JP2008157200A - Abnormality detection device for exhaust emission control device - Google Patents

Abnormality detection device for exhaust emission control device Download PDF

Info

Publication number
JP2008157200A
JP2008157200A JP2006350134A JP2006350134A JP2008157200A JP 2008157200 A JP2008157200 A JP 2008157200A JP 2006350134 A JP2006350134 A JP 2006350134A JP 2006350134 A JP2006350134 A JP 2006350134A JP 2008157200 A JP2008157200 A JP 2008157200A
Authority
JP
Japan
Prior art keywords
filter
value
differential pressure
exhaust
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006350134A
Other languages
Japanese (ja)
Inventor
Hideyuki Takahashi
英行 高橋
Tadao Kobayashi
忠雄 小林
Kouji Oguchi
幸司 尾口
Yoshiaki Moroguchi
慶明 諸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006350134A priority Critical patent/JP2008157200A/en
Priority to DE112007002658T priority patent/DE112007002658T5/en
Priority to PCT/JP2007/074106 priority patent/WO2008078578A1/en
Publication of JP2008157200A publication Critical patent/JP2008157200A/en
Priority to US12/371,022 priority patent/US20090145111A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detection device for a filter in an exhaust filtration device capable of constantly correctly detecting an abnormality in the filter. <P>SOLUTION: The exhaust emission control device is provided with a filter in an exhaust passage of an internal combustion engine to collect particulates in exhaust, and a differential pressure sensor to detect differential pressure between the upstream side and the downstream side of the filter. The abnormality detection device for the exhaust emission control device is provided with a differential pressure determination means to determine the value of differential pressure between the upstream side and the downstream side of the filter based on the operation state of the internal combustion engine, and a determination means to detect whether the filter has an abnormality by determining the value of a difference P between the actual measurement of a pressure difference between the upstream and the downstream of the filter detected by the differential pressure sensor and the value of differential pressure determined by the differential pressure determination means, and compare the difference P with a threshold. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、DPFなどの排気濾過装置における、排気浄化装置の異常検出装置に関する。   The present invention relates to an abnormality detection device for an exhaust purification device in an exhaust filtration device such as a DPF.

排気濾過装置、例えばDPF(Diesel Particulate Filter)装置は、内部にフィルタを具え、エンジンの排気ガス中に含まれる微粒子をフィルタで捕捉して、排気ガスを浄化する。フィルタは、捕捉された微粒子で目詰まりを起こすことから、適宜煤分を燃焼させたり、交換、清掃を促すようになっている。またDPF装置における排気抵抗の増加は、背圧の増加をもたらしエンジンの制御に影響を与えることがある。   An exhaust filtration device, for example, a DPF (Diesel Particulate Filter) device includes a filter therein, and traps particulates contained in the exhaust gas of the engine with the filter to purify the exhaust gas. Since the filter is clogged with trapped fine particles, the filter is appropriately combusted, replaced or cleaned. In addition, an increase in exhaust resistance in the DPF device may increase the back pressure and affect engine control.

そのためDPF装置は、フィルタの上流側と下流側の間の圧力差を計測する差圧センサを具え、かかる差圧センサからの値に基づき、フィルタが微粒子成分により目詰まりしているか否かを判定し、目詰まりしている場合には、手動燃焼を運転者に促したり、エンジン制御に利用するため制御装置にかかる信号を送出している。   Therefore, the DPF device includes a differential pressure sensor that measures the pressure difference between the upstream side and the downstream side of the filter, and determines whether or not the filter is clogged with particulate components based on the value from the differential pressure sensor. In the case of clogging, the driver is prompted to perform manual combustion, or a signal is sent to the control device for use in engine control.

このようにDPF装置におけるフィルタは、車両の走行や、環境に与える影響が大きく重要である一方、使用中に大きな温度変化と圧力変動、更に振動等を受ける。フィルタは通常、表面に微細な孔を多数有するセラミックなどから形成されており、場合によっては、上記負荷によりクラックや溶損により排気ガスの漏れが発生する場合も考えられる。   As described above, the filter in the DPF device has a great influence on the running of the vehicle and the environment, and is greatly affected by the temperature change, pressure fluctuation, vibration and the like during use. The filter is usually formed of a ceramic having a large number of fine holes on its surface, and in some cases, the exhaust gas may leak due to cracks or melting due to the load.

したがって、フィルタに微粒子が堆積すると堆積した微粒子により差圧センサの計測値が増加するが、万一クラックや溶損がフィルタに生じていると、微粒子堆積による差圧増加分を相殺し、微粒子が堆積しているにもかかわらず差圧センサが正常値を示すことがありうる。   Therefore, when fine particles accumulate on the filter, the measured value of the differential pressure sensor increases due to the accumulated fine particles. However, if a crack or erosion occurs in the filter, the increase in the differential pressure due to fine particle accumulation is offset, It is possible that the differential pressure sensor shows a normal value despite the accumulation.

そこで例えば、特開2003−155920号公報には、パティキュレートフィルタの異常検知装置の発明が記載されている。これは、パティキュレートフィルタの前後の差圧を差圧センサで求め、その差圧値にアッシュ堆積分を補償し、パティキュレートフィルタの目詰まりや溶損を判定している。
特開2003−155920号公報
Therefore, for example, Japanese Patent Application Laid-Open No. 2003-155920 describes an invention of an abnormality detecting device for a particulate filter. In this method, the differential pressure before and after the particulate filter is obtained by a differential pressure sensor, the ash accumulation is compensated for by the differential pressure value, and clogging or melting damage of the particulate filter is determined.
JP 2003-155920 A

しかしながら、従来のパティキュレートフィルタの異常検知装置においては、次のような課題を有していた。
パティキュレートフィルタの異常検知装置は、エンジンが定常状態にあると判定されたときのみ故障の診断が開始される。また判定に用いられる閾値は、エンジン回転数と燃料噴射量の所定時間の平均値より求められるため、定常状態が所定時間継続しないと閾値が決定されず、診断が実施されない。
However, the conventional particulate filter abnormality detection device has the following problems.
The abnormality detection device for the particulate filter starts a failure diagnosis only when it is determined that the engine is in a steady state. Further, since the threshold value used for the determination is obtained from the average value of the engine speed and the fuel injection amount for a predetermined time, unless the steady state continues for a predetermined time, the threshold value is not determined and diagnosis is not performed.

