JP6055356B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP6055356B2
JP6055356B2 JP2013075117A JP2013075117A JP6055356B2 JP 6055356 B2 JP6055356 B2 JP 6055356B2 JP 2013075117 A JP2013075117 A JP 2013075117A JP 2013075117 A JP2013075117 A JP 2013075117A JP 6055356 B2 JP6055356 B2 JP 6055356B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat source
passage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075117A
Other languages
Japanese (ja)
Other versions
JP2014199161A (en
Inventor
誠 寺内
誠 寺内
翼 内山
翼 内山
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2013075117A priority Critical patent/JP6055356B2/en
Publication of JP2014199161A publication Critical patent/JP2014199161A/en
Application granted granted Critical
Publication of JP6055356B2 publication Critical patent/JP6055356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯槽と、貯湯槽から出湯される湯をさらに加熱する機能を備えた補助熱源装置とを備えた熱源装置に関するものである。   The present invention relates to a heat source device including a hot water storage tank and an auxiliary heat source device having a function of further heating hot water discharged from the hot water storage tank.

貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、2、参照)、図5には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と出湯通路9とを備えた主熱源装置としてのタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   A heat source device having a hot water storage tank is used (see, for example, Patent Documents 1 and 2), and FIG. 5 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 as a main heat source device including a hot water tank 2 and a hot water discharge passage 9 is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from fuel such as city gas with oxygen in the air by reverse reaction of water electrolysis. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが介設されている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる廃熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。   The heat recovery passage 3 is a passage that circulates liquid (here, hot water) between the fuel cell 1 and the hot water tank 2 as indicated by arrows A and A ′ in the figure. Is provided with a pump (not shown) for circulating the liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by an arrow A ′ in the figure to be cooling water, and this water is used when the fuel cell 1 generates power. After being heated by the generated waste heat, it passes through the heat recovery passage 3 as indicated by an arrow A in the figure, and accumulates in the hot water tank 2 as hot water having a temperature of 60 ° C., for example. The heat recovery passage 3 is provided with a bypass passage 7 through a three-way valve 6 so that the liquid flowing from the fuel cell 1 side to the hot water tank 2 side can be passed through the fuel cell without passing through the hot water tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯水の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図5では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, hot water temperature detecting means 5 in the hot water tank 2 for detecting the temperature of the hot water in the hot water tank 2 is provided in the hot water tank 2 or on the outer wall of the hot water tank 2 with a space therebetween in the vertical direction of the hot water tank 2. A plurality (five in FIG. 5) are provided. The hot water temperature detection means 5a in the hot water tank provided at the top is filled with hot water up to a position lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, to the upper end of the hot water tank 2. The amount of hot water 20 liters less than that of the hot water is provided at the position of the hot water surface when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている出湯通路9は、貯湯槽2で形成された湯を出湯送水する通路と成しており、出湯通路9には、出湯通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、出湯通路9を通して送水される湯の量を可変するタンク湯水混合器12と、出湯通路9を通しての湯の送水の有無を弁の開閉により切り替える貯湯槽出側湯水電磁弁としてのパイロット方式のタンク側電磁弁13とが介設されている。なお、同図には図示されていないが、貯湯槽2を備えた熱源装置には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁が適宜の位置(例えば出湯通路9に接続された圧力逃がし用の通路等)に設けられている。   The hot water passage 9 connected to the upper side of the hot water storage tank 2 is a passage through which hot water formed in the hot water storage tank 2 is discharged, and the hot water passage 9 has a temperature of hot water passing through the hot water passage 9. Hot water storage tank hot water temperature detection means 11 to detect, tank hot water mixer 12 for changing the amount of hot water sent through the hot water passage 9, and hot water tank outlet for switching the presence or absence of hot water through the hot water passage 9 by opening and closing the valve A pilot-type tank-side solenoid valve 13 is interposed as a side hot-water solenoid valve. Although not shown in the figure, the heat source device having the hot water tank 2 has an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. It is provided at an appropriate position (for example, a pressure relief passage connected to the hot water passage 9).

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で出湯通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が介設されている。   Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, one water supply passage 8 (8a) is connected to the lower side of the hot water tank 2, and the other water supply passage 8 is connected. (8b) is formed so as to merge into the hot water passage 9 at the merging portion 10. In the water supply passage 8b, a water mixer 14 is provided for changing the amount of water flowing from the water supply passage 8b to the merging portion 10 side.

合流部10には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、湯水導入通路15には混合湯水温検出手段としての混合サーミスタ28(28a,28b)が介設されている。給湯器16は、通水する水を例えばガスバーナ(給湯バーナ)の燃焼熱により加熱する加熱手段としての給湯熱交換器17を備え、図の矢印Bに示されるように貯湯槽2から出湯通路9を通して送水される(タンクユニット4から送水される)湯を、図の矢印B”に示されるように、湯水導入通路15を介して給湯器16に導入して給湯熱交換器17で加熱する追い加熱の機能を有している。   A hot water introduction side of a water heater 16 as an auxiliary heat source device is connected to the junction 10 via a hot water introduction passage 15, and a mixed thermistor 28 (28 a, 28 a, 28) serving as a mixed hot water temperature detection means is connected to the hot water introduction passage 15. 28b) is interposed. The hot water heater 16 includes a hot water supply heat exchanger 17 as a heating means for heating the water to be passed by, for example, the combustion heat of a gas burner (hot water supply burner), and as shown by an arrow B in the figure, from the hot water tank 2 to the hot water passage 9. The hot water fed through the tank unit 4 (water fed from the tank unit 4) is introduced into the hot water heater 16 through the hot water introduction passage 15 and heated by the hot water heat exchanger 17 as indicated by an arrow B ″ in the figure. Has the function of heating.

この追い加熱機能により加熱された湯は、通路18と給湯通路19とを順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて出湯通路9を通り、前記の如く、給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり,あるいは水の混合や追い加熱なしにそのまま給湯される。また、周知の如く、給湯器16には、給湯熱交換器17を加熱する給湯バーナや給湯バーナへの空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより前記追い加熱機能の動作が行われるものである。   Hot water heated by the additional heating function passes through the passage 18 and the hot water supply passage 19 in order, and is supplied to one or more hot water supply destinations. Although not shown in the figure, a hot water tap is provided at the distal end side of the hot water passage 19, and the hot water stored in the hot water storage tank 2 receives the hot water pressure by opening the hot water tap. As described above, the hot water is mixed with the water from the water supply passage 8b, heated by the hot water heater 16, or hot water is supplied as it is without mixing or heating. As is well known, the water heater 16 is provided with appropriate components (not shown) such as a hot water supply burner for heating the hot water supply heat exchanger 17 and a combustion fan for supplying and exhausting air to and from the hot water supply burner. The additional heating function is operated by controlling the components.

なお、図5の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号30は給湯器16から浴槽31への注湯通路、符号32は暖房装置と給湯器16とを接続する暖房用通路、符号42は通路18と給湯通路19を通して給湯される給湯流量を検出する流量検出手段をそれぞれ示している。   In FIG. 5, reference numeral 25 denotes an incoming water temperature thermistor, reference numeral 26 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water tank 2, and reference numeral 27 denotes the hot water tank 2 to the fuel cell 1 side. Each of the FC low temperature thermistors for detecting the hot water temperature is shown. Reference numeral 29 is a feed water flow sensor, reference numeral 30 is a pouring passage from the hot water heater 16 to the bathtub 31, and reference numeral 32 is a connection between the heating device and the hot water heater 16. The heating passages and reference numeral 42 indicate flow rate detecting means for detecting the flow rate of hot water supplied through the passage 18 and the hot water supply passage 19, respectively.

図6には、図5に示したシステム構成における配管および構成要素の一部を省略または破線で示したシステム構成図が示されており、図6に示されるように、前記通路18には分岐継手20を介して接続通路21の一端側が接続され、接続通路21の他端側は、熱回収用通路3において湯水を燃料電池1側から貯湯槽2側に通す通路の途中部に接続されている。また、熱回収用通路3において湯水を貯湯槽2側から燃料電池1側に通す通路の途中部と前記出湯通路9の先端側とを接続する接続通路22が設けられ、接続通路22には、湯水を循環させる循環ポンプ23と、水電磁弁24とが介設されている。   FIG. 6 shows a system configuration diagram in which some of the piping and components in the system configuration shown in FIG. 5 are omitted or shown by broken lines. As shown in FIG. One end side of the connection passage 21 is connected via the joint 20, and the other end side of the connection passage 21 is connected to a middle portion of the passage through which the hot water passes from the fuel cell 1 side to the hot water tank 2 side in the heat recovery passage 3. Yes. In addition, a connection passage 22 is provided in the heat recovery passage 3 to connect a middle portion of the passage for passing hot water from the hot water storage tank 2 side to the fuel cell 1 side and the front end side of the hot water discharge passage 9. A circulation pump 23 for circulating hot water and a water solenoid valve 24 are interposed.

そして、通路18、接続通路21、熱回収用通路3のうちの通路3a、3b(接続通路21との接続部および接続通路22との接続部よりも貯湯槽2側の領域の一部)と、バイパス通路7、接続通路22、湯水導入通路15を有して、同図の矢印Cに示されるように湯水を循環させる湯水循環通路40が形成されている。水電磁弁24は、循環ポンプ23の駆動による湯水循環通路40への水の循環の有無を弁の開閉により切り替える電磁弁であり、水電磁弁24を開いた状態で循環ポンプ23を駆動させて湯水循環通路40を循環する湯水を、給湯器16が給湯熱交換器17により加熱する循環湯水加熱機能を有している。この循環湯水加熱機能の動作も、給湯器16の前記構成要素を制御することにより行われる。   Of the passage 18, the connection passage 21, and the heat recovery passage 3, the passages 3 a and 3 b (part of the region closer to the hot water tank 2 than the connection portion to the connection passage 21 and the connection portion to the connection passage 22) Further, a hot water circulation passage 40 that has the bypass passage 7, the connection passage 22, and the hot water introduction passage 15 and circulates the hot water as shown by an arrow C in the figure is formed. The water electromagnetic valve 24 is an electromagnetic valve that switches the presence or absence of water circulation to the hot water circulation passage 40 by driving the circulation pump 23 by opening and closing the valve. The water electromagnetic valve 24 is opened to drive the circulation pump 23. The hot water supply device 16 has a circulating hot water heating function in which the hot water supply device 16 heats the hot water circulating through the hot water circulation passage 40 by the hot water supply heat exchanger 17. The operation of the circulating hot water heating function is also performed by controlling the components of the water heater 16.

なお、図5、図6において、加熱により温められた湯水が主に通る通路部分にはドットを記しており、湯水循環通路40においては温められた湯の温度が湯水循環通路40内を通るときに徐々に冷めていくが、湯水循環通路40のうち給湯器16の湯水導出側の通路18からバイパス通路7の入口までの領域にドットを記している。   In FIGS. 5 and 6, dots are marked in the passage portion through which hot water heated mainly by heating passes, and in the hot water circulation passage 40, the temperature of the heated hot water passes through the hot water circulation passage 40. In the hot water circulation passage 40, dots are marked in the region from the hot water outlet side passage 18 of the hot water heater 16 to the inlet of the bypass passage 7.

また、図5、図6に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して出湯通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   The heat source device shown in FIGS. 5 and 6 is provided with a control device (not shown). The control device controls the tank hot water / water mixer 12 and flows from the hot water passage 9 to the junction 10 side. In addition to controlling the flow rate of hot water, the water mixer 14 is controlled to control the flow rate of water flowing from the water supply passage 8b to the merging section 10 so that mixed hot water having an appropriate temperature is formed in the merging section 10. Mixing flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時にはタンク側電磁弁13を閉じて出湯通路9から合流部10側に流れる湯(貯湯槽2からの出湯湯水)の流量がゼロとなる状態にする。また、給湯通路19の先端側に設けられている給湯栓が開かれて給水流量センサ29がオン流量を検知すると、ミキシング流量制御手段はタンク電磁弁13を開き、タンク湯水混合器12を制御して図5の矢印Bに示されるように出湯通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14を制御して図5の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が、例えば給湯設定温度と同等に設定される混合設定温度になるようにする。   This mixing flow rate control means closes the tank-side solenoid valve 13 when hot water supply is stopped, so that the flow rate of hot water flowing from the hot water passage 9 toward the junction 10 (the hot water discharged from the hot water tank 2) becomes zero. Further, when the hot water tap provided at the front end side of the hot water supply passage 19 is opened and the water supply flow rate sensor 29 detects the on flow rate, the mixing flow rate control means opens the tank electromagnetic valve 13 and controls the tank hot water mixer 12. As shown by the arrow B in FIG. 5, the flow rate of hot water flowing from the tap water passage 9 to the junction 10 side is adjusted, and the water mixer 14 is controlled to supply the water supply passage as shown by the arrow B ′ in FIG. The flow rate of the water flowing from 8b to the merging portion 10 side is adjusted so that the temperature of the mixed hot water formed in the merging portion 10 becomes, for example, a mixed set temperature set to be equal to the hot water supply set temperature.

なお、貯湯槽2内には、例えば図7の模式図に示されるような湯や水の温度層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる廃熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、出湯通路9からの送水時に貯湯槽2内の温度の層Wa、Wb、Wcがどのように形成されているかによって例えば60℃の湯が送水されたり給水温度に近い温度の水が送水されたりするが、説明の都合上、特に断らない限り、出湯通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。   In the hot water tank 2, for example, temperature layers Wa, Wb, and Wc of hot water and water as shown in the schematic diagram of FIG. 7 are formed, and the upper layer (high temperature layer) of the hot water tank 2 is formed. ) Wa stores hot water of high temperature Ta (for example, 60 ° C.) heated by waste heat generated at the time of power generation of the fuel cell 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores the hot water in the hot water tank 2. Water having the same temperature Tc (for example, 15 ° C.) as the supplied water temperature is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from the temperature Ta to the temperature Tc. Therefore, depending on how the temperature layers Wa, Wb, Wc in the hot water storage tank 2 are formed when water is supplied from the hot water passage 9, for example, hot water at 60 ° C. is supplied or water at a temperature close to the water supply temperature is supplied. However, for the convenience of explanation, unless otherwise specified, the expression that hot water is discharged from the hot water passage 9 and joined to the junction 10 is used.

例えば図7に示されるように、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば2℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。そこで、前記ミキシング流量制御手段は、予め与えられている制御データに基づき、タンク湯水混合器12と水混合器14を制御することによって、出湯通路9から合流部10側に流れる湯(例えば60℃の湯)の流量と給水通路8bから合流部10側に流れる水の流量とを調節するミキシング流量フィードフォワード制御を行う。   For example, as shown in FIG. 7, for example, the boundary between the layer Wa and the layer Wb is below the region where the hot water tank temperature detecting means 5a is disposed, and the detected temperature of the hot water temperature detecting means 5a in the hot water tank is the hot water supply set temperature. For example, when the temperature is higher than a threshold value set higher by 2 ° C., the temperature of hot water discharged from the hot water storage tank 2 is a substantially constant value such as 60 ° C., for example. Therefore, the mixing flow rate control means controls the tank hot water / water mixer 12 and the water mixer 14 on the basis of control data given in advance, so that hot water (for example, 60 ° C.) flows from the hot water passage 9 to the junction 10 side. Mixing flow rate feedforward control is performed to adjust the flow rate of the hot water) and the flow rate of the water flowing from the water supply passage 8b to the junction 10 side.

その後、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるように、タンク湯水混合器12と水混合器14を制御して出湯通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節するミキシング流量フィードバック制御を行うことにより、合流部10で形成される混合湯水の温度調節を行う。なお、ミキシング流量フィードフォワード制御を行わずにミキシング流量フィードバック制御のみを行うようにしてもよい。   Then, based on the difference between the detected temperature of the mixed thermistor 28 (28a, 28b) and the set mixing temperature, the tank hot water / water mixer 12 is set so that the detected temperature of the mixed thermistor 28 (28a, 28b) becomes the mixed set temperature. By performing the mixing flow rate feedback control for controlling the water mixer 14 to adjust the flow rate of hot water flowing from the outlet hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side, The temperature of the mixed hot water formed at 10 is adjusted. Note that only the mixing flow rate feedback control may be performed without performing the mixing flow rate feedforward control.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図5の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに、通路18と給湯通路19を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by the kissing flow rate control means, the mixed hot water is 5, as shown by an arrow B ″ in FIG. 5, the hot water is introduced from the junction 10 through the hot water introduction passage 15 into the hot water heater 16. At this time, the hot water heater 16 is not heated by the hot water heat exchanger 17. Hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合等には、混合設定温度を、給湯設定温度から給湯器16のmin号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げる。そして、混合湯水が給湯器16の前記追い加熱機能の動作によって給湯熱交換器17により加熱されて給湯設定温度の湯が作り出され、この湯が通路18と給湯通路19を通して給湯先に給湯される。   On the other hand, the detected temperature of the hot water temperature detecting means 5a in the hot water tank is below the threshold value, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature can be supplied only by the flow rate control by the mixing flow rate control means. In the case where it is not possible, the mixing set temperature is lowered to a value obtained by subtracting the temperature that rises when the hot water supply flow rate water is heated by the number of min (minimum combustion number) of the water heater 16 from the hot water set temperature. The mixed hot water is heated by the hot water supply heat exchanger 17 by the operation of the additional heating function of the hot water heater 16 to produce hot water having a hot water supply set temperature, and this hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19. .

