JP2012237228A - Pm sensor - Google Patents

Pm sensor Download PDF

Info

Publication number
JP2012237228A
JP2012237228A JP2011106240A JP2011106240A JP2012237228A JP 2012237228 A JP2012237228 A JP 2012237228A JP 2011106240 A JP2011106240 A JP 2011106240A JP 2011106240 A JP2011106240 A JP 2011106240A JP 2012237228 A JP2012237228 A JP 2012237228A
Authority
JP
Japan
Prior art keywords
electrodes
dpf
electrode
cells
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011106240A
Other languages
Japanese (ja)
Inventor
Masabumi Noda
正文 野田
Tadashi Uchiyama
正 内山
Mitsuhiro Aso
充宏 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011106240A priority Critical patent/JP2012237228A/en
Publication of JP2012237228A publication Critical patent/JP2012237228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PM sensor capable of detecting an average amount of PM deposition of the entire DPF, and capable of securing capacitance enough to be detected.SOLUTION: A DPF 1 in which a plurality of cells 3 whose four longitudinal and lateral faces are surrounded by walls 2 made of porous materials are longitudinally and laterally stacked, and end faces of the cells 3 are longitudinally and laterally plugged in an alternative manner includes first and second electrodes 5, 6. In the PM sensor 4 in which the PM deposition amount of the DPF 1 is detected based on the capacitance of the capacitor formed of the first and second electrodes 5, 6, the first electrodes 5 are inserted in a plurality of open cells 3b aligning in a diagonal line direction among open cells 3b, and the second electrodes 6 are inserted in the plurality of open cells 3b aligned in the diagonal line direction adjacent to the open cells 3b in which the first electrodes 5 are inserted.

Description

本発明は、DPF全体の平均的なPM堆積量が検出でき、かつ、検出に十分な大きさの静電容量が確保できるPMセンサに関する。   The present invention relates to a PM sensor that can detect an average amount of PM deposited in the entire DPF, and can secure a sufficient capacitance for detection.

ディーゼルエンジンなどの内燃機関が搭載された車両では、内燃機関から大気までの排ガスの排出流路にディーゼルパティキュレートフィルタ(Diesel Particulate Filter;以下、DPFという)が設置され、このDPFに粒子状物質(Particulate Matter;以下、PMという)が捕集される。DPFは、多孔質セラミックからなるハニカム細孔状のフィルタにPMを一時的に捕集する部材である。   In a vehicle equipped with an internal combustion engine such as a diesel engine, a diesel particulate filter (hereinafter referred to as DPF) is installed in an exhaust gas exhaust flow path from the internal combustion engine to the atmosphere, and particulate matter ( Particulate Matter (hereinafter referred to as PM) is collected. The DPF is a member that temporarily collects PM in a honeycomb pore filter made of porous ceramic.

DPFに捕集されているPMの量(以下、PM堆積量という)が多くなると内燃機関の排気圧力が上昇し内燃機関の特性低下をきたすため、捕集されているPMを燃焼させる処理が行われる。この処理をDPF再生という。DPF再生時には、排気温度を上昇させるための燃料噴射が行われる。排気温度が上昇すると、DPFが昇温され、DPFに捕集されているPMが燃焼する。   When the amount of PM collected in the DPF (hereinafter referred to as PM accumulation amount) increases, the exhaust pressure of the internal combustion engine rises and the characteristics of the internal combustion engine deteriorate, so the process of burning the collected PM is performed. Is called. This process is called DPF regeneration. During the DPF regeneration, fuel injection for increasing the exhaust temperature is performed. When the exhaust gas temperature rises, the DPF is heated up and the PM collected in the DPF burns.

このとき、PM堆積量が多すぎると、DPF再生時の熱でDPFが損傷してしまう。PM堆積量が多すぎにならないうちにDPF再生するためには、PM堆積量を正確に検出する必要がある。   At this time, if the amount of accumulated PM is too large, the DPF is damaged by the heat during DPF regeneration. In order to regenerate the DPF before the PM accumulation amount becomes too large, it is necessary to accurately detect the PM accumulation amount.

