JP6036388B2 - Particulate matter measuring device - Google Patents

Particulate matter measuring device Download PDF

Info

Publication number
JP6036388B2
JP6036388B2 JP2013031170A JP2013031170A JP6036388B2 JP 6036388 B2 JP6036388 B2 JP 6036388B2 JP 2013031170 A JP2013031170 A JP 2013031170A JP 2013031170 A JP2013031170 A JP 2013031170A JP 6036388 B2 JP6036388 B2 JP 6036388B2
Authority
JP
Japan
Prior art keywords
particulate matter
cells
cell
exhaust
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013031170A
Other languages
Japanese (ja)
Other versions
JP2014159783A (en
Inventor
正文 野田
正文 野田
充宏 阿曽
充宏 阿曽
正 内山
正 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013031170A priority Critical patent/JP6036388B2/en
Publication of JP2014159783A publication Critical patent/JP2014159783A/en
Application granted granted Critical
Publication of JP6036388B2 publication Critical patent/JP6036388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、粒子状物質の測定装置に関し、特に、内燃機関から排出される排気ガス中の粒子状物質の測定装置に関する。   The present invention relates to a particulate matter measuring device, and more particularly to a particulate matter measuring device in exhaust gas discharged from an internal combustion engine.

ディーゼルエンジンから排出される排気ガス中の粒子状物質(Particulate Matter、以下、PM)を捕集するフィルタとして、例えば、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPF)が知られている。一般的に、DPFは、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを備え、これらセルの上流側と下流側とを交互に目封止して形成される。   For example, a diesel particulate filter (hereinafter referred to as DPF) is known as a filter that collects particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine. Yes. In general, a DPF includes a large number of cells that form a lattice-shaped exhaust passage partitioned by porous ceramic partition walls, and is formed by alternately plugging the upstream side and the downstream side of these cells. The

DPFのPM捕集量には限度があるため、PM堆積量が所定量に達すると、これら堆積したPMを燃焼除去するいわゆる強制再生が必要になる。そのため、強制再生の制御には、PM堆積量を精度良く測定することが望まれる。   Since there is a limit to the amount of PM collected by the DPF, when the amount of accumulated PM reaches a predetermined amount, so-called forced regeneration is required to burn and remove the accumulated PM. Therefore, it is desired to measure the PM accumulation amount with high accuracy for the forced regeneration control.

例えば、特許文献1には、排気下流側が目封止された測定用セルを挟んで対向する一対のセルに一対の電極をそれぞれ挿入し、これら電極間で形成されるコンデンサの静電容量に基づいてPM堆積量を検出するPMセンサが開示されている。   For example, in Patent Document 1, a pair of electrodes are inserted into a pair of cells facing each other with a measurement cell whose downstream side is plugged, and the capacitance of the capacitor formed between these electrodes is based on the capacitance of the capacitor. A PM sensor for detecting the amount of accumulated PM is disclosed.

特開2012−241643号公報JP 2012-241643 A

ところで、上述した従来技術のPMセンサでは、図10(a)に示すように、測定用セル100に流入した排気ガスは、測定用セル100を区画する左右上下の四つの隔壁を透過して、隣接する四つのセル101〜104に流入する。そのため、排気ガス中のPMは測定用セル100の左右上下の隔壁表面に略矩形状に堆積する(図10(b)参照)。   By the way, in the above-described prior art PM sensor, as shown in FIG. 10A, the exhaust gas flowing into the measurement cell 100 passes through the four right, left, upper and lower partition walls that partition the measurement cell 100, It flows into the four adjacent cells 101-104. Therefore, PM in the exhaust gas is deposited in a substantially rectangular shape on the left and right and upper and lower partition wall surfaces of the measurement cell 100 (see FIG. 10B).

このように、測定用セル100の隔壁表面にPMが略矩形状に堆積すると、コンデンサを形成する電極10A,10B間の静電容量変化がサチュレートして、感度の低下を招く可能性がある。   As described above, when PM is deposited in a substantially rectangular shape on the partition wall surface of the measurement cell 100, the change in capacitance between the electrodes 10A and 10B forming the capacitor may be saturated, leading to a decrease in sensitivity.