更に閾値は、微粒子の堆積量が関与せず決定されるため、予め微粒子の堆積による排圧増加を見込んだ閾値の決定が必要とされる。ところが差圧の補正に用いられるアッシュ算出堆積値は、走行距離を基に比例計算にて算出するため、運転履歴の違いによるアッシュ堆積量の差が反映されないこととなる。   Further, since the threshold value is determined without involving the deposition amount of the fine particles, it is necessary to determine the threshold value in advance to increase the exhaust pressure due to the deposition of the fine particles. However, since the ash calculation accumulation value used for correcting the differential pressure is calculated by proportional calculation based on the travel distance, a difference in ash accumulation amount due to a difference in operation history is not reflected.

本発明は上記課題を解決し、正確にフィルタの故障を検出できる、排気濾過装置の異常検出装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide an abnormality detection device for an exhaust filtration device that can accurately detect a filter failure.

本発明は、上記課題を解決するため排気濾過装置の異常検出装置を次のように構成した。
1、 内燃機関の排気通路に設けられ、排気中の微粒子を捕集するフィルタと、前記フィルタの上流側と下流側の間に生じる圧力差を検出する差圧センサとを備えた排気浄化装置であり、前記内燃機関の運転状態に基づき前記フィルタの上下流での圧力差の値を算出する差圧値算出手段と、前記差圧センサによって検出された前記フィルタの上下流間での圧力差の実測値と前記差圧値算出手段からの算出差圧値との差Pの値を算出し、該差Pと閾値を比較して、前記フィルタに異常があることを検出する判定手段とを具えて排気浄化装置の異常検出装置を構成した。
In order to solve the above-mentioned problems, the present invention is configured as follows.
1. An exhaust emission control device provided in an exhaust passage of an internal combustion engine and comprising a filter for collecting particulates in exhaust gas and a differential pressure sensor for detecting a pressure difference generated between an upstream side and a downstream side of the filter A differential pressure value calculating means for calculating a pressure difference value between the upstream and downstream sides of the filter based on an operating state of the internal combustion engine; and a pressure difference between the upstream and downstream sides of the filter detected by the differential pressure sensor. Determining means for calculating a value of a difference P between the actually measured value and the calculated differential pressure value from the differential pressure value calculating means, comparing the difference P with a threshold value, and detecting that there is an abnormality in the filter; In this way, an abnormality detection device for the exhaust gas purification device was constructed.

2、前記判定手段は、前記フィルタの目詰まり判定に用いる第1の閾値と、該フィルタのリーク判定に用いる第2の閾値を有し、前記差Pの値が前記第1の閾値を超えた場合、あるいは該差Pの値が前記第2の閾値を上回った場合に前記フィルタに異常があると判断することとした。   2. The determination means has a first threshold value used for determining clogging of the filter and a second threshold value used for determining leakage of the filter, and the value of the difference P exceeds the first threshold value In this case, or when the value of the difference P exceeds the second threshold value, it is determined that the filter is abnormal.

3、前記第1の閾値は、排気流量と、前記フィルタに堆積したスート算出堆積値およびアッシュ算出堆積値に基づく目詰まり用係数から、かつ前記第2の閾値は、排気流量と、前記フィルタに堆積したスート算出堆積値およびアッシュ算出堆積値に基づくリーク用係数から算出することとした。   3. The first threshold value is based on an exhaust flow rate and a clogging coefficient based on a soot calculation accumulation value and an ash calculation accumulation value accumulated on the filter, and the second threshold value is an exhaust flow rate on the filter. It was decided to calculate from the leak coefficient based on the deposited soot calculated deposition value and the ash calculated deposition value.

4、前記差圧値算出手段は、フィルタ上流側の温度と排気流量とから算出された基準差圧値に基づき算出差圧値を算出することとした。   4. The differential pressure value calculating means calculates the calculated differential pressure value based on the reference differential pressure value calculated from the temperature upstream of the filter and the exhaust gas flow rate.

5、前記判定手段は、前記フィルタが異常であると判断した時に、該判断が所定時間継続した場合に、該フィルタが異常であると確定する確定手段を具えていることとした。   5. The determination means includes a determination means for determining that the filter is abnormal when the determination is continued for a predetermined time when it is determined that the filter is abnormal.

本発明にかかる排気濾過装置の異常検出装置は、次の効果を有している。
定常走行していない状態であっても、算出差圧値を算出し、フィルタの異常を検出できる。閾値が、逐一走行状態から求められるので、定常走行でなくとも閾値との比較によりフィルタの異常を検出できる。
The abnormality detection device for an exhaust gas filtration device according to the present invention has the following effects.
Even when the vehicle is not in steady running, the calculated differential pressure value can be calculated to detect a filter abnormality. Since the threshold value is obtained from the running state one by one, the abnormality of the filter can be detected by comparison with the threshold value even if it is not steady running.

スートの堆積値の算出は、NOxおよび熱による消失を考慮して行っており、閾値は、かかるスート堆積値に基づいて補正しているため、実際の運転履歴を反映した値が得られ、常に適切な閾値を用いて異常検出が行える。   The soot accumulation value is calculated in consideration of the disappearance due to NOx and heat, and the threshold value is corrected based on the soot accumulation value. Therefore, a value reflecting the actual operation history is always obtained. Anomaly detection can be performed using an appropriate threshold.

アッシュ堆積値の算出は、燃料噴射量積算値を用いて計算しているため、走行距離に基づいて算出した場合より、実際の運転履歴を反映した値が得られる。   Since the calculation of the ash accumulation value is performed using the fuel injection amount integrated value, a value reflecting the actual driving history can be obtained as compared with the case of calculation based on the travel distance.