PM堆積量を検出するPMセンサとして、DPFに2つの電極が設置され、2つの電極により形成されるコンデンサの静電容量からPM堆積量が検出されるものが知られている。この種のPMセンサでは、誘電体と導体の混合物であるPMが電極間に堆積することになるので、PM堆積量に対して直線的に静電容量が増大する。   As a PM sensor for detecting the PM deposition amount, there is known a sensor in which two electrodes are installed in the DPF and the PM deposition amount is detected from the capacitance of a capacitor formed by the two electrodes. In this type of PM sensor, PM, which is a mixture of a dielectric and a conductor, is deposited between the electrodes, so that the capacitance increases linearly with respect to the amount of PM deposited.

図5に示された従来のPMセンサ51は、円柱状のDPF52の外周に半割円筒状に形成された2つの電極53、54が設置されている。2つの電極53、54がDPF52を挟んで対向することにより、2つの電極53、54により形成されるコンデンサの静電容量がDPF52の全体のPM堆積量に応じて変化する(特許文献1)。   The conventional PM sensor 51 shown in FIG. 5 has two electrodes 53 and 54 formed in a half-cylindrical shape on the outer periphery of a columnar DPF 52. When the two electrodes 53 and 54 face each other with the DPF 52 interposed therebetween, the capacitance of the capacitor formed by the two electrodes 53 and 54 changes in accordance with the total PM deposition amount of the DPF 52 (Patent Document 1).

図6に示された従来のPMセンサ61は、円柱状のDPF62の外周に一方の電極63が設置され、これよりも内側にもう一方の電極64が同心状に設置されている。2つの電極63、64により形成されるコンデンサの静電容量が2つの電極63、64に挟まれたDPF62の一部分のPM堆積量に応じて変化する(特許文献2)。   In the conventional PM sensor 61 shown in FIG. 6, one electrode 63 is installed on the outer periphery of a cylindrical DPF 62, and the other electrode 64 is installed concentrically on the inner side. The capacitance of the capacitor formed by the two electrodes 63 and 64 changes according to the PM deposition amount of a part of the DPF 62 sandwiched between the two electrodes 63 and 64 (Patent Document 2).

特開2010−144630号公報JP 2010-144630 A 特開2011−012577号公報JP 2011-012577 A

しかしながら、一般に、DPFは、DPFを保護するための金属製のハウジングに収容され、このハウジングが車体に取り付けられる。このため、DPFの外周に設置された電極とハウジングとの間にもコンデンサが形成される。   However, generally, the DPF is accommodated in a metal housing for protecting the DPF, and this housing is attached to the vehicle body. For this reason, a capacitor is also formed between the electrode installed on the outer periphery of the DPF and the housing.

図5のPMセンサ51では、電極53、54とハウジング55との距離が2つの電極53、54間の距離よりも顕著に短いため、電極53、54とハウジング55によるコンデンサの静電容量が2つの電極53、54によるコンデンサの静電容量よりも顕著に大きい。さらに、電極53、54とハウジング55によるコンデンサの静電容量は、熱的にも機械的にも不安定である。この結果、PMセンサ51の回路は、2つの電極53、54によるコンデンサに対して電極53、54とハウジング55によるコンデンサが並列に接続された回路となる。PM堆積量を検出するべきコンデンサに、それよりも静電容量が顕著に大きく、なおかつ、不安定なコンデンサが並列に接続されたのでは、PM堆積量を正確に検出することができない。   In the PM sensor 51 of FIG. 5, since the distance between the electrodes 53 and 54 and the housing 55 is significantly shorter than the distance between the two electrodes 53 and 54, the capacitance of the capacitor by the electrodes 53 and 54 and the housing 55 is 2. It is significantly larger than the capacitance of the capacitor by the two electrodes 53 and 54. Furthermore, the capacitance of the capacitor formed by the electrodes 53 and 54 and the housing 55 is unstable both thermally and mechanically. As a result, the PM sensor 51 circuit is a circuit in which the electrodes 53 and 54 and the capacitor of the housing 55 are connected in parallel to the capacitor of the two electrodes 53 and 54. If the capacitor for which the PM deposition amount is to be detected has a capacitance that is significantly larger than that and an unstable capacitor is connected in parallel, the PM deposition amount cannot be detected accurately.