なお、従来は、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、従来のような前記一体型の熱源装置だけでなく、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。   Conventionally, a heat source device of a type (integrated type) in which the tank unit 4 and the water heater 16 are disposed adjacent to each other has been used. However, the heat source device under development is the conventional integrated heat source device. In addition, the tank unit 4, the hot water heater 16, and the fuel cell 1 are individually arranged, and an individually arranged heat source device that is connected to each other by piping is also possible. If it does in this way, the tank unit 4 provided with the hot water storage tank 2 of the capacity | capacitance which a user requires among several types of tank units 4 will be selected, for example, and it will select among the tank units 4 and multiple types of water heaters 16 The water heater 16 thus made and the fuel cell 1 selected from the plural types of fuel cells 1 can be combined, and variations can be increased.

また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。この場合、例えば給湯器16は建物の北側に配置されてタンクユニット4は建物の東側や西側に配置されるといったように、タンクユニット4と給湯器16とが離れて配置されることも想定されるが、そのような場合には、冬場等に、湯水導入通路15および接続通路21内の水が、給湯停止中に凍結することを防止するため等に、水電磁弁24を開いて循環ポンプ23を駆動させ、図6の矢印Cに示したように、湯水循環通路40に湯水を循環させながら給湯熱交換器17により加熱する前記循環湯水加熱機能の動作が適宜行われるような構成が必要になると考えられる。   Further, the individual arrangement type heat source device as described above has an advantage that the heat source device can be formed by connecting the tank unit 4 or the like to the existing water heater 16. In this case, it is assumed that the tank unit 4 and the water heater 16 are arranged apart from each other, for example, the water heater 16 is arranged on the north side of the building and the tank unit 4 is arranged on the east side or the west side of the building. However, in such a case, the water solenoid valve 24 is opened to prevent the water in the hot water introduction passage 15 and the connection passage 21 from freezing during the hot water supply stop in winter and the like. As shown by an arrow C in FIG. 6, the circulating hot water heating function of heating the hot water supply heat exchanger 17 while circulating hot water in the hot water circulation passage 40 is appropriately performed. It is thought that it becomes.

特許第4359339号公報Japanese Patent No. 4359339 特開平8−20113号公報Japanese Patent Laid-Open No. 8-20113

ところで、湯水導入通路15や給湯器16内の通路が冷えていて通路内の水が該通路の配設空間温度に近い低温状態のときに給湯が開始されることがある。このような給湯のコールドスタート時には、給湯器16の給湯熱交換器17も冷えているために、合流部10で形成される混合湯水の設定温度を給湯設定温度として給湯器16に導入しても、混合湯水が給湯器16を通過する時に給湯熱交換器17により熱を奪われてしまう。そこで、このようなときに、混合湯水が給湯器16を通過する時に給湯熱交換器17により奪われる熱を燃焼によって補填する制御(初回追い加熱動作)が行われる。   By the way, hot water supply may be started when the hot water introduction passage 15 or the passage in the hot water heater 16 is cooled and the water in the passage is in a low temperature state close to the temperature of the space where the passage is provided. At the time of such cold start of hot water supply, the hot water supply heat exchanger 17 of the water heater 16 is also cooled, so even if the set temperature of the mixed hot water formed in the junction 10 is introduced into the water heater 16 as the hot water set temperature. When the mixed hot water passes through the water heater 16, heat is taken away by the hot water supply heat exchanger 17. Therefore, in such a case, control (first follow-up heating operation) is performed in which the heat taken away by the hot water supply heat exchanger 17 when the mixed hot water passes through the water heater 16 is compensated by combustion.

また、従来のような前記一体型の熱源装置においては、合流部10と給湯器16とが近接していたが、前記個別配置型の熱源装置においては、タンクユニット4と給湯器16とが離れて配設される場合もあり、合流部10と給湯器16とを接続する湯水導入通路15の長さが長いと、湯水導入通路15内に入っていた冷たい水が給湯器16を通り過ぎるまでの期間が長くなる。そのため、本願発明者は、タンクユニット4と給湯器16とが離れて配設される(湯水導入通路15の長さが長い)場合の初回追い加熱動作において、安定した給湯温度の湯を給湯できるようにするためには、特有の制御構成が必要であると考えた。   In the conventional integrated heat source device, the junction 10 and the water heater 16 are close to each other. However, in the individually arranged heat source device, the tank unit 4 and the water heater 16 are separated from each other. If the length of the hot water introduction passage 15 connecting the junction 10 and the water heater 16 is long, the cold water that has entered the hot water introduction passage 15 passes through the water heater 16. The period becomes longer. Therefore, the inventor of the present application can supply hot water at a stable hot water supply temperature in the first follow-up heating operation in the case where the tank unit 4 and the water heater 16 are arranged apart (the length of the hot water introduction passage 15 is long). In order to do so, it was thought that a specific control configuration was necessary.

なお、特許文献2に記載されているように、給湯器16に、入水温度をリアルタイムで検出せずに演算によって求める方式の給湯器を適用すると、その演算により求めた入水温度に基づいて給湯器18の燃焼量を制御することになるため、実際の入水温度に基づく燃焼量制御方式に比べると入水温度に対応する燃焼量制御が遅れるために、その遅れを考慮した制御構成が重要となる。また、給湯時に、給湯設定温度よりも例えば8℃も高めの湯が出湯されると、利用者は不快な思いをすることになり、場合によっては軽い火傷の心配もあるため、給湯温度の安定化制御において、特にこのようなオーバーシュートの発生を防止することは重要な課題である。   In addition, as described in Patent Document 2, when a water heater of a method that is obtained by calculation without detecting the incoming water temperature in real time is applied to the water heater 16, the water heater is based on the incoming water temperature obtained by the calculation. Since the combustion amount control corresponding to the incoming water temperature is delayed as compared with the combustion amount control method based on the actual incoming water temperature, the control configuration in consideration of the delay is important. Also, when hot water is supplied, for example, 8 ° C higher than the hot water supply set temperature, the user will feel uncomfortable and in some cases there may be minor burns. It is an important issue to prevent the occurrence of such an overshoot in the control of the conversion.

本発明は、上記課題を解決するためになされたものであり、その目的は、貯湯槽を有する主熱源装置と貯湯槽から出湯される湯の追い加熱機能を備えた補助熱源装置を有する構成の熱源装置において、初回追い加熱動作が行われるときの給湯温度の安定化を図ることができる熱源装置を提供することにある。   The present invention has been made to solve the above-described problems, and has an object of having a configuration including a main heat source device having a hot water storage tank and an auxiliary heat source device having a function of additionally heating hot water discharged from the hot water storage tank. An object of the present invention is to provide a heat source device capable of stabilizing the hot water supply temperature when the first follow-up heating operation is performed.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、貯湯槽を備えて該貯湯槽からの湯を出湯通路を通して出湯送水する機能を有する主熱源装置と、該主熱源装置から出湯送水される湯を導入して給湯熱交換器で加熱する追い加熱機能を有する補助熱源装置とを備え、該補助熱源装置の湯水導入部側には前記出湯通路と給水通路とが合流する合流部が湯水導入通路を介して接続され、前記出湯通路から前記合流部側に流れる湯の流量と前記給水通路から前記合流部側に流れる水の流量を制御して前記合流部で混合湯水が形成されるようにするミキシング流量制御手段と、該ミキシング流量制御手段により形成される混合湯水の設定温度を設定する混合設定温度設定手段とを有し、前記混合湯水の前記補助熱源装置による追い加熱動作が行われるときには、給湯開始から予め定められる設定期間経過時の前記混合湯水の温度が前記補助熱源装置の予め定められる設定加熱号数で設定温度の湯を作り出すために必要な補助熱源装置の加熱号数対応入水温度よりも低い温度になるように、前記混合湯水の温度が予め定められる第1の設定温度勾配で上昇して前記設定期間が経過してから前記加熱号数対応入水温度に達するまでは前記第1の設定温度勾配よりも大きい予め定められる第2の設定温度勾配で上昇するように前記混合設定温度設定手段により混合湯水の設定温度が設定される構成をもって課題を解決するための手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first aspect of the present invention is to introduce a main heat source device having a hot water storage tank and having a function of feeding hot water from the hot water storage tank through the hot water outlet passage, and hot water supplied from the main heat source device. An auxiliary heat source device having a follow-up heating function to be heated by the exchanger, and a hot water introduction portion side of the auxiliary heat source device is connected via a hot water introduction passage to a junction where the hot water supply passage and the water supply passage are joined together, Mixing flow rate control means for controlling the flow rate of hot water flowing from the outlet passage to the merging portion side and the flow rate of water flowing from the water supply passage to the merging portion side so that mixed hot water is formed at the merging portion; Mixing preset temperature setting means for setting the preset temperature of the mixed hot water formed by the mixing flow rate control means, and when the follow-up heating operation by the auxiliary heat source device is performed, The temperature of the mixed hot water when a set period determined is lower than the incoming water temperature corresponding to the heating number of the auxiliary heat source device required to create hot water of the set temperature with the predetermined setting heating number of the auxiliary heat source device The temperature of the mixed hot water rises at a predetermined first set temperature gradient so as to reach a temperature, and the first set temperature is reached after the set period elapses until the input water temperature corresponding to the heating number is reached. A configuration in which the set temperature of the mixed hot water is set by the mixed set temperature setting means so as to increase at a predetermined second set temperature gradient larger than the gradient is used as means for solving the problem.

また、第2の発明は、前記第1の発明の構成に加え、前記設定期間は出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間としたことを特徴とする。   Further, in the second invention, in addition to the configuration of the first invention, the hot water capacity in the hot water introduction passage from the junction of the hot water passage and the water supply passage to the hot water introduction portion of the auxiliary heat source device flows during the set period. It is characterized by a period.

さらに、第3の発明は、前記第2の発明の構成に加え、前記補助熱源装置は燃料の燃焼熱により給湯熱交換器を加熱するバーナ装置が設けられ、該バーナ装置の燃焼開始時に該バーナ装置に供給される燃焼燃料供給量の立ち上げ開始時からその立ち上げ燃焼燃料供給量が安定するまでの期間よりも出湯通路と給水通路との合流部から前記補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間が短いときには、給湯開始から予め定められる設定待機時間は給水通路からの水を補助熱源装置側に送水し、前記設定待機時間経過した後さらに設定期間が経過した時の混合湯水の温度が前記補助熱源装置加熱号数対応入水温度よりも低い温度になるように前記混合湯水の設定温度が前記設定待機時間経過時から第1の設定温度勾配で上昇するように混合設定温度設定手段による混合設定温度の設定が行われることを特徴とする。   Further, in the third invention, in addition to the configuration of the second invention, the auxiliary heat source device is provided with a burner device that heats the hot water supply heat exchanger by the combustion heat of the fuel, and the burner device is started at the start of combustion. From the start of start-up of the combustion fuel supply amount supplied to the apparatus until the start-up combustion fuel supply amount stabilizes, from the junction between the hot water supply passage and the water supply passage to the hot water introduction portion of the auxiliary heat source device When the hot water capacity in the hot water introduction passage flows for a short period, the set standby time determined in advance from the start of hot water supply is that the water from the water supply passage is fed to the auxiliary heat source device, and the set time elapses after the set standby time has elapsed. The set temperature of the mixed hot water is a first set temperature gradient from when the set standby time has elapsed so that the temperature of the mixed hot water becomes lower than the incoming water temperature corresponding to the auxiliary heat source device heating number. Wherein the setting of the mixed set temperature by mixing the set temperature setting means is performed to rise.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記補助熱源装置は、追い加熱機能の動作時に給湯温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成を有することを特徴とする。   Further, in a fourth aspect of the invention, in addition to the configuration of the first, second, or third aspect, the auxiliary heat source device includes a hot water supply temperature, a hot water supply flow rate, a heating amount of the hot water supply heat exchanger, The temperature of the hot water introduced into the auxiliary heat source device is obtained by calculation based on the above.

本発明によれば、貯湯槽から出湯通路を通して出湯送水される湯と給湯通路からの水とを合流部に導く構成を有して、ミキシング流量制御手段によって、前記出湯通路から前記合流部側に流れる湯水の流量と前記給水通路から前記合流部側に流れる水の流量を制御して前記合流部で混合湯水が形成されるようにするが、例えば給湯のコールドスタート時の追い加熱動作(初回追い加熱動作)のとき等、適宜のタイミングで前記混合湯水の前記補助熱源装置による追い加熱動作が行われるときには、ミキシング流量制御手段により形成される混合湯水の温度を設定する混合設定温度設定手段が、前記混合湯水の温度の設定を以下に述べるように特徴的な設定とすることにより、給湯温度の安定化を図ることができる。   According to the present invention, the hot water fed from the hot water storage tank through the hot water passage and the water from the hot water supply passage are guided to the merging portion, and the mixing flow rate control means causes the hot water passage from the hot water passage to the merging portion side. The flow rate of flowing hot water and the flow rate of water flowing from the water supply passage to the merging portion side are controlled so that mixed hot water is formed at the merging portion. When the follow-up heating operation by the auxiliary heat source device is performed at an appropriate timing, such as during a heating operation), a mixing set temperature setting means for setting the temperature of the mixed hot water formed by the mixing flow rate control means, By setting the temperature of the mixed hot water as a characteristic setting as described below, the hot water supply temperature can be stabilized.

つまり、例えば給湯のコールドスタート時には、給湯開始から湯水導入通路内の水が給湯器を通り過ぎるまでの期間は補助熱源装置には冷たい水が導入されるので、補助熱源装置によって例えば最小加熱号数よりも加熱量を大きくして迅速に給湯設定温度の湯を形成する動作が行われ、その後、合流部で形成された混合湯水が補助熱源装置に到達して、順次、補助熱源装置に導入され、補助熱源装置は導入される混合湯水に対応させて加熱量を小さくするように制御することになるが、例えば給湯熱交換器の加熱を燃料の燃焼熱により行う補助熱源装置の場合等、加熱量(例えば燃焼量)を一気に下げることは難しいため、導入される混合湯水の温度が急上昇すると、その上昇に対応させて加熱量を急降下させることは難しい。   That is, at the time of cold start of hot water supply, for example, cold water is introduced into the auxiliary heat source device during the period from the start of hot water supply until the water in the hot water introduction passage passes through the hot water heater. The heating amount is increased and the operation of quickly forming hot water at the hot water supply set temperature is performed.Then, the mixed hot water formed at the junction reaches the auxiliary heat source device and is sequentially introduced into the auxiliary heat source device, The auxiliary heat source device is controlled so as to reduce the heating amount according to the mixed hot water to be introduced. For example, in the case of an auxiliary heat source device that heats the hot water supply heat exchanger by the combustion heat of the fuel, the heating amount Since it is difficult to reduce (for example, the combustion amount) all at once, if the temperature of the mixed hot water to be introduced rises rapidly, it is difficult to make the heating amount drop rapidly in response to the rise.

それに対し、本発明においては、例えば給湯のコールドスタート時に前記混合湯水の前記補助熱源装置による追い加熱動作が行われるとき等に、給湯開始から予め定められる設定期間経過時の前記混合湯水の温度が前記補助熱源装置の予め定められる設定加熱号数で設定温度の湯を作り出すために必要な補助熱源装置の加熱号数対応入水温度よりも低い温度になるように、前記混合湯水の温度が予め定められる第1の設定温度勾配で上昇させることにより、合流部で形成された混合湯水の温度上昇勾配が緩やかであり、このように徐々に温度上昇する混合湯水の温度に対応させて補助熱源装置の加熱量を徐々に低下させることができ、給湯温度の安定化を図ることができる。   On the other hand, in the present invention, for example, when a supplementary heating operation is performed by the auxiliary heat source device at the time of cold start of hot water supply, the temperature of the mixed hot water at the time when a predetermined period elapses from the start of hot water supply is set. The temperature of the mixed hot water is determined in advance so that the temperature is lower than the input water temperature corresponding to the heating number of the auxiliary heat source device required to produce hot water having a set temperature with the predetermined set heating number of the auxiliary heat source device. The temperature rise gradient of the mixed hot water formed at the merging portion is gentle by raising the first set temperature gradient, and the auxiliary heat source device is made to correspond to the temperature of the mixed hot water gradually rising in this way. The amount of heating can be gradually reduced, and the hot water supply temperature can be stabilized.

