力値Eが閾値Kを超えたか否かを判断する(S59)。超えていない場合には(S59:NO)、S52に戻り、積算補正値A及び推定出力値Eを更新する(S52〜S58)。 When the process is started in FIG. 16, similarly to the third embodiment calculates the cumulative correction value A (S51~S57), estimates the output E 2 of the PM sensor 13 in the case DPF12 is a reference fault DPF (S58), the estimated output value E 2 determines whether exceeds a threshold value K (S59). If not exceeded (S59: NO), it returns to S52, and updates the cumulative correction value A and the estimated output value E 2 (S52~S58).

推定出力値Eが閾値Kを超えた場合、つまり故障判定タイミングに到達した場合には(S59:YES)、次に、PMセンサ13の実際の出力EをSCU14から取得する(S60)。次に、S57で求めた積算補正値A(t)に基づいて、故障判定閾値K(本発明の第2閾値に相当)を、PM量を少なくする方向に補正(本発明の第2の閾値補正に相当)する(S61)。具体的には、補正後の閾値をKとして、K=(1−A(t))×Kを計算する。 If the estimated output value E 2 exceeds the threshold value K, that is, when it reaches the failure determination timing (S59: YES), then obtains the actual output E 1 of the PM sensor 13 from SCU14 (S60). Next, based on the integrated correction value A (t) obtained in S57, the failure determination threshold K (corresponding to the second threshold of the present invention) is corrected in a direction to reduce the PM amount (second threshold of the present invention Corresponding to the correction) (S61). Specifically, K R = (1−A (t)) × K is calculated, where the corrected threshold is K R.

次に、センサ出力Eが補正後の閾値Kより大きいか否かを判断する(S62)。センサ出力Eが閾値Kより大きい場合には(S62:YES)DPF故障と判定し(S63)、閾値K以下の場合には(S62:NO)DPF正常と判定する(S64)。その後、図16の処理を終了する。 Next, the sensor output E 1 to determine threshold K or R is larger than the corrected (S62). If the sensor output E 1 is greater than the threshold value K R (S62: YES) determines DPF failure and (S63), in the case of less than the threshold value K R (S62: NO) DPF normal and determining (S64). Thereafter, the process of FIG. 16 is ended.

第3実施形態では、故障判定タイミングを判定するための閾値(推定出力値Eeと比較する閾値)を補正する一方で、本実施形態では、図17に示すように、実際のセンサ出力と比較する故障判定閾値Kを、支燃性ガスの影響によるPMセンサの出力減少分だけ小さい値となるよう補正している。その結果として、その出力減少分を相殺した形で、センサ出力と故障判定閾値との比較を行うことができ、DPFの故障判定の精度低下を抑制できる。例えば、図17の例では、センサ出力が(2)の場合には、補正前の閾値Kで故障判定を実施すると、センサ出力と閾値Kとが近い値となって、DPF故障であるにもかかわらず正常であると誤判定する可能性がある。一方、補正後の閾値Kで故障判定を実施すると、センサ出力は明らかに閾値Kより大きいので、DPF故障を高精度に判定できる。 In the third embodiment, while the threshold value for determining the failure determination timing (the threshold value to be compared with the estimated output value Ee) is corrected, in the present embodiment, as shown in FIG. The failure determination threshold value K is corrected to a value smaller by an amount of decrease in the output of the PM sensor due to the influence of the combustion supporting gas. As a result, it is possible to compare the sensor output with the failure determination threshold in the form of offsetting the decrease in the output, and to suppress the decrease in accuracy of the failure determination of the DPF. For example, in the example of FIG. 17, when the sensor output is (2), when the failure determination is performed with the threshold value K before correction, the sensor output and the threshold value K become close values, and the DPF failure is also caused. Regardless, there is a possibility that it may be misjudged as normal. On the other hand, when carrying out the failure determination at the threshold K R after the correction, the sensor output is greater than the obviously threshold K R, it can determine DPF failure with high accuracy.