本発明は、このような点に鑑みてなされたもので、その目的は、静電容量変化の早期サチュレートを効果的に抑制して、感度の低下を抑止することにある。   The present invention has been made in view of such a point, and an object thereof is to effectively suppress early saturation of a change in capacitance and to suppress a decrease in sensitivity.

上述の目的を達成するため、本発明の粒子状物質の測定装置は、内燃機関の排気通路内に設けられ、多孔質性の隔壁で区画された格子状の排気流路を形成する複数のセルの上流側と下流側とを交互に目封止されたフィルタと、少なくとも一つのセルを測定用セルとし、当該測定用セルに隔壁を介して隣接する四つのセルのうち、対向する一対のセルに非目封止側からそれぞれ挿入される一対の電極と、前記四つのセルのうち、前記電極が挿入されていない一対のセル内に設けられて、当該セルの少なくとも一部の流路を塞ぐ閉塞部材と、前記一対の電極間の静電容量に基づいて、前記フィルタに捕集される排気中の粒子状物質の堆積量を算出する堆積量算出手段と、を備えることを特徴とする。   In order to achieve the above-mentioned object, the particulate matter measuring device of the present invention is provided in an exhaust passage of an internal combustion engine, and forms a plurality of cells forming a lattice-like exhaust flow path partitioned by porous partition walls. A filter in which the upstream side and the downstream side are alternately plugged, and at least one cell is a measurement cell, and a pair of opposed cells among the four cells adjacent to the measurement cell via a partition wall And a pair of electrodes respectively inserted from the non-plugged side and the pair of cells in which the electrodes are not inserted among the four cells, and block at least a part of the flow paths of the cells. And a deposit amount calculating means for calculating a deposit amount of particulate matter in the exhaust gas collected by the filter based on a capacitance between the pair of electrodes.

また、前記閉塞部材は、セルの目封止側から非目封止側までを埋め込んで形成されてもよい。   Further, the closing member may be formed by embedding from the plugged side of the cell to the non-plugged side.

また、前記閉塞部材は、セルの非目封止側を目封止して形成されてもよい。   Further, the closing member may be formed by plugging the non-plugged side of the cell.

また、前記電極が挿入された一対のセルのうち、一方のセルの非目封止側端部を第2の閉塞部材で閉塞してもよい。   Moreover, you may block | close the non-plugging side edge part of one cell among a pair of cells in which the said electrode was inserted with the 2nd closure member.

また、前記フィルタは、前記排気通路内に、前記測定用セルの目封止側を上流側に向けて配置されてもよい。   The filter may be disposed in the exhaust passage with the plugged side of the measurement cell facing upstream.

また、前記排気通路の所定位置から分岐するバイパス通路と、前記バイパス通路の分岐位置よりも下流側の排気通路内に設けられ、当該下流側の排気通路内を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、前記フィルタは、前記バイパス通路内に配置されるものであってもよい。   In addition, a bypass passage that branches from a predetermined position of the exhaust passage, and an exhaust passage that is downstream of the bypass passage, and traps particulate matter in the exhaust that flows through the exhaust passage on the downstream side. A second filter that collects, and the filter may be disposed in the bypass passage.

また、前記フィルタに堆積した粒子状物質を燃焼除去する強制再生を実行する際は、前記一対の電極をヒータとして機能させてもよい。   Moreover, when performing forced regeneration which burns and removes the particulate matter deposited on the filter, the pair of electrodes may function as a heater.

本発明の粒子状物質の測定装置によれば、静電容量変化の早期サチュレートを効果的に抑制して、感度の低下を抑止することができる。   According to the particulate matter measuring device of the present invention, it is possible to effectively suppress the early saturation of the capacitance change and suppress the decrease in sensitivity.