フィルタに生じた目詰まりと、クラック発生等によるリーク状態をともに検出できる。所定時間経過した後フィルタの異常を確定するので、異常検出装置の信頼性を向上できる。   It is possible to detect both the clogging generated in the filter and the leak state due to the occurrence of cracks. Since the abnormality of the filter is determined after a predetermined time has elapsed, the reliability of the abnormality detection device can be improved.

本発明にかかるフィルタの異常検出装置の一実施形態について、図を参照して説明する。
図1に、フィルタの異常検出装置10を具えた、内燃機関としてのエンジン12の構成例を示す。エンジン12はディーゼルエンジンであり、過給器(ターボチャージャ)14と、DPF装置16と、燃料供給装置18と、エンジン回転数センサ19などを具えている。過給器14は、排気通路としての排気管20と吸気通路としての吸気管22に接続しており、エアクリーナ24から吸引した外気を排気圧を利用して加圧し、エンジン12に送り込む。
An embodiment of a filter abnormality detection device according to the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration example of an engine 12 as an internal combustion engine that includes a filter abnormality detection device 10. The engine 12 is a diesel engine, and includes a supercharger (turbocharger) 14, a DPF device 16, a fuel supply device 18, an engine speed sensor 19, and the like. The supercharger 14 is connected to an exhaust pipe 20 as an exhaust passage and an intake pipe 22 as an intake passage, pressurizes the outside air sucked from the air cleaner 24 using exhaust pressure, and sends it to the engine 12.

吸気管22には、吸気管22内の圧力、すなわち過給器14による過給圧(ブースト圧)を検出する吸気圧センサ26と、吸気管22内の流量を検出する吸気流量センサ27が設けられている。尚、エンジン12は、ディーゼルエンジンに限るものではなく、また過給器14を設けない自然吸気式のエンジンでもよい。   The intake pipe 22 is provided with an intake pressure sensor 26 for detecting the pressure in the intake pipe 22, that is, a boost pressure (boost pressure) by the supercharger 14, and an intake flow rate sensor 27 for detecting the flow rate in the intake pipe 22. It has been. The engine 12 is not limited to a diesel engine, and may be a naturally aspirated engine in which the supercharger 14 is not provided.

DPF装置16は、筒型で、内部にフィルタ28を具え、上流側が過給器14の排気側に接続し、下流側が車両の排気口29に連通している。フィルタ28は、セラミックフィルタであり、排気ガス中に含まれる微粒子を捕捉する微細な孔部が表面に形成してある。DPF装置16には、上流側圧力センサ30、差圧センサ32、上流側温度センサ35、下流側温度センサ37が取り付けてあり、前後には触媒装置31、33などが連結してある。   The DPF device 16 has a cylindrical shape and includes a filter 28 inside. The DPF device 16 is connected to the exhaust side of the supercharger 14 on the upstream side, and communicates with the exhaust port 29 of the vehicle on the downstream side. The filter 28 is a ceramic filter and has fine holes formed on the surface for capturing fine particles contained in the exhaust gas. The DPF device 16 is provided with an upstream pressure sensor 30, a differential pressure sensor 32, an upstream temperature sensor 35, and a downstream temperature sensor 37, and catalyst devices 31 and 33 are connected to the front and rear.

上流側圧力センサ30は、フィルタ28の上流側に取り付けてあり、フィルタ28の上流側の圧力値を検出する。差圧センサ32は、フィルタ28の上流側と下流側との間に生じる圧力差を検出する。上流側温度センサ35は、フィルタ28の上流側の温度、つまりフィルタ28に流入する排気温度を計測する。下流側温度センサ37は、フィルタ28の下流側の温度を計測する。   The upstream pressure sensor 30 is attached to the upstream side of the filter 28 and detects the pressure value on the upstream side of the filter 28. The differential pressure sensor 32 detects a pressure difference generated between the upstream side and the downstream side of the filter 28. The upstream temperature sensor 35 measures the temperature on the upstream side of the filter 28, that is, the temperature of the exhaust gas flowing into the filter 28. The downstream temperature sensor 37 measures the temperature on the downstream side of the filter 28.

各センサはそれぞれ制御装置36(ECU(電子コントロールユニット))に、図2に示すように接続している。また制御装置36には、図2に示すように大気圧の値を検出する大気圧センサ38や冷却水の水温を検出する水温センサ40など各種センサ類が接続されている。各センサが検出した値は、制御装置36に送り出される。   Each sensor is connected to a control device 36 (ECU (Electronic Control Unit)) as shown in FIG. Further, as shown in FIG. 2, various sensors such as an atmospheric pressure sensor 38 that detects the atmospheric pressure value and a water temperature sensor 40 that detects the coolant temperature are connected to the control device 36. The value detected by each sensor is sent to the control device 36.

燃料供給装置18は、燃料を噴射する燃料噴射装置であり、制御装置36からの指示により所定量の燃料をエンジン12の内部に噴射する。   The fuel supply device 18 is a fuel injection device that injects fuel, and injects a predetermined amount of fuel into the engine 12 in accordance with an instruction from the control device 36.

更に制御装置36は、図3に示すように判定手段44と、スート堆積値算出手段46と、アッシュ堆積値算出手段47と、閾値算出手段48と、差圧値算出手段50と、計時手段60と、確定手段62を有している。   Further, as shown in FIG. 3, the control device 36 includes a determination unit 44, a soot accumulation value calculation unit 46, an ash accumulation value calculation unit 47, a threshold value calculation unit 48, a differential pressure value calculation unit 50, and a time measurement unit 60. And a determination means 62.

スート堆積値算出手段46は、図4に示すようにスート発生量算出手段52と、NOx量算出手段54と、スート消失量(NOx)算出手段56と、スート消失量(熱)算出手段58と、積算手段59から形成されている。   As shown in FIG. 4, the soot accumulation value calculation means 46 includes a soot generation amount calculation means 52, a NOx amount calculation means 54, a soot loss amount (NOx) calculation means 56, and a soot loss amount (heat) calculation means 58. The integrating means 59 is formed.