(第5実施形態)
次に本発明の第5実施形態を上記実施形態と異なる部分を中心に説明する。本実施形態の構成は図1の構成と同じである。ECU17が実行する故障判定処理が上記実施形態と異なっている。
Fifth Embodiment
Next, a fifth embodiment of the present invention will be described focusing on differences from the above embodiment. The configuration of the present embodiment is the same as that of FIG. The failure determination process executed by the ECU 17 is different from that of the above embodiment.

ECU17は、DPFの故障判定処理として図18の処理を実行する。図18の処理は、上記実施形態と同様に排気管の乾燥判定の成立後、センサ再生を実施した後に開始される。図18の処理と図16の処理とを比較すると、図18の処理はS81、S82の処理が図16の処理と異なっており、それ以外(S71〜S80、S83、S84)は図16の処理(S51〜S60、S63、S64)と同じである。   The ECU 17 executes the process of FIG. 18 as the failure determination process of the DPF. The process of FIG. 18 is started after the sensor regeneration is performed after the drying determination of the exhaust pipe is established as in the above embodiment. Comparing the process of FIG. 18 with the process of FIG. 16, the process of FIG. 18 is different from the process of FIG. 16 in the processes of S81 and S82, and the process of FIG. 16 is otherwise (S71 to S80, S83, S84). (S51 to S60, S63, S64).

図18の処理では、故障判定タイミングが到達した場合に(S79:YES)、実際のセンサ出力Eを検出した後(S80)、そのセンサ出力EをS77で求めた積算補正値A(t)に基づいてPM量を多くする方向に補正する(S81)。具体的には、補正後のセンサ出力をE1Rとして、E1R=(1+A(t))×Eを計算する。次に、補正後のセンサ出力E1Rが閾値Kより大きいか否かを判断し(S82)、大きい場合には(S82:YES)DPF故障と判定し(S83)、閾値K以下の場合には(S82:NO)DPF正常と判定する(S84)。その後、図18の処理を終了する。 In the process of FIG. 18, when the failure determination timing has arrived (S 79: YES), the actual sensor output E 1 is detected (S 80), and then the sensor output E 1 is integrated correction value A (t (t Correction is performed to increase the amount of PM based on (S81). Specifically, E 1 R = (1 + A (t)) × E 1 is calculated, where the corrected sensor output is E 1 R. Next, it is judged whether or not the sensor output E 1 R after correction is larger than the threshold K (S 82), and if larger (S 82: YES), it is judged as DPF failure (S 83). (S82: NO) It is determined that the DPF is normal (S84). Thereafter, the process of FIG. 18 ends.

このように、本実施形態では、第1実施形態と同様にセンサ出力を補正するので(図19参照)、センサ出力を支燃性ガスによるPM燃焼前の値に近づけることができ、PM燃焼前の状態で、センサ出力と故障判定閾値とを比較できる。これにより、支燃性ガスによるPM燃焼の影響を抑制した形でその故障判定を行うことができ、故障判定の精度低下を抑制できる。なお、図19では、(3)のセンサ出力のみ補正した状態を示している。   As described above, in the present embodiment, since the sensor output is corrected as in the first embodiment (see FIG. 19), the sensor output can be made close to the value before PM combustion by the combustion supporting gas, and before PM combustion. The sensor output and the failure determination threshold can be compared in the state of. As a result, the failure determination can be performed in the form of suppressing the influence of the PM combustion due to the combustion supporting gas, and the decrease in accuracy of the failure determination can be suppressed. FIG. 19 shows a state in which only the sensor output of (3) is corrected.

(他の実施形態)
なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、支燃性ガスとしてNO、NO及びOの各濃度に基づきセンサ出力等の補正を実施したが、NO、NO及びOのうちいずれか1つ又は2つのガス濃度に基づき補正を実施しても良い。これによっても、補正を実施しない場合に比べて、支燃性ガスの影響を抑制した形でDPFの故障判定を行うことができ、故障判定の精度低下を抑制できる。また、NO、NO及びO以外の支燃性ガス(例えば、硫黄酸化物(SOなど))の濃度も考慮して補正を実施しても良い。
(Other embodiments)
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims. For example, in the above embodiment, correction of the sensor output etc. is carried out based on the concentrations of NO, NO 2 and O 2 as the combustion supporting gas, but any one or two of NO, NO 2 and O 2 The correction may be performed based on the gas concentration. Also by this, as compared with the case where correction is not performed, failure determination of the DPF can be performed in a form in which the influence of the gas supporting gas is suppressed, and degradation in accuracy of failure determination can be suppressed. In addition, the correction may be performed in consideration of the concentration of the combustion supporting gas (for example, sulfur oxides (SO 2 and the like)) other than NO, NO 2 and O 2 .