また、本発明においては、前記設定期間が経過してから前記加熱号数対応入水温度に達するまでは前記第1の設定温度勾配よりも大きい予め定められる第2の設定温度勾配で上昇するように前記混合設定温度設定手段により混合湯水の設定温度が設定されるが、この設定温度勾配の切り替え時には補助熱源装置の加熱量も給湯開始後の湯水導入通路からの水を加熱する時の加熱量に比べると小さくなっていることから、給湯開始時に合流部にあった湯水が補助熱源装置に到達したときに加熱量を設定加熱号数(例えば最小加熱号数)に下げる場合よりはその下げ幅が小さく、加熱量を設定加熱号数の加熱量に下げるための傾きも小さくできるため、加熱量低下制御を適切に行うことができる。   Further, in the present invention, the temperature rises at a predetermined second set temperature gradient that is larger than the first set temperature gradient until the water temperature corresponding to the heating number is reached after the set period has elapsed. The set temperature of the mixed hot water is set by the mixing set temperature setting means. When the set temperature gradient is switched, the heating amount of the auxiliary heat source device is also set to the heating amount when heating the water from the hot water introduction passage after the hot water supply starts. Compared to the case where the amount of heating is reduced to the set heating number (for example, the minimum heating number) when the hot water that was in the junction at the start of hot water supply reaches the auxiliary heat source device, the amount of reduction is smaller Since the inclination for reducing the heating amount to the heating amount of the set heating number can be reduced, the heating amount lowering control can be appropriately performed.

また、貯湯槽の出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路が長いということは、主熱源装置と補助熱源装置との距離が離れており、例えば補助熱源装置が西側に配置されている等の可能性があり、補助熱源装置の加熱量制御において想定されるフィードバックで補正できる加熱量と実際の補正できる加熱量とに差異が生じ、思ったように温度が下がらないといった場合があるが、前記設定期間を貯湯槽の出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間として、例えば湯水導入通路が長いときには混合湯水の温度を緩やかに上昇させることにより、その混合湯水の補助熱源装置の加熱量を徐々に低下させることができ、給湯温度の安定化を図ることができる。   In addition, the long hot water introduction path from the junction between the hot water supply passage and hot water supply passage to the hot water introduction section of the auxiliary heat source device means that the distance between the main heat source device and the auxiliary heat source device is large. There is a possibility that the heat source device is arranged on the west side, etc., and there is a difference between the heating amount that can be corrected by the feedback assumed in the heating amount control of the auxiliary heat source device and the actual heating amount that can be corrected, as expected Although the temperature may not drop, the set period is set as a period during which the hot water capacity in the hot water introduction passage from the junction of the hot water supply passage and the hot water supply passage to the hot water introduction passage of the auxiliary heat source device flows. When the introduction passage is long, by gradually increasing the temperature of the mixed hot water, the amount of heating of the auxiliary heat source device of the mixed hot water can be gradually reduced, and the hot water temperature can be stabilized. It is possible.

さらに、本発明において、補助熱源装置を燃料の燃焼熱により給湯熱交換器を加熱するバーナ装置を設けて形成し、該バーナ装置の燃焼開始時に該バーナ装置に供給される燃焼燃料供給量の立ち上げ開始時からその立ち上げ燃焼燃料供給量が安定するまでの期間よりも出湯通路と給水通路との合流部から前記補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間が短いときには、給湯開始から予め定められる設定待機時間は給水通路からの水を補助熱源装置側に送水してから混合湯水温を第1の温度勾配で上昇させることにより、以下の効果を奏することができる。   Furthermore, in the present invention, the auxiliary heat source device is formed by providing a burner device that heats the hot water supply heat exchanger by the combustion heat of the fuel, and the amount of combustion fuel supplied to the burner device at the start of combustion of the burner device is increased. There is a period during which the hot water capacity in the hot water introduction passage from the junction of the hot water supply passage and the water supply passage to the hot water introduction section of the auxiliary heat source device flows more than the period from the start of raising until the startup combustion fuel supply amount is stabilized. When it is short, the preset standby time from the start of hot water supply can bring the following effects by increasing the temperature of the mixed hot water with the first temperature gradient after feeding water from the water supply passage to the auxiliary heat source device side. it can.

つまり、合流部で形成される混合湯水温が補助熱源装置に到達して、その温度が上昇するタイミングが、補助熱源装置側のバーナ装置の前記立ち上げ燃焼燃料供給量が安定するまでの期間内であると、バーナの燃焼制御が主にフィードフォワード制御により行われるため、その期間に補助熱源装置に供給される湯水温が上昇すると、混合湯水の湯水温と給湯設定温度との差を補償するための補助熱源装置の燃焼量の制御が安定しないために、補償を適切に行えずに給湯温度のオーバーシュートが発生しやすくなるが、設定待機時間中は給水通路からの水を補助熱源装置側に送水してから混合湯水温を第1の温度勾配で上昇させることにより、補助熱源装置の燃焼制御が安定した状態のときに、混合湯水を導入して徐々に温度上昇させることができるので、その湯水温を適切に補償することができ、給湯温度の安定化を図ることができる。   That is, the temperature of the mixed hot water formed at the junction reaches the auxiliary heat source device and the temperature rises within the period until the startup combustion fuel supply amount of the burner device on the auxiliary heat source device side is stabilized. In this case, since the burner combustion control is mainly performed by feedforward control, if the hot water temperature supplied to the auxiliary heat source device rises during that period, the difference between the hot water temperature of the mixed hot water and the hot water supply set temperature is compensated. Because the control of the combustion amount of the auxiliary heat source device is not stable, overheating of the hot water supply temperature is likely to occur without adequate compensation, but water from the water supply passage is supplied to the auxiliary heat source device side during the set standby time. When the temperature of the mixed hot water is raised at the first temperature gradient after the water is supplied to the water, the temperature of the auxiliary heat source device can be gradually increased by introducing the mixed hot water when the combustion control of the auxiliary heat source device is stable. Since wear, it is possible to properly compensate for the hot water temperature, it is possible to stabilize the hot water temperature.

なお、混合設定温度の設定と補助熱源装置の加熱量と給湯温度に関しては、その時系列変化を示す模式的なグラフを用いて実施例において詳細を後述し、あわせて効果についても詳述する。   In addition, regarding the setting of the mixing set temperature, the heating amount of the auxiliary heat source device, and the hot water supply temperature, details will be described later in the embodiment using a schematic graph showing the time series change, and the effect will be described in detail.

また、補助熱源装置を、追い加熱機能の動作時に給湯温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成とすると、演算により求めた入水温度に基づいて加熱量を制御する際に、実際の入水温度とのずれ(検出タイミングの遅れ)が生じるために、導入される混合湯水の温度変化が大きいと、前記のように、給湯温度のオーバーシュート等が発生しやすくなるが、本発明を適用することにより、適切に給湯温度のオーバーシュートの発生を抑制することができる。   Further, when the auxiliary heat source device is configured to obtain the temperature of hot water introduced into the auxiliary heat source device based on the hot water supply temperature, the hot water supply flow rate, and the heating amount of the hot water heat exchanger during the operation of the additional heating function, When controlling the amount of heating based on the obtained incoming water temperature, a deviation from the actual incoming water temperature (delay of detection timing) occurs, so if the temperature change of the mixed hot water to be introduced is large, as described above, Although hot water supply temperature overshoot and the like are likely to occur, the application of the present invention can appropriately suppress the occurrence of hot water supply temperature overshoot.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat-source apparatus which concerns on this invention. 実施例の熱源装置による初回追い加熱動作開始時の制御特性及び温度特性を示すグラフである。It is a graph which shows the control characteristic and temperature characteristic at the time of the first follow-up heating operation start by the heat-source apparatus of an Example. 別の実施例の熱源装置による初回追い加熱動作開始時の制御特性及び温度特性を示すグラフである。It is a graph which shows the control characteristic and temperature characteristic at the time of the first follow-up heating operation start by the heat-source apparatus of another Example. 初回追い加熱動作開始時の制御特性と温度特性との関係の別の例を示すグラフである。It is a graph which shows another example of the relationship between the control characteristic at the time of first time follow-up heating operation start, and a temperature characteristic. 実施例の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat-source apparatus of an Example. 実施例の熱源装置に設けられている湯水循環通路と貯湯槽の出湯通路とを説明するために、図5の一部構成を簡略化して示すシステム構成図である。It is a system block diagram which simplifies and shows a partial structure of FIG. 5, in order to demonstrate the hot-water circulation channel | path provided in the heat source apparatus of an Example, and the hot-water supply channel | path of a hot water storage tank. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of distribution of the temperature layer in a hot water storage tank.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same components as those described so far are denoted by the same reference numerals, and redundant description thereof is omitted or simplified.

図1には、本発明に係る熱源装置の一実施例のシステム構成が模式的に示されている。本実施例は、図5に示した熱源装置と同様のシステム構成を有し、さらに、図1に示されるように、タンクユニット60内の制御装置33に、ミキシング流量制御手段35、混合設定温度設定手段36、メモリ部37、積算流量検出手段38を設けている。また、制御装置33には給湯器16の制御装置46とリモコン装置43とが信号接続され、リモコン装置43には給湯設定温度設定操作手段45が設けられ、給湯器16の制御装置46には給湯燃焼制御手段47が設けられている。なお、リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。   FIG. 1 schematically shows a system configuration of an embodiment of a heat source device according to the present invention. This embodiment has the same system configuration as that of the heat source device shown in FIG. 5, and further, as shown in FIG. 1, the controller 33 in the tank unit 60 includes a mixing flow rate control means 35, a mixing set temperature. A setting unit 36, a memory unit 37, and an integrated flow rate detection unit 38 are provided. The control device 33 is connected to the control device 46 of the water heater 16 and the remote control device 43 by signal, the remote control device 43 is provided with a hot water supply set temperature setting operation means 45, and the control device 46 of the water heater 16 is supplied with hot water supply. Combustion control means 47 is provided. The remote control device 43 is installed indoors at an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、制御装置33の混合設定温度設定手段36と給湯器16の燃焼制御手段47とに加えられる。   The hot water supply set temperature setting operation means 45 is an operation means for setting a hot water supply set temperature by a user or the like, and is formed by an operation button or the like provided on the surface side of the remote control device 43, for example. The value of the hot water set temperature set by the hot water set temperature setting operation means 45 is added to the mixture set temperature setting means 36 of the control device 33 and the combustion control means 47 of the hot water heater 16.

混合設定温度設定手段36は、混合湯水の設定温度(混合設定温度)を設定するものであり、本実施例においては、以下のような特徴的な制御を行う。つまり、給湯のコールドスタート時に混合湯水の給湯器16による追い加熱動作が行われるとき(初回追い加熱動作時)には、例えば図2(b)のAの領域に示されるように、給湯開始から予め定められる設定期間(Δt)経過時の前記混合湯水の温度が、給湯器16の予め定められる設定加熱号数である最小燃焼号数(min号数)で設定温度の湯を作り出すために必要な補助熱源装置加熱号数対応入水温度(min号数対応入水温度)よりも低い温度になるように、混合湯水の温度が予め定められる第1の設定温度勾配で上昇するように設定する。   The set mixing temperature setting means 36 sets a set temperature (mixed set temperature) of the mixed hot water and performs the following characteristic control in this embodiment. In other words, when a follow-up heating operation by the mixed hot water heater 16 is performed at the time of cold start of hot water supply (during the first follow-up heating operation), for example, as shown in the area A of FIG. Necessary for producing hot water having a set temperature with a minimum combustion number (min number) that is a predetermined set heating number of the water heater 16 when the temperature of the mixed hot water when a predetermined set period (Δt) elapses The temperature of the mixed hot water is set so as to rise at a first preset temperature gradient so that the temperature becomes lower than the temperature of the incoming water corresponding to the heating number corresponding to the auxiliary heat source device (the incoming temperature corresponding to the number of min).

なお、min号数対応入水温度は、給湯器16の給湯バーナをmin号数で燃焼させて給湯流量の水を加熱したときに上昇する温度を給湯設定温度から差し引いた温度である。給湯器16のmin号数は例えば3号であり、この燃焼により給湯流量(蛇口開度)が10リットル/分の時には7.5[deg]温度が上昇する (7.5[deg]=3[号] ×25÷10[リットル/分])ので、給湯設定温度が42℃で給湯流量が10リットル/分のときには、min号数対応入水温度は34.5℃となる(34.5[℃]=42[℃] −7.5 [deg])。   The water number corresponding to the min number is a temperature obtained by subtracting, from the hot water supply set temperature, the temperature that rises when the hot water supply burner of the water heater 16 is burned at the min number and the water at the hot water supply flow rate is heated. The number of min of the water heater 16 is, for example, 3, and this combustion increases the temperature by 7.5 [deg] when the hot water flow rate (faucet opening) is 10 liters / minute (7.5 [deg] = 3 [No.] × 25 ÷ 10 [L / min]), so when the hot water supply set temperature is 42 ° C and the hot water flow rate is 10L / min, the incoming water temperature corresponding to the min number is 34.5 ° C (34.5 [° C] = 42 [° C] ] -7.5 [deg]).

そこで、前記設定期間経過時の混合湯水の温度が例えばmin号数対応入水温度よりも10℃低い温度である24.5℃に上昇するように第1の温度勾配を設定し、前記設定期間が経過してからmin号数対応入水温度に達するまでは、前記第1の設定温度勾配よりも大きい予め定められる第2の設定温度勾配で上昇するように設定する(同図のA’、参照)。なお、これら第1、第2の設定温度勾配の設定等についての詳しい説明は後述する。   Therefore, the first temperature gradient is set so that the temperature of the mixed hot water when the set period elapses rises to 24.5 ° C., which is 10 ° C. lower than the incoming water temperature corresponding to the min number, for example. The temperature is set so as to increase at a predetermined second set temperature gradient that is larger than the first set temperature gradient until it reaches the water number corresponding to the min number after the elapse of time (see A ′ in the figure). . A detailed description of the setting of the first and second set temperature gradients will be given later.

また、本実施例において、前記設定期間Δtは、出湯通路9と給水通路8bとの合流部10から給湯器16の湯水導入部までの湯水導入通路15内の湯水容量が流れる期間(積算流量対応期間)としており、この積算流量対応期間は、積算流量検出手段38により検出される。   In the present embodiment, the set period Δt is a period during which the hot water capacity in the hot water introduction passage 15 flows from the junction 10 between the hot water passage 9 and the water supply passage 8b to the hot water introduction section of the water heater 16 (according to the integrated flow rate). The integrated flow rate corresponding period is detected by the integrated flow rate detection means 38.

積算流量検出手段38は、まず、メモリ部37に格納されている湯水導入通路15の長さと管路径とから湯水導入通路15の容量を求める。なお、熱源装置の施工時に、施工業者は貯湯槽2から給湯器16間を接続するために指定された管径の配管材で工事すると共に、例えば貯湯槽2から給湯器16間の配管距離(湯水導入通路15の長さ)を制御装置33の基板に入力する入力設定操作を行っており、入力された湯水導入通路15の長さがメモリ部37に格納されている。積算流量検出手段38は、前記のように求めた湯水導入通路15の容量と、流量検出手段42により検出される流量とから前記積算流量対応期間(合流部10から給湯器16の湯水導入部までの湯水導入通路15内の湯水容量が流れる期間)を求め、その値を混合設定温度設定手段36に加える。   First, the integrated flow rate detection means 38 obtains the capacity of the hot water introduction passage 15 from the length of the hot water introduction passage 15 and the pipe diameter stored in the memory unit 37. At the time of construction of the heat source device, the contractor works with a pipe material having a specified pipe diameter to connect between the hot water tank 2 and the hot water heater 16, and for example, the piping distance between the hot water tank 2 and the hot water heater 16 ( An input setting operation is performed to input the length of the hot water introduction passage 15 to the substrate of the control device 33, and the input length of the hot water introduction passage 15 is stored in the memory unit 37. The integrated flow rate detection means 38 is based on the capacity of the hot water introduction passage 15 obtained as described above and the flow rate detected by the flow rate detection means 42 (from the junction 10 to the hot water introduction part of the water heater 16). The period during which the hot water capacity in the hot water introduction passage 15 flows) is determined, and the value is added to the mixing set temperature setting means 36.

混合設定温度設定手段36は、積算流量検出手段38から加えられる積算流量対応期間の値を受けて、混合設定温度を設定し、混合設定温度設定手段36によって設定された混合設定温度(混合設定温度情報)は、ミキシング流量制御手段35に加えられる。   The mixing set temperature setting means 36 receives the value of the integrated flow rate corresponding period applied from the integrated flow detection means 38, sets the mixing set temperature, and sets the mixing set temperature (mixing set temperature set by the mixing set temperature setting means 36). Information) is added to the mixing flow control means 35.

ミキシング流量制御手段35は、合流部10側に出湯通路9から流れる湯の流量と給水通路8bから合流部10側に流れる水の流量を制御し、混合設定温度設定手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。ミキシング流量制御手段35は、前記の如く、タンク側電磁弁13の開閉制御を行い、かつ、タンク湯水混合器12および水混合器14の制御による湯流量と水流量とを制御して、合流部10で形成される混合湯水の温度が混合設定温度設定手段36により設定される混合設定温度となるように制御する。   The mixing flow rate control means 35 controls the flow rate of hot water flowing from the outlet passage 9 to the junction 10 side and the flow rate of water flowing from the water supply passage 8b to the junction 10 side, and is set by the set mixing temperature setting means 36. The mixed hot and cold water is formed at the junction 10. As described above, the mixing flow rate control means 35 controls the opening and closing of the tank-side electromagnetic valve 13 and controls the hot water flow rate and the water flow rate by the control of the tank hot water mixer 12 and the water mixer 14, Control is performed so that the temperature of the mixed hot water formed at 10 becomes the mixing set temperature set by the mixing set temperature setting means 36.