本発明の一実施形態に係る粒子状物質の測定装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the measuring apparatus of the particulate matter which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粒子状物質の測定装置において、(a)はDPFを排気下流側から視た模式的な斜視図、(b)はDPFの一部を排気下流側から視た模式的な平面図である。In the particulate matter measurement device according to an embodiment of the present invention, (a) is a schematic perspective view of a DPF viewed from the exhaust downstream side, and (b) is a schematic view of a part of the DPF viewed from the exhaust downstream side. FIG. (a)〜(e)は、図2(a)のA1〜A5線縦断面図である。(A)-(e) is A1-A5 line longitudinal cross-sectional view of Fig.2 (a). (a)〜(e)は、図2(a)のB1〜B5線横断面図である。(A)-(e) is the B1-B5 line cross-sectional view of Fig.2 (a). 本発明の一実施形態に係る粒子状物質の測定装置において、閉塞部材の変形例を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a modification of the blocking member in the particulate matter measurement device according to an embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、電極用セルの変形例を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a modification of the electrode cell in the particulate matter measurement device according to one embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、測定用セルの隔壁表面に堆積するPMを従来技術と比較した図である。It is the figure which compared PM deposited on the partition wall surface of the cell for measurement with the prior art in the particulate matter measuring device concerning one embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、静電容量の変化がサチュレートする時期を従来技術と比較した図である。In the particulate matter measuring device according to one embodiment of the present invention, it is a diagram comparing the time when the change in capacitance saturates with the prior art. 本発明の他の実施形態に係る粒子状物質の測定装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the measuring apparatus of the particulate matter which concerns on other embodiment of this invention. 従来のPMセンサにおいて、(a)は測定用セルに流入する排気ガスの流れを示す図、(b)は測定用セルの隔壁表面に堆積するPMを示す図である。In the conventional PM sensor, (a) is a view showing the flow of exhaust gas flowing into the measurement cell, and (b) is a view showing PM deposited on the partition wall surface of the measurement cell.

以下、図1〜4に基づいて、本発明の一実施形態に係る粒子状物質の測定装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, based on FIGS. 1-4, the measuring apparatus of the particulate matter which concerns on one Embodiment of this invention is demonstrated. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジン)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気ガスを大気に放出する排気通路12が接続されている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.

さらに、排気通路12には、排気上流側から順に、排気管内噴射装置13、排気後処理装置14、DPF入口温度センサ31、DPF出口温度センサ32が設けられている。   Further, in the exhaust passage 12, an exhaust pipe injection device 13, an exhaust aftertreatment device 14, a DPF inlet temperature sensor 31, and a DPF outlet temperature sensor 32 are provided in this order from the exhaust upstream side.

排気管内噴射装置13は、電子制御ユニット(以下、ECU)20から出力される指示信号に応じて、排気通路12内に未燃燃料(HC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置13を省略してもよい。   The exhaust pipe injection device 13 injects unburned fuel (HC) into the exhaust passage 12 in response to an instruction signal output from an electronic control unit (hereinafter, ECU) 20. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 13 may be omitted.

DPF入口温度センサ31は、DPF16に流入する排気ガスの温度(以下、入口温度TIN)を検出する。DPF出口温度センサ32は、DPF16から流出する排気ガスの温度(以下、出口温度TOUT)を検出する。これら入口温度TIN及び出口温度TOUTは、電気的に接続されたECU20に出力される。 The DPF inlet temperature sensor 31 detects the temperature of exhaust gas flowing into the DPF 16 (hereinafter referred to as inlet temperature T IN ). The DPF outlet temperature sensor 32 detects the temperature of exhaust gas flowing out from the DPF 16 (hereinafter referred to as outlet temperature T OUT ). The inlet temperature T IN and the outlet temperature T OUT are output to the electrically connected ECU 20.

排気後処理装置14は、ケース14a内に排気上流側から順に酸化触媒15、DPF16を配置して構成されている。   The exhaust aftertreatment device 14 is configured by arranging an oxidation catalyst 15 and a DPF 16 in order from the exhaust upstream side in a case 14a.