また、上記実施形態では、DPFの故障検出の用途でPMセンサを用いていたが、故障検出以外の用途でPMセンサを用いても良い。例えば、DPFの上流にPMセンサを配置して、このPMセンサを、エンジンから排出されるPM量(DPFに流入するPM量)を検出する用途で用いても良い。このとき、本発明によりセンサ出力を補正することで、支燃性ガスによるPM燃焼が行われる前のPM量を高精度に検出できる。   Moreover, in the said embodiment, although PM sensor was used for the application of the failure detection of DPF, you may use PM sensor in applications other than failure detection. For example, a PM sensor may be disposed upstream of the DPF, and this PM sensor may be used for detecting the amount of PM discharged from the engine (the amount of PM flowing into the DPF). At this time, by correcting the sensor output according to the present invention, it is possible to detect the amount of PM before the PM combustion by the combustion supporting gas is performed with high accuracy.

また、上記実施形態では、ECUが故障判定処理を実行していたが、SCUが故障判定処理を実行しても良いし、故障判定処理の一部の処理はECUが実行し、他の一部の処理はSCUが実行するとしても良い。   In the above embodiment, although the ECU executes the failure determination process, the SCU may execute the failure determination process, or the ECU executes a part of the process of the failure determination process. May be executed by the SCU.

なお、上記実施形態において、PMセンサ13、SCU14及びECU17が本発明のフィルタの故障検出装置及び粒子状物質検出装置に相当する。図9、図12、図14、図16、図18の処理を実行するECU17が本発明の濃度取得手段、温度取得手段、補正手段、故障判定手段、推定手段、タイミング判定手段、算出手段及び積算補正手段に相当する。   In the above embodiment, the PM sensor 13, the SCU 14 and the ECU 17 correspond to the filter failure detection device and the particulate matter detection device of the present invention. 9, FIG. 12, FIG. 14, FIG. 16, FIG. 18 execute the process of the concentration acquisition means, temperature acquisition means, correction means, failure judgment means, estimation means, timing judgment means, calculation means and integration of the present invention. It corresponds to the correction means.

12 DPF(フィルタ)
13 PMセンサ
14 SCU
17 ECU
20 エンジン(内燃機関)
23 排気通路
52 センサ素子(被付着部)
12 DPF (filter)
13 PM sensor 14 SCU
17 ECU
20 engine (internal combustion engine)
23 Exhaust passage 52 Sensor element (adhered portion)

Claims (9)