給湯器16の燃焼制御手段47は、給湯が開始されて給水流量センサ29がオン流量を検出すると、給湯器16に設けられているバーナ装置を燃焼させ、また、その燃焼量を制御して、混合湯水の追い加熱動作の制御を行う。   When the hot water supply is started and the water supply flow rate sensor 29 detects the ON flow rate, the combustion control means 47 of the water heater 16 burns the burner device provided in the water heater 16 and controls the amount of combustion, Controls the additional heating operation of mixed hot water.

ところで、貯湯槽2から出湯される湯と必要に応じて給水通路8bからの水と混合して形成される混合湯水を、給湯器16において給湯熱交換器17による加熱を行わずに給湯する非追い加熱給湯時には、出湯通路9と給水通路8bとの合流部10で形成される混合湯水の温度は、給湯設定温度対応の混合設定温度(例えば給湯設定温度と同じ温度)とされて、給湯が行われる。   By the way, the hot water discharged from the hot water storage tank 2 and the mixed hot water formed by mixing with the water from the water supply passage 8b as needed are hot water supplied without heating by the hot water supply heat exchanger 17 in the hot water heater 16. At the time of follow-up hot water supply, the temperature of the mixed hot water formed at the junction 10 between the tap water passage 9 and the water supply passage 8b is set to a mixed set temperature corresponding to the hot water set temperature (for example, the same temperature as the hot water set temperature). Done.

また、このような給湯が行われた後、前回の給湯停止時からの時間が予め定められている設定基準時間以上経過したとき(例えば8分30秒後)と、熱源装置の運転のオンオフを操作する操作部の操作によって運転オフにされた後に再び運転オンにされたとき(リモコン装置43を一度OFFして再度ONした場合)には、合流部10で形成される混合湯水の温度が低めになるように、例えばタンク湯水混合器12のから導入される湯の量が0%で水混合器14から導入される水の量が100%となるように(湯側を0%、水側を100%として)タンク湯水混合器12と水混合器14の開弁量を設定した状態で待機する。   Further, after such hot water supply is performed, when the time since the previous hot water supply stop has passed a predetermined reference time or more (for example, after 8 minutes 30 seconds), the heat source device is turned on / off. When the operation is turned off by the operation of the operation unit to be operated and then turned on again (when the remote control device 43 is turned off once and then turned on again), the temperature of the mixed hot water formed in the junction 10 is lowered. For example, the amount of hot water introduced from the tank hot water mixer 12 is 0% and the amount of water introduced from the water mixer 14 is 100% (the hot water side is 0%, the water side Is set to 100%) and waits with the valve opening amounts of the tank hot water mixer 12 and the water mixer 14 set.

そして、このように湯水導入通路15や給湯器16内が冷えている状態で行われる給湯のコールドスタート時に、合流部10で形成される混合湯水を給湯器16により追い加熱する初回追い加熱動作時には、本実施例では、図2(b)に示したような混合設定温度となるように制御が行われて形成される混合湯水が給湯器16に導入され、初回追い加熱動作が行われる。   When the hot water supply cold start is performed in such a state that the hot water introduction passage 15 and the hot water heater 16 are cooled in this way, at the time of the first follow-up heating operation in which the mixed hot water formed in the junction 10 is additionally heated by the hot water heater 16. In the present embodiment, the mixed hot water formed by the control so as to obtain the mixed set temperature as shown in FIG. 2B is introduced into the water heater 16 and the first follow-up heating operation is performed.

この初回追い加熱動作は給湯開始(図2(a)、参照)とほぼ同時に開始されるが(図2(c)、参照)、合流部10と給湯器16の湯水導入部との間には湯水導入通路15が介設されており、初回追い加熱動作の開始直後は、図2(e)に示されるように、湯水導入通路15内の冷たい水(例えば外気温と同じ10℃の水)が給湯器16に導入される(同図のC、参照)。なお、湯水導入通路15を、例えば内径16.2mmの16A架橋ポリエチレン管で長15mとし、通水の流量を例えば10リットル/分とすると、その水が給湯器16に導入されるのに例えば約18.5秒かかる。   This first follow-up heating operation is started almost simultaneously with the start of hot water supply (see FIG. 2A) (see FIG. 2C), but between the junction 10 and the hot water introduction part of the water heater 16 A hot water introduction passage 15 is provided, and immediately after the start of the first follow-up heating operation, as shown in FIG. 2 (e), cold water in the hot water introduction passage 15 (for example, water at 10 ° C., which is the same as the outside air temperature). Is introduced into the water heater 16 (see C in the figure). If the hot water introduction passage 15 is made of a 16A cross-linked polyethylene pipe having an inner diameter of 16.2 mm and a length of 15 m, and the flow rate of water is, for example, 10 liters / minute, the water is introduced into the water heater 16 for example about It takes 18.5 seconds.

また、合流部10で形成される混合湯水は、給湯が開始された図2(a)の点aの時点では、前記のように湯側を0%、水側を100%として待機した場合には給水温であるが、その混合湯水(給水温の水)は、前記と同様の条件の場合には、湯水導入通路15を通って約18.5秒後に給湯器16に到達する。   In addition, the mixed hot water formed in the junction 10 is in a state where the hot water side is set to 0% and the water side is set to 100% as described above at the time point a in FIG. Is the hot water temperature, but the mixed hot water (water at the hot water temperature) reaches the hot water heater 16 after about 18.5 seconds through the hot water introduction passage 15 under the same conditions as described above.

給湯器16側では、図2(d)に示されるように、燃焼制御手段47によって、初回追い加熱動作の開始時の燃焼熱を、湯水導入通路15内の冷たい水を加熱して給湯設定温度の湯を形成できるような値として制御される。つまり、給湯器16に導入される水の温度(図2(e)のC、参照)に給湯器16での燃焼熱量分の温度(図2(d)の時点t1までのB、参照)が加算される結果(温度がC+Bとなるために)、給湯器16からは安定した給湯設定温度の湯が出湯される。   On the hot water heater 16 side, as shown in FIG. 2 (d), the combustion control means 47 uses the combustion heat at the start of the first follow-up heating operation to heat the cold water in the hot water introduction passage 15 and set the hot water supply set temperature. It is controlled as a value that can form hot water. That is, the temperature of water introduced into the water heater 16 (see C in FIG. 2E) is equal to the temperature corresponding to the amount of combustion heat in the water heater 16 (see B until time t1 in FIG. 2D). As a result of the addition (because the temperature becomes C + B), hot water having a stable hot water supply set temperature is discharged from the water heater 16.

そして、合流部10で形成される混合湯水が給湯器16に至ると、給湯器16は混合湯水の温度に対応させて、図2(d)に示されるように、燃焼制御手段47が給湯バーナの燃焼量を小さくする方向に変化させる制御を行うことになる(時点t1以降のB、参照)。   Then, when the mixed hot water formed in the junction 10 reaches the hot water heater 16, the hot water heater 16 corresponds to the temperature of the mixed hot water, and the combustion control means 47 operates as shown in FIG. The control is performed to change the amount of combustion in the direction of decreasing the amount of combustion (see B after time t1).

なお、タンクユニット4の制御装置33と給湯器16の制御装置46とは通信を行っているので、初回追い加熱動作の開始時と給湯器16の燃焼量を変化させたタイミング(t1)とのタイムラグを検出し、このタイムラグの時間(0〜t1間での時間)と流量検出手段42により検出される単位時間あたりの流量とから、このタイムラグの間に流れる湯水の積算流量を求めて、貯湯槽2から給湯器16間の配管容量(配管距離)を測定することもできる。   Since the control device 33 of the tank unit 4 and the control device 46 of the water heater 16 communicate with each other, the timing of the initial follow-up heating operation and the timing (t1) when the combustion amount of the water heater 16 is changed. A time lag is detected, and from this time lag time (time between 0 and t1) and the flow rate per unit time detected by the flow rate detection means 42, an integrated flow rate of hot water flowing during this time lag is obtained, and hot water storage The pipe capacity (pipe distance) between the tank 2 and the water heater 16 can also be measured.

また、本実施例において、給湯器16には、導入される湯水の温度を検出するためのセンサを省略し、入水温度をリアルタイムで検出せずに給湯温度に基づいて演算によって求める方式の給湯器を適用しており、このような給湯器16においては、入水温度の算出は、その水が給湯熱交換器17を通って、給湯温度を検出するための出湯温度検出手段(出湯サーミスタ)に至ったときに行われるため、リアルタイムで入水温度を検出する場合に比べて、その分だけ(水が給湯熱交換器17を通るのに要する時間分)遅れて入水温度が算出により検出される。   Further, in the present embodiment, the hot water heater 16 does not include a sensor for detecting the temperature of the hot water to be introduced, and is a method of obtaining the water temperature by calculating based on the hot water temperature without detecting the incoming water temperature in real time. In such a water heater 16, the calculation of the incoming water temperature passes through the hot water supply heat exchanger 17 and reaches the hot water temperature detecting means (hot water thermistor) for detecting the hot water temperature. Therefore, compared with the case where the incoming water temperature is detected in real time, the incoming water temperature is detected by calculation with a delay by that amount (the time required for water to pass through the hot water supply heat exchanger 17).

例えば、給湯器16に設けられている給湯熱交換器17が潜熱熱交換器と顕熱熱交換器を備えており、例えば潜熱熱交換器水量が200ccで顕熱熱交換器水量が300ccの場合には、10リットル/分で流れる水が給湯器16に入水してから、その水の出湯温度を出湯サーミスタで確認するのに例えば3秒を要する。そのため、給湯器16の燃焼制御におけるフィードフォワード制御に反映される入水温度は常に例えば3秒前の入水温度であり、その間に温度変化があった場合には、フィードフォワード制御のみで制御を行うと出湯温度に影響が出る。   For example, when the hot water supply heat exchanger 17 provided in the water heater 16 includes a latent heat exchanger and a sensible heat exchanger, for example, the latent heat exchanger water amount is 200 cc and the sensible heat exchanger water amount is 300 cc. For example, it takes 3 seconds for the water flowing at 10 liters / minute to enter the hot water heater 16 and to check the temperature of the discharged water with the hot water thermistor. Therefore, the incoming water temperature reflected in the feedforward control in the combustion control of the water heater 16 is always the incoming water temperature, for example, 3 seconds before, and if there is a temperature change during that time, the control is performed only by the feedforward control. The hot spring temperature will be affected.

なお、図2(d)に示される給湯器16の燃焼量制御は、燃焼開始時にはフィードフォワード制御のみで給湯温度を急速に上昇させる制御が行われ、その後、給湯温度が設定温度に近づくとフィードバック制御も加えて、フィードフォワード制御の誤差を修正し、給湯器16に導入される水の温度が設定温度となるように行われる。前記誤差の修正としては、例えば、設定温度を過ぎるほど急加速で温度が上昇している場合には加速を和らげるようにガス量をマイナス補正したり、設定温度になかなか至らないと考えられる場合には、温度上昇を加速するようにガス量をプラス補正したりする制御である(例えばPID制御)。   Note that the combustion amount control of the water heater 16 shown in FIG. 2 (d) is performed so that the hot water temperature is rapidly increased only by feedforward control at the start of combustion, and then feedback when the hot water temperature approaches the set temperature. In addition to the control, the error of the feedforward control is corrected, and the temperature of the water introduced into the water heater 16 is set to the set temperature. As the correction of the error, for example, when the temperature rises suddenly beyond the set temperature, the gas amount is corrected to be negative so as to moderate the acceleration, or when it is considered that the set temperature is not easily reached. Is a control that positively corrects the gas amount so as to accelerate the temperature rise (for example, PID control).

また、前記のように、バーナ装置の燃焼開始時に、バーナ装置に供給される燃焼燃料供給量の立ち上げ開始時からその立ち上げ燃焼燃料供給量が安定するまでの期間(フィードバック制御による誤差の修正が十分に反映されるまでの期間)を、以下、過渡期、または、給湯開始の過渡期と称する。   In addition, as described above, at the start of combustion of the burner device, the period from the start of starting up the combustion fuel supply amount supplied to the burner device until the startup combustion fuel supply amount stabilizes (error correction by feedback control) Hereinafter) is referred to as a transition period or a transition period of hot water supply start.

なお、前記のような給水温度の学習は、給湯器16の燃焼開始と同時に行われるが、給水温度の学習が例えば0.1秒毎に行われても、この学習によって算出により検出される入水温度は、前記のように、水が給湯熱交換器17を通るのに要する時間分(前記例では3秒)のタイムラグが生じる。そのため、この学習により検出される入水温度に基づいて行われるフィードフォワード燃焼制御のみでは、例えば2.3deg/sec以上の上昇速度(温度勾配)で上昇していく混合湯水を給湯器16により追い加熱すると、入水温度の学習の遅れ(前記タイムラグ)によって、給湯設定温度より7℃(7[deg]=2.3[deg/sec]×3[秒])以上高い温度の湯が給湯器16から出湯(給湯)されるおそれが生じる。   Note that the learning of the feed water temperature as described above is performed simultaneously with the start of combustion of the water heater 16, but even if the learning of the feed water temperature is performed, for example, every 0.1 second, the incoming water detected by calculation by this learning. As described above, the temperature has a time lag corresponding to the time required for water to pass through the hot water supply heat exchanger 17 (3 seconds in the above example). Therefore, only by feed-forward combustion control performed based on the incoming water temperature detected by this learning, when the mixed hot water rising at a rising speed (temperature gradient) of, for example, 2.3 deg / sec or more is additionally heated by the water heater 16. Due to the learning delay of the incoming water temperature (said time lag), hot water having a temperature higher by 7 ° C. (7 [deg] = 2.3 [deg / sec] × 3 [seconds]) than the hot water supply set temperature is discharged from the water heater 16 (hot water supply). ) May occur.

したがって、給湯器16における前記過渡期に2.3deg/sec(2.3deg/秒)以上の上昇速度で上昇していく混合湯水を給湯器16に導入し、その混合湯水を給湯器16により追い加熱すると、給湯設定温度より7℃度以上高い温度の湯が給湯される可能性がある。   Therefore, when hot water mixed in the hot water heater 16 is introduced into the hot water heater 16 at a rising speed of 2.3 deg / sec (2.3 deg / sec) or more during the transition period, and the mixed hot water is further heated by the hot water heater 16. There is a possibility that hot water having a temperature of 7 ° C. or more higher than the hot water supply set temperature is supplied.

なお、前記給湯開始の過渡期を過ぎれば、余裕のできたフィードバック制御を行うことができるので、前記のような7℃程度の温度差まではフィードバック制御によって供給燃焼ガス量を補正して燃焼量を補正することにより給湯設定温度の湯を給湯することが可能となる。   Since the feedback control with sufficient margin can be performed after the transition period of the hot water supply start, the amount of combustion gas is corrected by correcting the amount of combustion gas supplied by feedback control up to the temperature difference of about 7 ° C. as described above. By correcting, it becomes possible to supply hot water at a hot water supply set temperature.

本実施例では、給湯流量を10リットル/分とした場合に、混合湯水が給湯器16のバーナ燃焼開始から約18.5秒後に給湯器16に到達する場合は、前記過渡期を過ぎてから混合湯水が給湯器16に導入されることになるため、前記第1の温度勾配を例えば7deg/sec以下に設定して混合湯水を形成することにより、給湯器16での追い加熱動作によって給湯設定温度の湯を安定して給湯することができる。つまり、図2(e)、図2(f)のAの領域に示されるように、時点t1から前記設定期間(積算流量対応期間Δt)が経過するまでの期間は第1の温度勾配で上昇する混合湯水の温度に給湯器16での燃焼熱量(図2(d)の時点t1以降のB)分が加算される結果、給湯器16の出口温度(給湯温度)は図2(f)のA+Bのようになり、給湯器16から安定した設定温度の湯が出湯(給湯)される。   In this embodiment, when the hot water supply flow rate is 10 liters / minute, when the mixed hot water reaches the hot water heater 16 after about 18.5 seconds from the start of burner combustion of the hot water heater 16, the mixed hot water passes after the transition period. Is introduced into the hot water heater 16, the mixed water is formed by setting the first temperature gradient to be, for example, 7 deg / sec or less, and the hot water supply temperature of the hot water heater 16 is increased by the additional heating operation in the hot water heater 16. Hot water can be supplied stably. That is, as shown in the area A of FIGS. 2 (e) and 2 (f), the period from the time t1 until the set period (integrated flow rate corresponding period Δt) elapses increases with the first temperature gradient. As a result of adding the amount of combustion heat in the water heater 16 (B after time t1 in FIG. 2D) to the temperature of the mixed hot water to be performed, the outlet temperature (hot water temperature) of the water heater 16 is as shown in FIG. The hot water having a stable set temperature is discharged from the water heater 16 (hot water supply).