スート発生量算出手段52は、エンジン回転数センサ19が検出したエンジン回転数と、燃料供給装置18から噴射されたエンジン12への燃料供給量とから、図7に示すマップ1を用いてスート基準発生値を算出する。更に、図8の補正グラフと図9に示す補正グラフを用いて、スート基準発生値を補正して、スート算出排出値を算出する。   The soot generation amount calculation means 52 uses the map 1 shown in FIG. 7 to calculate the soot reference from the engine speed detected by the engine speed sensor 19 and the fuel supply amount injected from the fuel supply device 18 to the engine 12. Calculate the generated value. Further, using the correction graph of FIG. 8 and the correction graph of FIG. 9, the soot reference generation value is corrected to calculate the soot calculation discharge value.

図7は、紙面に沿った横軸をエンジン回転数Ne、縦軸を燃料供給(噴射)量qとし、紙面に垂直方向にスート基準発生量(値)を示す三次元マップである。図8は、燃料噴射量に対するスート基準発生量(値)を補正する補正値であり、図9は、冷却水温に対するスート基準発生量(値)を補正する補正値である。   FIG. 7 is a three-dimensional map showing the soot reference generation amount (value) in the direction perpendicular to the paper surface with the horizontal axis along the paper surface as the engine speed Ne and the vertical axis as the fuel supply (injection) amount q. FIG. 8 is a correction value for correcting the soot reference generation amount (value) with respect to the fuel injection amount, and FIG. 9 is a correction value for correcting the soot reference generation amount (value) with respect to the coolant temperature.

NOx量算出手段54は、エンジン回転数センサ19が検出したエンジン回転数と、燃料供給装置18から噴射されたエンジン12への燃料供給量とから、マップ2(図7と同様三次元マップである。(図示せず。))を用いてNOxの排出量、つまり基準発生値を算出する。更に図10に示す冷却水温に対する係数を有する補正グラフを用いて、NOxの基準発生量を補正して、NOx算出発生値を算出する。   The NOx amount calculation means 54 is a map 2 (a three-dimensional map similar to FIG. 7) from the engine speed detected by the engine speed sensor 19 and the fuel supply amount to the engine 12 injected from the fuel supply device 18. (Not shown)), the NOx emission amount, that is, the reference generation value is calculated. Further, using the correction graph having a coefficient for the cooling water temperature shown in FIG. 10, the NOx calculated generation value is calculated by correcting the reference generation amount of NOx.

スート消失量(NOx)算出手段56は、スート発生量算出手段52で求められたスート算出発生値とNOx量算出手段54で求められたNOx算出発生値の比Aと、上流側温度センサ35で求められた、フィルタ28の上流側の温度から、マップ3(図7と同様三次元マップである。(図示せず。))を用いてスート算出消失値(NOx)を求める。   The soot disappearance amount (NOx) calculation means 56 includes a ratio A between the soot calculation generation value obtained by the soot generation amount calculation means 52 and the NOx calculation generation value obtained by the NOx amount calculation means 54, and the upstream temperature sensor 35. From the obtained temperature on the upstream side of the filter 28, a soot calculation disappearance value (NOx) is obtained using a map 3 (a three-dimensional map similar to FIG. 7 (not shown)).

スート消失量(熱)算出手段58は、吸気流量センサ27が検出した吸気管22内の流量と燃料供給装置18から噴射されたエンジン12への燃料供給量とから、空燃比R(空気過剰率)を検出する。この空燃比Rと、上流側温度センサ35が検出したフィルタ28の上流側の温度から、マップ4(図7と同様三次元マップである。(図示せず。))を用いてスート基準消失値(熱)を算出する。更に図11に示す補正グラフを用いて得られた係数を、スート基準消失値(熱)に掛け、スート算出消失値(熱)を求める。図11に示す補正グラフの横軸のスート堆積値は、現時点までのスート堆積値である。   The soot disappearance amount (heat) calculation means 58 calculates the air-fuel ratio R (the excess air ratio) from the flow rate in the intake pipe 22 detected by the intake flow rate sensor 27 and the fuel supply amount injected from the fuel supply device 18 to the engine 12. ) Is detected. From the air-fuel ratio R and the temperature upstream of the filter 28 detected by the upstream temperature sensor 35, the soot reference disappearance value is obtained using the map 4 (a three-dimensional map similar to FIG. 7 (not shown)). (Heat) is calculated. Further, the coefficient obtained using the correction graph shown in FIG. 11 is multiplied by the soot reference disappearance value (heat) to obtain the soot calculated disappearance value (heat). The soot deposition value on the horizontal axis of the correction graph shown in FIG. 11 is the soot deposition value up to the present time.

上記、スート算出排出値と、スート算出消失値(NOx)と、スート算出消失値(熱)が求められたら、スート算出排出値からスート算出消失値(NOx)とスート算出消失値(熱)を減算し、スート算出発生値を算出する。そして、積算手段59でスート算出発生値を積算して現時点までのスート堆積値、すなわちスート算出堆積値を算出する。   When the soot calculation emission value, the soot calculation elimination value (NOx), and the soot calculation elimination value (heat) are obtained, the soot calculation elimination value (NOx) and the soot calculation elimination value (heat) are calculated from the soot calculation emission value. Subtract and calculate the soot calculation occurrence value. Then, the soot calculation generation value is integrated by the integration means 59 to calculate the soot accumulation value up to the present time, that is, the soot calculation accumulation value.

アッシュ堆積値算出手段47は、燃料供給装置18から噴射されたエンジン12への燃料供給量に係数をかけてアッシュ発生量を算出し、そのアッシュ算出発生値(量)を積算してアッシュ算出堆積値を算出する。   The ash accumulation value calculating means 47 calculates the ash generation amount by multiplying the fuel supply amount injected from the fuel supply device 18 to the engine 12 by a coefficient, and integrates the ash calculation generation value (amount) to calculate the ash calculation accumulation. Calculate the value.

閾値算出手段48は、図5に示すように第1の閾値算出手段64と、第2の閾値算出手段66から形成されている。   As shown in FIG. 5, the threshold value calculation unit 48 includes a first threshold value calculation unit 64 and a second threshold value calculation unit 66.