酸化触媒15は、例えば、コーディエライトハニカム構造体等のセラミックス製担体表面に触媒成分を担持して形成されている。酸化触媒15は、DPF16の強制再生時に、排気管内噴射装置13又はポスト噴射によって未燃燃料(HC)が供給されると、これを酸化して排気ガスの温度を上昇させる。これにより、DPF16はPM燃焼温度(例えば、約600℃)まで昇温されて、堆積したPMが燃焼除去される。   The oxidation catalyst 15 is formed, for example, by supporting a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When the unburnt fuel (HC) is supplied by the in-pipe injection device 13 or post-injection during forced regeneration of the DPF 16, the oxidation catalyst 15 oxidizes this and raises the temperature of the exhaust gas. As a result, the DPF 16 is heated to the PM combustion temperature (for example, about 600 ° C.), and the deposited PM is burned and removed.

DPF16は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して構成されている。以下、図2〜4に基づいて、本実施形態のDPF16の詳細構造を説明する。   The DPF 16 has, for example, a large number of cells forming a grid-like exhaust flow path partitioned by porous ceramic partition walls along the exhaust gas flow direction, and the upstream side and the downstream side of these cells are alternately arranged. It is configured by plugging. Hereinafter, based on FIGS. 2-4, the detailed structure of DPF16 of this embodiment is demonstrated.

図2〜4に示すように、DPF16には、排気上流側が解放(排気下流側が目封止)された複数のセル1が、静電容量の測定用として選定されている(以下、セル1を測定用セルという)。   As shown in FIGS. 2 to 4, in the DPF 16, a plurality of cells 1 that are open on the exhaust upstream side (plugged on the exhaust downstream side) are selected for capacitance measurement (hereinafter, cell 1 is referred to as “cell 1”). Called measurement cell).

また、測定用セル1に隔壁を介して隣接する4つのセル2〜5のうち、測定用セル1を挟んで対向する一対のセル2,3には、コンデンサを形成する一対の電極A,Bがそれぞれ挿入されている(以下、セル2,3を電極用セルという)。   Of the four cells 2 to 5 adjacent to the measurement cell 1 through a partition wall, the pair of cells 2 and 3 that are opposed to each other with the measurement cell 1 in between are a pair of electrodes A and B forming a capacitor. Are inserted (hereinafter, cells 2 and 3 are referred to as electrode cells).

さらに、測定用セル1を挟んで対向し、且つ電極A,Bが挿入されない一対のセル4,5には、セル4,5内の排気流路を閉塞する閉塞部材6が設けられている(以下、セル4,5を閉塞用セルという)。   Further, a pair of cells 4 and 5 that face each other with the measurement cell 1 interposed therebetween and into which the electrodes A and B are not inserted are provided with a closing member 6 that closes the exhaust flow path in the cells 4 and 5 ( Hereinafter, the cells 4 and 5 are referred to as blocking cells).

電極A,Bは、例えば導電性の金属線であって、排気上流側を目封止された電極用セル2,3に非目封止側(排気下流側)から挿入されてコンデンサを形成する。電極用セル2に挿入された電極Aは、排気下流側の基端部を外方に突出させると共に、その基端部を導電性の金属部材で形成された接続線A1(図2参照)によって互いに接続されている。同様に、電極用セル3に挿入された電極Bは、排気下流側の基端部を外方に突出させると共に、その基端部を導電性の金属部材で形成された接続線B1(図2参照)によって互いに接続されている。   The electrodes A and B are, for example, conductive metal wires, and are inserted from the non-plugged side (exhaust downstream side) into the electrode cells 2 and 3 plugged on the exhaust upstream side to form a capacitor. . The electrode A inserted into the electrode cell 2 has a base end portion on the exhaust downstream side protruding outward, and the base end portion is connected by a connection line A1 (see FIG. 2) formed of a conductive metal member. Are connected to each other. Similarly, the electrode B inserted into the electrode cell 3 has a base end portion on the exhaust downstream side protruding outward, and a connection line B1 formed of a conductive metal member at the base end portion (FIG. 2). Are connected to each other.

本実施形態において、電極Aの突出量は、接続線A1と接続線B1との接触を回避するために、電極Bの突出量よりも長く設定されている。なお、これら突出量は、必ずしも電極Aを長くする必要はなく、電極Bを長く設定することもできる。   In the present embodiment, the protruding amount of the electrode A is set longer than the protruding amount of the electrode B in order to avoid contact between the connecting line A1 and the connecting line B1. In addition, these protrusion amounts do not necessarily need to make the electrode A longer, and the electrode B can be set longer.