内燃機関(20)の排気通路(23)に設けられた排気ガス中の粒子状物質を捕集するフィルタ(12)より下流に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S2、S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S3、S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する補正手段(S5、S76、S77、S81、17)と、
前記補正手段による補正後の前記出力値に基づき前記フィルタの故障判定を行う故障判定手段(S6〜S8、S82〜S84、17)と、
を備え
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とするフィルタの故障検出装置。
An attached portion provided downstream of a filter (12) for collecting particulate matter in exhaust gas provided in an exhaust passage (23) of an internal combustion engine (20) and adhering the particulate matter in exhaust gas ( 52), and a sensor (13) for outputting a value corresponding to the amount of particulate matter attached to the attached portion;
Concentration acquisition means (S2, S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S3, S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas;
Correction means (S5, S76, S77) for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition means and the temperature acquired by the temperature acquisition means , S81, 17),
Failure determination means (S6 to S8, S82 to S84, 17) for performing failure determination of the filter based on the output value corrected by the correction means;
Equipped with
The apparatus for detecting a failure of a filter, wherein the concentration acquisition means acquires at least one concentration of NO, NO 2 and O 2 .
内燃機関(20)の排気通路(23)に設けられた排気ガス中の粒子状物質を捕集するフィルタ(12)より下流に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
前記フィルタが故障判定の基準となるフィルタである場合における前記センサの出力値を推定する推定手段(S17、S38、S58、S78、17)と、
前記推定手段が推定した値と、前記センサの実際の出力値との比較に基づき前記フィルタの故障判定を行う故障判定手段(S22〜S24、S42〜S44、S62〜S64、S82〜S84、17)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する出力値補正と、前記推定手段の推定値を、粒子状物質の量を少なくする方向に補正する推定値補正とのいずれかを行う補正手段(S16、S18、S19、S76、S77、S81、17)とを備え、
前記故障判定手段は、前記補正手段による補正後の値を用いて前記フィルタの故障判定を行い、
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とするフィルタの故障検出装置。
An attached portion provided downstream of a filter (12) for collecting particulate matter in exhaust gas provided in an exhaust passage (23) of an internal combustion engine (20) and adhering the particulate matter in exhaust gas ( 52), and a sensor (13) for outputting a value corresponding to the amount of particulate matter attached to the attached portion;
Estimation means (S17, S38, S58, S78, 17) for estimating the output value of the sensor in the case where the filter is a filter serving as a reference for failure determination;
Failure determination means (S22 to S24, S42 to S44, S62 to S64, S82 to S84, 17) for determining the failure of the filter based on comparison between the value estimated by the estimation means and the actual output value of the sensor When,
Concentration acquisition means (S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas,
Output value correction for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition unit and the temperature acquired by the temperature acquisition unit, and the estimation unit Correction means (S16, S18, S19, S76, S77, S81, 17) for performing either of the estimated value correction for correcting the estimated value of P.sub.2 in the direction to reduce the amount of particulate matter.
Said failure determining means, have line failure determination of the filter by using a value corrected by the correction means,
The apparatus for detecting a failure of a filter, wherein the concentration acquisition means acquires at least one concentration of NO, NO 2 and O 2 .
前記推定手段の推定値が所定の第1閾値に到達したタイミングを判定するタイミング判定手段(S20、S40、S59、S79、17)を備え、
前記故障判定手段は、前記タイミング判定手段が判定した前記タイミングにおける前記センサの出力値と、前記第1閾値と同じ値の第2閾値との比較に基づき、前記フィルタの故障判定を行い、
前記補正手段(S16、S18、S19、S36、S37、S39、S56、S57、S61、S76、S77、S81、17)は、前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記出力値補正と、前記推定値補正と、前記第1閾値を粒子状物質の量を多くする方向に補正する第1の閾値補正と、前記第2閾値を粒子状物質の量を少なくする方向に補正する第2の閾値補正とのいずれかを行うことを特徴とする請求項2に記載のフィルタの故障検出装置。
It comprises timing determination means (S20, S40, S59, S79, 17) for determining the timing when the estimated value of the estimation means reaches a predetermined first threshold value,
The failure determination means performs failure determination of the filter based on a comparison between an output value of the sensor at the timing determined by the timing determination means and a second threshold value having the same value as the first threshold value.
The correction means (S16, S18, S19, S36, S37, S39, S56, S57, S61, S76, S77, S81, 17) are the concentration acquired by the concentration acquisition unit and the temperature acquired by the temperature acquisition unit. Based on the output value correction, the estimated value correction, a first threshold value correction for correcting the first threshold value in a direction to increase the amount of particulate matter, and the second threshold value for particulate matter 3. The filter failure detection device according to claim 2, wherein any one of the second threshold value correction that corrects in the direction of decreasing the amount is performed.
前記濃度取得手段(S14、S34、S54、S74、17)及び前記温度取得手段(S15、S35、S55、S75、17)は、各時間での前記濃度及び前記温度を取得し、
前記補正手段(S16、S18、S19、S36、S37、S39、S56、S57、S61、S76、S77、S81、17)は、各時間での前記濃度及び前記温度と、前記被付着部への粒子状物質の捕集開始からの経過時間とを反映させた補正を行うことを特徴とする請求項1〜3のいずれか1項に記載のフィルタの故障検出装置。