図6のPMセンサ61では、外周の電極63と内側の電極64との距離を近づけることにより、2つの電極63、64によるコンデンサの静電容量が大きくなる。しかし、そのためには内側の電極64をDPF62の外周近くに配置することになり、内側の電極64より内側のDPF62の一部分のPM堆積量は検出できなくなる。内側の電極64より外側のDPF62の一部分のみPM堆積量を検出したのでは、検出値がDPF62全体の平均的なPM堆積量と乖離するおそれがある。   In the PM sensor 61 of FIG. 6, the capacitance of the capacitor by the two electrodes 63 and 64 is increased by reducing the distance between the outer electrode 63 and the inner electrode 64. However, for that purpose, the inner electrode 64 is disposed near the outer periphery of the DPF 62, and the PM deposition amount in a part of the DPF 62 inside the inner electrode 64 cannot be detected. If the PM deposition amount is detected only in a part of the DPF 62 outside the inner electrode 64, the detected value may deviate from the average PM deposition amount of the entire DPF 62.

そこで、本発明の目的は、上記課題を解決し、DPF全体の平均的なPM堆積量が検出でき、かつ、検出に十分な大きさの静電容量が確保できるPMセンサを提供することにある。   Accordingly, an object of the present invention is to provide a PM sensor that solves the above-described problems, can detect the average amount of PM deposited in the entire DPF, and can secure a sufficiently large capacitance for detection. .

上記目的を達成するために本発明のPMセンサは、多孔質材料からなる壁で縦横の四面が囲まれた複数のセルが縦横に積層され前記セルの端面が縦横に交互に目封じされてなるディーゼルパティキュレートフィルタ(以下、DPFという)に、第一、第二の電極が設けられ、前記第一、第二の電極により形成されるコンデンサの静電容量により前記DPFの粒子状物質(以下、PMという)の堆積量が検出されるPMセンサにおいて、目封じされないセル(以下、開放セルという)のうち対角方向一列に並ぶ複数の開放セルに前記第一の電極が挿入され、前記第一の電極が挿入された複数の開放セルに隣接して対角方向一列に並ぶ複数の開放セルに前記第二の電極が挿入されたものである。   In order to achieve the above object, the PM sensor of the present invention has a plurality of cells stacked vertically and horizontally, surrounded by walls made of a porous material, and the end faces of the cells are alternately plugged vertically and horizontally. A diesel particulate filter (hereinafter referred to as a DPF) is provided with first and second electrodes, and the DPF particulate matter (hereinafter referred to as the DPF) due to the capacitance of a capacitor formed by the first and second electrodes. In the PM sensor in which the accumulation amount of PM) is detected, the first electrode is inserted into a plurality of open cells arranged in a diagonal line among cells that are not sealed (hereinafter referred to as open cells), and the first The second electrode is inserted into a plurality of open cells arranged in a line in a diagonal direction adjacent to the plurality of open cells in which the first electrode is inserted.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)DPF全体の平均的なPM堆積量が検出できる。   (1) The average PM deposition amount of the entire DPF can be detected.

(2)検出に十分な大きさの静電容量が確保できる。   (2) A sufficient capacitance can be secured for detection.

本発明が適用されるDPFの部分端面図である。It is a partial end elevation of DPF to which the present invention is applied. 本発明が適用されるDPFの部分断面図である。It is a fragmentary sectional view of DPF to which the present invention is applied. 本発明のPMセンサが取り付けられたDPFの部分端面図である。It is a fragmentary end view of DPF with which PM sensor of the present invention was attached. 本発明のPMセンサが取り付けられたDPFの斜視図である。It is a perspective view of DPF with which PM sensor of the present invention was attached. 従来のPMセンサの斜視図である。It is a perspective view of the conventional PM sensor. 従来のPMセンサの斜視図である。It is a perspective view of the conventional PM sensor.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、本発明の基礎としてDPFの構造と機能について説明する。   First, the structure and function of the DPF will be described as the basis of the present invention.