閉塞用セル4,5内に設けられた閉塞部材6は、例えばDPF16と同一材料のセラミックスで形成されている。本実施形態において、この閉塞部材6は、閉塞用セル4,5の目封止側から非目封止側に至る排気流路を全て塞ぐように、閉塞用セル4,5内の全領域に埋設されている(図3,4参照)。   The closing member 6 provided in the closing cells 4 and 5 is made of, for example, ceramics made of the same material as the DPF 16. In the present embodiment, the closing member 6 covers the entire area in the closing cells 4 and 5 so as to block all the exhaust flow paths from the plugging side to the non-plugging side of the closing cells 4 and 5. It is buried (see FIGS. 3 and 4).

すなわち、測定用セル1に流入した排気ガスは、閉塞用セル4,5に流れ込むことなく、電極用セル2,3へと流れ込むように構成されている。これにより、測定用セル1に流入した排気ガス中のPMは、電極用セル2,3側の隔壁表面に捕集され、閉塞用セル4,5側の隔壁への堆積が効果的に抑制される。   In other words, the exhaust gas that has flowed into the measuring cell 1 is configured to flow into the electrode cells 2 and 3 without flowing into the blocking cells 4 and 5. Thereby, PM in the exhaust gas flowing into the measuring cell 1 is collected on the surface of the partition walls on the electrode cells 2 and 3 side, and the deposition on the partition walls on the closing cells 4 and 5 side is effectively suppressed. The

なお、閉塞部材6は必ずしも、閉塞用セル4,5内の全領域に埋設される必要はなく、図5に示すように、閉塞用セル4,5内の流路の一部を閉塞(図示例では、非目封止側を目封止)するように設けてもよい。   Note that the closing member 6 does not necessarily need to be embedded in the entire area in the closing cells 4 and 5, and as shown in FIG. 5, a part of the flow path in the closing cells 4 and 5 is closed (see FIG. In the example shown, the non-plugged side may be plugged.

また、図6に示すように、追加の閉塞部材7(第二の閉塞部材)を電極A,Bの何れか一方(図示例では電極A)の挿入側端部に設けてもよい。この場合、PMの閉塞用セル4,5側の隔壁表面への堆積のみならず、電極用セル2側の隔壁表面への堆積も効果的に抑制することができる。   Further, as shown in FIG. 6, an additional closing member 7 (second closing member) may be provided at the insertion side end of one of the electrodes A and B (electrode A in the illustrated example). In this case, not only deposition of PM on the partition wall surfaces on the blocking cells 4 and 5 side but also deposition on the partition wall surface on the electrode cell 2 side can be effectively suppressed.

次に、図1に戻って、本実施形態のECU20を説明する。ECU20は、エンジン10や排気管内噴射装置13の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。また、ECU20は、静電容量演算部21と、PM堆積量推定部22とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU20に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   Next, returning to FIG. 1, the ECU 20 of the present embodiment will be described. The ECU 20 performs various controls such as fuel injection of the engine 10 and the exhaust pipe injection device 13, and includes a known CPU, ROM, RAM, input port, output port, and the like. Moreover, ECU20 has the electrostatic capacitance calculating part 21 and PM deposition amount estimation part 22 as a one part function element. Each of these functional elements will be described as being included in the ECU 20 which is an integral hardware, but any one of these may be provided in separate hardware.

静電容量演算部21は、電極A,Bから入力される信号に基づいて、これら電極A,B間の静電容量Cを演算する。静電容量Cは、電極A,B間の媒体の誘電率ε、電極A,Bの面積S、電極A,B間の距離dとする以下の数式1で演算される。   The capacitance calculation unit 21 calculates the capacitance C between the electrodes A and B based on the signals input from the electrodes A and B. The electrostatic capacity C is calculated by the following formula 1 where the dielectric constant ε of the medium between the electrodes A and B, the area S of the electrodes A and B, and the distance d between the electrodes A and B are calculated.

