JP6843679B2 - Heat source device - Google Patents

Heat source device Download PDF

Info

Publication number
JP6843679B2
JP6843679B2 JP2017075923A JP2017075923A JP6843679B2 JP 6843679 B2 JP6843679 B2 JP 6843679B2 JP 2017075923 A JP2017075923 A JP 2017075923A JP 2017075923 A JP2017075923 A JP 2017075923A JP 6843679 B2 JP6843679 B2 JP 6843679B2
Authority
JP
Japan
Prior art keywords
hot water
storage tank
temperature
water storage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017075923A
Other languages
Japanese (ja)
Other versions
JP2018179341A (en
Inventor
翼 内山
翼 内山
俊彦 岩本
俊彦 岩本
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2017075923A priority Critical patent/JP6843679B2/en
Publication of JP2018179341A publication Critical patent/JP2018179341A/en
Application granted granted Critical
Publication of JP6843679B2 publication Critical patent/JP6843679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、主熱源と補助熱源装置とを備えた熱源装置に関するものである。 The present invention relates to a heat source device including a main heat source and an auxiliary heat source device.

主熱源としての貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、参照)、図4には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。 A heat source device including a hot water storage tank as a main heat source is used (see, for example, Patent Document 1), and FIG. 4 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 provided with a hot water storage tank 2 and a hot water passage 9 is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from a fuel such as city gas with oxygen in the air by the reverse reaction of electrolysis of water. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、例えば燃料電池1内の熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる排熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。 The heat recovery passage 3 is a passage for circulating a liquid (here, hot water) between the fuel cell 1 and the hot water storage tank 2 as shown by arrows A and A'in the figure. For example, in the fuel cell 1. The heat recovery passage 3 is provided with a pump (not shown) for circulating a liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water storage tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by the arrow A'in the figure to be used as cooling water, and this water is used at the time of power generation of the fuel cell 1. After heating by the generated exhaust heat, it is passed through the heat recovery passage 3 as shown by the arrow A in the figure, and is accumulated in the hot water storage tank 2 as hot water having a temperature of, for example, 60 ° C. The heat recovery passage 3 is provided with a bypass passage 7 via a three-way valve 6, and the liquid flowing from the fuel cell 1 side to the hot water storage tank 2 side is not passed through the hot water storage tank 2 as needed. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図4では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。 In the hot water storage tank 2, hot water temperature detecting means 5 in the hot water storage tank 2 for detecting the temperature of the hot water in the hot water storage tank 2 are interposed in the hot water storage tank 2 or on the outer wall of the hot water storage tank 2 in the vertical direction of the hot water storage tank 2 at intervals. (5 in FIG. 4) are provided. The hot water temperature detecting means 5a in the hot water storage tank provided at the uppermost position is filled with hot water at a position lower than the upper end of the hot water storage tank 2 by a predetermined length, that is, to, for example, the upper end of the hot water storage tank 2. It is provided at the position of the hot water surface when hot water having a hot water amount 20 liters less than that of the hot water storage tank 2 is introduced into the hot water storage tank 2.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、湯の通路9には、貯湯槽2から導出される湯の温度を検出する貯湯槽出湯温検出手段としての貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替える例えばパイロット方式のタンク側電磁弁13とが設けられている。湯の通路9には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁81を備えた圧力逃がし用の通路80が接続されている。 The hot water passage 9 connected to the upper side of the hot water storage tank 2 is a passage for discharging (sending) hot water formed in the hot water storage tank 2, and the hot water passage 9 is connected to the hot water storage tank 2 from the hot water storage tank 2. Hot water storage tank hot water temperature detecting means 11 as hot water hot water temperature detecting means for detecting the derived hot water temperature, tank hot water mixer 12 for varying the amount of hot water sent through the hot water passage 9, and hot water passage. For example, a pilot-type tank-side solenoid valve 13 is provided to switch the presence or absence of hot water supply through the 9 by opening and closing the valve. A pressure relief passage 80 provided with an overpressure relief valve 81 for releasing the pressure to the outside when the pressure in the hot water storage tank 2 exceeds the allowable pressure is connected to the hot water passage 9.

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、前記合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図4はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、合流部10の付近に設けられていてもよい。また、給水通路8は上水道に接続される。 Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, and the water supply passage 8 (8a) on one side is connected to the lower side of the hot water storage tank 2, and the water supply passage 8 on the other side is connected. (8b) is formed so as to join the hot water passage 9 at the merging portion 10. The water supply passage 8b is provided with a water mixer 14 for varying the amount of water flowing from the water supply passage 8b to the merging portion 10 side. In this heat source device, a mixing means for mixing hot water and water merged at the merging portion 10 is formed by having a water mixer 14 and the tank hot water mixing mixer 12, and FIG. 4 shows a system. Although the water mixer 14 and the tank hot water mixer 12 are shown at separate positions because of the configuration diagram, they may be provided in the vicinity of the confluence portion 10. Further, the water supply passage 8 is connected to the water supply.

合流部10には通路18が連通し、通路18には混合サーミスタ28(28a,28b)が設けられている。タンクユニット4は、例えばリモコン装置等を用いて設定される給湯設定温度の湯を、湯の通路9と通路18を通して出湯する機能を有している。通路18には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、図4の矢印Bに示されるように貯湯槽2から湯の通路9と通路18を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように、湯水導入通路15を介して給湯器16の給湯回路62に導入される。 A passage 18 communicates with the merging portion 10, and a mixing thermistor 28 (28a, 28b) is provided in the passage 18. The tank unit 4 has a function of discharging hot water having a hot water supply set temperature set by using, for example, a remote controller or the like through a hot water passage 9 and a passage 18. The hot water introduction side of the water heater 16 as an auxiliary heat source device is connected to the passage 18 via the hot water introduction passage 15, and as shown by the arrow B in FIG. 4, the hot water passage 2 to the hot water passage 9 and the passage are connected. The hot water sent through the hot water 18 (water is sent from the tank unit 4) is introduced into the hot water supply circuit 62 of the water heater 16 via the hot water introduction passage 15 as shown by the arrow B ”in the figure.

給湯器16の給湯回路62は、給湯バーナ61の燃焼熱により加熱される給湯熱交換器17を備えており、同図において、給湯熱交換器17は、給湯バーナ61の燃焼ガスの顕熱を吸収するメインの熱交換器17aと、該メインの熱交換器17aの上流側(湯の流れの上流側)に設けられて給湯バーナ61の燃焼ガスの潜熱を回収する潜熱回収用熱交換器17bとを有する。このように潜熱回収用熱交換器17bを設ける構成とすると、熱効率の高い給湯器16を形成できるために好ましい。 The hot water supply circuit 62 of the water heater 16 includes a hot water supply heat exchanger 17 that is heated by the combustion heat of the hot water supply burner 61. The main heat exchanger 17a to absorb and the latent heat recovery heat exchanger 17b provided on the upstream side (upstream side of the flow of hot water) of the main heat exchanger 17a to recover the latent heat of the combustion gas of the hot water supply burner 61. And have. It is preferable to provide the latent heat recovery heat exchanger 17b in this way because the water heater 16 having high thermal efficiency can be formed.