図1に示されるように、DPF1は、多孔質材料からなる壁2で縦横の四面が囲まれた複数のセル3が縦横に積層されセル3の端面が縦横に交互に目封じされてなる。図では、目封じをハッチングで示す。目封じされたセル3を目封じセル3a、目封じされないセルを開放セル3bという。図示のように、目封じセル3aの両縦隣及び両横隣は開放セル3bであり、開放セル3bの両縦隣及び両横隣は目封じセル3aである。なお、セル3の端面形状は、ここでは正方形としているが、長方形、平行四辺形など、連続的に並べることのできる形状であればよい。   As shown in FIG. 1, the DPF 1 includes a plurality of cells 3 that are vertically and horizontally surrounded by walls 2 made of a porous material, and the end surfaces of the cells 3 are alternately sealed vertically and horizontally. In the figure, the sealing is indicated by hatching. The sealed cell 3 is called a sealed cell 3a, and the unsealed cell is called an open cell 3b. As shown in the drawing, both vertical and horizontal neighbors of the sealed cell 3a are open cells 3b, and both vertical and horizontal neighbors of the open cell 3b are sealed cells 3a. In addition, although the end surface shape of the cell 3 is a square here, it may be a shape that can be continuously arranged, such as a rectangle or a parallelogram.

片側端面と反対側端面とでは、目封じと開放とが逆転する。すなわち、1つのセル3は、片側端面が目封じされていれば、反対側端面は必ず開放であり、片側端面が開放であれば、反対側端面は必ず目封じされている。従って、同じセル3が片側から見れば目封じセル3aとなり、反対側から見れば開放セル3bとなる。   Sealing and opening are reversed between the one end face and the opposite end face. That is, in one cell 3, if one end face is sealed, the opposite end face is always open, and if one end face is open, the opposite end face is always sealed. Therefore, the same cell 3 becomes a sealed cell 3a when viewed from one side, and becomes an open cell 3b when viewed from the opposite side.

図2に示されるように、DPF1は、排ガスの排出流路に設置され、どちらかの端面が上流に望み、反対の端面が下流に望む。上流に望む面では、目封じセル3aには排ガスは流入せず、開放セル3bのみに排ガスが流入する。排ガスが流入した開放セル3bは、下流に望む反対側端面で目封じされて目封じセル3aとなっているため、排ガスは、多孔質材料からなる壁2を通り抜けて、隣の目封じセル3aに移動する。隣の目封じセル3aは、下流に望む反対側端面が開放されて開放セル3bとなっているため、排ガスは、この開放セル3bから流出する。このようにして、排ガスが壁2を通り抜けるときに、排ガス中のPMが多孔質材料からなる壁2に吸着される。図2では、1つの開放セル3bに流入した排ガスが隣接する2つの目封じセル3aに移動するように示されているが、実際には1つの開放セル3bに流入した排ガスが縦横に隣接する4つの目封じセル3aに移動するので、縦横4つの壁2にPMが吸着される。   As shown in FIG. 2, the DPF 1 is installed in the exhaust gas discharge flow path, and one end face is desired upstream and the opposite end face is desired downstream. On the upstream side, exhaust gas does not flow into the sealing cell 3a, but exhaust gas flows only into the open cell 3b. Since the open cell 3b into which the exhaust gas has flowed is sealed at the opposite end face desired downstream to become a sealed cell 3a, the exhaust gas passes through the wall 2 made of a porous material and is adjacent to the sealed cell 3a. Move to. Since the adjacent sealing cell 3a has an open end cell 3b that is open at the opposite end face desired downstream, the exhaust gas flows out from the open cell 3b. In this way, when exhaust gas passes through the wall 2, PM in the exhaust gas is adsorbed on the wall 2 made of the porous material. In FIG. 2, it is shown that the exhaust gas flowing into one open cell 3b moves to two adjacent sealing cells 3a, but actually the exhaust gas flowing into one open cell 3b is adjacent vertically and horizontally. Since it moves to the four sealing cells 3a, PM is adsorbed on the four walls 2 in the vertical and horizontal directions.