Figure 0006036388
Figure 0006036388

PM堆積量推定部22は、DPF入口温度センサ31で検出される入口温度TIN及びDPF出口温度センサ32で検出される出口温度TOUTの平均値(以下、DPF平均温度TAVE)と、静電容量演算部21で演算される静電容量Cとに基づいて、DPF16に捕集されたPM堆積量PMDEPを推定する。PM堆積量PMDEPの推定には、予め実験により求めた近似式やマップ等を用いることができる。 The PM accumulation amount estimation unit 22 calculates the average value of the inlet temperature T IN detected by the DPF inlet temperature sensor 31 and the outlet temperature T OUT detected by the DPF outlet temperature sensor 32 (hereinafter, DPF average temperature T AVE ), static Based on the capacitance C calculated by the capacitance calculation unit 21, the PM deposition amount PM DEP collected by the DPF 16 is estimated. For the estimation of the PM deposition amount PM DEP , an approximate expression or a map obtained in advance by experiments can be used.

次に、本実施形態に係る粒子状物質の測定装置による作用効果を説明する。   Next, the function and effect of the particulate matter measurement device according to the present embodiment will be described.

従来のPMセンサでは、測定用セルを挟んで対向する四つのセルは、排気上流側のみが目封止され、排気下流側は非目封止とされている。そのため、測定用セルに流入した排気ガス中のPMは、測定用セルを区画する四つの隔壁表面に略矩形状に堆積する(図10(b)参照)。このように、測定用セルの隔壁表面にPMが略矩形状に堆積すると、コンデンサを形成する電極間の静電容量変化は早期にサチュレートして、感度の低下を招くといった課題がある。   In the conventional PM sensor, four cells facing each other across the measurement cell are plugged only on the exhaust upstream side, and the exhaust downstream side is not plugged. Therefore, PM in the exhaust gas flowing into the measurement cell is deposited in a substantially rectangular shape on the surfaces of the four partition walls that partition the measurement cell (see FIG. 10B). Thus, when PM is deposited in a substantially rectangular shape on the partition wall surface of the measurement cell, there is a problem that the change in capacitance between the electrodes forming the capacitor is saturated at an early stage, leading to a decrease in sensitivity.

これに対し、本実施形態の粒子状物質の測定装置では、測定用セル1を挟んで対向し、且つ電極A,Bが挿入されない閉塞用セル4,5内に、これら閉塞用セル4,5の排気流路を閉塞する閉塞部材6が設けられている。   On the other hand, in the particulate matter measuring apparatus according to the present embodiment, the blocking cells 4 and 5 are placed in the blocking cells 4 and 5 which are opposed to each other with the measuring cell 1 interposed therebetween and into which the electrodes A and B are not inserted. A closing member 6 is provided to close the exhaust flow path.

すなわち、閉塞用セル4,5への排気ガスの流れ込みが阻止されるため、測定用セル1に流入した排気ガス中のPMは、図7に示すように、電極用セル2,3側の隔壁表面に捕集されて堆積する。その結果、図8に示すように、静電容量の変化がサチュレートする時期を、従来技術のPMセンサに比べて大幅に遅れさせることが可能になる。   That is, since the flow of the exhaust gas into the blocking cells 4 and 5 is blocked, the PM in the exhaust gas flowing into the measurement cell 1 becomes a partition wall on the electrode cell 2 and 3 side as shown in FIG. Collected and deposited on the surface. As a result, as shown in FIG. 8, it is possible to greatly delay the time when the change in capacitance is saturated as compared with the PM sensor of the prior art.

したがって、本実施形態の粒子状物質の測定装置によれば、静電容量変化の早期サチュレートが効果的に抑制されて、感度の低下を確実に抑止することができる。   Therefore, according to the particulate matter measuring device of the present embodiment, the early saturation of the capacitance change is effectively suppressed, and the decrease in sensitivity can be reliably suppressed.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、DPF16は、排気通路12内に測定用セル1の非目封止側を排気上流側に向けて配置されるものとして説明したが、測定用セル1の目封止側を排気上流側に向けて配置してもよい。   For example, the DPF 16 has been described as being disposed in the exhaust passage 12 with the non-plugged side of the measurement cell 1 facing the upstream side of the exhaust, but the plugged side of the measurement cell 1 is on the upstream side of the exhaust. You may arrange it.