The concentration acquisition means (S14, S34, S54, S74, 17) and the temperature acquisition means (S15, S35, S55, S75, 17) acquire the concentration and the temperature at each time,
The correction means (S16, S18, S19, S36, S37, S39, S56, S57, S61, S76, S77, S81, 17) are the concentration and the temperature at each time, and the particles to the adherend portion The filter failure detection apparatus according to any one of claims 1 to 3, wherein the correction is performed in such a manner as to reflect an elapsed time from the start of the collection of the particulate matter.
前記補正手段は、
前記濃度及び前記温度に基づいて、支燃性ガスにより粒子状物質が燃焼することによる前記センサの出力値の単位時間当たりの変化度合いに相当する補正値を各時間ごとに算出する算出手段(S16、S36、S56、S76、17)と、
前記補正値に基づいて各時間における補正対象の単位時間当たりの変化量を補正し、その補正後の変化量を、前記被付着部への捕集開始からの経過時間に亘って積算し、又は前記補正値を前記経過時間に亘って積算した積算補正値に基づいて補正対象の値を補正する積算補正を行う積算補正手段(S18、S19、S37、S39、S57、S61、S77、S81、17)とを備えることを特徴とする請求項4に記載のフィルタの故障検出装置。
The correction means is
Calculation means for calculating a correction value corresponding to the change degree per unit time of the output value of the sensor due to combustion of the particulate matter by the gas supporting gas based on the concentration and the temperature for each time (S16 , S36, S56, S76, 17),
The amount of change per unit time of the correction target at each time is corrected based on the correction value, and the amount of change after the correction is integrated over the elapsed time from the start of collection to the adherend, or Integration correction means (S18, S19, S37, S39, S57, S61, S77, S81, S17, S17, S71, S81, S17) that perform integration correction that corrects the correction target value based on the integration correction value obtained by integrating the correction value over the elapsed time. The failure detection device for a filter according to claim 4 , characterized in that
前記濃度取得手段は、支燃性ガスの種類を特定して前記濃度を取得し、
前記補正手段は、支燃性ガスの種類、前記濃度及び前記温度と、支燃性ガスにより粒子状物質が燃焼することによる前記センサの出力値の変化度合いに相当する補正値との関係データを有しており、その関係データに基づき補正を行うことを特徴とする請求項1〜5のいずれか1項に記載のフィルタの故障検出装置。
The concentration acquisition means specifies the type of the combustion supporting gas and acquires the concentration,
The correction means is related data of the type of the gas supporting gas, the concentration and the temperature, and the correction value corresponding to the change degree of the output value of the sensor due to the burning of the particulate matter by the gas supporting gas. The filter failure detection apparatus according to any one of claims 1 to 5, wherein the filter failure correction device performs correction based on the related data.
前記濃度取得手段は、前記内燃機関の運転条件と、支燃性ガスの濃度との関係データを有しており、その関係データに基づき前記濃度を取得することを特徴とする請求項1〜6のいずれか1項に記載のフィルタの故障検出装置。 The concentration acquisition means, and the operating conditions of the internal combustion engine has a relationship data between the concentration of combustion assisting gas, according to claim 1, wherein obtaining the concentration based on the relationship data The failure detection apparatus for a filter according to any one of the above. 前記濃度取得手段は、前記排気通路に設けられた前記濃度を検出するセンサ(22)から前記濃度を取得することを特徴とする請求項1〜7のいずれか1項に記載のフィルタの故障検出装置。 The filter failure detection according to any one of claims 1 to 7, wherein the concentration acquisition means acquires the concentration from a sensor (22) provided in the exhaust passage for detecting the concentration. apparatus. 内燃機関(20)の排気通路(23)に設けられ、排気ガス中の粒子状物質を付着させる被付着部(52)を有し、その被付着部に付着した粒子状物質の量に応じた値を出力するセンサ(13)と、
排気ガス中に粒子状物質と共存する支燃性ガスの濃度を取得する濃度取得手段(S2、S14、S34、S54、S74、17)と、
排気ガスの温度を取得する温度取得手段(S3、S15、S35、S55、S75、17)と、
前記濃度取得手段が取得した濃度と、前記温度取得手段が取得した温度とに基づいて、前記センサの出力値を、粒子状物質の量を多くする方向に補正する補正手段(S5、S76、S77、S81、17)と、
を備え
前記濃度取得手段は、NO、NO 及びO の少なくとも1つの濃度を取得することを特徴とする粒子状物質検出装置。
An attached portion (52) provided in the exhaust passage (23) of the internal combustion engine (20) to which particulate matter in the exhaust gas adheres, which corresponds to the amount of particulate matter attached to the adhered portion A sensor (13) that outputs a value,
Concentration acquisition means (S2, S14, S34, S54, S74, 17) for acquiring the concentration of the combustion supporting gas coexisting with the particulate matter in the exhaust gas;
Temperature acquisition means (S3, S15, S35, S55, S75, 17) for acquiring the temperature of the exhaust gas;
Correction means (S5, S76, S77) for correcting the output value of the sensor in the direction of increasing the amount of particulate matter based on the concentration acquired by the concentration acquisition means and the temperature acquired by the temperature acquisition means , S81, 17),
Equipped with
The particulate matter detection device according to claim 1 , wherein the concentration acquisition unit acquires the concentration of at least one of NO, NO 2 and O 2 .
JP2015211610A 2015-10-28 2015-10-28 Filter failure detection device, particulate matter detection device Expired - Fee Related JP6505578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211610A JP6505578B2 (en) 2015-10-28 2015-10-28 Filter failure detection device, particulate matter detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211610A JP6505578B2 (en) 2015-10-28 2015-10-28 Filter failure detection device, particulate matter detection device

Publications (2)

Publication Number Publication Date
JP2017083288A JP2017083288A (en) 2017-05-18
JP6505578B2 true JP6505578B2 (en) 2019-04-24

Family

ID=58711769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211610A Expired - Fee Related JP6505578B2 (en) 2015-10-28 2015-10-28 Filter failure detection device, particulate matter detection device

Country Status (1)

Country Link
JP (1) JP6505578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078242B1 (en) * 2019-07-19 2020-04-07 대림로얄이앤피(주) Industrial bioler having auto measuring apparatus to measure exhaust amount of introgen oxides

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459336A (en) * 2018-09-25 2019-03-12 佛山科学技术学院 A kind of detection method and device of hydrogen particle concentration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240679B2 (en) * 2011-01-20 2013-07-17 株式会社デンソー Detection device
DE102011006921A1 (en) * 2011-04-07 2012-10-11 Robert Bosch Gmbh Method for monitoring a catalyst
JP2013108452A (en) * 2011-11-22 2013-06-06 Toyota Motor Corp Device for detecting failure of filter
JP6172466B2 (en) * 2014-03-17 2017-08-02 株式会社デンソー Filter failure detection device and particulate matter detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078242B1 (en) * 2019-07-19 2020-04-07 대림로얄이앤피(주) Industrial bioler having auto measuring apparatus to measure exhaust amount of introgen oxides

Also Published As

Publication number Publication date
JP2017083288A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6201577B2 (en) Diagnostic equipment
EP3067525B1 (en) Failure diagnosis device of emission control system
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP5115873B2 (en) Particulate filter failure detection device
US6735941B2 (en) Exhaust gas purification system having particulate filter
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP6172466B2 (en) Filter failure detection device and particulate matter detection device
EP2061958A1 (en) Catalyst deterioration monitoring system and catalyst deterioration monitoring method
JP2009019557A (en) Exhaust emission control device for internal combustion engine
CN105765200A (en) Abnormality diagnosis system of air-fuel ratio sensors
EP3070281B1 (en) Failure diagnosis device of emission control system
WO2015177970A1 (en) Exhaust purification control device of internal combustion engine
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
JP2006316726A (en) Particulate deposit quantity calculating device
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP6476930B2 (en) Exhaust purification system
WO2015053323A1 (en) Exhaust purification system
JP2015059476A (en) Exhaust purification system of internal combustion engine
WO2015053322A1 (en) Exhaust purification system
JP4192617B2 (en) Exhaust gas purification device for internal combustion engine
JP5131255B2 (en) Air-fuel ratio detection device
JP6201578B2 (en) Diagnostic equipment
JP6380022B2 (en) Sensor control device
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
JP6984696B2 (en) Gas sensor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees