JP2015059476A - Exhaust purification system of internal combustion engine - Google Patents

Exhaust purification system of internal combustion engine Download PDF

Info

Publication number
JP2015059476A
JP2015059476A JP2013193015A JP2013193015A JP2015059476A JP 2015059476 A JP2015059476 A JP 2015059476A JP 2013193015 A JP2013193015 A JP 2013193015A JP 2013193015 A JP2013193015 A JP 2013193015A JP 2015059476 A JP2015059476 A JP 2015059476A
Authority
JP
Japan
Prior art keywords
filter
dpf
internal temperature
exhaust
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013193015A
Other languages
Japanese (ja)
Inventor
直人 村澤
Naoto Murasawa
直人 村澤
英和 藤江
Hidekazu Fujie
英和 藤江
正 内山
Tadashi Uchiyama
正 内山
哲史 塙
Tetsushi Hanawa
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013193015A priority Critical patent/JP2015059476A/en
Publication of JP2015059476A publication Critical patent/JP2015059476A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust purification system of an internal combustion engine which optimizes a fuel injection amount in forcible regeneration.SOLUTION: An exhaust purification system of an internal combustion engine includes a DOC 21 provided in an exhaust system of an engine 10; a DPF22 which is provided in a downstream side of the DOC 21 and collects PM; an electrode 27 which detects the electrostatic capacitance of the DPF 22; a DPF internal temperature calculation unit 51 which calculates an internal temperature of the DPF 22 on the basis of the electrostatic capacitance input from the electrode 27; a forcible regeneration control unit 53 which, when a PM accumulation amount in the DPF 22 reaches to a prescribed amount, carries out forcible regeneration in which fuel is injected into the DOC 21 to combust and remove particulate matters; and an injection amount correction unit 54 which corrects a fuel injection amount of the forcible regeneration control unit 53 on the basis of a temperature difference between a DPF target temperature in the forcible regeneration and the DPF internal temperature input from the DPF internal temperature calculation unit 51.

Description

本発明は、内燃機関の排気浄化装置に関し、特に、内燃機関から排出される排気中の粒子状物質を捕集するフィルタを備える排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus including a filter that collects particulate matter in exhaust gas discharged from the internal combustion engine.

ディーゼルエンジンから排出される排気中の粒子状物質(Particulate Matter、以下、PM)を捕集するフィルタとして、例えば、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPF)が知られている。   For example, a diesel particulate filter (hereinafter referred to as DPF) is known as a filter that collects particulate matter (hereinafter referred to as PM) in exhaust discharged from a diesel engine. .

DPFは、PM捕集量に限度があるため、堆積したPMを定期的に燃焼除去するいわゆる強制再生を行う必要がある。強制再生は、排気管内噴射やポスト噴射によって、排気上流側の酸化触媒(Diesel Oxidation Catalyst:DOC)に未燃焼の炭化水素(HC)を供給して酸化させ、排気温度をPM燃焼温度まで上昇させることで行われる。   Since the DPF has a limit in the amount of collected PM, it is necessary to perform so-called forced regeneration in which accumulated PM is periodically removed by combustion. In forced regeneration, unburned hydrocarbon (HC) is supplied to an oxidation catalyst (Diesel Oxidation Catalyst: DOC) on the exhaust upstream side by oxidization by in-pipe injection or post injection, and the exhaust temperature is raised to the PM combustion temperature. Is done.

一般的に、強制再生時の排気管内噴射量やポスト噴射量は、DPFの前後に設けた排気温度センサのセンサ値に基づいて制御されている(例えば、特許文献1参照)。   In general, the injection amount in the exhaust pipe and the post injection amount at the time of forced regeneration are controlled based on the sensor value of an exhaust temperature sensor provided before and after the DPF (see, for example, Patent Document 1).

特開2010−1860号公報JP 2010-1860 A

ところで、排気温度センサのセンサ値は、実際の排気温度変化に対して応答遅れを生じる課題がある。また、排気温度センサは、DPFの内部に設けることができないため、DPF内部温度を正確に検出できない課題もある。そのため、強制再生を排気温度センサのセンサ値に基づいて行う技術では、排気管内噴射やポスト噴射を最適な噴射量で制御できない可能性がある。   Incidentally, the sensor value of the exhaust temperature sensor has a problem that a response delay occurs with respect to an actual exhaust temperature change. In addition, since the exhaust temperature sensor cannot be provided inside the DPF, there is a problem that the internal temperature of the DPF cannot be accurately detected. For this reason, in the technology that performs forced regeneration based on the sensor value of the exhaust temperature sensor, there is a possibility that injection in the exhaust pipe and post injection cannot be controlled with an optimal injection amount.

本発明の目的は、DPF内部温度を高精度に検出して、強制再生時の燃料噴射量の最適化を図ることにある。   An object of the present invention is to detect the DPF internal temperature with high accuracy and to optimize the fuel injection amount during forced regeneration.

上述の目的を達成するため、本発明の内燃機関の排気浄化装置は、内燃機関の排気系に設けられた酸化触媒と、前記酸化触媒よりも下流側の排気系に設けられて、排気中の粒子状物質を捕集するフィルタと、前記フィルタの静電容量を検出する静電容量検出手段と、前記静電容量検出手段から入力される静電容量に基づいて、前記フィルタの内部温度を演算する内部温度演算手段と、前記フィルタの粒子状物質堆積量が所定量を超えると、前記酸化触媒に燃料を噴射して粒子状物質を燃焼除去する強制再生を実行するフィルタ再生手段と、強制再生時のフィルタ目標温度と、前記内部温度演算手段から入力されるフィルタ内部温度との温度差に基づいて、前記フィルタ再生手段の燃料噴射量を補正する噴射量補正手段と、を備えることを特徴とする。   In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided with an oxidation catalyst provided in an exhaust system of the internal combustion engine, and an exhaust system downstream of the oxidation catalyst. A filter that collects particulate matter, a capacitance detection means that detects the capacitance of the filter, and an internal temperature of the filter is calculated based on the capacitance input from the capacitance detection means An internal temperature calculating means for performing a forced regeneration for injecting fuel to the oxidation catalyst and removing the particulate matter by combustion when a particulate matter accumulation amount of the filter exceeds a predetermined amount, and a forced regeneration Injection amount correction means for correcting the fuel injection amount of the filter regeneration means based on the temperature difference between the filter target temperature at the time and the filter internal temperature input from the internal temperature calculation means. To.

また、前記噴射量補正手段は、前記内部温度演算手段から入力されるフィルタ内部温度を前記フィルタ目標温度に近づけるのに必要な噴射補正量で前記フィルタ再生手段の燃料噴射量を補正することが好ましい。   Further, it is preferable that the injection amount correcting means corrects the fuel injection amount of the filter regeneration means with an injection correction amount necessary to bring the filter internal temperature input from the internal temperature calculating means close to the filter target temperature. .

また、前記静電容量検出手段が、前記フィルタ内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成されてもよい。   Further, the capacitance detection means may be composed of at least a pair of electrodes that are disposed opposite to each other with one or more partition walls in the filter to form a capacitor.

本発明の内燃機関の排気浄化装置によれば、DPF内部温度を高精度に検出することが可能となり、強制再生時の燃料噴射量の最適化を図ることができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, the internal temperature of the DPF can be detected with high accuracy, and the fuel injection amount during forced regeneration can be optimized.

本発明の一実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本実施形態のECUを示す機能ブロック図である。It is a functional block diagram which shows ECU of this embodiment. 本実施形態の温度特性マップの一例を示す図である。It is a figure which shows an example of the temperature characteristic map of this embodiment. 本実施形態の堆積量マップの一例を示す図である。It is a figure which shows an example of the deposition amount map of this embodiment. 本実施形態の噴射量補正マップの一例を示す図である。It is a figure which shows an example of the injection quantity correction map of this embodiment. 本実施形態の制御内容を示すフローチャートである。It is a flowchart which shows the control content of this embodiment. 電極間の静電容量と排気温度センサのセンサ値とを比較した図である。It is the figure which compared the electrostatic capacitance between electrodes, and the sensor value of an exhaust temperature sensor. 他の実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the exhaust gas purification apparatus of the internal combustion engine which concerns on other embodiment.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust emission control device according to an embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気を大気に放出する排気通路12が接続されている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.

吸気通路11には、吸気上流側から順に、エアクリーナ13、MAFセンサ14、過給機15のコンプレッサ15a、インタークーラ16、吸気スロットルバルブ17等が設けられている。排気通路12には、排気上流側から順に、過給機15のタービン15b、排気後処理装置20等が設けられている。   In the intake passage 11, an air cleaner 13, a MAF sensor 14, a compressor 15 a of the supercharger 15, an intercooler 16, an intake throttle valve 17, and the like are provided in order from the intake upstream side. In the exhaust passage 12, a turbine 15 b of the supercharger 15, an exhaust aftertreatment device 20, and the like are provided in order from the exhaust upstream side.

排気後処理装置20は、触媒ケース20a内に排気上流側から順に、DOC21と、DPF22とを配置して構成されている。また、DOC21の排気上流側には排気管内噴射装置23が設けられている。   The exhaust aftertreatment device 20 is configured by arranging a DOC 21 and a DPF 22 in order from the exhaust upstream side in a catalyst case 20a. An exhaust pipe injection device 23 is provided on the exhaust upstream side of the DOC 21.

排気管内噴射装置23は、本発明のフィルタ再生手段の一部であって、ECU50から入力される指示信号(パルス電流)に応じて、排気通路12内に未燃燃料(主にHC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置23を省略してもよい。   The exhaust pipe injection device 23 is a part of the filter regeneration means of the present invention, and injects unburned fuel (mainly HC) into the exhaust passage 12 in accordance with an instruction signal (pulse current) input from the ECU 50. To do. In addition, when using post injection by the multistage injection of the engine 10, this in-pipe injection device 23 may be omitted.

DOC21は、例えば、コーディエライトハニカム構造体等のセラミック製担体表面に触媒成分を担持して形成されている。DOC21は、排気管内噴射装置23又はポスト噴射によってHCが供給されると、これを酸化して排気温度を上昇させる。   The DOC 21 is formed, for example, by supporting a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When HC is supplied by the in-pipe injection device 23 or post-injection, the DOC 21 oxidizes this and raises the exhaust temperature.

DPF22は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。DPF22は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積量が所定量に達すると、これを燃焼除去するいわゆる強制再生が実行される。強制再生は、排気管内噴射装置23又はポスト噴射によってDOC21に未燃燃料(HC)を供給し、DPF22に流入する排気温度をPM燃焼温度(例えば、約500〜600℃)まで昇温することで行われる。   The DPF 22 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. The DPF 22 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the amount of accumulated PM reaches a predetermined amount, so-called forced regeneration for performing combustion removal is executed. In forced regeneration, unburned fuel (HC) is supplied to the DOC 21 by the exhaust pipe injection device 23 or post injection, and the exhaust temperature flowing into the DPF 22 is raised to the PM combustion temperature (for example, about 500 to 600 ° C.). Done.

また、本実施形態のDPF22には、少なくとも一個以上の隔壁を挟んで対向配置されてコンデンサを形成する複数本の電極27が設けられている。これら複数本の電極27は、本発明の静電容量検出手段の一例として好ましい。   In addition, the DPF 22 of the present embodiment is provided with a plurality of electrodes 27 that are arranged to face each other with at least one partition wall therebetween to form a capacitor. The plurality of electrodes 27 are preferable as an example of the capacitance detection means of the present invention.

ECU50は、エンジン10や排気管内噴射装置23等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。   The ECU 50 performs various controls of the engine 10, the exhaust pipe injection device 23, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.

また、ECU50は、図2に示すように、DPF内部温度演算部51と、PM堆積量演算部52と、強制再生制御部53と、噴射量補正部54とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   Further, as shown in FIG. 2, the ECU 50 includes a DPF internal temperature calculation unit 51, a PM accumulation amount calculation unit 52, a forced regeneration control unit 53, and an injection amount correction unit 54 as some functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.

DPF内部温度演算部51は、本発明の内部温度演算手段の一例であって、電極27間の静電容量Cに基づいて、DPF22の内部温度TDPFを演算する。一般的に、電極27間の静電容量Cは、電極27間の媒体の誘電率ε、電極27の面積S、電極27間の距離dとする以下の数式1で表される。 DPF internal temperature calculation unit 51 is an example of an internal temperature calculating means of the present invention, based on the electrostatic capacitance C between the electrodes 27, and calculates the internal temperature T DPF of the DPF 22. In general, the capacitance C between the electrodes 27 is expressed by the following mathematical formula 1, where the dielectric constant ε of the medium between the electrodes 27, the area S of the electrodes 27, and the distance d between the electrodes 27.

Figure 2015059476
Figure 2015059476

数式1において、電極27の面積S及び距離dは一定であり、誘電率εが排気温度の影響を受けて変化すると、これに伴い静電容量Cも変化する。すなわち、電極27間の静電容量Cを検出すれば、DPF内部温度TDPFを演算することができる。ECU50には、予め実験等により求めた静電容量CとDPF内部温度TDPFとの関係を示す温度特性マップ(例えば、図3参照)が記憶されている。DPF内部温度演算部51は、この温度特性マップから電極27間の静電容量Cに対応する値を読み取ることでDPF内部温度TDPFを演算する。なお、DPF内部温度TDPFは、予め実験等により求めた近似式等から演算してもよい。 In Formula 1, the area S and the distance d of the electrode 27 are constant, and when the dielectric constant ε changes under the influence of the exhaust temperature, the capacitance C also changes accordingly. That is, if the capacitance C between the electrodes 27 is detected, the DPF internal temperature TDPF can be calculated. The ECU 50 stores a temperature characteristic map (see, for example, FIG. 3) indicating the relationship between the capacitance C obtained in advance through experiments or the like and the DPF internal temperature TDPF . DPF internal temperature calculation unit 51 calculates the DPF internal temperature T DPF by reading the corresponding value from the temperature characteristic map in the electrostatic capacitance C between the electrodes 27. Note that the DPF internal temperature T DPF may be calculated from an approximate expression obtained in advance through experiments or the like.

PM堆積量演算部52は、電極27間の静電容量Cに基づいて、DPF22に捕集されたPM堆積量PMDEPを演算する。上述の数式1において、電極27間にPMの堆積が進み、誘電率εや距離dが変化すると、これに伴い静電容量Cも変化する。すなわち、電極27間の静電容量Cを検出すれば、PM堆積量PMDEPを演算することができる。ECU50には、予め実験等により求めた静電容量CとPM堆積量PMDEPとの関係を示す堆積量マップ(例えば、図4参照)が記憶されている。PM堆積量演算部52は、この堆積量マップから電極27間の静電容量Cに対応する値を読み取ることでPM堆積量PMDEPを演算する。なお、PM堆積量PMDEPは、予め実験等により求めた近似式等から演算してもよい。 The PM deposition amount calculation unit 52 calculates the PM deposition amount PM DEP collected by the DPF 22 based on the capacitance C between the electrodes 27. In the above Equation 1, when the deposition of PM proceeds between the electrodes 27 and the dielectric constant ε and the distance d change, the capacitance C also changes accordingly. That is, if the capacitance C between the electrodes 27 is detected, the PM deposition amount PM DEP can be calculated. The ECU 50 stores a deposition amount map (see, for example, FIG. 4) indicating the relationship between the capacitance C and the PM deposition amount PM DEP obtained in advance through experiments or the like. The PM deposition amount calculation unit 52 calculates the PM deposition amount PM DEP by reading a value corresponding to the capacitance C between the electrodes 27 from the deposition amount map. Note that the PM accumulation amount PM DEP may be calculated from an approximate expression or the like obtained in advance through experiments or the like.

強制再生制御部53は、本発明のフィルタ再生手段の一例であって、PM堆積量演算部52から入力されるPM堆積量PMDEPに基づいて、DPF22の強制再生を制御する。より詳しくは、強制再生制御部53は、PM堆積量PMDEPがDPF22に捕集可能なPMの上限堆積量PMMAXを超えると(PMDEP>PMMAX)、排気管内噴射装置23に所定量の排気管内噴射を実行させて強制再生を開始する。この強制再生時の排気管内噴射量は、後述する噴射量補正部54によって必要に応じて補正される。 The forced regeneration control unit 53 is an example of the filter regeneration unit of the present invention, and controls the forced regeneration of the DPF 22 based on the PM accumulation amount PM DEP input from the PM accumulation amount calculation unit 52. More specifically, when the PM accumulation amount PM DEP exceeds the upper PM accumulation amount PM MAX that can be collected in the DPF 22 (PM DEP > PM MAX ), the forced regeneration control unit 53 applies a predetermined amount to the in-pipe injection device 23. The forced regeneration is started by executing the exhaust pipe injection. The injection amount in the exhaust pipe at the time of this forced regeneration is corrected as necessary by an injection amount correction unit 54 described later.

噴射量補正部54は、DPF内部温度演算部51から入力されるDPF内部温度TDPFと、DPF22内のPMを略完全に燃焼除去させる目標温度TTARGTとの温度差ΔTに基づいて、強制再生時の燃料噴射量を補正する。より詳しくは、ECU50には、予め実験等により求めた温度差ΔTと、この温度差ΔTを補うのに必要な噴射補正量ΔINJとの関係を示す噴射量補正マップ(例えば、図5参照)が記憶されている。強制再生時の排気管内噴射量INJQ_exhは、噴射量補正マップから温度差ΔTに応じた噴射補正量ΔINJを読み取ると共に、読み取った噴射補正量ΔINJを基本噴射量INJQ_stdに加算もしくは減算することで設定される(INJQ_exh=INJQ_std+/−ΔINJ)。補正後の燃料噴射は、排気管内噴射装置23のインジェクタに印加される各噴射の通電パルス幅を増減させるか、あるいは噴射回数を増減することで実行される。 The injection amount correction unit 54 performs forced regeneration based on the temperature difference ΔT between the DPF internal temperature T DPF input from the DPF internal temperature calculation unit 51 and the target temperature T TARGT that substantially completely burns and removes the PM in the DPF 22. Correct the fuel injection amount at the time. More specifically, the ECU 50 has an injection amount correction map (for example, see FIG. 5) showing the relationship between the temperature difference ΔT obtained in advance by experiments or the like and the injection correction amount ΔINJ necessary to compensate for the temperature difference ΔT. It is remembered. The exhaust pipe injection amount INJ Q_exh during forced regeneration is obtained by reading the injection correction amount ΔINJ corresponding to the temperature difference ΔT from the injection amount correction map and adding or subtracting the read injection correction amount ΔINJ to the basic injection amount INJ Q_std. It is set (INJ Q_exh = INJ Q_std +/- ΔINJ). The corrected fuel injection is executed by increasing or decreasing the energization pulse width of each injection applied to the injector of the in-pipe injection device 23, or by increasing or decreasing the number of injections.

次に、図6に基づいて、本実施形態の排気浄化装置による制御フローを説明する。なお、本制御はイグニッションキーのON操作と同時にスタートする。   Next, based on FIG. 6, the control flow by the exhaust emission control device of the present embodiment will be described. Note that this control starts simultaneously with the ON operation of the ignition key.

ステップ(以下、ステップを単にSと記載する)100では、静電容量Cから取得されるPM堆積量PMDEPが上限堆積量PMMAXを超えたか否かが判定される。PM堆積量PMDEPが上限堆積量PMMAXを超えた場合(Yes)は、DPF22の強制再生を開始すべく、S110に進む。 In step (hereinafter, step is simply referred to as S) 100, it is determined whether or not the PM deposition amount PM DEP acquired from the capacitance C exceeds the upper limit deposition amount PM MAX . When the PM deposition amount PM DEP exceeds the upper limit deposition amount PM MAX (Yes), the process proceeds to S110 in order to start the forced regeneration of the DPF 22.

S110では、静電容量Cから取得されるDPF内部温度TDPFと目標温度TTARGTとが比較される。目標温度TTARGTとDPF内部温度TDPFとの温度差ΔT(絶対値)がゼロよりも大きい場合(Yes)は、S120に進む。一方、温度差ΔTがゼロの場合(No)は、排気管内噴射を基本噴射量INJQ_stdで実行しても、DPF内部温度TDPFを目標温度TTARGTまで上昇させられる。この場合は、S140に進んで、基本噴射量INJQ_stdで排気管内噴射が実行される。 In S110, DPF internal temperature T DPF obtained from the capacitance C and the target temperature T TARGT are compared. If the temperature difference between the target temperature T TARGT and DPF internal temperature T DPF [Delta] T (absolute value) is greater than zero (Yes), the process proceeds to S120. On the other hand, when the temperature difference ΔT is zero (No), the DPF internal temperature T DPF can be raised to the target temperature T TARGT even if the exhaust pipe injection is executed with the basic injection amount INJ Q_std . In this case, the process proceeds to S140, and the injection into the exhaust pipe is executed with the basic injection amount INJ Q_std .

S120では、温度差ΔTに応じて噴射量補正マップから読み取った噴射補正量ΔINJを基本噴射量INJQ_stdに加算又は減算する噴射量補正(INJQ_exh=INJQ_std+/−ΔINJ)が実行され、S130では、補正後の排気管内噴射量INJQ_exhに基づいて排気管内噴射が実行される。 In S120, an injection amount correction (INJ Q_exh = INJ Q_std +/− ΔINJ) is performed in which the injection correction amount ΔINJ read from the injection amount correction map according to the temperature difference ΔT is added to or subtracted from the basic injection amount INJ Q_std. Then, the exhaust pipe injection is executed based on the corrected exhaust pipe injection amount INJ Q_exh .

S150では、PM堆積量PMDEPがDPF22の再生終了を示す下限閾値PMMINまで低下したか否かが判定される。PM堆積量PMDEPが下限閾値PMMINまで低下している場合(Yes)は、S160で排気管内噴射を停止して本制御はリターンされる。その後、S100〜160の各制御ステップは、イグニッションキーのOFF操作まで繰り返し実行される。 In S150, it is determined whether or not the PM deposition amount PM DEP has decreased to a lower limit threshold value PM MIN indicating the end of regeneration of the DPF 22. If the PM accumulation amount PM DEP has decreased to the lower threshold PM MIN (Yes), the injection in the exhaust pipe is stopped in S160 and the present control is returned. Thereafter, each control step of S100 to S160 is repeatedly executed until the ignition key is turned off.

次に、本実施形態に係る内燃機関の排気浄化装置による作用効果を説明する。   Next, functions and effects of the exhaust gas purification apparatus for an internal combustion engine according to this embodiment will be described.

図7に示すように、電極27間の静電容量Cは、排気温度(DPF内部温度)の変化に対して排気温度センサのセンサ値よりも速い応答性を示す特性がある。すなわち、DPF22内に配置した電極27間の静電容量Cを用いれば、DPF22の前後に設けた排気温度センサのセンサ値よりも、DPF22の内部温度を正確に検出することが可能になる。   As shown in FIG. 7, the capacitance C between the electrodes 27 has a characteristic that shows a quicker response than the sensor value of the exhaust temperature sensor with respect to a change in the exhaust temperature (DPF internal temperature). That is, if the capacitance C between the electrodes 27 arranged in the DPF 22 is used, the internal temperature of the DPF 22 can be detected more accurately than the sensor value of the exhaust temperature sensor provided before and after the DPF 22.

本実施形態の排気浄化装置では、電極27間の静電容量Cから演算したDPF内部温度TDPFと目標温度TTARGTとの温度差ΔTに基づいて、強制再生時の排気管内噴射量(又は、ポスト噴射量)を補正している。すなわち、排気温度センサのセンサ値に基づいた従来技術に比べ、DPF内部温度TDPFを正確に検出することで、強制再生時における排気管内噴射量の最適化が図られるように構成されている。 In the exhaust emission control device of the present embodiment, the injection amount in the exhaust pipe at the time of forced regeneration (or, based on the temperature difference ΔT between the DPF internal temperature T DPF calculated from the capacitance C between the electrodes 27 and the target temperature T TARGT The post injection amount is corrected. That is, as compared with the conventional technique based on the sensor value of the exhaust temperature sensor, the DPF internal temperature TDPF is accurately detected, so that the exhaust pipe injection amount at the time of forced regeneration is optimized.

したがって、本実施形態の排気浄化装置によれば、強制再生時の燃料噴射量を正確に制御することが可能となり、DPF22の再生効率を効果的に向上することができる。また、DPF22の前後に排気温度センサを設ける必要がなくなり、装置全体のコストを効果的に低減することも可能になる。   Therefore, according to the exhaust emission control device of the present embodiment, the fuel injection amount at the time of forced regeneration can be accurately controlled, and the regeneration efficiency of the DPF 22 can be effectively improved. Further, it is not necessary to provide an exhaust temperature sensor before and after the DPF 22, and the cost of the entire apparatus can be effectively reduced.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、DPF22とDOC21とは別体に設けられるものとして説明したが、これらを一体化してもよい。また、エンジン10はディーゼルエンジンに限定されず、ガソリンエンジン等の他の内燃機関にも広く適用することが可能である。   For example, although DPF22 and DOC21 were demonstrated as what is provided separately, you may integrate these. Further, the engine 10 is not limited to a diesel engine, and can be widely applied to other internal combustion engines such as a gasoline engine.

また、図8に示すように、排気通路12にDPF22を迂回させるバイパス通路25を接続し、このバイパス通路25に容量の小さい計測用DPF22aを備えて構成してもよい。この場合は、電極27を計測用DPF22a内に配置すると共に、バイパス通路25には排気流量を調整するオリフィス25a(絞り)を設けることが好ましい。また、計測用DPF22aの強制再生を実行する場合は、電極27に電圧を印加してヒータとして機能させてもよい。   Further, as shown in FIG. 8, a bypass passage 25 for bypassing the DPF 22 may be connected to the exhaust passage 12, and the bypass passage 25 may be provided with a measuring DPF 22a having a small capacity. In this case, it is preferable to arrange the electrode 27 in the measurement DPF 22a and provide the bypass passage 25 with an orifice 25a (throttle) for adjusting the exhaust gas flow rate. When forced regeneration of the measurement DPF 22a is performed, a voltage may be applied to the electrode 27 to cause it to function as a heater.

10 エンジン
12 排気通路
20 排気後処理装置
21 DOC
22 DPF
23 排気管内噴射装置
27 電極
50 ECU
51 DPF内部温度演算部
52 PM堆積量演算部
53 強制再生制御部
54 噴射量補正部
10 engine 12 exhaust passage 20 exhaust aftertreatment device 21 DOC
22 DPF
23 Exhaust pipe injection device 27 Electrode 50 ECU
51 DPF internal temperature calculation unit 52 PM accumulation amount calculation unit 53 forced regeneration control unit 54 injection amount correction unit

Claims (3)

内燃機関の排気系に設けられた酸化触媒と、
前記酸化触媒よりも下流側の排気系に設けられて、排気中の粒子状物質を捕集するフィルタと、
前記フィルタの静電容量を検出する静電容量検出手段と、
前記静電容量検出手段から入力される静電容量に基づいて、前記フィルタの内部温度を演算する内部温度演算手段と、
前記フィルタの粒子状物質堆積量が所定量を超えると、前記酸化触媒に燃料を噴射して粒子状物質を燃焼除去する強制再生を実行するフィルタ再生手段と、
強制再生時のフィルタ目標温度と、前記内部温度演算手段から入力されるフィルタ内部温度との温度差に基づいて、前記フィルタ再生手段の燃料噴射量を補正する噴射量補正手段と、を備える
ことを特徴とする内燃機関の排気浄化装置。
An oxidation catalyst provided in the exhaust system of the internal combustion engine;
A filter that is provided in an exhaust system downstream of the oxidation catalyst and collects particulate matter in the exhaust;
Capacitance detecting means for detecting the capacitance of the filter;
Internal temperature calculation means for calculating the internal temperature of the filter based on the capacitance input from the capacitance detection means;
Filter regeneration means for performing forced regeneration for injecting fuel to the oxidation catalyst and burning and removing particulate matter when the particulate matter accumulation amount of the filter exceeds a predetermined amount;
Injection amount correction means for correcting the fuel injection amount of the filter regeneration means based on the temperature difference between the filter target temperature during forced regeneration and the filter internal temperature input from the internal temperature calculation means. An exhaust gas purification apparatus for an internal combustion engine characterized by the above.
前記噴射量補正手段は、前記内部温度演算手段から入力されるフィルタ内部温度を前記フィルタ目標温度に近づけるのに必要な噴射補正量で前記フィルタ再生手段の燃料噴射量を補正する
請求項1に記載の内燃機関の排気浄化装置。
The injection amount correction unit corrects the fuel injection amount of the filter regeneration unit with an injection correction amount necessary to bring the filter internal temperature input from the internal temperature calculation unit closer to the filter target temperature. Exhaust gas purification device for internal combustion engine.
前記静電容量検出手段が、前記フィルタ内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成される
請求項1又は2に記載の内燃機関の排気浄化装置。
3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the electrostatic capacitance detection means is configured by at least a pair of electrodes that are disposed opposite to each other with one or more partition walls in the filter to form a capacitor.
JP2013193015A 2013-09-18 2013-09-18 Exhaust purification system of internal combustion engine Pending JP2015059476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013193015A JP2015059476A (en) 2013-09-18 2013-09-18 Exhaust purification system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193015A JP2015059476A (en) 2013-09-18 2013-09-18 Exhaust purification system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015059476A true JP2015059476A (en) 2015-03-30

Family

ID=52817211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193015A Pending JP2015059476A (en) 2013-09-18 2013-09-18 Exhaust purification system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2015059476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923294A (en) * 2015-07-31 2018-04-17 五十铃自动车株式会社 Emission-control equipment
JP2018184932A (en) * 2017-04-27 2018-11-22 株式会社豊田自動織機 Exhaust processing device
CN110494634A (en) * 2017-04-24 2019-11-22 五十铃自动车株式会社 Filter regeneration control device and filter regeneration control method
CN113153500A (en) * 2021-05-07 2021-07-23 潍柴动力股份有限公司 Method and device for determining DOC fuel injection quantity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505665A (en) * 1990-08-03 1992-10-01 アトミック エナジー オブ カナダ リミテッド Method and apparatus for detecting the amount of soot deposited in a particle trap
JP2007230302A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Exhaust purification device for diesel hybrid vehicle
JP2010151554A (en) * 2008-12-24 2010-07-08 Honda Motor Co Ltd Particulate substance detector
JP2011185213A (en) * 2010-03-10 2011-09-22 Isuzu Motors Ltd Dpf fault detection method and dpf fault detection device
JP2012246830A (en) * 2011-05-27 2012-12-13 Isuzu Motors Ltd Dpf-regeneration finish time determination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505665A (en) * 1990-08-03 1992-10-01 アトミック エナジー オブ カナダ リミテッド Method and apparatus for detecting the amount of soot deposited in a particle trap
JP2007230302A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Exhaust purification device for diesel hybrid vehicle
JP2010151554A (en) * 2008-12-24 2010-07-08 Honda Motor Co Ltd Particulate substance detector
JP2011185213A (en) * 2010-03-10 2011-09-22 Isuzu Motors Ltd Dpf fault detection method and dpf fault detection device
JP2012246830A (en) * 2011-05-27 2012-12-13 Isuzu Motors Ltd Dpf-regeneration finish time determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923294A (en) * 2015-07-31 2018-04-17 五十铃自动车株式会社 Emission-control equipment
CN110494634A (en) * 2017-04-24 2019-11-22 五十铃自动车株式会社 Filter regeneration control device and filter regeneration control method
JP2018184932A (en) * 2017-04-27 2018-11-22 株式会社豊田自動織機 Exhaust processing device
CN113153500A (en) * 2021-05-07 2021-07-23 潍柴动力股份有限公司 Method and device for determining DOC fuel injection quantity
CN113153500B (en) * 2021-05-07 2022-11-29 潍柴动力股份有限公司 Method and device for determining DOC fuel injection quantity

Similar Documents

Publication Publication Date Title
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
US10030567B2 (en) Exhaust purification device
JP6051948B2 (en) Exhaust gas purification device for internal combustion engine
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
CN106715874B (en) regeneration device for exhaust gas purification device
WO2015053323A1 (en) Exhaust purification system
JP2015059476A (en) Exhaust purification system of internal combustion engine
WO2015053322A1 (en) Exhaust purification system
JP6179377B2 (en) Exhaust purification device
JP6206065B2 (en) Exhaust purification system
JP2015059477A (en) Exhaust purification system of internal combustion engine
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP2016223336A (en) Exhaust emission control device, control device and control method
WO2014115621A1 (en) Exhaust purification device for internal combustion engine
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
JP2015059478A (en) Exhaust purification system of internal combustion engine
JP2015110921A (en) Exhaust emission control system
JP2020026732A (en) Detection device, detection method and exhaust emission control device having detection device
JP2016153638A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313