また、図9に示すように、酸化触媒15よりも下流側の排気通路12から分岐するバイパス通路18を設け、このバイパス通路18内に容量を小さくした計測用のDPF16を配置して構成してもよい。この場合、分岐部よりも下流側の排気通路12には容量の大きいDPF17(第2のフィルタ)を設け、バイパス通路18には排気ガスの流量を調整するオリフィス18aを設けることが好ましい。また、計測用のDPF16の強制再生を実行する場合は、電極A,Bに電圧を印加してヒータとして機能させてもよい。   Further, as shown in FIG. 9, a bypass passage 18 branched from the exhaust passage 12 downstream of the oxidation catalyst 15 is provided, and a measurement DPF 16 having a reduced capacity is disposed in the bypass passage 18. Also good. In this case, it is preferable to provide a large-capacity DPF 17 (second filter) in the exhaust passage 12 on the downstream side of the branch portion, and provide the bypass passage 18 with an orifice 18a for adjusting the flow rate of the exhaust gas. When forced regeneration of the measurement DPF 16 is executed, a voltage may be applied to the electrodes A and B so as to function as a heater.

1 測定用セル
2,3 電極用セル
4,5 閉塞用セル
6 閉塞部材
10 エンジン
12 排気通路
14 排気後処理装置
16 DPF(フィルタ)
20 ECU
21 静電容量演算部(堆積量算出手段)
22 PM堆積量推定部(堆積量算出手段)
A,B 電極
DESCRIPTION OF SYMBOLS 1 Measurement cell 2, 3 Electrode cell 4, 5 Closure cell 6 Closure member 10 Engine 12 Exhaust passage 14 Exhaust aftertreatment device 16 DPF (filter)
20 ECU
21 Capacitance calculation unit (deposition amount calculation means)
22 PM accumulation amount estimation unit (deposition amount calculation means)
A and B electrodes

Claims (7)

内燃機関の排気通路内に設けられ、多孔質性の隔壁で区画された格子状の排気流路を形成する複数のセルの上流側と下流側とを交互に目封止されたフィルタと、
少なくとも一つのセルを測定用セルとし、当該測定用セルに隔壁を介して隣接する四つのセルのうち、対向する一対のセルに非目封止側からそれぞれ挿入される一対の電極と、
前記四つのセルのうち、前記電極が挿入されていない一対のセル内に設けられて、当該セルの少なくとも一部の流路を塞ぐ閉塞部材と、
前記一対の電極間の静電容量に基づいて、前記フィルタに捕集される排気中の粒子状物質の堆積量を算出する堆積量算出手段と、を備える
ことを特徴とする粒子状物質の測定装置。
A filter provided in the exhaust passage of the internal combustion engine and alternately plugged upstream and downstream of a plurality of cells forming a grid-like exhaust flow path partitioned by porous partition walls;
A pair of electrodes inserted into the pair of opposed cells from the non-plugged side among the four cells adjacent to the measurement cell via a partition wall, and at least one cell as a measurement cell;
Among the four cells, a blocking member that is provided in a pair of cells into which the electrode is not inserted and blocks at least a part of the flow path of the cell;
A deposit amount calculating means for calculating a deposit amount of the particulate matter in the exhaust gas collected by the filter based on a capacitance between the pair of electrodes; apparatus.
前記閉塞部材は、セルの目封止側から非目封止側までを埋め込んで形成される請求項1に記載の粒子状物質の測定装置。   The particulate matter measuring device according to claim 1, wherein the blocking member is formed by embedding from a plugged side to a non-plugged side of a cell. 前記閉塞部材は、セルの非目封止側を目封止して形成される請求項1に記載の粒子状物質の測定装置。   The particulate matter measuring device according to claim 1, wherein the blocking member is formed by plugging a non-plugged side of a cell. 前記電極が挿入された一対のセルのうち、一方のセルの非目封止側端部を第2の閉塞部材で閉塞した請求項1から3の何れか一項に記載の粒子状物質の測定装置。   The measurement of the particulate matter according to any one of claims 1 to 3, wherein a non-plugged side end portion of one of the pair of cells into which the electrodes are inserted is closed with a second closing member. apparatus. 前記フィルタは、前記排気通路内に、前記測定用セルの目封止側を上流側に向けて配置される請求項1から4の何れか一項に記載の粒子状物質の測定装置。   The particulate matter measuring device according to any one of claims 1 to 4, wherein the filter is arranged in the exhaust passage with a plugging side of the measurement cell facing an upstream side. 前記排気通路の所定位置から分岐するバイパス通路と、
前記バイパス通路の分岐位置よりも下流側の排気通路内に設けられ、当該下流側の排気通路内を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、
前記フィルタは、前記バイパス通路内に配置される請求項1から5の何れか一項に記載の粒子状物質の測定装置。
A bypass passage branched from a predetermined position of the exhaust passage;
A second filter that is provided in the exhaust passage downstream of the bypass passage branching position and collects particulate matter in the exhaust gas flowing in the downstream exhaust passage;
The particulate matter measuring device according to any one of claims 1 to 5, wherein the filter is disposed in the bypass passage.
前記フィルタに堆積した粒子状物質を燃焼除去する強制再生を実行する際は、前記一対の電極をヒータとして機能させる
請求項6に記載の粒子状物質の測定装置。
The particulate matter measuring device according to claim 6, wherein when performing forced regeneration for burning and removing particulate matter deposited on the filter, the pair of electrodes function as a heater.
JP2013031170A 2013-02-20 2013-02-20 Particulate matter measuring device Expired - Fee Related JP6036388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031170A JP6036388B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031170A JP6036388B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring device

Publications (2)

Publication Number Publication Date
JP2014159783A JP2014159783A (en) 2014-09-04
JP6036388B2 true JP6036388B2 (en) 2016-11-30

Family

ID=51611619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031170A Expired - Fee Related JP6036388B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring device

Country Status (1)

Country Link
JP (1) JP6036388B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409452B2 (en) * 2014-09-26 2018-10-24 いすゞ自動車株式会社 Diagnostic equipment
JP6451179B2 (en) * 2014-09-26 2019-01-16 いすゞ自動車株式会社 Diagnostic equipment
JP6766358B2 (en) 2015-01-20 2020-10-14 いすゞ自動車株式会社 Sensor
JP6626901B2 (en) 2015-11-26 2019-12-25 京セラ株式会社 Part for measuring device of particulate matter and method for producing the same
WO2017110581A1 (en) 2015-12-25 2017-06-29 京セラ株式会社 Component for particulate matter measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066462A1 (en) * 2005-12-05 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
US20080105567A1 (en) * 2006-11-08 2008-05-08 Honda Motor Co., Ltd. Sensing device and method
JP2012177299A (en) * 2010-03-16 2012-09-13 Ibiden Co Ltd Sensor for exhaust emission control system
JP2012237228A (en) * 2011-05-11 2012-12-06 Isuzu Motors Ltd Pm sensor

Also Published As

Publication number Publication date
JP2014159783A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6028615B2 (en) Particulate matter measuring device
JP6089763B2 (en) Particulate matter measuring device
JP6197377B2 (en) Exhaust purification device
JP6036388B2 (en) Particulate matter measuring device
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
CN107076692B (en) Sensor with a sensor element
JP6056537B2 (en) Particulate matter measuring apparatus and filter manufacturing method
WO2016140215A1 (en) Sensor
JP6032053B2 (en) Exhaust system state detection device and control device
WO2015053323A1 (en) Exhaust purification system
US10481061B2 (en) Sensor for detecting an emission amount of particulate matter
JP5428583B2 (en) PM sensor
JP2015059476A (en) Exhaust purification system of internal combustion engine
WO2015053322A1 (en) Exhaust purification system
JP2016153737A (en) Sensor
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
WO2016140214A1 (en) Sensor
JP6417780B2 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees