WO2012165320A1 - Dpf regeneration-completion-time determination device - Google Patents

Dpf regeneration-completion-time determination device Download PDF

Info

Publication number
WO2012165320A1
WO2012165320A1 PCT/JP2012/063450 JP2012063450W WO2012165320A1 WO 2012165320 A1 WO2012165320 A1 WO 2012165320A1 JP 2012063450 W JP2012063450 W JP 2012063450W WO 2012165320 A1 WO2012165320 A1 WO 2012165320A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
regeneration
electrode
capacitance
determination device
Prior art date
Application number
PCT/JP2012/063450
Other languages
French (fr)
Japanese (ja)
Inventor
正文 野田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2012165320A1 publication Critical patent/WO2012165320A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a DPF regeneration end time determination device that can accurately determine the end time of DPF regeneration.
  • a diesel particulate filter (hereinafter referred to as DPF) is installed in an exhaust gas exhaust flow path from the internal combustion engine to the atmosphere. ) Is collected.
  • the DPF is a member that temporarily collects PM in a honeycomb pore filter made of porous ceramic.
  • PM deposit amount When the amount of PM trapped in the DPF (hereinafter referred to as PM deposit amount) increases, the exhaust pressure of the internal combustion engine rises and the characteristics of the internal combustion engine deteriorate, so the process of burning the trapped PM is performed. Is called. This process is called DPF regeneration. During the DPF regeneration, fuel injection for increasing the exhaust temperature is performed. When the exhaust gas temperature rises, the DPF is heated up and the PM collected in the DPF burns.
  • the timing of starting DPF regeneration is determined by detecting the pressure difference between the upstream and downstream of the DPF, or by detecting the capacitance between two electrodes installed in the DPF. That is, when the amount of PM accumulated in the DPF increases, the flow of exhaust gas is blocked and the pressure difference between the upstream and downstream of the DPF increases, so it is possible to determine by setting a threshold value for the pressure difference. . Also, since PM is a mixture of dielectric and conductor, the capacitance between the two electrodes installed in the DPF is proportional to the amount of PM deposited on the entire DPF. Judgment is possible by setting a threshold value.
  • the pressure difference between the upstream and downstream of the DPF is affected by the exhaust gas flow rate, so it is difficult to detect accurately.
  • the regeneration start time since the pressure difference is large, the influence of the exhaust gas flow rate is relatively small, and the pressure difference can be accurately detected.
  • the regeneration end time since the pressure difference becomes smaller, the influence of the exhaust gas flow rate becomes relatively large, and it is not easy to accurately detect the pressure difference. For this reason, it is difficult to accurately determine the reproduction end time.
  • an object of the present invention is to provide a DPF regeneration end time determination device that can solve the above-described problems and can accurately determine the end time of DPF regeneration.
  • a DPF regeneration end timing determining device is a DPF regeneration end timing determining device that determines the regeneration end timing of a DPF inserted into an exhaust gas exhaust passage from an internal combustion engine to the atmosphere.
  • a first electrode disposed outside the DPF, a second electrode disposed inside the regeneration limit surface, which is a limit at which the temperature becomes a regeneration temperature, in the DPF, and opposed to the first electrode; and the first electrode
  • a capacitance detection circuit for detecting a capacitance between the second electrode and a determination to determine that the reproduction end time is reached when the capacitance detected by the capacitance detection circuit is stably changed from a decrease.
  • a circuit is a DPF regeneration end timing determining device that determines the regeneration end timing of a DPF inserted into an exhaust gas exhaust passage from an internal combustion engine to the atmosphere.
  • the second electrode is configured by inserting a metal wire into each of a plurality of cells located along a closed curved surface imaginary inside the regeneration limit surface and shorting the plurality of metal wires to each other. Good.
  • the present invention exhibits the following excellent effects.
  • FIG. 1 is an end view of a DPF to which a DPF regeneration end time determination device showing an embodiment of the present invention is attached. It is a perspective view of DPF of FIG. It is a partial end elevation of DPF to which the present invention is applied. It is a partial sectional side view of DPF to which the present invention is applied.
  • FIG. 2 is a partial end view of the DPF in FIG. 1. It is a characteristic view of the electrostatic capacitance change with respect to time passage in the DPF regeneration end time judging device of the present invention.
  • the DPF regeneration end timing determination device 1 is the first electrode 4 disposed outside the DPF 2 and the limit at which the temperature becomes the regeneration temperature in the DPF 2.
  • a second electrode 5 disposed inside the reproduction limit surface 3 and facing the first electrode 4; a capacitance detection circuit 6 for detecting a capacitance between the first electrode 4 and the second electrode 5; And a determination circuit 7 that determines that the reproduction end time is reached when the electrostatic capacitance detected by the detection circuit 6 changes from decreasing to stable.
  • the reproduction limit plane 3 will be described.
  • the temperature near the central axis of the DPF 2 first rises, and the surrounding temperature rises.
  • the combustion of PM starts from the vicinity of the central axis of the DPF 2, and the combustion gradually spreads from the inner peripheral portion toward the outer peripheral portion.
  • the outer peripheral portion of the DPF 2 radiates heat to the atmosphere through a metal housing (not shown).
  • the temperature of the outer peripheral portion of the DPF 2 hardly rises, and even if the temperature of the inner peripheral portion of the DPF 2 has reached the regeneration temperature of 800 ° C. (or 900 ° C.) or higher, the temperature of the outer peripheral portion is less than the regeneration temperature.
  • the deposited PM does not burn. Therefore, in this region, the state in which PM is accumulated continues even after the DPF regeneration.
  • This area is called a non-reproducible area.
  • the region where the temperature is equal to or higher than the regeneration temperature during the regeneration of the DPF is a reproducible region, and PM deposition and combustion removal are repeated.
  • the boundary between the reproducible area and the nonreproducible area, that is, the limit where the temperature becomes the regeneration temperature is referred to as a regeneration limit surface 3.
  • the DPF 2 reaches the regeneration temperature or higher up to the outermost periphery, the allowable temperature of the housing and peripheral parts will be exceeded. Actually, the housing does not reach red heat, but it is considered that the non-renewable region formed on the outer peripheral portion of the DPF 2 serves as a heat insulating layer that protects the housing from heat.
  • the DPF 2 is formed in a columnar shape, and the regeneration limit surface 3 has a cylindrical shape concentric with the DPF 2.