第1の閾値算出手段64は、スート算出堆積値とアッシュ算出堆積値から、マップ5(図7と同様三次元マップである。(図示せず。))を用いて係数(目詰まり)を求める。次に、係数(目詰まり)と排気流量から、マップ6(図7と同様三次元マップである。(図示せず。))を用いて第1の閾値を求める。排気流量は、吸気流量センサ27が検出した吸気管22内の流量と、エンジン12への燃料供給量と、上流側圧力センサ30が検出したフィルタ28の上流側圧力と、気体定数とから求める。   The first threshold value calculation means 64 obtains a coefficient (clogging) from the soot calculated deposition value and the ash calculated deposition value using the map 5 (a three-dimensional map similar to FIG. 7 (not shown)). . Next, a first threshold value is obtained from the coefficient (clogging) and the exhaust flow rate using a map 6 (a three-dimensional map similar to FIG. 7 (not shown)). The exhaust flow rate is obtained from the flow rate in the intake pipe 22 detected by the intake flow rate sensor 27, the fuel supply amount to the engine 12, the upstream pressure of the filter 28 detected by the upstream pressure sensor 30, and the gas constant.

第2の閾値算出手段66は、スート算出堆積値とアッシュ算出堆積値から、マップ7(図7と同様三次元マップである。(図示せず。))を用いて係数(リーク)を求める。次に、係数(リーク)と排気流量から、マップ8(図7と同様三次元マップである。(図示せず。))を用いて第2の閾値を求める。   The second threshold value calculation means 66 obtains a coefficient (leakage) from the soot calculated deposition value and the ash calculated deposition value using a map 7 (a three-dimensional map similar to FIG. 7 (not shown)). Next, the second threshold value is obtained from the coefficient (leakage) and the exhaust flow rate by using a map 8 (a three-dimensional map similar to FIG. 7 (not shown)).

差圧値算出手段50は、排気流量とフィルタ28の上流側の温度とから求められた基準差圧値に、マップ5とマップ7のそれぞれの係数をかけ、算出差圧値(目詰まり)と算出差圧値(リーク)を算出する。   The differential pressure value calculation means 50 multiplies the reference differential pressure value obtained from the exhaust gas flow rate and the temperature upstream of the filter 28 by the respective coefficients of the map 5 and the map 7, and calculates the calculated differential pressure value (clogging). Calculate the calculated differential pressure value (leakage).

判定手段44は、図6に示すように、目詰まり判定手段68と、リーク発生判定手段70を具えている。   As shown in FIG. 6, the determination unit 44 includes a clogging determination unit 68 and a leak occurrence determination unit 70.

目詰まり判定手段68は、差圧センサ32が検出した計測差圧値から差圧値算出手段50で求められた算出差圧値(目詰まり)を減算して差P1を算出し、差P1と、第1の閾値算出手段64で求められた第1の閾値とを比較し、第1の閾値より差P1が大きければ目詰まりと判定する。   The clogging determination means 68 calculates a difference P1 by subtracting the calculated differential pressure value (clogging) obtained by the differential pressure value calculation means 50 from the measured differential pressure value detected by the differential pressure sensor 32, and calculates the difference P1. The first threshold value obtained by the first threshold value calculation means 64 is compared, and if the difference P1 is larger than the first threshold value, it is determined that the blockage is clogged.

リーク発生判定手段70は、差圧値算出手段50で求められた算出差圧値(リーク)から差圧センサ32が検出した計測差圧値を減算して差P2を算出し、差P2と、第2の閾値算出手段66で求められた第2の閾値とを比較し、第2の閾値より差P2が大きければリークが発生していると判定する。   The leak occurrence determination means 70 calculates the difference P2 by subtracting the measured differential pressure value detected by the differential pressure sensor 32 from the calculated differential pressure value (leak) obtained by the differential pressure value calculation means 50, and calculates the difference P2. The second threshold value obtained by the second threshold value calculation unit 66 is compared, and if the difference P2 is larger than the second threshold value, it is determined that a leak has occurred.

計時手段60は、判定手段44による判定の継続時間を計測する。確定手段62は、計時手段60が計測した時間が、予め入力された確定時間を越えたことを確認すると異常があると確定する。確定時間は例えば、10秒間である。尚、確定時間は適宜変更できる。   The time measuring means 60 measures the duration of the determination by the determination means 44. The confirmation means 62 confirms that there is an abnormality when it is confirmed that the time measured by the time measuring means 60 has exceeded the confirmation time inputted in advance. The fixed time is, for example, 10 seconds. The confirmation time can be changed as appropriate.

次に、フィルタの異常検出装置10の作用について、作用の流れを図12のフローチャートを用いて説明する。
まず、サンプリング時間aと、確定時間Tが定められる(S1)。サンプリング時間aは、圧力差と閾値との比較を繰り返し行うときの、繰り返しの時間間隔である。Tは、異常が発生していると確定するまでに要する時間(確定時間)である。次に、時間tを初期値として0とする(S2)。
Next, the operation of the filter abnormality detection device 10 will be described with reference to the flowchart of FIG.
First, a sampling time a and a fixed time T are determined (S1). The sampling time “a” is a repeated time interval when the comparison between the pressure difference and the threshold value is repeatedly performed. T is the time (determined time) required until it is determined that an abnormality has occurred. Next, the time t is set to 0 as an initial value (S2).

次に、制御装置36が、水温センサ40や大気圧センサ38、エンジン回転数センサ19、吸気温度センサ(図示せず。)などから送られてくる検出値を取得する(S3)。取得された各センサの値から、DPF装置16に内蔵されているフィルタ28の異常検出が可能な条件であるか否か判断する。つまり、エンジン始動直後でないことや、異常の運転をしていないこと、あるいはいずれかのセンサに異常がないことなどを確認する。   Next, the control device 36 acquires detection values sent from the water temperature sensor 40, the atmospheric pressure sensor 38, the engine speed sensor 19, the intake air temperature sensor (not shown), etc. (S3). It is determined from the acquired value of each sensor whether or not it is a condition capable of detecting an abnormality of the filter 28 built in the DPF device 16. That is, it is confirmed that it is not immediately after the engine is started, is not operating abnormally, or is not abnormal in any of the sensors.

S4にて、付帯条件が成立し、フィルタ28の異常検出が可能と判断されると、各センサから取得された値に基づき、スート算出発生量が上述したように算出され(S5)、算出された発生値は順次積算され、スート算出堆積値が算出される(S6)。また同様に、アッシュ算出発生量が上述したように算出され(S7)、算出された発生値が順次積算されてアッシュ算出堆積値が算出される(S8)。   If it is determined in S4 that the incidental condition is satisfied and the abnormality detection of the filter 28 is possible, the soot calculation generation amount is calculated as described above based on the value acquired from each sensor (S5). The generated values are sequentially integrated, and a soot calculation accumulation value is calculated (S6). Similarly, the ash calculation generation amount is calculated as described above (S7), and the calculated generation values are sequentially integrated to calculate the ash calculation accumulation value (S8).

更に、上記各センサの値から、第1の閾値と第2の閾値と算出差圧値を上述したように算出する(S9)(S10)(S11)。このようにして、算出差圧値(目詰まりおよびリーク用の双方。)と第1と第2の各閾値が算出されたら、算出差圧値と差圧センサ32からの測定値との差P1および差2を求め(S12)、差P1と第1閾値の比較を行い(S13)、判定がNOのときはS14に進む。一方、YESの場合は、S15に進む。   Further, the first threshold value, the second threshold value, and the calculated differential pressure value are calculated from the values of the sensors as described above (S9) (S10) (S11). When the calculated differential pressure value (both for clogging and leaking) and the first and second threshold values are calculated in this way, the difference P1 between the calculated differential pressure value and the measured value from the differential pressure sensor 32. Then, the difference 2 is obtained (S12), the difference P1 is compared with the first threshold value (S13), and if the determination is NO, the process proceeds to S14. On the other hand, if YES, the process proceeds to S15.

S14においては、差P2と第2閾値の比較を行い、判定がNOのときはS2に進む。一方、YESの場合は、S15に進む。S15においては、時間tにサンプリング時間aを加え、それを新たに時間tとする。そして、時間tが確定時間Tを超えたか否か判断し(S16)、超えていなければS3に戻る。S3に戻ると、再度上述したS3からの作業を行い、(S13)と(S14)のいずれかにおいて閾値との差がYESの場合には、S15に進み、時間tに更にサンプリング時間aを加え、時間tが確定時間Tを超えるまで、循環する。   In S14, the difference P2 is compared with the second threshold value, and when the determination is NO, the process proceeds to S2. On the other hand, if YES, the process proceeds to S15. In S15, sampling time a is added to time t, and this is newly set as time t. Then, it is determined whether or not the time t exceeds the fixed time T (S16). If not, the process returns to S3. When the process returns to S3, the above-described operation from S3 is performed again. If the difference from the threshold value is YES in either (S13) or (S14), the process proceeds to S15, and sampling time a is added to time t. , Until the time t exceeds the fixed time T.

循環している間にS13もしくはS14にて、閾値との判定がNOとなった場合には、循環から出て、S2に戻る。そして、改めて時間tを0として、作業が再開される。   If the determination with the threshold value is NO in S13 or S14 during circulation, the process exits the circulation and returns to S2. Then, the time t is set to 0 again, and the work is resumed.

一方、S16にて時間tが確定時間Tを超えたときは、S17に進み、確定手段62が、フィルタ28に、目詰まりやリークが発生し、異常であると確定する。   On the other hand, when the time t exceeds the determination time T in S16, the process proceeds to S17, and the determination means 62 determines that the filter 28 is clogged or leaked and is abnormal.

このように上記異常検出装置10によれば、フィルタ28に生じている異常、すなわち目詰まりやリークの発生を、閾値との比較で判定でき、しかも閾値は車両が走行している最中に随時求められる値であることから、エンジン12が定常状態で駆動していなくとも、確実にフィルタ28の異常発生の判断が実施できる。   As described above, according to the abnormality detection device 10, an abnormality occurring in the filter 28, that is, occurrence of clogging or leakage can be determined by comparison with the threshold value, and the threshold value can be determined at any time while the vehicle is traveling. Since the calculated value is obtained, it is possible to reliably determine whether the filter 28 has malfunctioned even if the engine 12 is not driven in a steady state.

本発明にかかる異常検出装置の一実施例を具えたエンジンの構成を示す図。The figure which shows the structure of the engine provided with one Example of the abnormality detection apparatus concerning this invention. 異常検出装置を示すブロック図。The block diagram which shows an abnormality detection apparatus. 制御装置を示すブロック図。The block diagram which shows a control apparatus. スート堆積値算出手段を示すブロック図。The block diagram which shows a soot accumulation value calculation means. 閾値算出手段を示すブロック図。The block diagram which shows a threshold value calculation means. 判定手段を示すブロック図。The block diagram which shows a determination means. スート基準発生値を求めるためのマップを示す図。The figure which shows the map for calculating | requiring a soot reference | standard generation value. 燃料噴射量の係数を表すグラフ。The graph showing the coefficient of fuel injection quantity. 冷却水温の係数を表すグラフ。The graph showing the coefficient of cooling water temperature. 冷却水温の係数を表すグラフ。The graph showing the coefficient of cooling water temperature. スート堆積値の係数を表すグラフ。The graph showing the coefficient of a soot deposition value. 作動を示すためのフローチャート。The flowchart for showing an action | operation.

符号の説明Explanation of symbols

10…異常検出装置
12…エンジン
16…DPF装置
18…燃料供給装置
28…フィルタ
30…上流側圧力センサ
32…差圧センサ
35…上流側温度センサ
36…制御装置
37…下流側温度センサ
38…大気圧センサ
44…判定手段
46…スート堆積値算出手段
47…アッシュ堆積値算出手段
48…閾値算出手段
50…差圧値算出手段
DESCRIPTION OF SYMBOLS 10 ... Abnormality detection device 12 ... Engine 16 ... DPF device 18 ... Fuel supply device 28 ... Filter 30 ... Upstream pressure sensor 32 ... Differential pressure sensor 35 ... Upstream temperature sensor 36 ... Control device 37 ... Downstream temperature sensor 38 ... Large Atmospheric pressure sensor 44 ... determination means 46 ... soot accumulation value calculation means 47 ... ash accumulation value calculation means 48 ... threshold value calculation means 50 ... differential pressure value calculation means

Claims (5)

内燃機関の排気通路に設けられ、排気中の微粒子を捕集するフィルタと、前記フィルタの上流側と下流側の間に生じる圧力差を検出する差圧センサとを備えた排気浄化装置であり、
前記内燃機関の運転状態に基づき前記フィルタの上下流での圧力差の値を算出する差圧値算出手段と、
前記差圧センサによって検出された前記フィルタの上下流間での圧力差の実測値と前記差圧値算出手段からの算出差圧値との差Pの値を算出し、該差Pと閾値を比較して、前記フィルタに異常があることを検出する判定手段とを具えたことを特徴とする排気浄化装置の異常検出装置。
An exhaust purification device comprising a filter that is provided in an exhaust passage of an internal combustion engine and collects particulates in exhaust gas, and a differential pressure sensor that detects a pressure difference generated between an upstream side and a downstream side of the filter,
Differential pressure value calculating means for calculating the value of the pressure difference between the upstream and downstream of the filter based on the operating state of the internal combustion engine;
The difference P between the measured value of the pressure difference between the upstream and downstream of the filter detected by the differential pressure sensor and the calculated differential pressure value from the differential pressure value calculating means is calculated, and the difference P and the threshold value are calculated. An abnormality detection device for an exhaust emission control device, comprising: a determination unit that detects that the filter is abnormal in comparison.
前記判定手段は、前記フィルタの目詰まり判定に用いる第1の閾値と、該フィルタのリーク判定に用いる第2の閾値を有し、前記差Pの値が前記第1の閾値を超えた場合、あるいは該差Pの値が前記第2の閾値を上回った場合に前記フィルタに異常があると判断する請求項1記載の排気浄化装置の異常検出装置。   The determination means has a first threshold value used for determining clogging of the filter and a second threshold value used for leak determination of the filter, and when the value of the difference P exceeds the first threshold value, The abnormality detection device for an exhaust gas purification device according to claim 1, wherein when the value of the difference P exceeds the second threshold value, it is determined that the filter is abnormal. 前記第1の閾値は、排気流量と、前記フィルタに堆積したスート算出堆積値およびアッシュ算出堆積値に基づく目詰まり用係数から、かつ前記第2の閾値は、排気流量と、前記フィルタに堆積したスート算出堆積値およびアッシュ算出堆積値に基づくリーク用係数から算出したことを特徴とする請求項1または2に記載の排気浄化装置の異常検出装置。   The first threshold value is based on the exhaust gas flow rate and the clogging coefficient based on the soot calculation deposition value and the ash calculation deposition value accumulated on the filter, and the second threshold value is on the exhaust flow rate and the filter accumulated on the filter. The abnormality detection device for an exhaust emission control device according to claim 1 or 2, wherein the abnormality detection device is calculated from a leak coefficient based on a soot calculation accumulation value and an ash calculation accumulation value. 前記差圧値算出手段は、フィルタ上流側の温度と排気流量とから算出された基準差圧値に基づき算出差圧値を算出することを特徴とした請求項1〜3のいずれか1項に記載の排気浄化装置の異常検出装置。   The differential pressure value calculation means calculates a calculated differential pressure value based on a reference differential pressure value calculated from a temperature upstream of the filter and an exhaust flow rate. An abnormality detection device for an exhaust purification device as described. 前記判定手段は、前記フィルタが異常であると判断した時に、該判断が所定時間継続した場合に、該フィルタが異常であると確定する確定手段を具えていることを特徴とする請求項1〜4のいずれか1項に記載の排気浄化装置の異常検出装置。   The determination means includes a determination means for determining that the filter is abnormal when the determination is continued for a predetermined time when it is determined that the filter is abnormal. 5. The abnormality detection device for an exhaust gas purification device according to any one of 4 above.
JP2006350134A 2006-12-26 2006-12-26 Abnormality detection device for exhaust emission control device Withdrawn JP2008157200A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006350134A JP2008157200A (en) 2006-12-26 2006-12-26 Abnormality detection device for exhaust emission control device
DE112007002658T DE112007002658T5 (en) 2006-12-26 2007-12-14 Problem detection apparatus and method in an emission control system
PCT/JP2007/074106 WO2008078578A1 (en) 2006-12-26 2007-12-14 Abnormality detector of exhaust gas purifier, and its detection method
US12/371,022 US20090145111A1 (en) 2006-12-26 2009-02-13 Problem detection apparatus and method in exhaust purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350134A JP2008157200A (en) 2006-12-26 2006-12-26 Abnormality detection device for exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2008157200A true JP2008157200A (en) 2008-07-10

Family

ID=39562371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350134A Withdrawn JP2008157200A (en) 2006-12-26 2006-12-26 Abnormality detection device for exhaust emission control device

Country Status (4)

Country Link
US (1) US20090145111A1 (en)
JP (1) JP2008157200A (en)
DE (1) DE112007002658T5 (en)
WO (1) WO2008078578A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125636A1 (en) * 2009-04-27 2010-11-04 トヨタ自動車株式会社 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine
CN102269036A (en) * 2011-07-01 2011-12-07 北京交通大学 Online diagnosis device of exhaust purifier of diesel engine
JP2012189049A (en) * 2011-03-14 2012-10-04 Denso Corp Particulate matter detector and fault detection device for particulate filter
WO2014083626A1 (en) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 Control device for internal combustion engine
WO2015001955A1 (en) * 2013-07-03 2015-01-08 日野自動車 株式会社 Anomaly determination system and anomaly determination method
CN104481654A (en) * 2014-09-12 2015-04-01 苏州博菡环保科技有限公司 On-line diagnosing apparatus for diesel exhaust purifier
KR20170002436A (en) * 2014-05-15 2017-01-06 로께뜨프레르 Method for in-line control of the integrity of a filtering system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157199A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Abnormality detection device of sensor
FR2936836B1 (en) * 2008-10-02 2010-09-17 Renault Sas PARTICLE FILTER FOR MOTOR VEHICLE.
CN101936208A (en) * 2010-09-20 2011-01-05 北京交通大学 Exhaust temperature and back pressure based online diagnosis method for exhaust purifier of diesel engine
DE102011006363A1 (en) * 2011-03-29 2012-10-04 Robert Bosch Gmbh Method for operating an internal combustion engine
JP2013019389A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Failure diagnosis device for particulate filter
JP5573817B2 (en) * 2011-11-07 2014-08-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US20130204508A1 (en) * 2012-02-08 2013-08-08 GM Global Technology Operations LLC System and method for controlling an engine
DE102014201589B3 (en) * 2014-01-29 2015-05-28 Mtu Friedrichshafen Gmbh Method for monitoring an internal combustion engine having a particle filter, control unit, internal combustion engine, computer program product and machine-readable medium
FR3025558A1 (en) * 2014-09-08 2016-03-11 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A STATE OF A PARTICLE FILTER
US9739761B2 (en) * 2014-12-11 2017-08-22 Fca Us Llc Particulate matter filter diagnostic techniques based on exhaust gas analysis
JP6387884B2 (en) * 2015-04-06 2018-09-12 株式会社デンソー Exhaust gas purification device
US11566555B2 (en) * 2018-08-30 2023-01-31 University Of Kansas Advanced prediction model for soot oxidation
CN110594019B (en) * 2019-09-26 2021-02-23 潍柴动力股份有限公司 Method and device for detecting exhaust and air leakage of engine
CN114087055B (en) * 2020-08-25 2023-05-30 北京福田康明斯发动机有限公司 Engine aftertreatment system gas leakage diagnosis method and engine aftertreatment system
CN114109570B (en) * 2021-11-26 2023-04-14 浙江吉利控股集团有限公司 Fault monitoring method for single-membrane differential pressure sensor for GPF (general purpose function)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930725B2 (en) * 2001-11-20 2007-06-13 日野自動車株式会社 Particulate filter abnormality detection device
JP2004293339A (en) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2005307880A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Differential pressure sensor abnormality detecting device for exhaust emission control filter
JP4470593B2 (en) * 2004-06-03 2010-06-02 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2008157199A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Abnormality detection device of sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125636A1 (en) * 2009-04-27 2010-11-04 トヨタ自動車株式会社 Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine
JP5196012B2 (en) * 2009-04-27 2013-05-15 トヨタ自動車株式会社 PM sensor, exhaust gas PM amount detection device, internal combustion engine abnormality detection device
DE112009004746B4 (en) * 2009-04-27 2013-10-17 Toyota Jidosha Kabushiki Kaisha PM SENSOR, PM-LOW DETECTION DEVICE FOR EXHAUST GAS AND ANORMALITY DETECTION DEVICE FOR FUEL-POWERED MACHINE
JP2012189049A (en) * 2011-03-14 2012-10-04 Denso Corp Particulate matter detector and fault detection device for particulate filter
CN102269036A (en) * 2011-07-01 2011-12-07 北京交通大学 Online diagnosis device of exhaust purifier of diesel engine
WO2014083626A1 (en) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 Control device for internal combustion engine
WO2015001955A1 (en) * 2013-07-03 2015-01-08 日野自動車 株式会社 Anomaly determination system and anomaly determination method
JP2015014204A (en) * 2013-07-03 2015-01-22 日野自動車株式会社 Abnormality determination system and abnormality determination method
CN105189969A (en) * 2013-07-03 2015-12-23 日野自动车株式会社 Anomaly determination system and anomaly determination method
US9945745B2 (en) 2013-07-03 2018-04-17 Hino Motors, Ltd. Anomaly determination system and anomaly determination method
KR20170002436A (en) * 2014-05-15 2017-01-06 로께뜨프레르 Method for in-line control of the integrity of a filtering system
JP2017519194A (en) * 2014-05-15 2017-07-13 ロケット フレールRoquette Freres In-line control method of filtering system integrity
KR102339555B1 (en) 2014-05-15 2021-12-16 로께뜨프레르 Method for in-line control of the integrity of a filtering system
CN104481654A (en) * 2014-09-12 2015-04-01 苏州博菡环保科技有限公司 On-line diagnosing apparatus for diesel exhaust purifier

Also Published As

Publication number Publication date
WO2008078578A1 (en) 2008-07-03
DE112007002658T5 (en) 2009-11-05
US20090145111A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP2008157200A (en) Abnormality detection device for exhaust emission control device
JP4363211B2 (en) Abnormality detection device for exhaust gas purification device of internal combustion engine
US8495861B2 (en) Fault detection system for PM trapper
JP2008157199A (en) Abnormality detection device of sensor
KR101420582B1 (en) Particulate matter deposition amount estimation device, exhaust gas purification system, and particulate matter deposition amount estimation method
KR100605836B1 (en) Filter control device
JP3801135B2 (en) Engine exhaust gas purification device
JP3824979B2 (en) Filter control method and apparatus
JP5833864B2 (en) Exhaust gas treatment method and exhaust gas treatment control system for internal combustion engine
US20100242443A1 (en) Exhaust aftertreatment device
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
US20130269427A1 (en) Dpf system
US7610749B2 (en) Exhaust gas cleaning apparatus having particulate collector for use in automotive vehicle
JP4863111B2 (en) Exhaust purification device
JP2004308583A (en) Emission control device for engine
JP2009293518A (en) Exhaust emission control device for internal combustion engine
WO2009101667A1 (en) Exhaust gas collecting performance judging method and device therefor
EP2236786B1 (en) Particulate matter concentration measuring apparatus
JP2004270522A (en) Exhaust emission control device for engine
CN112161743A (en) Method for evaluating credibility of measured value of DPF (diesel particulate filter) differential pressure sensor and diesel engine
JP2010116857A (en) Abnormality diagnosing device for air flow sensor and abnormality diagnosing method therefor
JP2007016684A (en) Particulate deposition amount estimating device
JP2010196498A (en) Pm emission estimation device
JP3908204B2 (en) Filter control device
JP2011179491A (en) Particle sensor and exhaust emission control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302