図3に示されるように、本発明のPMセンサ4は、DPF1に第一、第二の電極5、6が設けられ、第一、第二の電極5、6により形成されるコンデンサの静電容量によりDPF1のPM堆積量が検出されるものである。   As shown in FIG. 3, the PM sensor 4 of the present invention is provided with first and second electrodes 5 and 6 on the DPF 1, and the electrostatic capacitance of the capacitor formed by the first and second electrodes 5 and 6. The PM accumulation amount of the DPF 1 is detected by the capacity.

本発明のPMセンサ4では、全ての開放セル3bのうち対角方向一列に並ぶ複数の開放セル3bに第一の電極5が挿入され、第一の電極5が挿入された複数の開放セル3bに隣接して対角方向一列に並ぶ複数の開放セル3bに第二の電極6が挿入される。開放セル3bが目封じセル3aと交互に配置されているので、開放セル3bに隣接する開放セル3bとは、目封じセル3aを縦横に1つ飛ばして隣接している開放セル3bのことである。   In the PM sensor 4 of the present invention, the first electrode 5 is inserted into a plurality of open cells 3b arranged in a diagonal line among all the open cells 3b, and the plurality of open cells 3b into which the first electrode 5 is inserted. The second electrode 6 is inserted into a plurality of open cells 3b that are adjacent to each other and arranged in a diagonal line. Since the open cells 3b are arranged alternately with the plugged cells 3a, the open cells 3b adjacent to the open cells 3b are the open cells 3b adjacent to each other by skipping the plugged cells 3a vertically and horizontally. is there.

開放セル3bに挿入される電極5、6は、例えば、金属線である。一列の開放セル3bに挿入された複数の第一の電極5同士は、短絡線7で短絡される。同様に、別の一列の開放セル3bに挿入された複数の第二の電極6同士は、別の短絡線8で短絡される。電極5、6が端面から挿入される深さは、任意であるが、深く挿入するほど電極5、6の長さが長くなり、電極対向面積の増加に寄与する。従って、例えば、電極5、6は、開放セル3bの反対側端面の目封じされている箇所近くまで届いているのが好ましい。   The electrodes 5 and 6 inserted into the open cell 3b are, for example, metal wires. The plurality of first electrodes 5 inserted into the open cells 3 b in a row are short-circuited by a short-circuit line 7. Similarly, a plurality of second electrodes 6 inserted in another row of open cells 3 b are short-circuited by another short-circuit line 8. The depth at which the electrodes 5 and 6 are inserted from the end face is arbitrary, but as the electrodes are inserted deeper, the length of the electrodes 5 and 6 becomes longer, which contributes to an increase in the electrode facing area. Therefore, for example, it is preferable that the electrodes 5 and 6 reach near the place where the opposite end face of the open cell 3b is sealed.

電極5、6が挿入される端面は、排ガスの排出流路の上流に望む端面でも、下流に望む端面でもよいが、電極5、6は同じ端面に挿入される。   The end surface into which the electrodes 5 and 6 are inserted may be the end surface desired upstream of the exhaust gas discharge passage or the end surface desired downstream, but the electrodes 5 and 6 are inserted into the same end surface.

図4に示されるように、本発明のPMセンサ4は、電極5、6が挿入された開放セル3bの列に沿う短絡線7、8がDPF1の端面に沿って布設される。この列の長さ(セル3の個数)が長くなるほど、電極5、6の本数が増えて電極対向面積の増加に寄与するので、望ましい。例えば、円柱状のDPF1の直径近傍を列が通るように開放セル3bに電極5、6が挿入されると、電極5、6の本数が最も多くなる。例えば、DPF1の直径が200mmで、セル3のピッチ(縦横幅)dが1mmであれば、直径近傍には斜めに140個に近いセル3が並ぶので、電極5、6が挿入される開放セル3bは、各々140個に近くなる。   As shown in FIG. 4, in the PM sensor 4 of the present invention, the short-circuit lines 7 and 8 along the row of the open cells 3 b in which the electrodes 5 and 6 are inserted are laid along the end face of the DPF 1. The longer the length of this row (the number of cells 3), the more the number of electrodes 5 and 6 increases, which contributes to an increase in the electrode facing area. For example, when the electrodes 5 and 6 are inserted into the open cells 3b so that the rows pass near the diameter of the cylindrical DPF 1, the number of the electrodes 5 and 6 is the largest. For example, if the diameter of the DPF 1 is 200 mm and the pitch (vertical / horizontal width) d of the cells 3 is 1 mm, nearly 140 cells 3 are diagonally arranged near the diameter, so that the open cells into which the electrodes 5 and 6 are inserted are arranged. 3b is close to 140 pieces each.

このようにDPF1の開放セル3bに挿入された第一、第二の電極5、6が短絡線7、8でそれぞれ短絡され、短絡線7、8が図示しない検出回路に接続される。検出回路は、従来と同様であるので、説明を省略する。   Thus, the 1st, 2nd electrodes 5 and 6 inserted in the open cell 3b of DPF1 are each short-circuited by the short circuit lines 7 and 8, and the short circuit lines 7 and 8 are connected to the detection circuit which is not shown in figure. Since the detection circuit is the same as the conventional one, the description thereof is omitted.

以下、本発明のPMセンサ4の動作を説明する。   Hereinafter, the operation of the PM sensor 4 of the present invention will be described.

図3のPMセンサ4において、複数の第一の電極5のうち、1つの電極P0に着目する。電極P0に最も近い第二の電極6は、第一の電極5が形成する列に対して交差する対角線上にある電極Q0となり、電極P0対Q0間距離は√2dとなる。よって、電極P0と電極Q0とにより、電極間距離が√2dで、電極径に比例する電極対向面積を有するコンデンサが形成される。電極P0に次に近い第二の電極6は、第二の電極6が形成する列上で電極Q0の直近に位置する電極Q+1,Q−1となり、電極P0対Q±1間距離は2dとなる。電極P0と電極Q±1とにより、電極間距離が2dで、電極経に比例する電極対向面積を有するコンデンサが2つ形成される。同様に、電極P0と3番目以降、順次に近い複数の第二の電極6とによってもそれぞれコンデンサが形成される。これらを総合してなる複数の第一の電極5と複数の第二の電極6とからなるコンデンサは、電極間距離が√2dで、所定の電極対向面積を有する2枚の電極板からなる平行平板コンデンサと見なせる。   In the PM sensor 4 of FIG. 3, attention is paid to one electrode P0 among the plurality of first electrodes 5. The second electrode 6 closest to the electrode P0 is an electrode Q0 on a diagonal line intersecting the column formed by the first electrode 5, and the distance between the electrode P0 and Q0 is √2d. Therefore, the electrode P0 and the electrode Q0 form a capacitor having a distance between electrodes of √2d and an electrode facing area proportional to the electrode diameter. The second electrode 6 next closest to the electrode P0 is the electrodes Q + 1 and Q-1 positioned in the immediate vicinity of the electrode Q0 on the column formed by the second electrode 6, and the distance between the electrode P0 and Q ± 1 is 2d. Become. The electrode P0 and the electrode Q ± 1 form two capacitors each having an electrode distance of 2d and an electrode facing area proportional to the electrode length. Similarly, a capacitor is formed by the electrode P0 and a plurality of second electrodes 6 that are in order from the third and subsequent electrodes. A capacitor composed of a plurality of first electrodes 5 and a plurality of second electrodes 6 formed by combining them has a distance between electrodes of √2d and a parallel structure composed of two electrode plates having a predetermined electrode facing area. It can be regarded as a plate capacitor.

図4のDPF1においてPMが堆積すると、図3に示した部分においても、複数の第一の電極5と複数の第二の電極6との間にあるセル3の壁に堆積したPMの堆積量が増加する。よって、電極5、6からなるコンデンサの静電容量が大きくなる。   When PM is deposited in the DPF 1 in FIG. 4, the amount of PM deposited on the wall of the cell 3 between the plurality of first electrodes 5 and the plurality of second electrodes 6 also in the portion shown in FIG. 3. Will increase. Therefore, the capacitance of the capacitor composed of the electrodes 5 and 6 is increased.

このとき、本発明のPMセンサ4では、第一の電極5が挿入された対角方向一列に並ぶ複数の開放セル3bと、第二の電極6が挿入された対角方向一列に並ぶ複数の開放セル3bとが、目封じセル3aを1つだけ挟んで隣接しているため、電極5、6によるコンデンサは、電極間距離が√2dとなり、図5のPMセンサ51のようにDPF52を挟んだ電極53、54によるコンデンサよりも顕著に静電容量が大きくなる。同時に、電極5、6と図示しないハウジングとによるコンデンサの静電容量に比べると、電極5、6がハウジングから離れているので、電極5、6によるコンデンサの方が顕著に静電容量が大きくなる。よって、PM堆積量を正確に検出することができる。   At this time, in the PM sensor 4 of the present invention, a plurality of open cells 3b arranged in a diagonal line with the first electrode 5 inserted therein and a plurality of cells arranged in a diagonal line with the second electrode 6 inserted therein. Since the open cell 3b is adjacent to each other with only one sealing cell 3a interposed therebetween, the capacitor between the electrodes 5 and 6 has a distance between electrodes of √2d, and sandwiches the DPF 52 like the PM sensor 51 of FIG. The capacitance is significantly larger than that of the capacitor formed by the electrodes 53 and 54. At the same time, compared with the capacitance of the capacitor by the electrodes 5 and 6 and the housing (not shown), since the electrodes 5 and 6 are separated from the housing, the capacitance of the capacitor by the electrodes 5 and 6 is significantly larger. . Therefore, the PM accumulation amount can be accurately detected.

また、本発明のPMセンサ4では、電極5、6がそれぞれ対角方向一列に並ぶ複数の開放セル3bに挿入されるので、図6のPMセンサ61のように、電極63、64がDPF62の外周近くに偏った配置とは異なり、電極5、6がDPF1の外周近くに偏らない配置となり、DPF1全体の平均的なPM堆積量を検出することができる。特に、本実施形態のように、電極5、6の列がDPF1の直径に沿う配置では、DPF1の中心部から外周部にわたる範囲のPM堆積量が検出される。   Further, in the PM sensor 4 of the present invention, since the electrodes 5 and 6 are respectively inserted into the plurality of open cells 3b arranged in a diagonal line, the electrodes 63 and 64 are formed of the DPF 62 as in the PM sensor 61 of FIG. Unlike the arrangement that is biased near the outer periphery, the electrodes 5 and 6 are positioned so as not to be biased near the outer periphery of the DPF 1, and the average PM deposition amount of the entire DPF 1 can be detected. In particular, as in the present embodiment, when the rows of the electrodes 5 and 6 are arranged along the diameter of the DPF 1, the PM deposition amount in the range from the center portion of the DPF 1 to the outer peripheral portion is detected.

1 ディーゼルパティキュレートフィルタ(DPFという)
2 壁
3 セル
3a 目封じセル
3b 開放セル
4 PMセンサ
5 第一の電極
6 第二の電極
7 短絡線
8 短絡線
1 Diesel particulate filter (referred to as DPF)
2 wall 3 cell 3a plugged cell 3b open cell 4 PM sensor 5 first electrode 6 second electrode 7 short circuit 8 short circuit

Claims (1)

多孔質材料からなる壁で縦横の四面が囲まれた複数のセルが縦横に積層され前記セルの端面が縦横に交互に目封じされてなるディーゼルパティキュレートフィルタ(以下、DPFという)に、第一、第二の電極が設けられ、前記第一、第二の電極により形成されるコンデンサの静電容量により前記DPFの粒子状物質(以下、PMという)の堆積量が検出されるPMセンサにおいて、
目封じされないセル(以下、開放セルという)のうち対角方向一列に並ぶ複数の開放セルに前記第一の電極が挿入され、
前記第一の電極が挿入された複数の開放セルに隣接して対角方向一列に並ぶ複数の開放セルに前記第二の電極が挿入されたことを特徴とするPMセンサ。
A diesel particulate filter (hereinafter referred to as a DPF) in which a plurality of cells surrounded by vertical and horizontal four faces with a wall made of a porous material are stacked vertically and horizontally and end faces of the cells are alternately sealed vertically and horizontally, In the PM sensor, the second electrode is provided, and the accumulation amount of the particulate matter of the DPF (hereinafter referred to as PM) is detected by the capacitance of the capacitor formed by the first and second electrodes.
The first electrode is inserted into a plurality of open cells arranged in a diagonal line among cells that are not sealed (hereinafter referred to as open cells),
The PM sensor, wherein the second electrode is inserted into a plurality of open cells arranged in a diagonal line adjacent to the plurality of open cells in which the first electrode is inserted.
JP2011106240A 2011-05-11 2011-05-11 Pm sensor Pending JP2012237228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106240A JP2012237228A (en) 2011-05-11 2011-05-11 Pm sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106240A JP2012237228A (en) 2011-05-11 2011-05-11 Pm sensor

Publications (1)

Publication Number Publication Date
JP2012237228A true JP2012237228A (en) 2012-12-06

Family

ID=47460341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106240A Pending JP2012237228A (en) 2011-05-11 2011-05-11 Pm sensor

Country Status (1)

Country Link
JP (1) JP2012237228A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129447A1 (en) * 2013-02-20 2014-08-28 いすゞ自動車株式会社 Particulate matter measurement device
WO2014129448A1 (en) * 2013-02-20 2014-08-28 いすゞ自動車株式会社 Device for measuring particulate substance
JP2014159784A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance and method for manufacturing filter
JP2014159783A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance
CN108303355A (en) * 2017-01-12 2018-07-20 现代自动车株式会社 Device and method for detecting particulate matter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066462A1 (en) * 2005-12-05 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
JP2007524786A (en) * 2004-02-12 2007-08-30 ダイムラークライスラー・アクチェンゲゼルシャフト Particulate filter state determination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524786A (en) * 2004-02-12 2007-08-30 ダイムラークライスラー・アクチェンゲゼルシャフト Particulate filter state determination device
WO2007066462A1 (en) * 2005-12-05 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129447A1 (en) * 2013-02-20 2014-08-28 いすゞ自動車株式会社 Particulate matter measurement device
WO2014129448A1 (en) * 2013-02-20 2014-08-28 いすゞ自動車株式会社 Device for measuring particulate substance
JP2014159784A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance and method for manufacturing filter
JP2014159785A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance
JP2014159782A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance
JP2014159783A (en) * 2013-02-20 2014-09-04 Isuzu Motors Ltd Apparatus for measuring particulate substance
CN105051334A (en) * 2013-02-20 2015-11-11 五十铃自动车株式会社 Device for measuring particulate substance
CN108303355A (en) * 2017-01-12 2018-07-20 现代自动车株式会社 Device and method for detecting particulate matter
CN108303355B (en) * 2017-01-12 2022-03-25 现代自动车株式会社 Apparatus and method for detecting particulate matter

Similar Documents

Publication Publication Date Title
JP5874195B2 (en) Particulate matter sensor
JP5874196B2 (en) Particulate matter sensor
JP2012237228A (en) Pm sensor
JP5625812B2 (en) PM sensor and PM sensor manufacturing method
US9915597B2 (en) Particulate matter measurement device
JP5540585B2 (en) PM sensor
WO2014129448A1 (en) Device for measuring particulate substance
JP6626901B2 (en) Part for measuring device of particulate matter and method for producing the same
JP2012246778A (en) Pm sensor
JP5736966B2 (en) DPF regeneration end time determination device
WO2012165320A1 (en) Dpf regeneration-completion-time determination device
JP5428583B2 (en) PM sensor
JP2014159783A (en) Apparatus for measuring particulate substance
JP5625265B2 (en) PM sensor
WO2011004747A1 (en) Pm sensor
JP6711846B2 (en) Parts for measuring devices of particulate matter
WO2019065069A1 (en) Measurement device component
JP6542913B2 (en) Parts for measuring particulate matter
JP2018059417A (en) PM sensor
JP2018059447A (en) PM sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825