  • the distance that the regeneration limit surface 3 is from the outermost periphery of the DPF 2 varies depending on the specifications of the DPF 2 or the specifications of the internal combustion engine and the exhaust gas discharge flow path, and may be measured by experiments.
  • the first electrode 4 can be formed of a cylindrical metal plate that covers the outer periphery of the DPF 2. Since the second electrode 5 is disposed inside the DPF 2, the honeycomb structure of the DPF 2 and the PM trapping function will be described before the details of the second electrode 5 are described.
  • the DPF 2 is formed by laminating a plurality of cells 9 vertically and horizontally surrounded by walls 8 made of a porous material, and the end faces of the cells 9 are alternately sealed vertically and horizontally.
  • the sealing is indicated by hatching.
  • the sealed cell 9 is called a sealed cell 9a, and the unsealed cell is called an open cell 9b.
  • both vertical and horizontal neighbors of the sealed cell 9a are open cells 9b, and both vertical and horizontal neighbors of the open cell 9b are sealed cells 9a.
  • the end face shape of the cell 9 is a square here, but may be any shape that can be arranged continuously, such as a rectangle or a parallelogram.
  • ⁇ Sealing and opening are reversed between the end face on one side and the end face on the opposite side. That is, in one cell 9, if one end face is sealed, the opposite end face is always open, and if one end face is open, the opposite end face is always sealed. Therefore, when the same cell 9 is viewed from one side, it becomes a sealed cell 9a, and when viewed from the opposite side, it becomes an open cell 9b.
  • the DPF 2 is installed in the exhaust gas discharge flow path, and one end face is desired upstream and the opposite end face is desired downstream.
  • exhaust gas does not flow into the sealing cell 9a, but exhaust gas flows only into the open cell 9b. Since the open cell 9b into which the exhaust gas has flowed is sealed at the opposite end face desired downstream to become a seal cell 9a, the exhaust gas passes through the wall 8 made of a porous material and is adjacent to the seal cell 9a. Move to.
  • the adjacent sealing cell 9a has an open cell 9b that is open at the opposite end face desired downstream, so that the exhaust gas flows out from the open cell 9b.
  • the DPF 2 has a honeycomb pore structure as shown in FIG.
  • a metal wire is inserted into the cell 9.
  • metal lines (shown by black circles) 11 are respectively inserted into a plurality of open cells 9b positioned along a closed curved surface 10 that is virtually inside the reproduction limit surface 3.
  • a plurality of metal wires 11 are short-circuited with a short-circuit wire (not shown), whereby the second electrode 5 is configured.
  • the second electrode 5 cannot be completely overlapped with the closed curved surface 10, but by selecting the open cell 9 b as close as possible to the closed curved surface 10 and inserting the metal wire 11, the second electrode 5 can take one round. On average, it almost overlaps the closed curved surface 10.
  • the depth at which the metal wire 11 is inserted from the end face of the open cell 9b is arbitrary, but as the metal wire 11 is inserted deeper, the electrode length becomes longer, which contributes to an increase in the electrode facing area. Therefore, for example, it is preferable that the metal wire 11 reaches near the place where the opposite end face of the open cell 9b is sealed.
  • the end face into which the metal wire 11 is inserted may be an end face that faces the upstream of the exhaust gas discharge passage or an end face that faces the downstream.
  • the capacitor constituted by the first electrode 4 and the second electrode 5 is formed from a concentric double cylindrical electrode plate having a predetermined inter-electrode distance and an electrode facing area. It can be regarded as a capacitor.
  • the capacitance detection circuit 6 detects the capacitance between the first electrode 4 and the second electrode 5.
  • the determination circuit 7 processes the capacitance signal detected by the capacitance detection circuit 6 and analyzes the change in capacitance. Based on this analysis, it can be determined that the regeneration end time is reached when the electrostatic capacitance changes from decreasing to stable.
  • the determination circuit 7 may be mounted on an electronic control unit (ECU). In this case, the output of the capacitance detection circuit 6 is sampled at an appropriate interval, a time series is accumulated, and the change is analyzed by processing the time series.
  • ECU electronice control unit
  • the exhaust temperature rises due to fuel injection.
  • the temperature around the central axis first rises, and the surrounding temperature rises. Since PM burns at a place where the regeneration temperature is higher, combustion spreads from the vicinity of the central axis to the outside.
  • the determination circuit 7 determines that the reproduction end time is reached when the electrostatic capacitance detected by the electrostatic capacitance detection circuit 6 changes from decreasing to stable. For example, when the state in which the capacitance decrease value per unit time continues to be larger than the threshold value and then changes to a state smaller than the threshold value (bent portion of the graph in FIG. 6), or static per unit time When the state where the capacitance decrease value is smaller than the threshold value continues for a predetermined time (lower flat portion in the graph of FIG. 6), the combustion in the DPF 2 reaches the regeneration limit surface 3 and the fuel injection continues even further. Since there is no effect, it is determined that the playback end time is reached.
  • the first electrode 4 and the second electrode 5 facing each other are disposed outside and inside the regeneration limit surface 3 of the DPF 2,
  • the electrostatic capacity is stably changed from the decrease, so that the regeneration end time can be determined.
  • the reproduction end time can be accurately determined.
  • the principle that the capacitance between the first electrode 4 and the second electrode 5 is proportional to the PM deposition amount is the same as that of the conventional PM sensor used for determining the regeneration start time.
  • the regeneration end time determination device 1 does not need such accuracy as to detect the absolute amount of the PM accumulation amount, and only needs to recognize the change in the capacitance. Therefore, the capacitance detection circuit 6 and the determination circuit 7 can be realized with a simple configuration.
  • the open cells 9b as close to the closed curved surface 10 as possible are selected and the metal wires 11 are inserted, so that the metal wires 11 are arranged unevenly.
  • the open cells 9b may be selected so that the metal lines 11 are arranged in a straight line for each appropriate short section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Provided is a DPF regeneration-completion-time determination device that can accurately determine when DPF regeneration is complete. Said device is provided with the following: a first electrode (4) disposed outside a DPF (2); a second electrode (5) that is disposed inside said DPF (2) so as to face the first electrode (4) and lie inside a regeneration critical plane (3) at which the temperature is equal to a regeneration temperature; a capacitance-detection circuit (6) that detects the capacitance between the first electrode (4) and the second electrode (5); and a determination circuit (7). When the capacitance detected by the capacitance-detection circuit (6) goes from decreasing to stable, the determination circuit determines that regeneration is complete.

Description

DPF再生終了時期判定装置DPF regeneration end time determination device
 本発明は、DPF再生の終了時期を正確に判定できるDPF再生終了時期判定装置に関する。 The present invention relates to a DPF regeneration end time determination device that can accurately determine the end time of DPF regeneration.
 ディーゼルエンジンなどの内燃機関が搭載された車両では、内燃機関から大気までの排ガスの排出流路にディーゼルパティキュレートフィルタ(以下、DPFという)が設置され、このDPFに粒子状物質(以下、PMという)が捕集される。DPFは、多孔質セラミックからなるハニカム細孔状のフィルタにPMを一時的に捕集する部材である。 In a vehicle equipped with an internal combustion engine such as a diesel engine, a diesel particulate filter (hereinafter referred to as DPF) is installed in an exhaust gas exhaust flow path from the internal combustion engine to the atmosphere. ) Is collected. The DPF is a member that temporarily collects PM in a honeycomb pore filter made of porous ceramic.
 DPFに捕集されているPMの量(以下、PM堆積量という)が多くなると内燃機関の排気圧力が上昇し内燃機関の特性低下をきたすため、捕集されているPMを燃焼させる処理が行われる。この処理をDPF再生という。DPF再生時には、排気温度を上昇させるための燃料噴射が行われる。排気温度が上昇すると、DPFが昇温され、DPFに捕集されているPMが燃焼する。 When the amount of PM trapped in the DPF (hereinafter referred to as PM deposit amount) increases, the exhaust pressure of the internal combustion engine rises and the characteristics of the internal combustion engine deteriorate, so the process of burning the trapped PM is performed. Is called. This process is called DPF regeneration. During the DPF regeneration, fuel injection for increasing the exhaust temperature is performed. When the exhaust gas temperature rises, the DPF is heated up and the PM collected in the DPF burns.
 DPF再生開始の時期は、DPFの上流と下流の圧力差を検出して判定したり、DPFに設置した2つの電極間で静電容量を検出して判定することが知られている。すなわち、DPFのPM堆積量が増えてくると、排ガスの流れが阻止されてDPFの上流と下流の圧力差が大きくなるので、圧力差にしきい値を設定しておくことで判定が可能である。また、PMが誘電体と導体の混合物であることから、DPFに設置した2つの電極間の静電容量がDPF全体のPM堆積量に比例するので、静電容量から推定されるPM堆積量にしきい値を設定しておくことで判定が可能である。 It is known that the timing of starting DPF regeneration is determined by detecting the pressure difference between the upstream and downstream of the DPF, or by detecting the capacitance between two electrodes installed in the DPF. That is, when the amount of PM accumulated in the DPF increases, the flow of exhaust gas is blocked and the pressure difference between the upstream and downstream of the DPF increases, so it is possible to determine by setting a threshold value for the pressure difference. . Also, since PM is a mixture of dielectric and conductor, the capacitance between the two electrodes installed in the DPF is proportional to the amount of PM deposited on the entire DPF. Judgment is possible by setting a threshold value.
特開2010-274756号公報JP 2010-274756 A 特開2010-285958号公報JP 2010-285958 A
 前述のように、DPF再生開始の時期は判定が可能である。しかしながら、DPF再生終了の時期は判定が困難である。 As described above, it is possible to determine the timing for starting DPF regeneration. However, it is difficult to determine the end of DPF regeneration.
 DPFの上流と下流の圧力差は、排ガス流量の影響を受けるため、正確に検出することが難しい。再生開始時期の場合、圧力差が大きくなっているので、排ガス流量の影響が相対的に小さく、圧力差を正確に検出することができた。これに対し、再生終了時期の場合、圧力差が小さくなっていくので、排ガス流量の影響が相対的に大きくなり、圧力差を正確に検出するのは容易でない。このため、再生終了時期は正確な判定が困難となる。 The pressure difference between the upstream and downstream of the DPF is affected by the exhaust gas flow rate, so it is difficult to detect accurately. In the regeneration start time, since the pressure difference is large, the influence of the exhaust gas flow rate is relatively small, and the pressure difference can be accurately detected. On the other hand, in the regeneration end time, since the pressure difference becomes smaller, the influence of the exhaust gas flow rate becomes relatively large, and it is not easy to accurately detect the pressure difference. For this reason, it is difficult to accurately determine the reproduction end time.
 再生終了時期の判定が正確でなく、再生が未完了のままで再生終了してしまうと、未燃焼のPMが残るので、その次の再生開始時期が早く来ることになり、DPF再生の頻度が高くなって燃費が悪化する。逆に、実際には再生が完了してPMが残っていないのに再生が継続されてしまうと、燃料が余分に噴射されることになり、やはり燃費が悪化する。 If the regeneration end time is not accurately determined and the regeneration ends without being completed, unburned PM remains, so the next regeneration start time comes earlier, and the frequency of DPF regeneration Higher fuel consumption. Conversely, if the regeneration is actually completed and PM is not left, but the regeneration is continued, extra fuel will be injected, and the fuel efficiency will deteriorate.
 静電容量からPM堆積量を推定して判定する方式でも、再生が進んでPMが減少していくと、PM堆積量が微小になっていくので、ノイズ成分が相対的に大きくなり、再生終了時期を正確に判定しにくくなる。 Even in the method of estimating and determining the PM deposition amount from the electrostatic capacity, as regeneration progresses and the PM decreases, the PM deposition amount becomes minute, so the noise component becomes relatively large and the regeneration ends. It becomes difficult to accurately determine the time.
 そこで、本発明の目的は、上記課題を解決し、DPF再生の終了時期を正確に判定できるDPF再生終了時期判定装置を提供することにある。 Therefore, an object of the present invention is to provide a DPF regeneration end time determination device that can solve the above-described problems and can accurately determine the end time of DPF regeneration.
 上記目的を達成するために本発明のDPF再生終了時期判定装置は、内燃機関から大気までの排ガスの排出流路に挿入されたDPFの再生終了時期を判定するDPF再生終了時期判定装置において、前記DPFの外側に配置された第一電極と、前記DPF内に、温度が再生温度となる限界である再生限界面の内側に配置され前記第一電極に対向する第二電極と、前記第一電極と前記第二電極間の静電容量を検出する静電容量検出回路と、前記静電容量検出回路が検出した静電容量が減少から安定に転じたとき、再生終了時期であると判定する判定回路とを備えたものである。 In order to achieve the above object, a DPF regeneration end timing determining device according to the present invention is a DPF regeneration end timing determining device that determines the regeneration end timing of a DPF inserted into an exhaust gas exhaust passage from an internal combustion engine to the atmosphere. A first electrode disposed outside the DPF, a second electrode disposed inside the regeneration limit surface, which is a limit at which the temperature becomes a regeneration temperature, in the DPF, and opposed to the first electrode; and the first electrode And a capacitance detection circuit for detecting a capacitance between the second electrode and a determination to determine that the reproduction end time is reached when the capacitance detected by the capacitance detection circuit is stably changed from a decrease. And a circuit.
 前記再生限界面の内側に仮想される閉曲面に沿って位置する複数のセルにそれぞれ金属線が挿入され、前記複数の金属線同士が短絡されることにより、前記第二電極が構成されてもよい。 Even if the second electrode is configured by inserting a metal wire into each of a plurality of cells located along a closed curved surface imaginary inside the regeneration limit surface and shorting the plurality of metal wires to each other. Good.
 本発明は次の如き優れた効果を発揮する。 The present invention exhibits the following excellent effects.
 (1)DPF再生の終了時期を正確に判定できる。 (1) The end time of DPF regeneration can be accurately determined.
本発明の一実施形態を示すDPF再生終了時期判定装置が取り付けられたDPFの端面図である。1 is an end view of a DPF to which a DPF regeneration end time determination device showing an embodiment of the present invention is attached. 図1のDPFの斜視図である。It is a perspective view of DPF of FIG. 本発明が適用されるDPFの部分端面図である。It is a partial end elevation of DPF to which the present invention is applied. 本発明が適用されるDPFの部分側断面図である。It is a partial sectional side view of DPF to which the present invention is applied. 図1のDPFの部分端面図である。FIG. 2 is a partial end view of the DPF in FIG. 1. 本発明のDPF再生終了時期判定装置における時間経過に対する静電容量変化の特性図である。It is a characteristic view of the electrostatic capacitance change with respect to time passage in the DPF regeneration end time judging device of the present invention.
 以下、本発明の一実施形態を添付図面に基づいて詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図1及び図2に示されるように、本発明に係るDPF再生終了時期判定装置1は、DPF2の外側に配置された第一電極4と、DPF2内に、温度が再生温度となる限界である再生限界面3の内側に配置され第一電極4に対向する第二電極5と、第一電極4と第二電極5間の静電容量を検出する静電容量検出回路6と、静電容量検出回路6が検出した静電容量が減少から安定に転じたとき、再生終了時期であると判定する判定回路7とを備える。 As shown in FIGS. 1 and 2, the DPF regeneration end timing determination device 1 according to the present invention is the first electrode 4 disposed outside the DPF 2 and the limit at which the temperature becomes the regeneration temperature in the DPF 2. A second electrode 5 disposed inside the reproduction limit surface 3 and facing the first electrode 4; a capacitance detection circuit 6 for detecting a capacitance between the first electrode 4 and the second electrode 5; And a determination circuit 7 that determines that the reproduction end time is reached when the electrostatic capacitance detected by the detection circuit 6 changes from decreasing to stable.
 ここで、再生限界面3について説明する。DPF再生時の燃料噴射によって排気温度が上昇すると、DPF2の中心軸付近の温度がまず上昇し、その周囲の温度が上昇していく。これにより、DPF2の中心軸付近からPMの燃焼が始まり、次第に内周部から外周部に向かって燃焼が拡がっていく。しかし、DPF2の外周部は金属製のハウジング(図示せず)を介して大気に放熱する。このため、DPF2の外周部は温度が上昇しにくく、DPF2の内周部の温度が再生温度である800℃(あるいは900℃ともいわれる)以上に達していても、外周部の温度は再生温度未満となる。DPF再生時に温度が再生温度未満となる領域では、堆積されたPMが燃焼することがない。よって、この領域では、DPF再生を経てもPMが堆積した状態が持続することになる。この領域を再生不能領域と呼ぶ。一方、DPF再生時に温度が再生温度以上となる領域は再生可能領域であり、PMの堆積と燃焼除去が繰り返される。再生可能領域と再生不能領域の境界、すなわち温度が再生温度となる限界を再生限界面3という。 Here, the reproduction limit plane 3 will be described. When the exhaust gas temperature rises due to fuel injection during DPF regeneration, the temperature near the central axis of the DPF 2 first rises, and the surrounding temperature rises. Thereby, the combustion of PM starts from the vicinity of the central axis of the DPF 2, and the combustion gradually spreads from the inner peripheral portion toward the outer peripheral portion. However, the outer peripheral portion of the DPF 2 radiates heat to the atmosphere through a metal housing (not shown). For this reason, the temperature of the outer peripheral portion of the DPF 2 hardly rises, and even if the temperature of the inner peripheral portion of the DPF 2 has reached the regeneration temperature of 800 ° C. (or 900 ° C.) or higher, the temperature of the outer peripheral portion is less than the regeneration temperature. It becomes. In the region where the temperature is lower than the regeneration temperature during DPF regeneration, the deposited PM does not burn. Therefore, in this region, the state in which PM is accumulated continues even after the DPF regeneration. This area is called a non-reproducible area. On the other hand, the region where the temperature is equal to or higher than the regeneration temperature during the regeneration of the DPF is a reproducible region, and PM deposition and combustion removal are repeated. The boundary between the reproducible area and the nonreproducible area, that is, the limit where the temperature becomes the regeneration temperature is referred to as a regeneration limit surface 3.
 なお、仮に、DPF2が最外周まで再生温度以上になってしまうと、ハウジング及び周辺部品の許容温度を超えてしまう。実際には、ハウジングが赤熱に至ることはないが、それは、DPF2の外周部に形成される再生不能領域がハウジングを熱から保護する断熱層の役割を果たしているからと考えられる。 If the DPF 2 reaches the regeneration temperature or higher up to the outermost periphery, the allowable temperature of the housing and peripheral parts will be exceeded. Actually, the housing does not reach red heat, but it is considered that the non-renewable region formed on the outer peripheral portion of the DPF 2 serves as a heat insulating layer that protects the housing from heat.
 本実施形態では、DPF2が円柱状に形成され、再生限界面3は、DPF2と同心の円筒状となる。再生限界面3がDPF2の最外周からどのくらいの距離になるかは、DPF2の仕様、あるいは内燃機関や排ガス排出流路の仕様ごとに異なるので、実験により測定するとよい。 In this embodiment, the DPF 2 is formed in a columnar shape, and the regeneration limit surface 3 has a cylindrical shape concentric with the DPF 2. The distance that the regeneration limit surface 3 is from the outermost periphery of the DPF 2 varies depending on the specifications of the DPF 2 or the specifications of the internal combustion engine and the exhaust gas discharge flow path, and may be measured by experiments.
 第一電極4はDPF2の外周を覆う円筒状の金属板で構成することができる。第二電極5はDPF2の内部に配置されるので、第二電極5の詳細を説明する前に、DPF2のハニカム構造とPM捕集機能について説明しておく。 The first electrode 4 can be formed of a cylindrical metal plate that covers the outer periphery of the DPF 2. Since the second electrode 5 is disposed inside the DPF 2, the honeycomb structure of the DPF 2 and the PM trapping function will be described before the details of the second electrode 5 are described.
 図3に示されるように、DPF2は、多孔質材料からなる壁8で縦横の四面が囲まれた複数のセル9が縦横に積層されセル9の端面が縦横に交互に目封じされてなる。図では、目封じをハッチングで示す。目封じされたセル9を目封じセル9a、目封じされないセルを開放セル9bという。図示のように、目封じセル9aの両縦隣及び両横隣は開放セル9bであり、開放セル9bの両縦隣及び両横隣は目封じセル9aである。なお、セル9の端面形状は、ここでは正方形としているが、長方形、平行四辺形など、連続的に並べることのできる形状であればよい。 As shown in FIG. 3, the DPF 2 is formed by laminating a plurality of cells 9 vertically and horizontally surrounded by walls 8 made of a porous material, and the end faces of the cells 9 are alternately sealed vertically and horizontally. In the figure, the sealing is indicated by hatching. The sealed cell 9 is called a sealed cell 9a, and the unsealed cell is called an open cell 9b. As shown in the figure, both vertical and horizontal neighbors of the sealed cell 9a are open cells 9b, and both vertical and horizontal neighbors of the open cell 9b are sealed cells 9a. The end face shape of the cell 9 is a square here, but may be any shape that can be arranged continuously, such as a rectangle or a parallelogram.
 片側端面と反対側端面とでは、目封じと開放とが逆転する。すなわち、1つのセル9は、片側端面が目封じされていれば、反対側端面は必ず開放であり、片側端面が開放であれば、反対側端面は必ず目封じされている。従って、同じセル9が片側から見れば目封じセル9aとなり、反対側から見れば開放セル9bとなる。 ¡Sealing and opening are reversed between the end face on one side and the end face on the opposite side. That is, in one cell 9, if one end face is sealed, the opposite end face is always open, and if one end face is open, the opposite end face is always sealed. Therefore, when the same cell 9 is viewed from one side, it becomes a sealed cell 9a, and when viewed from the opposite side, it becomes an open cell 9b.
 図4に示されるように、DPF2は、排ガスの排出流路に設置され、どちらかの端面が上流に望み、反対の端面が下流に望む。上流に望む面では、目封じセル9aには排ガスは流入せず、開放セル9bのみに排ガスが流入する。排ガスが流入した開放セル9bは、下流に望む反対側端面で目封じされて目封じセル9aとなっているため、排ガスは、多孔質材料からなる壁8を通り抜けて、隣の目封じセル9aに移動する。隣の目封じセル9aは、下流に望む反対側端面が開放されて開放セル9bとなっているため、排ガスは、この開放セル9bから流出する。このようにして、排ガスが壁8を通り抜けるときに、排ガス中のPMが多孔質材料からなる壁8に吸着される。図4では、1つの開放セル9bに流入した排ガスが隣接する2つの目封じセル9aに移動するように示されているが、実際には1つの開放セル9bに流入した排ガスが縦横に隣接する4つの目封じセル9aに移動するので、縦横4つの壁8にPMが吸着される。 As shown in FIG. 4, the DPF 2 is installed in the exhaust gas discharge flow path, and one end face is desired upstream and the opposite end face is desired downstream. On the upstream side, exhaust gas does not flow into the sealing cell 9a, but exhaust gas flows only into the open cell 9b. Since the open cell 9b into which the exhaust gas has flowed is sealed at the opposite end face desired downstream to become a seal cell 9a, the exhaust gas passes through the wall 8 made of a porous material and is adjacent to the seal cell 9a. Move to. The adjacent sealing cell 9a has an open cell 9b that is open at the opposite end face desired downstream, so that the exhaust gas flows out from the open cell 9b. In this way, when exhaust gas passes through the wall 8, PM in the exhaust gas is adsorbed on the wall 8 made of the porous material. In FIG. 4, the exhaust gas flowing into one open cell 9 b is shown to move to two adjacent sealing cells 9 a, but actually the exhaust gas flowing into one open cell 9 b is adjacent vertically and horizontally. Since it moves to the four sealing cells 9a, PM is adsorbed on the four walls 8 in the vertical and horizontal directions.
 本実施形態では、DPF2が図3のようなハニカム細孔構造を有する。DPF2の内部に第二電極5を形成するために、セル9に金属線が挿入される。具体的には、図5に示されるように、再生限界面3の内側に仮想される閉曲面10に沿って位置する複数の開放セル9bにそれぞれ金属線(黒丸で示す)11が挿入され、複数の金属線11同士が短絡線(図示せず)で短絡されることにより、第二電極5が構成される。 In this embodiment, the DPF 2 has a honeycomb pore structure as shown in FIG. In order to form the second electrode 5 inside the DPF 2, a metal wire is inserted into the cell 9. Specifically, as shown in FIG. 5, metal lines (shown by black circles) 11 are respectively inserted into a plurality of open cells 9b positioned along a closed curved surface 10 that is virtually inside the reproduction limit surface 3. A plurality of metal wires 11 are short-circuited with a short-circuit wire (not shown), whereby the second electrode 5 is configured.
 図5に示されるように、第二電極5は、完全に閉曲面10に重ねることはできないが、できるだけ閉曲面10に近い開放セル9bを選んで金属線11を挿入することにより、一周分を平均すると閉曲面10にほぼ重なるようになる。 As shown in FIG. 5, the second electrode 5 cannot be completely overlapped with the closed curved surface 10, but by selecting the open cell 9 b as close as possible to the closed curved surface 10 and inserting the metal wire 11, the second electrode 5 can take one round. On average, it almost overlaps the closed curved surface 10.
 金属線11が開放セル9bの端面から挿入される深さは、任意であるが、深く挿入するほど電極長さが長くなり、電極対向面積の増加に寄与する。従って、例えば、金属線11は、開放セル9bの反対側端面の目封じされている箇所近くまで届いているのが好ましい。金属線11が挿入される端面は、排ガスの排出流路の上流に臨む端面でも、下流に臨む端面でもよい。 The depth at which the metal wire 11 is inserted from the end face of the open cell 9b is arbitrary, but as the metal wire 11 is inserted deeper, the electrode length becomes longer, which contributes to an increase in the electrode facing area. Therefore, for example, it is preferable that the metal wire 11 reaches near the place where the opposite end face of the open cell 9b is sealed. The end face into which the metal wire 11 is inserted may be an end face that faces the upstream of the exhaust gas discharge passage or an end face that faces the downstream.
 このようにして第二電極5を設置することにより、第一電極4と第二電極5により構成されるコンデンサは、所定の電極間距離と電極対向面積を有する同心二重円筒状の電極板からなるコンデンサと見なせる。 By installing the second electrode 5 in this way, the capacitor constituted by the first electrode 4 and the second electrode 5 is formed from a concentric double cylindrical electrode plate having a predetermined inter-electrode distance and an electrode facing area. It can be regarded as a capacitor.
 図1に示されるように、静電容量検出回路6は、第一電極4と第二電極5間の静電容量を検出するようになっている。 As shown in FIG. 1, the capacitance detection circuit 6 detects the capacitance between the first electrode 4 and the second electrode 5.
 判定回路7は、静電容量検出回路6が検出した静電容量の信号を処理し、静電容量の変化を分析するようになっている。この分析に基づき、静電容量が減少から安定に転じたとき、再生終了時期であると判定することができる。判定回路7は、電子制御装置(ECU)に搭載するとよい。この場合、静電容量検出回路6の出力を適宜なインターバルでサンプリングして時系列を蓄積し、その時系列を処理することで変化を分析することになる。 The determination circuit 7 processes the capacitance signal detected by the capacitance detection circuit 6 and analyzes the change in capacitance. Based on this analysis, it can be determined that the regeneration end time is reached when the electrostatic capacitance changes from decreasing to stable. The determination circuit 7 may be mounted on an electronic control unit (ECU). In this case, the output of the capacitance detection circuit 6 is sampled at an appropriate interval, a time series is accumulated, and the change is analyzed by processing the time series.
 以下、本発明のDPF再生終了時期判定装置1の動作を説明する。 Hereinafter, the operation of the DPF regeneration end time determination device 1 of the present invention will be described.
 内燃機関の運転が続くと、DPF2では、図4で説明したように、各セル9の壁8にPMが吸着され、PM堆積量が増加していく。第一電極4と第二電極5間のPM堆積量が増加するので、第一電極4と第二電極5により構成されるコンデンサの静電容量が増大する。 When the operation of the internal combustion engine continues, in the DPF 2, as described with reference to FIG. 4, PM is adsorbed on the wall 8 of each cell 9, and the PM accumulation amount increases. Since the amount of PM deposited between the first electrode 4 and the second electrode 5 increases, the capacitance of the capacitor formed by the first electrode 4 and the second electrode 5 increases.
 その後、従来技術によりDPF再生開始の時期が判定され、DPF再生が開始されると、燃料噴射によって排気温度が上昇する。DPF2では、中心軸付近の温度がまず上昇し、その周囲の温度が上昇していく。再生温度以上となった場所では、PMが燃焼するので、中心軸付近から外側に燃焼が拡がっていく。 Then, when the DPF regeneration start time is determined by the conventional technique and the DPF regeneration is started, the exhaust temperature rises due to fuel injection. In the DPF 2, the temperature around the central axis first rises, and the surrounding temperature rises. Since PM burns at a place where the regeneration temperature is higher, combustion spreads from the vicinity of the central axis to the outside.
 燃焼が第二電極5を越えると、第一電極4と第二電極5間のPMが燃焼して減少するので、図6に示されるように、静電容量検出回路6が検出する静電容量が減少していく。さらに燃焼が進んで再生限界面3に達すると、再生限界面3より外側は再生不能領域であるので、PMは燃焼しない。このため、これ以上時間が経過しても静電容量は変化しなくなる。 When the combustion exceeds the second electrode 5, PM between the first electrode 4 and the second electrode 5 is burned and decreases, so that the capacitance detected by the capacitance detection circuit 6 as shown in FIG. 6. Will decrease. When the combustion further proceeds and reaches the regeneration limit surface 3, the PM is not combusted because the region outside the regeneration limit surface 3 is a non-recoverable region. For this reason, the electrostatic capacity does not change even if more time elapses.
 判定回路7は、静電容量検出回路6が検出した静電容量が減少から安定に転じたとき、再生終了時期であると判定することになる。例えば、単位時間当たりの静電容量減少値がしきい値より大きい状態が継続した後、しきい値より小さい状態に転じたとき(図6のグラフの屈曲部)、あるいは、単位時間当たりの静電容量減少値がしきい値より小さい状態が所定時間より長く継続したとき(図6のグラフの低い平坦部)、DPF2での燃焼が再生限界面3に達し、これ以上燃料噴射を続けても効果がないので、再生終了時期であると判定する。 The determination circuit 7 determines that the reproduction end time is reached when the electrostatic capacitance detected by the electrostatic capacitance detection circuit 6 changes from decreasing to stable. For example, when the state in which the capacitance decrease value per unit time continues to be larger than the threshold value and then changes to a state smaller than the threshold value (bent portion of the graph in FIG. 6), or static per unit time When the state where the capacitance decrease value is smaller than the threshold value continues for a predetermined time (lower flat portion in the graph of FIG. 6), the combustion in the DPF 2 reaches the regeneration limit surface 3 and the fuel injection continues even further. Since there is no effect, it is determined that the playback end time is reached.
 以上説明したように、本発明のDPF再生終了時期判定装置1によれば、互いに対向する第一電極4及び第二電極5がDPF2の再生限界面3の外側と内側に配置されているため、DPF再生時の燃焼が進行して再生限界面3に達したとき、静電容量が減少から安定に転じるので、再生終了時期が判定できる。図6に示したように、静電容量の変化は顕著に生じるので、再生終了時期が正確に判定できる。 As described above, according to the DPF regeneration end timing determination device 1 of the present invention, the first electrode 4 and the second electrode 5 facing each other are disposed outside and inside the regeneration limit surface 3 of the DPF 2, When the combustion during the DPF regeneration progresses and reaches the regeneration limit surface 3, the electrostatic capacity is stably changed from the decrease, so that the regeneration end time can be determined. As shown in FIG. 6, since the change in capacitance occurs significantly, the reproduction end time can be accurately determined.
 第一電極4と第二電極5間の静電容量がPM堆積量に比例するという原理に関しては、従来からある再生開始時期の判定に使用されるPMセンサと同じであるが、本発明のDPF再生終了時期判定装置1にあってはPM堆積量の絶対量を検出するような精度は必要なく、静電容量が変化している様子が認識できればよい。したがって、静電容量検出回路6や判定回路7は、簡素な構成で実現することができる。 The principle that the capacitance between the first electrode 4 and the second electrode 5 is proportional to the PM deposition amount is the same as that of the conventional PM sensor used for determining the regeneration start time. The regeneration end time determination device 1 does not need such accuracy as to detect the absolute amount of the PM accumulation amount, and only needs to recognize the change in the capacitance. Therefore, the capacitance detection circuit 6 and the determination circuit 7 can be realized with a simple configuration.
 図5の本実施形態では、できるだけ閉曲面10に近い開放セル9bを選んで金属線11を挿入するようにしたので、金属線11が不揃いに並ぶ。金属線11が不揃いに並ぶのを避けるために、適宜な短い区画ごとに金属線11が直線状に並ぶよう開放セル9bを選んでもよい。 In the present embodiment shown in FIG. 5, the open cells 9b as close to the closed curved surface 10 as possible are selected and the metal wires 11 are inserted, so that the metal wires 11 are arranged unevenly. In order to avoid the metal lines 11 being arranged unevenly, the open cells 9b may be selected so that the metal lines 11 are arranged in a straight line for each appropriate short section.
 1 DPF再生終了時期判定装置
 2 ディーゼルパティキュレートフィルタ(DPF)
 3 再生限界面
 4 第一電極
 5 第二電極
 6 静電容量検出回路
 7 判定回路
 8 壁
 9 セル
 9a 目封じセル
 9b 開放セル
 10 閉曲線
 11 金属線
1 DPF regeneration end time determination device 2 Diesel particulate filter (DPF)
3 Regeneration Limit Surface 4 First Electrode 5 Second Electrode 6 Capacitance Detection Circuit 7 Judgment Circuit 8 Wall 9 Cell 9a Sealing Cell 9b Open Cell 10 Closed Curve 11 Metal Wire

Claims (2)

  1.  内燃機関から大気までの排ガスの排出流路に挿入されたディーゼルパティキュレートフィルタ(以下、DPF)の再生終了時期を判定するDPF再生終了時期判定装置において、
     前記DPFの外側に配置された第一電極と、
     前記DPF内に、温度が再生温度となる限界である再生限界面の内側に配置され前記第一電極に対向する第二電極と、
     前記第一電極と前記第二電極間の静電容量を検出する静電容量検出回路と、
     前記静電容量検出回路が検出した静電容量が減少から安定に転じたとき、再生終了時期であると判定する判定回路とを備えたことを特徴とするDPF再生終了時期判定装置。
    In the DPF regeneration end time determination device for determining the regeneration end time of a diesel particulate filter (hereinafter referred to as DPF) inserted in the exhaust gas exhaust passage from the internal combustion engine to the atmosphere,
    A first electrode disposed outside the DPF;
    In the DPF, a second electrode disposed on the inner side of the regeneration limit surface that is the limit at which the temperature becomes the regeneration temperature, and facing the first electrode;
    A capacitance detection circuit for detecting a capacitance between the first electrode and the second electrode;
    A DPF regeneration end timing determination device, comprising: a determination circuit that determines that the regeneration end timing is reached when the capacitance detected by the capacitance detection circuit changes from decreasing to stable.
  2.  前記再生限界面の内側に仮想される閉曲面に沿って位置する複数のセルにそれぞれ金属線が挿入され、前記複数の金属線同士が短絡されることにより、前記第二電極が構成されたことを特徴とする請求項1記載のDPF再生終了時期判定装置。 The second electrode is configured by inserting a metal wire into each of a plurality of cells located along a closed curved surface imaginary inside the regeneration limit surface and short-circuiting the plurality of metal wires. The DPF regeneration end time determination device according to claim 1.
PCT/JP2012/063450 2011-05-27 2012-05-25 Dpf regeneration-completion-time determination device WO2012165320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119005 2011-05-27
JP2011119005A JP5736967B2 (en) 2011-05-27 2011-05-27 DPF regeneration end time determination device

Publications (1)

Publication Number Publication Date
WO2012165320A1 true WO2012165320A1 (en) 2012-12-06

Family

ID=47259177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063450 WO2012165320A1 (en) 2011-05-27 2012-05-25 Dpf regeneration-completion-time determination device

Country Status (2)

Country Link
JP (1) JP5736967B2 (en)
WO (1) WO2012165320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179571A1 (en) * 2016-04-14 2017-10-19 いすゞ自動車株式会社 Particulate matter sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145277A (en) 2013-01-28 2014-08-14 Isuzu Motors Ltd Exhaust purification device for internal combustion engine
JP2015059476A (en) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 Exhaust purification system of internal combustion engine
JP2015059477A (en) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 Exhaust purification system of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195521U (en) * 1987-12-16 1989-06-23
JPH05106427A (en) * 1991-08-19 1993-04-27 Nippon Soken Inc Exhaust gas purifying device for internal combustion engine
WO2007066462A1 (en) * 2005-12-05 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
JP2011012577A (en) * 2009-06-30 2011-01-20 Isuzu Motors Ltd Pm sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195521U (en) * 1987-12-16 1989-06-23
JPH05106427A (en) * 1991-08-19 1993-04-27 Nippon Soken Inc Exhaust gas purifying device for internal combustion engine
WO2007066462A1 (en) * 2005-12-05 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
JP2011012577A (en) * 2009-06-30 2011-01-20 Isuzu Motors Ltd Pm sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179571A1 (en) * 2016-04-14 2017-10-19 いすゞ自動車株式会社 Particulate matter sensor

Also Published As

Publication number Publication date
JP5736967B2 (en) 2015-06-17
JP2012246830A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
EP2711515B1 (en) Particulate matter sensor
JP6459437B2 (en) Diagnostic device and sensor
JP6028615B2 (en) Particulate matter measuring device
US20080282769A1 (en) Apparatus and method for shielding a soot sensor
JP5736967B2 (en) DPF regeneration end time determination device
JP6089763B2 (en) Particulate matter measuring device
JP5540585B2 (en) PM sensor
JP6409452B2 (en) Diagnostic equipment
JP5874196B2 (en) Particulate matter sensor
JP5736966B2 (en) DPF regeneration end time determination device
JP6036388B2 (en) Particulate matter measuring device
JP2012246778A (en) Pm sensor
JP2012237228A (en) Pm sensor
JP5428583B2 (en) PM sensor
JP5625265B2 (en) PM sensor
JP6056537B2 (en) Particulate matter measuring apparatus and filter manufacturing method
CN107250781A (en) Sensor
WO2011004747A1 (en) Pm sensor
JP6717021B2 (en) PM sensor
JP6784050B2 (en) Sensor
JP2016109512A (en) Sensor and control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792814

Country of ref document: EP

Kind code of ref document: A1