また、本実施例において、混合設定温度設定手段36により設定される混合設定温度は、設定期間(積算流量対応期間Δt)が経過した後は、給湯器16がmin号数で燃焼したときの熱量で給湯設定温度の湯を形成できる入水温度(min号数対応入水温度)に上昇させる(図2(b)のΔt経過以降を参照)。一方、給湯器16は、急速に燃焼量を下げ、min号数対応入水温度の湯水が導入されると燃焼量をmin号数とするが、実際には急激に燃焼量を低下させることはできないので、min号数とする制御後、少し遅れてから燃焼量がmin号数となり、このタイムラグに起因して、図2(f)のEに示されるように、給湯温度のオーバーシュートが生じるが、その値は例えば3℃であり、許容範囲となる。   Further, in this embodiment, the mixing set temperature set by the mixing set temperature setting means 36 is the amount of heat when the water heater 16 burns at the min number after the set period (integrated flow rate corresponding period Δt) has elapsed. The temperature is raised to the incoming water temperature (the incoming water temperature corresponding to the min number) that can form hot water at the hot water supply set temperature (see after Δt has elapsed in FIG. 2B). On the other hand, the hot water heater 16 rapidly reduces the combustion amount, and when hot water having a water number corresponding to the min number is introduced, the combustion amount is set to the min number. However, in practice, the combustion amount cannot be rapidly decreased. Therefore, after the control to set the number of min, the combustion amount becomes the number of min after a slight delay, and due to this time lag, as shown in E of FIG. The value is, for example, 3 ° C., which is an allowable range.

なお、以下に、前記混合設定温度の設定値、燃焼制御方法等について、さらに具体的に例を述べる。例えば、前記のように、長さが15m、内径16.2mmの16Aの架橋ポリエチレン管の湯水導入通路15で合流部10と給湯器16とが接続されている場合には、前記積算流量は3090ccとなる。湯水導入通路15の配管内の水の温度が10℃で設定温度42℃の場合に給湯流量10リットル/分(つまり給湯流量が10リットル/分)で給湯を開始した場合、給湯器16では12.8号(12.8[号]=(42[℃]-10[℃])×10[リットル/分]÷25)で燃焼を開始する。   Hereinafter, specific examples of the set value of the mixing set temperature, the combustion control method, and the like will be described. For example, as described above, when the junction 10 and the water heater 16 are connected to the hot water introduction passage 15 of a 16A cross-linked polyethylene pipe having a length of 15 m and an inner diameter of 16.2 mm, the integrated flow rate is 3090 cc. It becomes. When hot water supply is started at a hot water supply flow rate of 10 liters / minute (that is, a hot water supply flow rate of 10 liters / minute) when the temperature of water in the pipe of the hot water introduction passage 15 is 10 ° C. and the set temperature is 42 ° C., No. (12.8 [No.] = (42 [℃] -10 [℃]) × 10 [L / min] ÷ 25)

そして、給湯開始時に湯水導入通路15内に滞留していた水が給湯器16に導入されて、この12.8号の燃焼量で加熱される。また、給湯開始時に合流部10にあった湯水は湯水導入通路15を通り、18.54秒後(18.54[sec]=3090[cc]×60[sec]÷10[リットル/分]÷1000)に給湯器16に到達する。   Then, the water staying in the hot water introduction passage 15 at the start of hot water supply is introduced into the hot water heater 16 and heated with the combustion amount of 12.8. Also, the hot water that was in the junction 10 at the start of hot water supply passes through the hot water introduction passage 15, and after 18.54 seconds (18.54 [sec] = 3090 [cc] x 60 [sec] ÷ 10 [litre / min] ÷ 1000) Reach vessel 16.

なお、前記の如く、給湯器16のmin号数は例えば3号であり、この燃焼により給湯流量が10リットル/分の時には7.5[deg]温度が上昇するので、min号数対応入水温度は34.5℃であり、設定期間である積算流量対応期間Δt経過後の温度がmin号数対応入水温度よりも例えば10℃低い24.5℃になるように、タンクユニット4側では合流部10で形成される混合湯水の温度を出湯開始時の10℃から徐々に上げていく。   As described above, the number of min of the water heater 16 is, for example, 3, and the temperature rises by 7.5 [deg] when the flow rate of hot water is 10 liters / minute due to this combustion. It is .5 ° C., and at the junction unit 10 on the tank unit 4 side, the temperature after the cumulative flow corresponding period Δt, which is the set period, is 24.5 ° C., for example, 10 ° C. lower than the water number corresponding to the min number. The temperature of the mixed hot water formed is gradually increased from 10 ° C. at the start of pouring.

つまり、その温度上昇開始(混合湯水の出湯開始)からの積算流量が3090ccとなる18.54秒後に混合湯水の温度が24.5℃になるように7deg/sec以内の値、例えば0.78deg/secの制御速度((42[℃]-10[deg])-10[℃] -7.5 [deg])÷(((16.2[mm]/2)×(16.2[mm]/2)×3.14×15[m]÷1000)×60[sec]÷10[リットル/分])に第1の設定温度勾配を設定して、その設定温度になるように湯と水の混合(ミキシング)を行う。   That is, a value within 7 deg / sec, for example, 0.78 deg / sec, so that the temperature of the mixed hot water becomes 24.5 ° C. after 18.54 seconds when the accumulated flow from the start of temperature rise (start of tapping of mixed hot water) reaches 3090 cc. Control speed ((42 [℃] -10 [deg])-10 [℃] -7.5 [deg]) ÷ (((16.2 [mm] / 2) × (16.2 [mm] / 2) × 3.14 × 15 [ m] ÷ 1000) × 60 [sec] ÷ 10 [litre / min]) Set the first set temperature gradient, and mix (mix) hot water and water so that the set temperature is reached.

そして、その後、一気にmin号数対応入水温度である34.5℃になるように第2の設定温度勾配を設定して、その設定温度になるようにミキシング制御を行う。例えば10 deg温度を上昇させるのに約1秒を要するので、第2の設定温度勾配は10deg/secとして、その制御速度で34.5℃にする。   Then, after that, the second set temperature gradient is set so that the incoming water temperature corresponding to the min number is 34.5 ° C., and mixing control is performed so that the set temperature is reached. For example, since it takes about 1 second to raise the temperature of 10 deg, the second set temperature gradient is set to 10 deg / sec and the control speed is set to 34.5 ° C.

なお、第1の温度勾配を7deg/sec以内の値のうち、例えば0.78deg/secに設定する理由の詳細は後述するが、例えば湯水導入通路15の長さが長くなって給湯器16と貯湯槽2が離れれば離れるほど外気温の差等の様々な条件が大きく異なる可能性があるため、外気条件により給湯器16の加熱や減熱速速度、すなわち、フィードバックで補正できる熱量が変わることを考慮して設定される。   The reason why the first temperature gradient is set to 0.78 deg / sec among the values within 7 deg / sec will be described in detail later. For example, the length of the hot water introduction passage 15 is increased and the hot water heater 16 and the hot water storage are stored. Since various conditions such as the difference in the outside air temperature may vary greatly as the tank 2 moves away, the heating and heat reduction speed of the water heater 16, that is, the amount of heat that can be corrected by feedback changes depending on the outside air condition. Set in consideration.

また、給湯器16では、給湯開始後、18.54秒たってから(t1、参照)、徐々に給水温度が上昇するものの、給水温度学習の結果が反映される3秒後の、給湯開始から21.54秒後(21.54[秒]=18.54[秒]+3[秒])でないとフィードフォワードガス量の制御に反映されない。しかし、実際の21.54秒後の出湯温度がフィードフォワードガス量の入水温度変化補正に比して異常な上昇であることを出湯サーミスタで感知して直ちにフィードバック制御でガス量を補正することで、略設定温度の出湯が給湯器16から行われる。   In the water heater 16, after 18.54 seconds from the start of hot water supply (see t1), the water supply temperature gradually rises, but after 3 seconds when the result of the water supply temperature learning is reflected, 21.54 seconds after the start of hot water supply. (21.54 [seconds] = 18.54 [seconds] + 3 [seconds]) is not reflected in the feedforward gas amount control. However, when the actual hot water temperature after 21.54 seconds is an abnormal rise compared to the correction of the feed forward gas amount, the hot water thermistor senses it and immediately corrects the gas amount by feedback control. Hot water at a set temperature is discharged from the water heater 16.

なお、本実施例においては、給湯開始から37.08秒後には、タンクユニット4側で混合湯水温の設定上昇勾配を第1の温度勾配から第2の設定温度勾配に切り替えたときの混合湯水が導入される(37.08 [sec]=(3090[cc]+K×3090[cc])×60[sec]÷10[リットル/分]÷1000、 Kは定数であり、ここでは1としている)。そのため、給湯開始から37.08秒後には、給湯器16に導入される混合湯水の温度が一気に上昇し、給湯器16側のフィードバック制御でガス量を補正しきれないほど給湯器16の入水温度(混合湯水温)が上昇してくる。この結果、例えばオーバーシュートが3deg発生するが、一般に出湯温度が±3℃までは許容できる範囲内とされていることから、3degのオーバーシュートは許容できるものとして、給湯器16の燃焼量を最小に抑えた、出湯熱量の貯湯槽2切り替えを優先させる。   In the present embodiment, after 37.08 seconds from the start of hot water supply, the mixed hot water when the set rising gradient of the mixed hot water temperature is switched from the first temperature gradient to the second set temperature gradient on the tank unit 4 side is introduced. (37.08 [sec] = (3090 [cc] + K × 3090 [cc]) × 60 [sec] ÷ 10 [liters / minute] ÷ 1000, where K is a constant and is 1 here). Therefore, 37.08 seconds after the start of hot water supply, the temperature of the mixed hot water introduced into the hot water heater 16 rises all at once, and the incoming water temperature (mixing) of the hot water heater 16 cannot be corrected by feedback control on the hot water heater 16 side. The hot water temperature will rise. As a result, for example, an overshoot of 3 deg occurs, but since the hot water temperature is generally within an allowable range up to ± 3 ° C., it is assumed that an overshoot of 3 deg is allowable, and the combustion amount of the water heater 16 is minimized. Priority is given to the hot water storage tank 2 switching of the amount of hot water that is suppressed.

この結果、貯湯槽2からの34.5℃の湯が給湯器16に供給され(図2(e)のA’、参照)、これに給湯器16での温度上昇7.5 deg(図2(d)のB’、参照)分が加算される結果、図2(f)に示されるように、給湯器16からは42℃(42[℃]=34.5[℃]+ 7.5[deg])の湯(A’+B’)が蛇口から出湯される。   As a result, 34.5 ° C. hot water from the hot water tank 2 is supplied to the water heater 16 (see A ′ in FIG. 2E), and the temperature rise in the water heater 16 is 7.5 deg (FIG. 2D). As shown in FIG. 2 (f), the hot water of 42 ° C. (42 [° C.] = 34.5 [° C.] + 7.5 [deg]) is added from the water heater 16, as shown in FIG. '+ B') is discharged from the faucet.

なお、以上の説明は、貯湯槽2と給湯器16とを別置として長さの長い湯水導入通路15によって接続したが、湯水導入通路15の長さは特に限定されるものでなく、適宜設定されるものであり、湯水導入通路15の長さが短く形成される場合には、配管内の水量が少なくて(配管距離が短くて)給湯開始の過渡期を過ぎる前に貯湯槽2からの湯水が給湯器16に至る場合がある。   In the above description, the hot water tank 2 and the hot water heater 16 are separately provided and connected by the long hot water introduction passage 15, but the length of the hot water introduction passage 15 is not particularly limited, and is appropriately set. In the case where the length of the hot water introduction passage 15 is formed short, the amount of water in the pipe is small (the pipe distance is short) and the hot water from the hot water tank 2 is passed before the transition period of hot water supply starts. Hot water may reach the water heater 16 in some cases.

このような場合には、合流部10で形成される混合湯水が前記過渡期を過ぎてから給湯器16に導入されるように、図3(b)に示されるように、給湯開始から予め定められる設定待機時間(Δtw)は給水通路8bからの水を給湯器16に送水するようにする(図3(b)のD、参照)。そして、混合設定温度設定手段36は、設定待機時間が経過した後さらに設定期間Δtが経過した時の混合湯水の温度がmin号数対応入水温度よりも低い温度になるように、設定待機時間経過後に混合湯水の設定温度が第1の設定温度勾配(例えば7deg/sec以内の値)で上昇するように設定する。   In such a case, as shown in FIG. 3 (b), a predetermined amount from the start of hot water supply is determined in advance so that the mixed hot water formed in the merging portion 10 is introduced into the water heater 16 after the transition period. In the set standby time (Δtw), the water from the water supply passage 8b is supplied to the water heater 16 (see D in FIG. 3B). Then, the mixed set temperature setting means 36 has passed the set standby time so that the temperature of the mixed hot water when the set period Δt has elapsed after the set standby time has elapsed is lower than the incoming water temperature corresponding to the min number. Later, the set temperature of the mixed hot water is set to rise at a first set temperature gradient (for example, a value within 7 deg / sec).

例えば16A架橋ポリエチレン管で、長さ2m(給湯器16の横幅が50cm、給湯器16を高さ1.5mの所に設置したとすると、ほぼ真横に近接設置した場合)で貯湯槽2と給湯器16結ばれている場合には、配管内水量は412ccとなる。   For example, a 16A cross-linked polyethylene pipe with a length of 2 m (when the horizontal width of the water heater 16 is 50 cm and when the water heater 16 is installed at a height of 1.5 m, the hot water tank 2 and the water heater are installed almost directly beside). If 16 are connected, the amount of water in the pipe is 412 cc.

この場合、配管内の水の温度が10℃で給湯設定温度が42℃の場合で、給湯流量10リットル/分で出湯を開始した場合、給湯器16では12.8号で燃焼を開始する。例えば給湯流量が10リットル/分の時には、給湯開始の過渡期として例えば4.5秒の時間が記憶されており、4.5秒間に750 ccが給湯器16に流入する。配管内水量は412ccなので、給湯器16には約2.5秒で到達し(図3(e)、(f)のC、参照)、タンクユニット4側で混合湯水の温度をすぐに上げてしまうと、合流部10で形成した混合湯水が、給湯器16の給湯開始の過渡期に給湯器16へ流入してしまい、過渡期と給湯器16に導入される混合湯水の温度上昇時期とがラップしてしまうことから、給湯温度が不安定になり、オーバーシュートが発生してしまうことになる。   In this case, when the temperature of the water in the pipe is 10 ° C. and the hot water supply set temperature is 42 ° C., and hot water discharge is started at a hot water supply flow rate of 10 liters / minute, the hot water heater 16 starts combustion at No. 12.8. For example, when the hot water supply flow rate is 10 liters / minute, a time period of, for example, 4.5 seconds is stored as a transition period of hot water supply start, and 750 cc flows into the water heater 16 in 4.5 seconds. Since the amount of water in the pipe is 412cc, it reaches the water heater 16 in about 2.5 seconds (see C in FIGS. 3 (e) and (f)), and immediately raises the temperature of the mixed hot water on the tank unit 4 side. As a result, the mixed hot water formed at the junction 10 flows into the hot water heater 16 in the transition period of the hot water supply start of the hot water heater 16, and the transition period and the temperature rise timing of the mixed hot water introduced into the hot water heater 16 are determined. Since it wraps, the hot water supply temperature becomes unstable and overshoot occurs.

そこで、混合設定温度設定手段36による混合設定温度の設定は、合流部10で形成される混合湯水の設定温度を給湯開始直後に上昇させるのではなく、前記設定待機時間(Δtw)としての2秒間は給水通路8bからの給水温度として338 cc(338 [cc]=750[cc]-412[cc])の市水(給水通路8bを通して供給される例えば10℃の水)を給湯器16側に送った後(図3(b)のD、参照)、設定待機時間経過後に混合設定温度を10℃から徐々に上げていくように設定する。   Therefore, the setting of the mixing set temperature by the mixing set temperature setting means 36 does not increase the set temperature of the mixed hot water formed in the merging portion 10 immediately after the start of hot water supply, but for 2 seconds as the set waiting time (Δtw). Is 338 cc (338 [cc] = 750 [cc] -412 [cc]) city water (eg, 10 ° C. water supplied through the water supply passage 8b) as the water supply temperature from the water supply passage 8b to the water heater 16 side. After sending (see D in FIG. 3B), the mixing set temperature is set to gradually increase from 10 ° C. after the set waiting time has elapsed.

また、この温度上昇開始からの積算流量が345ccとなる2.1秒後(出湯開始から4.1秒後)の混合設定温度が、前記と同様にmin号数対応入水温度よりも10℃低い24.5℃になるように、給湯器16のフィードバック制御でガス量を補正できる範囲の7deg/sec(2.1秒=((42[℃]-10[deg])-10[℃] -7.5 [deg])÷7[deg/sec])以下の第1の温度上昇勾配を設定する(図3(b)のAの領域、参照)。そして、その後、一気にmin号数対応入水温度である34.5℃になるように第2の温度勾配を10deg/secに設定する(図3(b)のA’の領域、参照)。   In addition, the mixed set temperature after 2.1 seconds (4.1 seconds after the start of the hot water) when the integrated flow rate from the start of the temperature rise becomes 345 cc is 24.5 ° C., which is 10 ° C. lower than the incoming water temperature corresponding to the min number. Thus, 7 deg / sec (2.1 seconds = ((42 [° C] -10 [deg])-10 [° C] -7.5 [deg]) ÷ 7 [of the range in which the gas amount can be corrected by feedback control of the water heater 16] deg / sec]) The following first temperature rise gradient is set (see the area A in FIG. 3B). Then, after that, the second temperature gradient is set to 10 deg / sec so that the incoming water temperature corresponding to the min number is 34.5 ° C. (see the area A ′ in FIG. 3B).

そして、このように設定された混合設定温度となるようにミキシング流量制御手段35が湯と水の流量制御を行い、34.5℃の混合湯水に給湯器16でのmin号数で形成される温度上昇分の7.5 deg(図3(d)のB’)が加算され、給湯温度はA’+B’となって、42℃の湯が蛇口から出湯される。   Then, the mixing flow rate control means 35 controls the flow rate of hot water and water so that the set mixing temperature is set in this way, and the temperature rise formed by the min number in the hot water heater 16 in 34.5 ° C. mixed hot water. 7.5 deg / min (B ′ in FIG. 3D) is added, the hot water supply temperature becomes A ′ + B ′, and 42 ° C. hot water is discharged from the faucet.

また、配管長さ4mの場合の例において、給湯流量10リットル/分ではなく、5リットル/分で給湯を開始した場合、給湯器16では6.4号で燃焼を開始する。例えば給湯流量が5リットル/分の時には、給湯開始の過渡期として例えば9秒の時間が記憶されており、9秒間に750 ccが給湯器16に流入する。配管内水量は824ccなので、貯湯槽2側がすぐに温度を上げても、給湯器16の給湯開始の過渡期にはかからない。   In the example of the pipe length of 4 m, when hot water supply is started at 5 liters / minute instead of the hot water supply flow rate of 10 liters / minute, the hot water heater 16 starts combustion at No. 6.4. For example, when the hot water supply flow rate is 5 liters / minute, a time period of, for example, 9 seconds is stored as a transition period of hot water supply start, and 750 cc flows into the water heater 16 in 9 seconds. Since the amount of water in the pipe is 824 cc, even if the temperature of the hot water tank 2 is raised immediately, it does not start during the transition period of the hot water supply start of the water heater 16.

そこで、この場合には、例えば合流部10で形成される混合湯水の設定温度上昇開始時からの積算流量が824ccとなる約9秒後に混合湯水の温度が17℃になるように、7deg/sec以内の、配管内水量を勘案した0.7deg/secを第1の設定温度勾配として設定して混合湯水を形成し、その後、一気に27℃になるように第2の設定温度勾配を設定して混合湯水を形成する。この結果、27℃の混合湯水に給湯器16でのmin燃焼での温度上昇15 deg分が加算され、42℃の湯が蛇口から出湯される。   Therefore, in this case, for example, 7 deg / sec so that the temperature of the mixed hot water reaches 17 ° C. after about 9 seconds when the integrated flow rate from the start of the set temperature rise of the mixed hot water formed at the junction 10 becomes 824 cc. Within 0.7 deg / sec taking into account the amount of water in the pipe, set as the first set temperature gradient to form mixed hot water, and then set the second set temperature gradient to 27 ° C at once and mix Form hot water. As a result, the temperature rise of 15 deg in the min combustion in the water heater 16 is added to the mixed hot water of 27 ° C., and hot water of 42 ° C. is discharged from the faucet.

なお、ここで、第1の設定温度勾配は、以下の式(1)により求めたものである。式(1)において、Kは定数であり、ここでは1としている。また、16.2[mm]は施工業者への指定管径である。   Here, the first set temperature gradient is obtained by the following equation (1). In Expression (1), K is a constant, and is set to 1 here. Moreover, 16.2 [mm] is the pipe diameter designated for the contractor.

((42[℃]−10[deg])−10[℃]−15 [deg])÷(((16.2[mm]/2)×(16.2[mm]/2)×3.14×K× 4 [m]÷1000)×60[sec]÷5 [リットル/分] )・・・(1) ((42 [° C] −10 [deg]) − 10 [° C] −15 [deg]) ÷ (((16.2 [mm] / 2) × (16.2 [mm] / 2) × 3.14 × K × 4 [ m] ÷ 1000) × 60 [sec] ÷ 5 [liter / min]) ... (1)

以上のように、前記給湯開始の過渡期と前記積算流量対応期間とを比較し、積算流量対応期間の方が短いときには、給湯開始から予め定められる設定待機時間は給水通路8bからの水を給湯器16に送水し、設定待機時間経過した後、さらに積算流量対応期間(設定期間)が経過した時の混合湯水の温度がmin号数対応入水温度よりも低い温度になるように、設定待機時間経過後に混合湯水の設定温度が第1の設定温度勾配で上昇するように設定することにより、給湯温度の安定化を図ることができる。   As described above, the transition period of the hot water supply start is compared with the integrated flow rate corresponding period, and when the integrated flow rate corresponding period is shorter, the set standby time determined in advance from the start of hot water supply hot water from the water supply passage 8b. After the set standby time has passed, the set standby time is set so that the temperature of the mixed hot water when the integrated flow rate corresponding period (set period) has passed is lower than the incoming water temperature corresponding to the min number. By setting so that the set temperature of the mixed hot water rises with the first set temperature gradient after the lapse of time, the hot water supply temperature can be stabilized.

ところで、前記のように、設定期間を積算流量対応期間(合流部10から給湯器16の湯水導入部までの湯水導入通路15内の湯水容量が流れる期間)とすると、図2(b)と図3(b)とを比較すると明らかなように、湯水導入通路15の長さ(配管距離)が長い場合には給湯開始からの混合設定温度上昇を緩やかにし、給湯器16に導入される湯水温度が緩やかに変化するように制御しているとも言える。このような混合設定温度の設定および制御には、以下に述べるような意義があり、それゆえ、本実施例を始めとする本発明は、以下に述べるような優れた効果を奏することができる。   By the way, as described above, when the set period is an integrated flow rate corresponding period (period in which hot water capacity in the hot water introduction passage 15 flows from the merging section 10 to the hot water introduction section of the water heater 16), FIG. As is clear from comparison with 3 (b), when the length (pipe distance) of the hot water introduction passage 15 is long, the temperature increase of the mixture from the start of hot water supply is moderated, and the temperature of the hot water introduced into the water heater 16 is increased. It can be said that is controlled so as to change slowly. Such setting and control of the mixed set temperature has the following significance, and therefore the present invention including this embodiment can provide the following excellent effects.

例えば、本実施例のように、タンクユニット4と給湯器16とを個別に配置して配管によって接続するタイプの熱源装置においては、例えば既設の給湯器16と貯湯槽2を備えたタンクユニット4を組み合わせることもできるが、既設の給湯器16が家屋の北側の浴室近傍の壁に取り付けられており、北側の隣地境界が迫っている場合には、大型の貯湯槽2を既設の給湯器16の近傍に取付けできず、貯湯槽2は南側の庭に設置する等の対応が必要となる。その場合、給湯器16と貯湯槽2との間の長い距離を配管(湯水導入通路15の配管)で接続しなければならない場合がある。   For example, in a heat source device of a type in which the tank unit 4 and the water heater 16 are individually arranged and connected by piping as in the present embodiment, for example, the tank unit 4 provided with the existing water heater 16 and the hot water tank 2. However, when the existing water heater 16 is attached to the wall near the bathroom on the north side of the house and the border on the north side is approaching, the large hot water tank 2 is connected to the existing water heater 16. It is necessary to take measures such as installing the hot water tank 2 in the garden on the south side. In that case, it may be necessary to connect a long distance between the water heater 16 and the hot water tank 2 by piping (pipe of the hot water introduction passage 15).

一方、マンションのような場合には、タンクユニット4の各種配管が事前に施工されている必要性から、タンクユニット4と給湯器16とがマンション新築時に同時に設置される場合がある。タンクユニット4は設置面積を大きくとるため、通常北側の通路側にあるパイプシャフト近辺に設置すると居室面積が少なくなるので、例えば、通常、南側のベランダに設置される。他方、給湯器16は、従来の潜熱回収用熱交換器を搭載しない給湯器は、ガス配管や水道管と直結しやすいパイプシャフトに設置しているケースが多かったが、ベランダに設置する場合もあった。   On the other hand, in the case of an apartment, the tank unit 4 and the water heater 16 may be installed at the same time when the apartment is newly constructed because various pipes of the tank unit 4 need to be constructed in advance. Since the tank unit 4 takes a large installation area, if it is installed in the vicinity of the pipe shaft on the side of the north passage, the room area is usually reduced. For example, the tank unit 4 is usually installed on the south veranda. On the other hand, as for the water heater 16, the conventional water heater without a latent heat recovery heat exchanger is often installed on a pipe shaft that is easily connected directly to a gas pipe or a water pipe. there were.

なお、従来の潜熱回収用熱交換器を搭載しない給湯器16の場合には排気温度が高く、従って排気口から出る排気ガスは比重差により排気は上昇する傾向がある。その結果、ベランダの壁側に設置された給湯器16から出た排気ガスは、ベランダの日の当たる洗濯物近辺に至る間に上昇し、物干し竿の上部を通過することが多く、また、排気ガス自体が乾いている(湿度が低い)ので、今まで特に問題が発生していなかった。   In the case of the water heater 16 not equipped with the conventional heat exchanger for latent heat recovery, the exhaust temperature is high, and therefore the exhaust gas coming out from the exhaust port tends to rise due to the difference in specific gravity. As a result, the exhaust gas emitted from the water heater 16 installed on the veranda wall side rises in the vicinity of the laundry on the veranda and passes through the upper part of the laundry basket. Since the gas itself is dry (low humidity), there has been no particular problem until now.

しかしながら、潜熱回収用熱交換器を搭載する給湯器16が普及するにつれ、給湯器16をベランダに設置した場合の不具合点が指摘されるようになった。すなわち、潜熱回収用熱交換器を搭載する給湯器16においては、排気温度が低く、湿度100%の排気ガスは排気口から出ると直進しやすい傾向があり、この結果、ベランダの壁側に設置された給湯器16から出た湿度100%の排気ガスが、ベランダの日の当たる洗濯物を直撃して洗濯物が湿気ってしまう。   However, as the water heater 16 equipped with a heat exchanger for recovering latent heat becomes widespread, problems have arisen when the water heater 16 is installed on the veranda. That is, in the water heater 16 equipped with the latent heat recovery heat exchanger 16, the exhaust gas having a low exhaust temperature and a humidity of 100% tends to go straight when it comes out of the exhaust port. As a result, it is installed on the veranda wall side. The exhaust gas having a humidity of 100% from the water heater 16 directly hits the laundry on the veranda, and the laundry becomes damp.

そこで、タンクユニット4と潜熱回収用熱交換器を搭載する給湯器16とのマンション新築時に同時に設置される場合の組み合わせとしては、例えばタンクユニット4は通常南側のベランダに設置され、例えば潜熱回収用熱交換器を搭載する給湯器16は通常北側の通路側にあるパイプシャフト近辺に設置されることがある。このような場合も、給湯器16と貯湯槽2との間の長い距離を配管(湯水導入通路15の配管)で接続しなければならない場合がある。   Therefore, as a combination in the case where the tank unit 4 and the hot water heater 16 equipped with the latent heat recovery heat exchanger are installed at the same time when the apartment is newly constructed, for example, the tank unit 4 is usually installed on the south veranda, for example, for latent heat recovery The water heater 16 on which the heat exchanger is mounted may be installed in the vicinity of the pipe shaft that is usually on the north passage side. Even in such a case, it may be necessary to connect a long distance between the water heater 16 and the hot water tank 2 with a pipe (pipe of the hot water introduction passage 15).

給湯器16の加熱速度は給湯器16が配設されている場所の外気条件により変わるものであるが、例えば南側の庭に設置された貯湯槽2を備えたタンクユニット4側で、例えば北側の浴室近傍の壁に取り付けられた給湯器16の給気温度等の給気条件を検出することはできないため、たとえ、市販等されている様々な給湯器16の中から利用者が使用している給湯器16がどの給湯器なのかを把握して、その給湯器16の固有の加熱速度をタンクユニット4側の制御装置33に入力しても、外気条件による給湯器16の加熱速度の変化についてタンクユニット4側で判断することはできない。   The heating speed of the water heater 16 varies depending on the outside air conditions where the water heater 16 is disposed. For example, the tank unit 4 provided with the hot water tank 2 installed in the south garden, Since it is not possible to detect the air supply conditions such as the air supply temperature of the water heater 16 attached to the wall in the vicinity of the bathroom, the user uses the water heater 16 from various commercially available water heaters 16. Even if the hot water heater 16 is grasped and the specific heating rate of the hot water heater 16 is input to the controller 33 on the tank unit 4 side, the change in the heating rate of the hot water heater 16 due to the outside air condition It cannot be judged on the tank unit 4 side.

つまり、タンクユニット4側の制御装置33において、販売されている複数の種類の給湯器16の中から指定された給湯器16の想定される加熱速度を求める際には、例えば貯湯槽2の配設領域周囲の外気温を参考として求めるが、実際の加熱速度は給湯器16の周囲の外気温で左右され、貯湯槽2の周囲の外気温と給湯器16の周囲の外気温の差は、給湯器16と貯湯槽2が離れれば離れるほど大きくなる可能性があるため、正確な値を求めることはできない。すなわち、外気条件により給湯器16の加熱や減熱速速度、すなわち、フィードバックで補正できる熱量も変わる。   That is, when the control unit 33 on the tank unit 4 side obtains the assumed heating rate of the specified hot water heater 16 from among a plurality of types of hot water heaters 16 sold, for example, the arrangement of the hot water tank 2 is arranged. The actual heating speed depends on the outside air temperature around the water heater 16, and the difference between the outside air temperature around the hot water tank 2 and the outside air temperature around the water heater 16 is Since the hot water heater 16 and the hot water tank 2 may be separated as they are separated from each other, an accurate value cannot be obtained. That is, the heating of the water heater 16 and the rate of heat reduction, that is, the amount of heat that can be corrected by feedback, vary depending on the outside air conditions.

なお、外気条件による給湯器16の加熱速度の変化の例として、以下のようなことがある。例えば、給湯器16として、潜熱を回収する熱交換器を搭載した、潜熱回収式給湯暖房機を使用した場合、夏場の給気が湿度が高くて35℃の場合であっても、冬場の給気が湿度が低くて5℃の場合であっても、給水温度が同じならば、排気温度がほぼ同じになるがごとく、熱効率は(例えば給気が湿度80%35℃の場合と湿度50%5℃の場合では効率が3%近く違う等)給気する外気条件に大きく左右される。   Note that examples of changes in the heating rate of the water heater 16 due to outside air conditions include the following. For example, when a latent heat recovery hot water heater equipped with a heat exchanger that recovers latent heat is used as the hot water heater 16, even if the summer air supply is high and humidity is 35 ° C, Even when the humidity is 5 ° C with low humidity, if the water supply temperature is the same, the exhaust temperature will be almost the same, and the thermal efficiency (for example, when the supply air is 80% humidity and 35 ° C, the humidity is 50%. In the case of 5 ℃, the efficiency is different by nearly 3%.

なお、潜熱回収熱交換器を搭載した場合には、顕熱熱交から出た排気ガスの熱を潜熱回収熱交換器で回収するために吸熱最終段が潜熱回収熱交換器であるのに対し(排気温度や熱効率は給水温度に大きく左右されるのに対し)、顕熱熱交換器のみの場合には、吸熱最終段が出湯部であるために、排気温度や熱効率は出湯温度に大きく左右される。   When a latent heat recovery heat exchanger is installed, the final heat absorption stage is a latent heat recovery heat exchanger in order to recover the exhaust gas heat from the sensible heat exchange with the latent heat recovery heat exchanger. (Exhaust temperature and thermal efficiency greatly depend on the feed water temperature) In the case of only the sensible heat exchanger, since the final endothermic stage is the tapping part, the exhaust temperature and thermal efficiency greatly depend on the tapping temperature. Is done.

また、タンクユニット4の合流部10と給湯器16との間の距離が離れれば離れるほど(給湯器16に西日が当たる確立が高くなればなるほど)、給湯器16の想定されるフィードバックで補正できるアウトプット熱量(フィードバックで補正できるアウトプット熱量=フィードバックで補正できるインプット熱量×効率、インプット熱量=ガス量に比例)と実際の補正できるアウトプット熱量とに差異が生じる。例えば西日が当たることによって効率が上がり、フィードバック制御でガス量を補正しても思ったように温度が下がらないといった場合がある。   Further, the longer the distance between the merging portion 10 of the tank unit 4 and the water heater 16 is, the more the distance is increased (the higher the probability that the water heater 16 is exposed to the sun), the correction is made with the assumed feedback of the water heater 16. There is a difference between the output heat amount that can be corrected (output heat amount that can be corrected by feedback = input heat amount that can be corrected by feedback × efficiency, input heat amount = proportional to gas amount) and the actual output heat amount that can be corrected. For example, when the sun hits, the efficiency increases, and the temperature does not decrease as expected even if the gas amount is corrected by feedback control.

本願発明者は、このような外気条件による給湯器16の加熱速度への影響により、給湯器16と貯湯槽2との間の距離が離れれば離れるほど、給湯器16の想定される加熱速度と実際の加熱速度とに差異が生じる点にも着目し、合流部10と給湯器16との間の配管距離に相当する流量(積算流量)が貯湯槽2から流れ出る間(前記積算流量対応期間)に渡って、混合設定温度を徐々に上げるようにして(配管が長ければ長いほど給湯器16の効率が高くなっている場合が考えられるので、配管距離に応じてミキシング上昇速度を緩やかにするようにして)、給湯器16の加減熱速度誤差(効率変動)に対応している。   The inventor of the present application considers the heating rate assumed for the water heater 16 as the distance between the water heater 16 and the hot water tank 2 increases as the distance between the water heater 16 and the hot water tank 2 increases due to the influence of the outside air condition on the heating rate of the water heater 16. Also paying attention to the difference in the actual heating rate, while the flow rate (integrated flow rate) corresponding to the piping distance between the junction 10 and the water heater 16 flows out of the hot water tank 2 (the integrated flow rate corresponding period). Over time, the mixing set temperature is gradually raised (the longer the pipe, the higher the efficiency of the water heater 16 may be, so the mixing increase speed should be made gentle according to the pipe distance. This corresponds to an error in heating / heating rate (efficiency fluctuation) of the water heater 16.

つまり、給湯器16と合流部10との距離が離れれば離れるほど(湯水導入通路15の長さが長ければ長いほど)給湯器16が寒場所に配設されている可能性や暖かい場所に配設されている可能性があり、寒い場所に配設されている場合には、フィードバック制御によってガス量を補正すると、思った以上に温度が下がるものの、下げ具合をコントロールすることで余裕を持って下げられるのに対し(アンダーシュートはコントロールできるのに対し)、暖かい場所に配設されている場合には、フィードバック制御によりガス量を補正すると思った以上に温度が下がらず、そのような場合には給水温の上げ速度をゆるめなければオーバーシュートが発生してしまう(給湯器16のフィードバックで補正できるのはガス量であって、効率は補正できない)。   That is, the longer the distance between the water heater 16 and the junction 10 is, the longer the hot water introduction passage 15 is, the more likely it is that the water heater 16 is disposed in a cold place or a warm place. If it is installed in a cold place, adjusting the gas amount by feedback control will lower the temperature more than expected, but there is a margin by controlling the lowering degree. If it is placed in a warm place (while undershoot can be controlled), the temperature will not drop more than expected to correct the gas amount by feedback control. Will cause overshoot unless the speed of raising the water supply temperature is slowed down (the amount of gas that can be corrected by the feedback of the water heater 16 is the efficiency, and the efficiency is corrected) Can not).

そこで、本実施例では、湯水導入通路15の長さ(配管距離)に応じて変化する積算流量対応期間が長くなるほど、混合設定温度の上昇勾配(ミキシング上昇速度)を緩やかにするようにして、合流部10と給湯器16との間の距離に応じた効率誤差に対応(貯湯槽2側で効率を補正)できるようにしている。   Therefore, in this embodiment, as the integrated flow rate corresponding period that changes according to the length (pipe distance) of the hot water introduction passage 15 becomes longer, the rising gradient (mixing increase speed) of the mixing set temperature is made gentler. An efficiency error corresponding to the distance between the junction 10 and the water heater 16 can be handled (efficiency is corrected on the hot water tank 2 side).

ところで、前記式(1)に示した定数Kは、日向と日陰の温度の差によっても異なる値であり、例えば沖縄のように寒暖の差があまり無い温暖な気候のような条件のような場所に設置する場合には、K=0.2とし、関西はK=0.4、関東はK=0.5、北海道はK=1のように地域により定数を設定してもよい。また、例えば初期値をK=1とした上で、1年間に渡り外気温(寒暖の差)を計測して、もっとも適切な定数に変えるという学習機能を持たせてもよい。   By the way, the constant K shown in the above formula (1) is a different value depending on the temperature difference between the sun and the shade. For example, a place like a warm climate where there is not much difference in temperature like Okinawa. For example, K = 0.2, Kansai K = 0.4, Kanto K = 0.5, Hokkaido K = 1, and so on. Further, for example, after setting the initial value to K = 1, a learning function of measuring the outside air temperature (difference in temperature) over one year and changing it to the most appropriate constant may be provided.

なお、ここで、湯水導入通路15を、例えば長さが50mの16A架橋ポリエチレン管により形成した場合を考えてみる。この長さ50mとは、通常の設置では、湯水導入通路15の長さをこれ以上長くすることは想定されない限界長さであり、この場合、前記積算流量(配管内水量)は約10リットル(限界配管内水量)となる。また、図6に示したように、開発中の熱源装置には湯水循環通路40を設けており、外気温が低い場合には凍結予防運転を行うことにより、湯水導入通路15内の水も加熱循環されて、その温度は約7℃以下には下がらないので、7℃が最も低い水温(限界水温)となる。   Here, consider a case where the hot water introduction passage 15 is formed of, for example, a 16A cross-linked polyethylene pipe having a length of 50 m. The length of 50 m is a limit length in which the length of the hot water introduction passage 15 is not expected to be longer than that in normal installation. In this case, the integrated flow rate (water amount in the pipe) is about 10 liters ( Limit pipe water volume). Further, as shown in FIG. 6, the heat source device under development is provided with a hot water circulation passage 40, and when the outside air temperature is low, water in the hot water introduction passage 15 is also heated by performing a freeze prevention operation. Since it is circulated and its temperature does not drop below about 7 ℃, 7 ℃ is the lowest water temperature (limit water temperature).

また、給湯利用において、その温度を最も敏感に感じるのは、シャワーとして用いる設定温度42℃(最敏感温度)と考えられる。給水栓口径13mmで接続されるサーモ水栓のシャワーヘッドから出る流量範囲は、最大流量(限界最大流量)としての17リットル/分(出典:名古屋市上下水道局 給水工事施行基準 第2章 表6−3、参照)から、給湯器16の最低作動流量としての最小流量(限界最小流量)の例えば3リットル/分の範囲(限界時流量範囲)までと考えられる。また、給湯器16の能力範囲は24号(24 [号]=(42[℃]-7[℃])×17[リットル/分]÷25)からmin号数としての例えば3号までの範囲を想定(限界時給湯器16能力範囲)する。   Further, when using hot water, it is considered that the most sensitive temperature is a set temperature of 42 ° C. (most sensitive temperature) used as a shower. The flow rate from the shower head of a thermo faucet connected with a faucet diameter of 13 mm is 17 liters / min as the maximum flow rate (limit maximum flow rate) (Source: Nagoya City Waterworks and Sewerage Bureau Water Supply Construction Enforcement Standards Chapter 2 Table 6 3), and the minimum flow rate (limit minimum flow rate) as the minimum operation flow rate of the water heater 16 is considered to be, for example, a range of 3 liters / minute (limit flow rate range). In addition, the capacity range of the water heater 16 ranges from No. 24 (24 [No.] = (42 [° C] -7 [° C]) x 17 [L / min] ÷ 25) to the No. 3, for example, as the number of min. Is assumed (limit water heater 16 capacity range).

上述のような限界の条件を想定した場合には、タンクユニット4側では給湯開始時に、混合設定温度を7℃(限界水温)から徐々に上昇させるように設定して、混合湯水の温度を徐々に上げるが、この時の制御速度(温度勾配)は限界最大流量の時が最も速く、その制御速度Xは、次式(2)により表すことができる。   Assuming the above limit conditions, at the tank unit 4 side, at the start of hot water supply, the mixing set temperature is set to be gradually increased from 7 ° C. (limit water temperature), and the temperature of the mixed hot water is gradually increased. However, the control speed (temperature gradient) at this time is the fastest at the limit maximum flow rate, and the control speed X can be expressed by the following equation (2).

X[deg/sec]=最敏感温度[℃]− 限界水温[℃])−10[deg]−(min号数[号] ×25÷限界最大流量[リットル/分]) [deg])÷(((16.2[mm]/2)×(16.2[mm]/2)×3.14×限界長さ[m]÷1000)×60[sec]÷限界最大流量[リットル/分]・・・(2) X [deg / sec] = most sensitive temperature [° C]-critical water temperature [° C]) -10 [deg]-(min number [No.] x 25 ÷ limit maximum flow rate [L / min]) [deg]) ÷ (((16.2 [mm] / 2) × (16.2 [mm] / 2) × 3.14 × limit length [m] ÷ 1000) × 60 [sec] ÷ limit maximum flow rate [liter / min] ... (2 )

一方、最も遅い制御速度は限界最小流量の時で、その制御速度Yは、次式(3)により表すことができる。   On the other hand, the slowest control speed is the limit minimum flow rate, and the control speed Y can be expressed by the following equation (3).

Y[deg/sec]=最敏感温度[℃]− 限界水温[℃])−10[deg] −(min号数[号] ×25÷限界最小流量[リットル/分]) [deg])÷(((16.2[mm]/2)×(16.2[mm]/2)×3.14×限界長さ[m]÷1000)×60[sec]÷限界最小流量[リットル/分]・・・(3) Y [deg / sec] = most sensitive temperature [° C]-critical water temperature [° C]) -10 [deg]-(min number [No.] x 25 ÷ limit minimum flow rate [L / min]) [deg]) ÷ (((16.2 [mm] / 2) x (16.2 [mm] / 2) x 3.14 x limit length [m] ÷ 1000) x 60 [sec] ÷ limit minimum flow rate [liter / min] (3 )

これらの式(2)、(3)のように、制御速度は流量の関数として表される。すなわち、配管長さが例えば2m〜50mのごとく変化しても、例えば配管長さとして限界長さを用いれば、流量の関数として求められる制御速度は最小値となるので、タンクユニット4側で給湯流量さえ知ることができれば、その給湯流量に対応させて混合設定温度を設定することにより、湯水導入通路15の長さ(配管長さ)が判らなくても給湯温度のオーバーシュートを防止できる。   As in these equations (2) and (3), the control speed is expressed as a function of the flow rate. That is, even if the pipe length changes, for example, from 2 m to 50 m, for example, if the limit length is used as the pipe length, the control speed required as a function of the flow rate becomes the minimum value. As long as the flow rate can be known, overheating of the hot water supply temperature can be prevented by setting the mixing set temperature corresponding to the hot water supply flow rate without knowing the length (pipe length) of the hot water introduction passage 15.

ところで、給水温度学習の結果が反映されるまで、フィードフォワードガス量の入水温度変化補正に比して異常な上昇であることを出湯サーミスタで感知してフィードバック制御でガス量を補正することで略設定温度の出湯が給湯器16から行われるとしていたが、このようなフィードバック制御に頼った出湯温度安定ではなく、配管長さとして限界長さを用いた最小値としての制御速度を用いると、入水温度変化を反映したフィードフォワードガス量のからも出湯温度安定が図られ、2重の安全対策とすることができる。   By the way, until the result of the feed water temperature learning is reflected, it can be simplified by detecting an abnormal rise with the hot water thermistor compared with the correction of the change in the feed water temperature of the feed forward gas amount and correcting the gas amount by feedback control. Although the hot water supply at the set temperature is performed from the hot water heater 16, the hot water temperature is not stable depending on such feedback control, and when the control speed as the minimum value using the limit length is used as the pipe length, The amount of the feed water is stabilized from the amount of feedforward gas reflecting the temperature change, and double safety measures can be taken.

つまり、例えば17リットル/分の時の給水温度学習の結果が反映されるまでの時間は1.765秒なので、限界長さとして50m、流量として17リットル/分を用いた時の制御速度は0.566 deg/secとなり、この速度を第1の設定温度勾配として設定して混合湯水を形成すれば、たとえフィードバック制御でガス量を補正することなくても、オーバーシュートは1.029 degしか生じない。この上昇幅は、一般に言われる出湯温度が±3℃までの許容範囲内となるので、2重安全対策とすることができる。   That is, for example, the time until the result of the water supply temperature learning at 17 liters / minute is reflected is 1.765 seconds, so the control speed when using a limit length of 50 m and a flow rate of 17 liters / minute is 0.566 deg / min. If this speed is set as the first set temperature gradient to form mixed hot and cold water, even if the gas amount is not corrected by feedback control, overshoot only occurs at 1.029 deg. This rise width can be taken as a double safety measure because the generally mentioned tapping temperature is within an allowable range up to ± 3 ° C.

以上のように、限界長さと流量から求められる制御速度を第1の温度勾配とすると、この値は制御速度の中で最も最小値であり、この温度勾配で温度を上げながら限界配管内水量(10リットル)に相当する流量が流れ出ると、min号数対応入水温度から10degを除した温度である27.6℃まで上昇する。   As described above, assuming that the control speed obtained from the limit length and flow rate is the first temperature gradient, this value is the smallest value among the control speeds, and the amount of water in the limit pipe ( When the flow rate corresponding to 10 liters) flows out, it rises to 27.6 ° C., which is a temperature obtained by subtracting 10 deg from the incoming water temperature corresponding to the min number.

なお、min号数対応入水温度は、前記の如く給湯器16の最小燃焼号数(min号数)で設定温度の湯を作り出すために必要な温度であるから、給湯設定温度から給湯器16のmin号数である例えば3号で燃焼したときの温度上昇分の温度を引いた値となる。給湯器16を3号で燃焼したときの温度上昇分は、温度上昇[deg]=3[号]×25÷流量[リットル/分]であるから、給湯流量が17リットル/分の場合には4.4 [deg]となり、よって、前記限界配管内水量(10リットル)に相当する流量が流れ出たときの温度は、その温度上昇分と、一気に混合湯水の温度を上げてもオーバーシュートが3[deg]以内に収まる温度である10degを給湯設定温度から差し引いた温度となり、27.6[℃]=42[℃] -4.4 [deg]−10[deg]の式から、前記の如く27.6℃となる。   In addition, since the water temperature corresponding to the min number is a temperature necessary to produce hot water having a set temperature with the minimum combustion number (min number) of the water heater 16 as described above, the water temperature of the water heater 16 is determined from the hot water set temperature. For example, it is a value obtained by subtracting the temperature rise when burning with No. 3, which is the min number. The temperature rise when the water heater 16 is burned with No. 3 is temperature rise [deg] = 3 [No.] × 25 ÷ flow rate [L / min], so when the hot water supply flow rate is 17 L / min. 4.4 [deg]. Therefore, the temperature when the flow rate corresponding to the amount of water in the limit pipe (10 liters) flows out, the temperature rises, and the overshoot is 3 [deg] even if the temperature of the mixed hot water is increased at once. ], Which is a temperature within 10 °, is subtracted from the hot water supply set temperature, and is 27.6 ° C. as described above from the formula 27.6 [° C.] = 42 [° C.] − 4.4 [deg] −10 [deg].

そして、その後、混合湯水の温度が一気にmin号数対応入水温度である37.6℃(37.6[℃]=42[℃] -4.4 [deg])になるように第2の設定温度勾配を設定し、その温度勾配で混合湯水の温度が上昇するようにミキシング制御を行う。この結果、貯湯槽2からの37.6℃の湯に給湯器16での温度上昇4.4 deg分が加算され、42℃の湯が蛇口から出湯される。この結果、貯湯槽2からの37.6℃の湯に給湯器16での温度上昇4.4 deg分が加算され、42℃の湯が蛇口から出湯される。   After that, the second set temperature gradient is set so that the temperature of the mixed hot water becomes 37.6 ° C. (37.6 [° C.] = 42 [° C.] − 4.4 [deg]) corresponding to the water number corresponding to the number of min. Mixing control is performed so that the temperature of the mixed hot water rises with the temperature gradient. As a result, the temperature rise of 4.4 deg. At the water heater 16 is added to the 37.6 ° C. hot water from the hot water tank 2, and the 42 ° C. hot water is discharged from the faucet. As a result, the temperature rise of 4.4 deg. At the water heater 16 is added to the 37.6 ° C. hot water from the hot water tank 2, and the 42 ° C. hot water is discharged from the faucet.

なお、このような限界長さを用いて第1の温度勾配を決定するようにすると、配管内水量を求めるために湯水導入通路15の配管距離を施工業者に入力を依頼することや、給湯器16の燃焼開始から燃焼量切り替えまでのタイムラグ等の計測により、湯水導入通路15の配管容量(配管距離)を測定する複雑なシーケンスを省略することができる。つまり、実際の湯水導入通路15の配管流量の代わりに限界配管内水量を適用し、その値と給湯流量とから、限界配管内水量の水が流れる期間を設定期間として設定することもできる(前記制御速度も前記温度上昇も流量の関数として求められるので、流量が判れば制御が可能となる)。   In addition, when the first temperature gradient is determined using such a limit length, in order to obtain the amount of water in the pipe, the pipe distance of the hot water introduction passage 15 is requested to be input to a contractor, or the water heater A complicated sequence for measuring the pipe capacity (pipe distance) of the hot water introduction passage 15 can be omitted by measuring a time lag from the start of combustion to switching of the combustion amount. That is, it is also possible to apply the limit pipe water amount instead of the actual pipe water flow rate of the hot water introduction passage 15 and set the period during which the limit pipe water amount flows as the set period from the value and the hot water supply flow rate (see above). Since both the control speed and the temperature rise are obtained as a function of the flow rate, the control can be performed if the flow rate is known).

すなわち、合流部10と給湯器16間の湯水導入通路15内の配管容量(配管距離)が極端に長い場合を想定して、第1の温度勾配の最小値(最小傾き)を求め、施工業者が配管距離を入力していない場合等は配管容量(配管距離)に関係なく最小傾きとしてもよい(最小傾きとすれば施工業者への入力依頼を無くすことができる)。   That is, assuming that the pipe capacity (pipe distance) in the hot water introduction passage 15 between the junction 10 and the water heater 16 is extremely long, the minimum value (minimum slope) of the first temperature gradient is obtained, and the contractor If the pipe distance is not input, the minimum inclination may be used regardless of the pipe capacity (pipe distance) (the minimum inclination can eliminate the input request to the contractor).

なお、表1には、前記各実施例をはじめとする制御例と、その制御に伴う特性例が示されており、表1において、給湯流量の単位はリットル/分、min号数で上昇する温度とは、給湯器16をmin号数で燃焼させたときに給湯流量の水の温度を上昇させることができる温度であり、その単位は℃である。また、オーバーシュートは、図2(f)のE、図3(f)のEに示されるように、給湯器16に導入された混合湯水の温度上昇勾配が第1の設定温度勾配から第2の設定温度勾配に切り替わるときに発生するオーバーシュートであり、その単位は℃であり、給水温度学習の遅れの単位と給湯開始の過渡期の単位は秒である。   Table 1 shows control examples including the above-described embodiments and characteristic examples associated with the control. In Table 1, the unit of the hot water supply flow rate is increased by liters / minute and min number. The temperature is a temperature at which the temperature of the hot water supply flow rate can be raised when the hot water heater 16 is burned at the min number, and its unit is ° C. Further, as shown in E of FIG. 2 (f) and E of FIG. 3 (f), the overshoot is caused by the temperature rising gradient of the mixed hot water introduced into the hot water heater 16 from the first set temperature gradient to the second. This is an overshoot that occurs when the temperature is switched to the set temperature gradient, and its unit is ° C., and the unit of delay in learning of the feed water temperature and the unit of transition period of hot water supply are in seconds.

Figure 0006055356
Figure 0006055356

この表1に示されるように、給湯流量が3リットル/分の場合に、限界長さを用いた最小値としての制御速度を用いると、第1の温度勾配が0deg/secとなる場合がある。このような場合には、第1の温度勾配で混合湯水の温度を上昇させる設定期間を0として、図4に示されるように、混合設定温度をいきなり一気に例えば10 deg上げて(図のA’、参照)、給湯器16での温度上昇25 deg分が加算されることにより42℃の湯が蛇口から出湯されるようにしてもよい。   As shown in Table 1, when the hot water supply flow rate is 3 liters / minute, the first temperature gradient may be 0 deg / sec using the control speed as the minimum value using the limit length. . In such a case, the set period for increasing the temperature of the mixed hot water with the first temperature gradient is set to 0, and as shown in FIG. 4, the mixed set temperature is suddenly increased, for example, by 10 degrees (A ′ in the figure). ), And a temperature increase of 25 deg. At the water heater 16 may be added so that 42 ° C. hot water is discharged from the faucet.

また、表2には、設定期間を湯水導入通路15の容量分の水が流れる積算流量期間とする代わりに、限界容量である10リットルの水が流れる積算流量期間とした場合の、給湯流量毎の前記オーバーシュートの発生温度(℃)が示されており、設定期間をこのように設定するとオーバーシュートの発生温度をより小さくできる。   Further, Table 2 shows each hot water supply flow rate when the set period is an integrated flow rate period in which 10 liters of water, which is the limit capacity, flows instead of an integrated flow rate period in which water corresponding to the capacity of the hot water introduction passage 15 flows. The overshoot occurrence temperature (° C.) is shown, and when the set period is set in this way, the overshoot occurrence temperature can be further reduced.

Figure 0006055356
Figure 0006055356

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば、前記実施例では、給湯器16は、導入される湯水の温度を検出するためのセンサを省略し、入水温度をリアルタイムで検出せずに出湯温度に基づいて演算によって求める方式の給湯器を適用したが、給湯器16は入水温度をリアルタイムで検出してその入水温度に基づいて燃焼制御を行う給湯器としてもよい。   In addition, this invention is not limited to the said Example, It sets suitably. For example, in the above-described embodiment, the hot water heater 16 omits a sensor for detecting the temperature of hot water to be introduced, and does not detect the incoming water temperature in real time, but calculates the hot water heater by calculation based on the hot water temperature. Although applied, the water heater 16 may be a water heater that detects the incoming water temperature in real time and performs combustion control based on the incoming water temperature.

また、本発明の熱源装置の詳細なシステム構成は適宜設定されるものであり、貯湯槽2と出湯通路9と、該出湯通路9と給水通路8bとが合流する合流部10とを備え、ミキシング流量制御手段によって出湯通路9と給水通路8bとから合流部10側に流れる湯水や水の流量を制御して設定混合温度の混合湯水が合流部10で形成されるようにし、かつ、合流部10を通った混合湯水を必要に応じて給湯器16等の補助熱源装置で追い加熱する構成を有していればよい。したがって、給湯器16は、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよいし、電気ヒータにより加熱するタイプの給湯器としてもよい。   Further, the detailed system configuration of the heat source device of the present invention is appropriately set, and includes a hot water storage tank 2, a hot water passage 9, and a merging portion 10 where the hot water passage 9 and the water supply passage 8b merge, and mixing. The flow rate control means controls the flow rate of hot water and water flowing from the outlet hot water passage 9 and the water supply passage 8b to the merging portion 10 side so that the mixed hot water at the set mixed temperature is formed in the merging portion 10, and the merging portion 10 It suffices if the mixed hot water passing therethrough is additionally heated by an auxiliary heat source device such as the hot water heater 16 as necessary. Therefore, the hot water heater 16 may be a hot water heater of a type that heats the hot water heat exchanger 17 by, for example, an oil combustion type burner device, or may be a hot water heater of a type that is heated by an electric heater.

さらに、前記実施例では、追い加熱動作を「給湯のコールドスタート時」に行うようにしたが、前回の追い加熱動作で出湯した直後には追い加熱して出湯するのに最適な温度の湯水が湯水導入通路15に充満しており、このような場合で再度出湯される場合や、今回の給湯時に給湯設定温度が前回よりも高い温度に設定された場合には、ホットスタートであっても追い加熱動作を行ってもよく、特に、追い加熱動作を行うタイミングは限定されるものではない。   Furthermore, in the above-described embodiment, the additional heating operation is performed at the time of “cold start of hot water supply”. However, immediately after the hot water is discharged in the previous additional heating operation, hot water having the optimum temperature for additional heating and hot water is obtained. If the hot water introduction passage 15 is filled and the hot water is discharged again in such a case, or if the hot water supply set temperature is set higher than the previous time at the time of this hot water supply, the hot water start passage is followed. The heating operation may be performed, and the timing for performing the follow-up heating operation is not particularly limited.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。   Furthermore, in the said Example, although the hot water tank 2 was thermally connected to the fuel cell 1, you may connect a solar heat collector, a heat pump, etc. instead of the fuel cell 1. FIG.

さらに、前記実施例では、設定加熱号数を最小燃焼号数としたが、最小燃焼号数以外の号数を設定してもよい。ただし、通常は、最小燃焼号数を設定加熱号数として設定する。   Furthermore, in the said Example, although the setting heating number was made into the minimum combustion number, you may set numbers other than the minimum combustion number. However, normally, the minimum combustion number is set as the set heating number.

本発明の熱源装置は、貯湯槽を有する主熱源装置の貯湯槽から出湯される湯と給水通路からの水との混合湯水の初回追い加熱動作時の給湯温度を安定化できるので、例えば家庭用の熱源装置として利用できる。   The heat source device of the present invention can stabilize the hot water supply temperature during the initial follow-up heating operation of the mixed hot water of the hot water discharged from the hot water storage tank of the main heat source device having the hot water storage tank and the water from the water supply passage. It can be used as a heat source device.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
6 三方弁
7 バイパス通路
8,8a,8b 給水通路
9 出湯通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
13 タンク電磁弁
14 水混合器
15 湯水導入通路
16 給湯器
17 給湯熱交換器
23 循環ポンプ
24 電磁弁
26 FC高温サーミスタ
27 FC低温サーミスタ
28 混合サーミスタ
33 制御装置
35 ミキシング流量制御手段
36 混合設定温度設定手段
37 メモリ部
38 積算流量検出手段
40 湯水循環通路
42 流量検出手段
45 給湯設定温度設定操作手段
47 燃焼制御手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means 6 in a hot water tank 6 Three-way valve 7 Bypass passage 8, 8a, 8b Water supply passage 9 Hot water discharge passage 10 Junction part 11 Mixer 13 Tank solenoid valve 14 Water mixer 15 Hot water introduction passage 16 Water heater 17 Hot water heat exchanger 23 Circulating pump 24 Solenoid valve 26 FC high temperature thermistor 27 FC low temperature thermistor 28 Mixed thermistor 33 Controller 35 Mixing flow rate control means 36 Mixing setting Temperature setting means 37 Memory unit 38 Integrated flow rate detection means 40 Hot water circulation passage 42 Flow rate detection means 45 Hot water supply set temperature setting operation means 47 Combustion control means

Claims (4)

貯湯槽を備えて該貯湯槽からの湯を出湯通路を通して出湯送水する機能を有する主熱源装置と、該主熱源装置から出湯送水される湯を導入して給湯熱交換器で加熱する追い加熱機能を有する補助熱源装置とを備え、該補助熱源装置の湯水導入部側には前記出湯通路と給水通路とが合流する合流部が湯水導入通路を介して接続され、前記出湯通路から前記合流部側に流れる湯の流量と前記給水通路から前記合流部側に流れる水の流量を制御して前記合流部で混合湯水が形成されるようにするミキシング流量制御手段と、該ミキシング流量制御手段により形成される混合湯水の設定温度を設定する混合設定温度設定手段とを有し、前記混合湯水の前記補助熱源装置による追い加熱動作が行われるときには、給湯開始から予め定められる設定期間経過時の前記混合湯水の温度が前記補助熱源装置の予め定められる設定加熱号数で設定温度の湯を作り出すために必要な補助熱源装置の加熱号数対応入水温度よりも低い温度になるように、前記混合湯水の温度が予め定められる第1の設定温度勾配で上昇して前記設定期間が経過してから前記加熱号数対応入水温度に達するまでは前記第1の設定温度勾配よりも大きい予め定められる第2の設定温度勾配で上昇するように前記混合設定温度設定手段により混合湯水の設定温度が設定されることを特徴とする熱源装置。   A main heat source device having a hot water storage tank and having a function of discharging hot water from the hot water storage tank through a hot water outlet passage, and a follow-up heating function of introducing hot water discharged from the main heat source apparatus and heating it with a hot water supply heat exchanger An auxiliary heat source device having a hot water introduction portion side of the auxiliary heat source device, and a joining portion where the outlet water passage and the water supply passage join together is connected via the hot water introduction passage, and from the hot water passage to the joining portion side A mixing flow rate control means for controlling the flow rate of hot water flowing through the water supply passage and the flow rate of water flowing from the water supply passage to the merging portion side, so that mixed hot water is formed at the merging portion, and the mixing flow rate control means. Mixing preset temperature setting means for setting a preset temperature of the mixed hot water, and when a follow-up heating operation is performed by the auxiliary heat source device of the mixed hot water, a predetermined period of time elapses from the start of hot water supply. So that the temperature of the mixed hot water at the time is lower than the input water temperature corresponding to the heating number of the auxiliary heat source device necessary to create hot water of the set temperature at a predetermined setting heating number of the auxiliary heat source device, The temperature of the mixed hot water rises at a predetermined first set temperature gradient, and the predetermined period greater than the first set temperature gradient from when the set period elapses until the temperature corresponding to the heating number is reached. A set temperature of the mixed hot water is set by the mixed set temperature setting means so as to increase at a second set temperature gradient. 設定期間は貯湯槽の出湯通路と給水通路との合流部から補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間としたことを特徴とする請求項1記載の熱源装置。   2. The heat source device according to claim 1, wherein the set period is a period during which hot water capacity in the hot water introduction passage flows from the junction between the hot water supply passage and the water supply passage of the hot water storage tank to the hot water introduction portion of the auxiliary heat source device. 補助熱源装置は燃料の燃焼熱により給湯熱交換器を加熱するバーナ装置が設けられ、該バーナ装置の燃焼開始時に該バーナ装置に供給される燃焼燃料供給量の立ち上げ開始時からその立ち上げ燃焼燃料供給量が安定するまでの期間よりも出湯通路と給水通路との合流部から前記補助熱源装置の湯水導入部までの湯水導入通路内の湯水容量が流れる期間が短いときには、給湯開始から予め定められる設定待機時間は給水通路からの水を補助熱源装置側に送水し、前記設定待機時間経過した後さらに設定期間が経過した時の混合湯水の温度が前記補助熱源装置加熱号数対応入水温度よりも低い温度になるように前記混合湯水の設定温度が前記設定待機時間経過時から第1の設定温度勾配で上昇するように混合設定温度設定手段による混合設定温度の設定が行われることを特徴とする請求項2記載の熱源装置。   The auxiliary heat source device is provided with a burner device that heats the hot water supply heat exchanger by the combustion heat of the fuel, and when the combustion of the burner device starts to start, the combustion fuel supply amount supplied to the burner device starts from the start of the combustion When the hot water capacity in the hot water introduction passage from the junction of the hot water supply passage and the water supply passage to the hot water introduction portion of the auxiliary heat source device is shorter than the period until the fuel supply amount is stabilized, it is determined in advance from the start of hot water supply. The set standby time is sent from the water supply passage to the auxiliary heat source device side, and the temperature of the mixed hot water when the set period elapses after the set standby time elapses is higher than the incoming water temperature corresponding to the auxiliary heat source device heating number. The mixed set temperature by the mixed set temperature setting means so that the set temperature of the mixed hot water rises with a first set temperature gradient from the time when the set standby time has elapsed so that the set temperature becomes lower. Heat source apparatus according to claim 2, wherein the setting is performed. 補助熱源装置は、追い加熱機能の動作時に給湯設定温度と給湯流量と給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を演算により求める構成を有することを特徴とする請求項1または請求項2または請求項3記載の熱源装置。   The auxiliary heat source device has a configuration in which a temperature of hot water introduced into the auxiliary heat source device is obtained by calculation based on a hot water supply set temperature, a hot water supply flow rate, and a heating amount of the hot water heat exchanger during operation of the additional heating function. The heat source device according to claim 1, claim 2, or claim 3.
JP2013075117A 2013-03-29 2013-03-29 Heat source equipment Active JP6055356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075117A JP6055356B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075117A JP6055356B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2014199161A JP2014199161A (en) 2014-10-23
JP6055356B2 true JP6055356B2 (en) 2016-12-27

Family

ID=52356174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075117A Active JP6055356B2 (en) 2013-03-29 2013-03-29 Heat source equipment

Country Status (1)

Country Link
JP (1) JP6055356B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508966B2 (en) * 2015-02-17 2019-05-08 大阪瓦斯株式会社 Hot water storage type water heater
JP6508965B2 (en) * 2015-02-17 2019-05-08 大阪瓦斯株式会社 Hot water storage type water heater
CN109452885B (en) * 2017-09-06 2022-02-11 广东美的生活电器制造有限公司 Stirring cup subassembly and food processor
JP6552680B2 (en) * 2018-05-30 2019-07-31 東京エレクトロン株式会社 Processing device, processing method and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613459B2 (en) * 2001-07-26 2011-01-19 株式会社ノーリツ Hot water system
JP3740067B2 (en) * 2002-01-31 2006-01-25 リンナイ株式会社 Hot water mixing unit
JP4095046B2 (en) * 2004-06-21 2008-06-04 リンナイ株式会社 Hot water system
JP5537971B2 (en) * 2010-01-25 2014-07-02 リンナイ株式会社 Solar water heating system

Also Published As

Publication number Publication date
JP2014199161A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP6055356B2 (en) Heat source equipment
JP2014016075A (en) Hybrid system
JP6858621B2 (en) Heat source device
JP4546273B2 (en) Hot water system
JP6209117B2 (en) Heat source equipment
JP5140634B2 (en) Hot water storage hot water supply system and cogeneration system
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP6147541B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP4488884B2 (en) Hot water system
JP2019027644A (en) Air supply preheating heating system
JP4095046B2 (en) Hot water system
JP5671304B2 (en) Heat source equipment
JP4223499B2 (en) Cogeneration system
JP6125877B2 (en) Heat source equipment
JP6800795B2 (en) Heat source device
JP6133661B2 (en) Heat source equipment
JP6088889B2 (en) Heat source equipment
JP4292115B2 (en) Hot water system
JP2005249340A (en) Hot-water supply system
JP6320118B2 (en) Heat source equipment
JP6843679B2 (en) Heat source device
JP6062787B2 (en) Heat source equipment
JP6320117B2 (en) Heat source equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6055356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250