また、同図には図示されていないが、例えば給湯バーナ61をガスバーナにより形成する場合、給湯バーナ61に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ61への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ61への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器17の加熱制御が行われる。 Although not shown in the figure, for example, when the hot water supply burner 61 is formed by a gas burner, the hot water supply burner 61 is provided with a gas supply passage for supplying fuel gas, and the gas supply passage is provided with a hot water supply passage through the gas supply passage. A gas on-off valve (gas solenoid valve) for controlling the presence or absence of supply to the burner 61 and a gas proportional valve for adjusting the supply amount thereof are provided. In addition, appropriate components (not shown) such as a combustion fan that supplies and exhausts air to the hot water supply burner 61 are provided, and by controlling the components, the heating of the hot water supply heat exchanger 17 can be controlled. Will be done.

給湯回路62の入口側の通路には、流量検出手段42が設けられており、給湯熱交換器17の出側の通路には、給湯熱交換器17の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出手段67が設けられ、さらに、その下流側には、給湯回路62を通して給湯される湯の温度(給湯温度)を検出する給湯温度検出手段76が設けられている。給湯回路62の出側には給湯通路19が設けられており、流量検出手段42は、給湯通路19を通して給湯される給湯流量を検出する。 A flow rate detecting means 42 is provided in the passage on the inlet side of the hot water supply circuit 62, and the temperature on the outlet side of the hot water supply heat exchanger 17 (the passage on the outlet side) is provided in the passage on the outlet side of the hot water supply heat exchanger 17. A hot water supply heat exchange side temperature detecting means 67 for detecting the passing hot water temperature) is provided, and further, on the downstream side thereof, a hot water supply temperature detecting means 76 for detecting the temperature of the hot water supplied through the hot water supply circuit 62 (hot water supply temperature). Is provided. A hot water supply passage 19 is provided on the outlet side of the hot water supply circuit 62, and the flow rate detecting means 42 detects the flow rate of hot water supplied through the hot water supply passage 19.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられている。バイパス通路68の容量は給湯熱交換器17の容量に比べると格段に小さく、一例としてあげると、給湯熱交換器17のメインの熱交換器17aの容量が0.6リットル、潜熱回収用熱交換器17bの容量が0.7リットルに対し、バイパス通路68の容量は0.06リットル程度である。なお、図4は、模式的なシステム図であり、メインの熱交換器17aと潜熱回収用熱交換器17bとバイパス通路68の大きさは、それぞれの容量と対応してはいない。 Further, the hot water supply circuit 62 is provided with a bypass passage 68 for leading the hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17. The capacity of the bypass passage 68 is much smaller than the capacity of the hot water supply heat exchanger 17, for example, the capacity of the main heat exchanger 17a of the hot water supply heat exchanger 17 is 0.6 liters, and the heat exchange for latent heat recovery is performed. The capacity of the vessel 17b is 0.7 liters, while the capacity of the bypass passage 68 is about 0.06 liters. Note that FIG. 4 is a schematic system diagram, and the sizes of the main heat exchanger 17a, the latent heat recovery heat exchanger 17b, and the bypass passage 68 do not correspond to their respective capacities.

バイパス通路68には例えばステッピングモータを備えたバイパスサーボ69が設けられており、バイパスサーボ69の制御によって、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合とが予め定められる割合変化範囲内で制御される構成と成している。 For example, a bypass servo 69 provided with a stepping motor is provided in the bypass passage 68, and the distribution ratio of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage 68 are controlled by the bypass servo 69. The configuration is such that the distribution ratio to the side is controlled within a predetermined ratio change range.

熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱(追い加熱)して給湯する追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、非追い加熱給湯機能の動作時には、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する(このようにバイパスサーボ69を制御する)。 The heat source device has a follow-up heating hot water supply function in which hot water introduced into the hot water supply circuit 62 of the water heater 16 is heated (additional heating) by the hot water supply heat exchanger 17 from the hot water passage 9 side, and hot water is supplied from the hot water passage 9. It has a non-additional heating hot water supply function in which hot water introduced into the circuit 62 is supplied to the hot water supply destination through the hot water supply circuit 62 without being heated. The water heater 16 supplies hot water introduced into the hot water supply circuit 62 mainly through the bypass passage 68 (in this way, the bypass servo 69 is controlled) when the non-additional heating hot water supply function is operated.

給湯器16の給湯回路62を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、給湯通路19を順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓(シャワーの操作レバー等も含む)が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。 The hot water that has passed through the hot water supply circuit 62 of the water heater 16 can be either hot water that has passed through the hot water supply circuit 62 while being heated by the additional heating hot water supply function, or hot water that has passed through the hot water supply circuit 62 without being heated by the non-additional heating hot water supply function. Hot water is supplied to one or more hot water supply destinations in order through the hot water supply passage 19. Although not shown in the figure, a hot water tap (including a shower operation lever) is provided on the tip side of the hot water supply passage 19, and by opening this hot water tap, it is stored in the hot water storage tank 2. The hot water that has been collected passes through the hot water passage 9 under the water supply pressure, and is mixed with the water from the water supply passage 8b as necessary, is additionally heated by the water heater 16, or is mixed with water. Hot water is supplied as it is without additional heating.

また、図示されていないが、給湯器16には例えば風呂の追い焚き用の回路が設けられ、この回路を利用して浴槽への湯張りや浴槽湯水の追い焚きが可能と成している。 Further, although not shown, the water heater 16 is provided with, for example, a circuit for reheating the bath, and it is possible to fill the bathtub with hot water or reheat the hot water in the bathtub by using this circuit.

なお、図4の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50,51は逆止弁、52〜57はバルブ、58は低温感知サーミスタ、59,60はフィルタ、82はオーバーフロー通路、83は排水電磁弁、84は排水通路をそれぞれ示している。 In the figure of FIG. 4, reference numeral 25 is a water entry temperature thermistor, reference numeral 26 is an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water storage tank 2, and reference numeral 27 is from the hot water storage tank 2 to the fuel cell 1 side. Derived FC low temperature thermistors for hot water temperature detection are shown, reference numeral 29 is a water supply flow rate sensor, reference numerals 50 and 51 are check valves, 52 to 57 are valves, 58 is a low temperature sensing thermistor, 59 and 60 are filters, 82. Indicates an overflow passage, 83 indicates a drainage electromagnetic valve, and 84 indicates a drainage passage.

図4に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。 The heat source device shown in FIG. 4 is provided with a control device (not shown), and the control device controls the tank hot water mixer 12 to control the flow rate of hot water flowing from the hot water passage 9 to the confluence portion 10 side. Mixing flow rate control means for controlling and controlling the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side by controlling the water mixer 14 so that the mixed hot water of an appropriate temperature is formed at the merging portion 10. Is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図4の矢印Bに示されるように湯の通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図4の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。 When the hot water supply is stopped, for example, the mixing flow rate control means closes the tank-side solenoid valve 13 so that the flow rate of the hot water flowing from the hot water passage 9 to the confluence 10 side (hot water discharged from the hot water storage tank 2) becomes zero. .. Then, when the hot water tap provided on the tip side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and the tank side electromagnetic valve 13 And by controlling the tank hot water mixer 12, the flow rate of hot water flowing from the hot water passage 9 to the confluence 10 side is adjusted as shown by the arrow B in FIG. 4, and by controlling the water mixer 14, FIG. As shown by the arrow B'of 4, the flow rate of the water flowing from the water supply passage 8b to the merging portion 10 side is adjusted, and the temperature of the mixed hot water formed at the merging portion 10 is set to, for example, the same level as the hot water supply set temperature. Set the mixing temperature.

なお、貯湯槽2内に貯湯されている湯水には、例えば図5の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる排熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。 In the hot water stored in the hot water storage tank 2, for example, layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. 5 are formed, and the upper layer of the hot water storage tank 2 is formed. Hot water of high temperature Ta (for example, 60 ° C.) heated by the exhaust heat generated during power generation of the fuel cell 1 is stored in the (high temperature layer) Wa, and the hot water storage tank is stored in the lower layer (low temperature layer) Wc of the hot water storage tank 2. Water having the same temperature Tc (for example, 15 ° C.) as the water supply temperature to be supplied is stored in 2, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc between them. .. Therefore, when the hot water in the layer Wa runs out, cold water may be sent from the hot water passage 9 instead of the hot water, but for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression of merging with the merging portion 10 is used.

例えば図5に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。 For example, as shown in FIG. 5, in the hot water in the hot water storage tank 2, for example, the boundary between the layer Wa and the layer Wb is below the arrangement region of the hot water temperature detecting means 5a in the hot water storage tank, and the hot water temperature detecting means in the hot water storage tank When the detected temperature of 5a is higher than the threshold value set to be 5 ° C higher than the hot water supply set temperature, the temperature of the hot water discharged from the hot water storage tank 2 is a substantially constant value such as 60 ° C.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。 Therefore, in the mixing flow rate control means, the detection temperature of the mixing thermistor 28 (28a, 28b) is set to be mixed based on the difference between the detection temperature of the mixing thermistor 28 (28a, 28b) and the mixing set temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to have a temperature, the flow rate of hot water flowing from the hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side can be obtained. Control to adjust. The mixing flow rate control means may perform only feedback control without performing feedforward control when controlling the mixing flow rate.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図4の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。 Then, when the temperature of the mixed hot water formed at the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by such a kissing flow rate control means, the mixed hot water is changed. , As shown by the arrow B "in FIG. 4, the water heater 16 is introduced from the confluence 10 through the hot water introduction passage 15, but at this time, the water heater 16 is not heated by the hot water heat exchanger 17 ( By the operation of the non-heated hot water supply function), hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

一方、給湯途中に、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下となり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができなくなった場合には、例えば混合設定温度を給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで徐々に下げ、その混合湯水を給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱することにより給湯設定温度の湯を作り出し、給湯先に給湯することが行われる。 On the other hand, during hot water supply, the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank becomes equal to or lower than the above threshold value, and hot water having a mixed set temperature set to the same temperature as the hot water supply set temperature is supplied only by the flow rate control by the mixing flow rate control means. If it becomes impossible to do so, for example, the mixing set temperature is the value obtained by subtracting the temperature that rises when the water of the hot water supply flow rate is heated by the MIN number (minimum combustion number) of the water heater 16 from the hot water supply set temperature. The mixed hot water is gradually lowered to, and the mixed hot water is heated by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function of the water heater 16 to produce hot water at a hot water supply set temperature, and hot water is supplied to the hot water supply destination.

また、前回の給湯終了時から予め定められる時間が経過した後の再給湯開始時(コールドスタート時)には、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の場合には給湯器16の給湯バーナ61を燃焼させて、この給湯バーナ燃焼により給湯設定温度の湯を形成し、給湯先に供給することが行われる。 Further, at the start of re-supplying hot water (at the time of cold start) after a predetermined time has elapsed from the end of the previous hot water supply, if the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or less than the threshold value, the water heater 16 The hot water supply burner 61 is burned, and hot water having a set temperature for hot water supply is formed by the combustion of the hot water supply burner and supplied to the hot water supply destination.

特許第3728265号公報Japanese Patent No. 3728265

ところで、図4に示されている熱源装置において、最上位に設けられている貯湯槽内湯水温検出手段5aは貯湯槽2の上端に設けられているわけではなく、湯が貯湯槽2の上端まで満たされた場合よりも例えば20リットル少ない湯量の湯の湯面位置に設けられているので、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であっても、貯湯槽内湯水温検出手段5aよりも上側の位置に前記閾値より高い温度の湯が貯湯されている場合がある(図2のドット部分、参照)。 By the way, in the heat source device shown in FIG. 4, the hot water temperature detecting means 5a in the hot water storage tank provided at the uppermost position is not provided at the upper end of the hot water storage tank 2, and the hot water reaches the upper end of the hot water storage tank 2. Since it is provided at the hot water surface position of, for example, 20 liters less than when it is filled, even if the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or lower than the threshold value, the hot water temperature detecting means 5a in the hot water storage tank Hot water having a temperature higher than the threshold value may be stored at a position above the threshold value (see the dot portion in FIG. 2).

しかしながら、前記の如く、コールドスタート時に貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の場合には給湯器16の給湯バーナ61を燃焼させるようにしており、その際には、貯湯槽2側から湯の通路9を通して合流部10側に流す湯の流量をゼロにしたり少なめにしたりして、給湯通路8b側から合流部10側に流す水の割合を多くして給湯器16側に送ることが行われる。そのため、貯湯槽内湯水温検出手段5aより上側に貯湯されていた湯を使い切れずに貯湯槽2内に残してしまうことになり、貯湯槽2と熱的に接続されている燃料電池1の発電時間を長くすることができないといった問題があった。 However, as described above, when the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or lower than the threshold value at the time of cold start, the hot water supply burner 61 of the water heater 16 is burned. The flow rate of hot water flowing from the side through the hot water passage 9 to the merging portion 10 side is reduced to zero or reduced, and the proportion of water flowing from the hot water supply passage 8b side to the merging portion 10 side is increased and sent to the water heater 16 side. Is done. Therefore, the hot water stored above the hot water temperature detecting means 5a in the hot water storage tank cannot be used up and remains in the hot water storage tank 2, and the power generation time of the fuel cell 1 thermally connected to the hot water storage tank 2 There was a problem that it could not be lengthened.

本発明は、上記課題を解決するためになされたものであり、その目的は、貯湯槽内の高温の湯を十分に使い切って燃料電池の発電時間を長くすることができる高効率の熱源装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a highly efficient heat source device capable of prolonging the power generation time of a fuel cell by sufficiently using up the hot water in the hot water storage tank. To provide.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、燃料電池の排熱により形成される湯を貯湯する貯湯槽と、該貯湯槽から導出される湯の通路とを有し、該湯の通路の下流側には給湯バーナを備えた補助熱源装置の給湯回路が接続され、該給湯回路は給湯熱交換器を有して該給湯熱交換器に導入される湯水を前記給湯バーナによって加熱する機能を有し、前記貯湯槽側から前記補助熱源装置側に湯を送水して該湯を前記給湯回路に通し前記給湯バーナによる加熱を行って又は該加熱を行わずに非加熱のまま前記給湯回路から給湯設定温度の湯を出湯する機能を備えた熱源装置であって、前記湯の通路には前記貯湯槽から導出される湯の温度を検出する貯湯槽出湯温検出手段が設けられており、前回の給湯終了時から予め定められる設定待機時間が経過した後の再給湯開始時に前記貯湯槽から前記湯の通路を通して前記貯湯槽内の湯を予め定められる設定パージ時間だけ導出した後の前記貯湯槽出湯温検出手段の検出温度が予め定められる貯湯槽湯切れ判断温度より高い時には前記貯湯槽側から前記補助熱源装置側に前記給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断し、前記貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度以下の時には前記貯湯槽が前記湯切れ状態になったと判断する貯湯槽湯切れ判断手段が設けられている構成をもって課題を解決するための手段としている。 In order to achieve the above object, the present invention is a means for solving a problem with the following configuration. That is, the first invention has a hot water storage tank for storing hot water formed by exhaust heat of a fuel cell and a hot water passage derived from the hot water storage tank, and hot water is supplied to the downstream side of the hot water passage. hot water supply circuit of the auxiliary heat source apparatus equipped with a burner is connected, fed-water circuit has a function of heating the hot water to be introduced into the fed-water heat exchanger having a hot water supply heat exchanger by the hot water burner, the hot water storage Hot water is sent from the tank side to the auxiliary heat source device side, the hot water is passed through the hot water supply circuit, and the hot water is heated by the hot water supply burner or is not heated and is not heated. It is a heat source device equipped with a function of discharging hot water, and the hot water passage is provided with a hot water storage tank hot water temperature detecting means for detecting the temperature of hot water derived from the hot water storage tank, and has been provided since the end of the previous hot water supply. The hot water outlet temperature detecting means of the hot water storage tank after the hot water in the hot water storage tank is derived for a predetermined purge time from the hot water storage tank through the hot water passage at the start of resupply after the predetermined standby time has elapsed. When the detection temperature is higher than the predetermined hot water storage tank hot water shortage determination temperature, it is determined that the hot water storage tank side is not in a hot water shortage state in which hot water of the hot water supply set temperature cannot be sent from the hot water storage tank side to the auxiliary heat source device side. In order to solve the problem by providing a hot water storage tank hot water shortage judgment means for determining that the hot water storage tank is in the hot water shortage state when the detection temperature of the hot water discharge temperature detecting means is equal to or lower than the hot water shortage judgment temperature. It is used as a means of.

また、第2の発明は、前記第1の発明の構成に加え、前記設定パージ時間は湯の通路における貯湯槽と貯湯槽出湯温検出手段との間の容量を湯水が流れる時間とすることを特徴とする。 Further, in the second invention, in addition to the configuration of the first invention, the set purge time is such that the capacity between the hot water storage tank and the hot water storage tank outlet temperature detecting means in the hot water passage is the time for hot water to flow. It is a feature.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記補助熱源装置には給湯バーナの燃焼制御を行う燃焼制御手段が設けられ、該燃焼制御手段は貯湯槽湯切れ判断手段により貯湯槽が湯切れ状態になったと判断されたときに前記給湯バーナの燃焼を開始することを特徴とする。 Further, in the third invention, in addition to the configuration of the first or second invention, the auxiliary heat source device is provided with a combustion control means for controlling the combustion of the hot water supply burner, and the combustion control means runs out of hot water in the hot water storage tank. It is characterized in that the combustion of the hot water supply burner is started when it is determined by the determination means that the hot water storage tank has run out of hot water.

本発明、燃料電池の排熱により形成される湯を貯湯槽に貯湯し、該貯湯槽から湯の通路を通して導出される湯を補助熱源装置側に送水して該湯を補助熱源装置の給湯回路に通し、給湯熱交換器に導入して該給湯熱交換器に導入される湯水を必要に応じて前記給湯バーナによって加熱する機能を有しており、該給湯バーナによる加熱を行って又は該加熱を行わずに非加熱のまま前記給湯回路から給湯設定温度の湯を出湯する機能を備えている。そして、前回の給湯終了時から予め定められる設定待機時間が経過した後の再給湯開始時(コールドスタート時)に、貯湯槽が湯切れ状態になったか否かの判断を以下のように行い、それに基づいて前記給湯バーナの燃焼開始を行うことができる。 In the present invention , hot water formed by exhaust heat of a fuel cell is stored in a hot water storage tank, hot water drawn from the hot water storage tank through a hot water passage is sent to the auxiliary heat source device side, and the hot water is supplied to the auxiliary heat source device. It has a function of passing through a circuit, introducing it into a hot water supply heat exchanger, and heating the hot water introduced into the hot water supply heat exchanger by the hot water supply burner as needed, and heating by the hot water supply burner or the said. It has a function to discharge hot water of a hot water supply set temperature from the hot water supply circuit without heating without heating. Then, at the start of re-hot water supply (cold start) after the predetermined standby time has elapsed from the end of the previous hot water supply, it is determined as follows whether or not the hot water storage tank has run out of hot water. Based on this, the combustion of the hot water supply burner can be started.

つまり、前記コールドスタート時には湯の通路内の湯水温は低くなっているが、貯湯槽内に高温の湯がある場合には、貯湯槽から湯の通路を通して貯湯槽内の湯を導出すると、導出された湯が湯の通路を通ることにより湯の通路内の湯温は高くなる。そこで、本発明においては、湯の通路に貯湯槽から導出される湯の温度を検出する貯湯槽出湯温検出手段を設け、貯湯槽湯切れ判断手段が、前記コールドスタート時に貯湯槽から湯の通路を通して貯湯槽内の湯を予め定められる設定パージ時間だけ導出した後の前記貯湯槽出湯温検出手段の検出温度が予め定められる貯湯槽湯切れ判断温度より高い時には前記貯湯槽から前記補助熱源装置側に前記給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断することにより、貯湯槽が湯切れ状態になっていないことを的確に判断することができる。 That is, the temperature of the hot water in the hot water passage is low at the time of the cold start, but if there is hot water in the hot water storage tank, it is derived by deriving the hot water in the hot water storage tank from the hot water storage tank through the hot water passage. The temperature of the hot water in the hot water passage rises as the hot water passes through the hot water passage. Therefore, in the present invention, the hot water storage tank outlet temperature detecting means for detecting the temperature of the hot water derived from the hot water storage tank is provided in the hot water passage, and the hot water storage tank hot water shortage determination means is the hot water passage from the hot water storage tank at the time of the cold start. When the detection temperature of the hot water outlet temperature detecting means of the hot water storage tank after deriving the hot water in the hot water storage tank for a predetermined purge time is higher than the predetermined hot water storage tank hot water exhaustion determination temperature, the hot water storage tank is connected to the auxiliary heat source device side. By determining that the hot water of the hot water supply set temperature is not in the hot water running out state, it is possible to accurately judge that the hot water storage tank is not in the hot water running out state.

従来のように、貯湯槽内湯水温検出手段の温度に基づいて湯切れ状態を判断すると、貯湯槽内湯水温検出手段の配設位置よりも上側の貯湯槽内に例えば湯切れ判断温度より高い高温の湯が残っていても給湯バーナの燃焼開始が行われるため、その残っている高温の湯を使い切ることができなかったが、本発明においては、前記コールドスタート時に貯湯槽から湯の通路を通して貯湯槽内の湯を前記設定パージ時間だけ導出した後の前記貯湯槽出湯温検出手段の検出温度に基づいて湯切れを判断するようにしており、貯湯槽内の湯を前記設定パージ時間導出すれば、貯湯槽内に前記高温の湯が残っていた場合には貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度より高い温度となることから、貯湯槽内に高温の湯が残っていることを的確に判断することができる。 When the hot water shortage state is determined based on the temperature of the hot water temperature detecting means in the hot water storage tank as in the conventional case, the temperature of the hot water storage tank above the arrangement position of the hot water temperature detecting means in the hot water storage tank is higher than, for example, the hot water running out judgment temperature. Since the hot water supply burner starts to burn even if hot water remains, the remaining hot water cannot be used up. However, in the present invention, the hot water storage tank is passed through the hot water passage from the hot water storage tank at the time of the cold start. The hot water in the hot water storage tank is determined to run out based on the detection temperature of the hot water outlet temperature detecting means after the hot water in the hot water storage tank is derived for the set purge time. If the hot water remains in the hot water storage tank, the detection temperature of the hot water outlet temperature detecting means of the hot water storage tank becomes higher than the temperature at which the hot water storage tank is determined to run out, so that the hot water remains in the hot water storage tank. You can accurately judge that you are there.

なお、前記設定パージ時間は、例えば3秒といったような時間の数値とは限らず、後述するような条件を満たす時間として定めることができるものである。例えば適切なパージ流量(例えば以下に述べるような、湯の通路における貯湯槽と貯湯槽出湯温検出手段との間の容量に対応する流量)を設定パージ流量として定めておき、例えば利用者が通常、どの程度の給湯流量で給湯を行うかを記憶学習し、その記憶学習した情報に基づいて利用者が通常給湯時に利用する給湯流量で前記設定パージ流量の湯を給湯するのにかかる時間を求め、その値を設定パージ時間として定めるようにしてもよい。 The set purge time is not limited to a numerical value such as 3 seconds, and can be set as a time satisfying the conditions described later. For example, an appropriate purge flow rate (for example, a flow rate corresponding to the capacity between the hot water storage tank and the hot water outlet temperature detecting means in the hot water passage as described below) is set as the set purge flow rate, and the user usually sets it. , Learn how to supply hot water at what flow rate, and based on the memory-learned information, find the time required to supply hot water with the set purge flow rate at the hot water supply flow rate that the user normally uses during hot water supply. , The value may be set as the set purge time.

一方、貯湯槽内に前記高温の湯が残っていない場合には、貯湯槽内の湯を前記設定パージ時間導出してもパージ後の貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度以下の温度となるが、本発明においては、前記貯湯槽湯切れ判断手段が、前記貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度以下の時には前記貯湯槽が前記湯切れ状態になったと判断することにより、貯湯槽内に高温の湯が残っていないことを的確に判断することができる。 On the other hand, when the high-temperature hot water does not remain in the hot water storage tank, even if the hot water in the hot water storage tank is derived for the set purge time, the detection temperature of the hot water storage tank outlet temperature detecting means after purging is the hot water storage tank out of hot water. Although the temperature is equal to or lower than the determination temperature, in the present invention, when the detection temperature of the hot water storage tank hot water out temperature detecting means is equal to or lower than the hot water storage tank hot water exhaustion determination temperature, the hot water storage tank is the hot water. By determining that the hot water has run out, it can be accurately determined that no hot water remains in the hot water storage tank.

以上のように、本発明によれば、貯湯槽湯切れ判断手段によって、前記コールドスタート時に貯湯槽から湯の通路を通して貯湯槽内の湯を前記設定パージ時間だけ導出した後の貯湯槽出湯温検出手段の検出温度が予め定められる貯湯槽湯切れ判断温度より高い時には貯湯槽から補助熱源装置側に給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断し、前記貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度以下の時には貯湯槽が湯切れ状態になったと判断することにより、貯湯槽内に高温の湯が残っていることと残っていないこととを的確に判断することができる。 As described above, according to the present invention, the hot water storage tank outlet temperature is detected after the hot water in the hot water storage tank is derived for the set purge time from the hot water storage tank through the hot water passage at the time of the cold start by the hot water storage tank hot water shortage determination means. When the detection temperature of the means is higher than the predetermined hot water storage tank hot water shortage judgment temperature, it is judged that the hot water supply set temperature cannot be sent from the hot water storage tank to the auxiliary heat source device side, and it is judged that the hot water storage tank is not out of hot water. When the detection temperature of the temperature detecting means is equal to or lower than the temperature for determining that the hot water in the hot water storage tank has run out, it is determined that the hot water storage tank has run out of hot water. You can make an accurate judgment.

また、前記設定パージ時間を湯の通路における貯湯槽と貯湯槽出湯温検出手段との間の容量を湯水が流れる時間とすることにより、貯湯槽内の湯水を前記設定パージ時間だけ導出することにより、貯湯槽内の湯を湯の通路を通して貯湯槽出湯温検出手段の配設部まで導出して前記湯切れ状態の判断を効率的に、かつ、的確に行うことができる。つまり、湯の導出が少なすぎて湯切れ状態の判断を的確に行うことができなかったり、湯の導出が多すぎて判断に要する時間が長くなり無駄が生じたりすることもなく、効率的、かつ、的確に湯切れ状態の判断を行うことができる。 Further, by setting the set purge time as the time during which the hot water flows as the capacity between the hot water storage tank and the hot water outlet temperature detecting means in the hot water passage, the hot water in the hot water storage tank is derived by the set purge time. The hot water in the hot water storage tank can be led out to the arrangement portion of the hot water outlet temperature detecting means of the hot water storage tank through the hot water passage, and the hot water running-out state can be determined efficiently and accurately. In other words, it is efficient because there is not too little hot water derivation and it is not possible to accurately judge the hot water shortage state, and there is too much hot water derivation and the time required for judgment becomes long and waste occurs. Moreover, it is possible to accurately determine the state of running out of hot water.

さらに、貯湯槽湯切れ判断手段により貯湯槽が湯切れ状態になったと判断されたときに、補助熱源装置の燃焼制御手段によって給湯バーナの燃焼を開始を制御することにより、貯湯槽内の湯の湯切れ状態時には給湯バーナの燃焼を開始して迅速に給湯設定温度の湯を作り出し、給湯することができるし、湯切れ状態となっていないときには給湯バーナの燃焼を開始しないで貯湯槽からの湯を非加熱で給湯し、できる限り貯湯槽内の湯(前記高温の湯)を使い切ることができる。 Further, when it is determined by the hot water storage tank out of hot water determination means that the hot water storage tank is out of hot water, the combustion control means of the auxiliary heat source device controls the start of combustion of the hot water supply burner to control the start of combustion of the hot water in the hot water storage tank. When the hot water is out, the hot water burner starts burning to quickly produce hot water at the set temperature for hot water supply, and when the hot water is not out, the hot water burner does not start burning and the hot water from the hot water tank is not started. Can be supplied without heating, and the hot water in the hot water storage tank (the hot water) can be used up as much as possible.

本発明に係る熱源装置の実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the Example of the heat source apparatus which concerns on this invention. 実施例の熱源装置におけるコールドスタート直前の湯の通路の状態例を説明するための模式的な説明図である。It is a schematic explanatory drawing for demonstrating the state example of the passage of hot water just before a cold start in the heat source apparatus of an Example. 実施例の熱源装置において、貯湯槽内に高温の湯が残っていた場合のコールドスタート後のパージ後における湯の通路の状態を説明するための模式的な説明図である。It is a schematic explanatory drawing for demonstrating the state of the passage of hot water after the purge after the cold start when the hot water remains in a hot water storage tank in the heat source apparatus of an Example. 開発中の熱源装置のシステム構成図である。It is a system configuration diagram of the heat source device under development. 貯湯槽内の湯温分布を説明するための模式的な説明図である。It is a schematic explanatory drawing for demonstrating the hot water temperature distribution in a hot water storage tank.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of this embodiment, the same components as those of the examples described so far are designated by the same reference numerals, and the duplicated description thereof will be omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されている。本実施例の熱源装置は、図4に示した熱源装置と同様のシステム構成を有しているが、図1に示される特徴的な制御構成を有している。 FIG. 1 shows a block diagram of a main part control configuration of an embodiment of the heat source device according to the present invention. The heat source device of this embodiment has the same system configuration as the heat source device shown in FIG. 4, but has a characteristic control configuration shown in FIG.

同図に示されるように、本実施例では、タンクユニット4内の制御装置33が貯湯槽湯切れ判断手段34とメモリ部37を有しており、給湯器16の制御装置46は燃焼制御手段47を有している。なお、図示されていないが、制御装置33にはタンクユニット4側から給湯器16側に送る湯の温度を制御するためのミキシング流量制御手段等の制御手段を有しており、この制御手段と燃焼制御手段47は、給湯設定温度設定操作手段を備えたリモコン装置(図示せず)に接続されている。リモコン装置は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。 As shown in the figure, in this embodiment, the control device 33 in the tank unit 4 has a hot water storage tank hot water shortage determination means 34 and a memory unit 37, and the control device 46 of the water heater 16 is a combustion control means. Has 47. Although not shown, the control device 33 has a control means such as a mixing flow rate control means for controlling the temperature of the hot water sent from the tank unit 4 side to the water heater 16 side. The combustion control means 47 is connected to a remote controller (not shown) provided with a hot water supply set temperature setting operation means. The remote control device is installed indoors in an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

燃焼制御手段47は、給湯バーナ61の燃焼開始時にガス開閉弁48を開いて給湯バーナ61の燃焼を開始させると共に、流量検出センサ42により検出される給湯流量や給湯熱交出側温度検出手段67の検出温度、給湯温度検出手段76の検出温度等に基づき、給湯バーナ61の燃焼制御を行い、また、それに伴う燃焼ファン(図示せず)の制御等を行うものである。燃焼制御方法は周知であるので、その詳細説明は省略するが、従来から知られている燃焼制御方法や、今後提案される燃焼制御方法等、適宜の燃焼制御方法が適用される。 The combustion control means 47 opens the gas on-off valve 48 at the start of combustion of the hot water supply burner 61 to start combustion of the hot water supply burner 61, and at the same time, the hot water supply flow rate and the hot water supply heat exchange side temperature detecting means 67 detected by the flow rate detection sensor 42. The combustion of the hot water supply burner 61 is controlled based on the detected temperature of the hot water supply temperature detecting means 76, and the combustion fan (not shown) is controlled accordingly. Since the combustion control method is well known, detailed description thereof will be omitted, but an appropriate combustion control method such as a conventionally known combustion control method or a combustion control method proposed in the future is applied.

給水流量センサ29は、給湯中に貯湯槽2側から給湯器16の給湯回路62側に送る湯水の流量を検出するものであり、この検出流量に基づき、貯湯槽2から出湯される湯と給水通路8bからの湯の混合により、合流部10で形成される混合湯水の温度が制御され、給湯器16側に送られる。その温度制御は、例えば従来例と同様にミキシング流量制御手段の制御等により行われるものであるが、その詳細は、従来から知られている制御方法や、今後提案される制御方法等、適宜の燃焼制御方法が適用される。 The water supply flow rate sensor 29 detects the flow rate of hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16 during hot water supply, and based on this detected flow rate, the hot water and water supplied from the hot water storage tank 2. By mixing the hot water from the passage 8b, the temperature of the mixed hot water formed at the merging portion 10 is controlled and sent to the water heater 16 side. The temperature control is performed, for example, by controlling the mixing flow rate control means as in the conventional example, but the details thereof include a conventionally known control method, a control method proposed in the future, and the like as appropriate. Combustion control methods are applied.

貯湯槽湯切れ検出手段34は、前回の給湯終了時から予め定められる設定待機時間が経過した後の再給湯開始時(コールドスタート時)に、貯湯槽2側から湯の通路9を通して貯湯槽2内の湯を予め定められる設定パージ時間だけ導出した後の貯湯槽出湯温検出手段11の検出温度が予め定められる貯湯槽湯切れ判断温度(例えば給湯設定温度+10℃)より高い時には貯湯槽2から給湯器16側に前記給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断し、貯湯槽出湯温検出手段11の前記検出温度が前記貯湯槽湯切れ判断温度以下の時には貯湯槽2が前記湯切れ状態になったと判断するものである。 The hot water storage tank 2 is the hot water storage tank 2 through the hot water passage 9 from the hot water storage tank 2 side at the time of re-hot water supply start (at the time of cold start) after a predetermined standby time has elapsed from the end of the previous hot water supply. When the detection temperature of the hot water outlet temperature detecting means 11 of the hot water storage tank after deriving the hot water in the hot water for a predetermined purge time is higher than the predetermined hot water storage tank hot water shortage determination temperature (for example, hot water supply set temperature + 10 ° C.), the hot water storage tank 2 is used. It is determined that the hot water of the hot water supply set temperature cannot be sent to the water heater 16 side, and when the detection temperature of the hot water storage tank outlet temperature detecting means 11 is equal to or lower than the hot water storage tank hot water exhaustion determination temperature, the hot water is stored. It is determined that the tank 2 has run out of hot water.

貯湯槽湯切れ検出手段34は、給水流量センサ29の検出流量を時々刻々と取り込んで、給湯が行われているか否かを判断すると共に、給湯停止から給湯再開までの待機時間を計測し(例えば貯湯槽湯切れ検出手段34が図示されていない時計機構やタイマ等を内蔵して前記待機時間を検出できるようにし)、その待機時間が予め定められているコールドスタート判断時間(例えば3分)を超えた時にはコールドスタートと判断し、前記待機時間がコールドスタート判断時間以内の時にはコールドスタート以外の再出湯であると判断する。 The hot water storage tank hot water shortage detecting means 34 takes in the detected flow rate of the hot water supply flow rate sensor 29 every moment, determines whether or not hot water is being supplied, and measures the waiting time from the hot water supply stop to the hot water supply restart (for example). The hot water storage tank hot water shortage detecting means 34 incorporates a clock mechanism, a timer, etc. (not shown) so that the standby time can be detected), and the cold start determination time (for example, 3 minutes) in which the standby time is predetermined is set. When it exceeds, it is determined that the hot water is cold start, and when the waiting time is within the cold start determination time, it is determined that the hot water is re-delivered other than the cold start.

なお、給湯停止から例えば3分経過すると、例えば約60℃を示していた貯湯槽出湯温検出手段11の検出温度が自然放熱によって低下する(湯の通路9の貯湯槽出湯検出手段11の配設部における湯の温度が自然放熱により低下する)。また、その温度低下量は外気温が低いと大きくなるがごとく、周囲環境に大きく左右される。 When, for example, 3 minutes have passed since the hot water supply was stopped, the detection temperature of the hot water storage tank hot water temperature detecting means 11 which was about 60 ° C. decreased due to natural heat dissipation (arrangement of the hot water storage tank hot water detecting means 11 in the hot water passage 9). The temperature of the hot water in the section drops due to natural heat dissipation). In addition, the amount of temperature decrease is greatly affected by the surrounding environment, as it increases when the outside air temperature is low.

そこで、例えば外気温サーミスタ等を用いることにより貯湯槽出湯温検出手段11の温度低下量(つまり、湯の通路9内の湯の温度低下量)を推定することができ、湯の通路9の貯湯槽出湯検出手段11の配設部における給湯停止時の湯の温度を推定することができる(なお、本実施例には設けられていないが、凍結防止用のヒータ等を設ける場合には、そのヒータによる加熱状況も考慮することにより湯の通路9内の湯の温度変化を推定することができる)。この推定温度に基づいて貯湯槽2内に高温の湯が残っているかどうかを推定することも考えられるが、そのためには外気温サーミスタ等を設ける必要があることに加え、外気温サーミスタ等による外気温の検出温度と給湯停止以降に湯の通路9内に滞留している湯の温度との関係データ等(例えばヒータを設ける場合にはヒータに関するデータも含む)を予め与える必要がある。 Therefore, for example, by using an outside air temperature thermistor or the like, the temperature decrease amount of the hot water storage tank outlet temperature detecting means 11 (that is, the temperature decrease amount of the hot water in the hot water passage 9) can be estimated, and the hot water storage in the hot water passage 9 can be estimated. It is possible to estimate the temperature of hot water when the hot water supply is stopped at the arrangement portion of the hot water supply detecting means 11 (although it is not provided in this embodiment, when a heater or the like for preventing freezing is provided, the temperature thereof can be estimated. The temperature change of the hot water in the hot water passage 9 can be estimated by considering the heating condition by the heater). It is conceivable to estimate whether or not hot water remains in the hot water storage tank 2 based on this estimated temperature, but for that purpose, it is necessary to provide an outside air temperature thermistor, etc., and outside by an outside air temperature thermistor, etc. It is necessary to provide in advance data on the relationship between the detected temperature of the air temperature and the temperature of the hot water remaining in the hot water passage 9 after the hot water supply is stopped (for example, when a heater is provided, data on the heater is also included).

そうすると、その分だけコストアップにつながったり、関係データから推測するための時間を要したりするため、本実施例では、そのようなことを避けるため、外気温サーミスタ等を用いることなく、自然放熱によって例えば3分といった時間経過後には貯湯槽出湯温検出手段11の検出温度が低下して給湯停止前の状態とは明らかに異なる状態であると考えて(貯湯槽出湯温検出手段11の検出温度が給湯停止時とは明らかに異なる状況となっているはずであると判断し)、この状態をコールドスタート状態にあると判断するようにし、その後の湯切れ判断動作を行うようにしている。 If this happens, the cost will increase by that amount, and it will take time to infer from the related data. Therefore, in this embodiment, in order to avoid such a situation, natural heat dissipation is performed without using an outside air temperature thermistor or the like. It is considered that the detection temperature of the hot water storage tank outlet temperature detecting means 11 drops after a lapse of time such as 3 minutes, and the state is clearly different from the state before the hot water supply is stopped (the detection temperature of the hot water storage tank outlet temperature detecting means 11). Is supposed to be in a situation that is clearly different from when the hot water supply is stopped), and this state is judged to be in the cold start state, and then the hot water shortage judgment operation is performed.

なお、コールドスタート時およびその直前は、図2の斜線部分に示されるように、湯の通路9内の湯水温が給湯設定温度よりも低下していることになる。 At the time of cold start and immediately before that, as shown in the shaded area of FIG. 2, the temperature of the hot water in the hot water passage 9 is lower than the set temperature of the hot water supply.

貯湯槽湯切れ検出手段34は、給湯開始時に、その給湯がコールドスタートであると判断したときには、タンク側電磁弁13を開いて貯湯槽2から湯の通路9を通しての湯の送出を前記設定パージ時間行うようにする。また、その際 貯湯槽湯切れ検出手段34は、貯湯槽出湯温検出手段11の検出温度を取り込むことになるが、その取り込み方は適宜設定されるものである。なお、前記設定パージ時間の値は特に限定されるものではないが、本実施例では、例えば湯の通路9における貯湯槽2と貯湯槽出湯温検出手段11との間の容量を湯水が流れる時間としている。 When the hot water supply tank hot water shortage detecting means 34 determines that the hot water supply is a cold start at the start of hot water supply, the tank side solenoid valve 13 is opened to send hot water from the hot water storage tank 2 through the hot water passage 9 by the setting purge. Try to do it in time. At that time, the hot water storage tank hot water shortage detecting means 34 takes in the detection temperature of the hot water storage tank hot water temperature detecting means 11, and the method of taking in the hot water is appropriately set. The value of the set purge time is not particularly limited, but in this embodiment, for example, the time during which hot water flows through the capacity between the hot water storage tank 2 and the hot water storage tank outlet temperature detecting means 11 in the hot water passage 9. It is said.

例えば、貯湯槽湯切れ検出手段34は、コールドスタート時に時々刻々と貯湯槽出湯温検出手段11の検出温度を取り込み、前記設定パージ流量(例えば貯湯槽2から貯湯槽出湯温検出手段11までの配管容量)だけ湯を導出した後の貯湯槽出湯温検出手段11の検出温度が前記貯湯槽湯切れ判断温度以上か否かによって貯湯槽2が前記湯切れ状態になっているか否かを判断してもよいし、コールドスタート時に設定パージ流量だけ導出した後(直後)や前記設定パージ流量検出後から貯湯槽出湯温検出手段11の検出温度を取り込んで、貯湯槽出湯温検出手段11の検出温度が前記貯湯槽湯切れ判断温度以上か否かによって貯湯槽2が前記湯切れ状態になっているか否かを判断してもよい。さらに、貯湯槽湯切れ検出手段34は、給湯開始に関係なく常に貯湯槽出湯温検出手段11の検出温度を取り込むようにしてもよいが省エネの観点からは好ましくない。 For example, the hot water storage tank hot water shortage detecting means 34 takes in the detection temperature of the hot water storage tank hot water temperature detecting means 11 every moment at the time of cold start, and the setting purge flow rate (for example, the piping from the hot water storage tank 2 to the hot water storage tank hot water temperature detecting means 11). It is determined whether or not the hot water storage tank 2 is in the hot water shortage state depending on whether or not the detection temperature of the hot water storage tank outlet temperature detecting means 11 after deriving the hot water by the capacity) is equal to or higher than the hot water storage tank hot water exhaustion determination temperature. Alternatively, after deriving only the set purge flow rate at the cold start (immediately after) or after detecting the set purge flow rate, the detection temperature of the hot water storage tank outlet temperature detecting means 11 is taken in, and the detection temperature of the hot water storage tank outlet temperature detecting means 11 is set. It may be determined whether or not the hot water storage tank 2 is in the hot water running out state depending on whether or not the hot water storage tank is out of hot water. Further, the hot water storage tank hot water shortage detecting means 34 may always take in the detected temperature of the hot water storage tank hot water temperature detecting means 11 regardless of the start of hot water supply, but this is not preferable from the viewpoint of energy saving.

なお、コールドスタート判断時間(例えば3分)毎に設定パージ流量内の使用を繰り返した場合には、永遠に貯湯槽湯切れ検出ができないという理論的問題があるものの、例えば貯湯槽2から貯湯槽出湯温検出手段11までの配管容量を少なくする等の工夫をすることで実質的に問題のない形として、貯湯槽2が前記湯切れ状態になっているか否かを判断してもよい。 Although there is a theoretical problem that the hot water storage tank cannot be detected forever when the use within the set purge flow rate is repeated every cold start judgment time (for example, 3 minutes), for example, the hot water storage tank 2 to the hot water storage tank 2 to the hot water storage tank It may be determined whether or not the hot water storage tank 2 is in the hot water running out state so that there is substantially no problem by reducing the piping capacity up to the hot water temperature detecting means 11.

図3には、図2の状態から再出湯が行われたときの、前記設定パージ時間パージ直後の貯湯槽2内の温度状態例と湯の通路9の温度状態例とが模式的に示されており、図3において、貯湯槽2のドットで示す領域に高温の湯が存在している状態を示し、湯の通路9のドットで示す領域に高温の湯が存在し、斜線で示す領域に低温の湯が入っている状態を示す。 FIG. 3 schematically shows an example of the temperature state in the hot water storage tank 2 immediately after purging the set purge time and an example of the temperature state of the hot water passage 9 when the hot water is discharged again from the state of FIG. In FIG. 3, the hot water is present in the area indicated by the dots in the hot water storage tank 2, the hot water is present in the area indicated by the dots in the hot water passage 9, and the hot water is in the area indicated by the diagonal line. Indicates a state in which low-temperature hot water is contained.

この図の場合には、貯湯槽2内の高温の湯が残っていた状態でコールドスタートが行われた状態となるので、貯湯槽出湯温検出手段11の配設領域まで貯湯槽2からの高温の湯が流れて図のドットで示すような状態となる。そのため、貯湯槽湯切れ検出手段34により湯切れ状態になっているか否かの判断を行うことにより、前記設定パージ時間導出後の貯湯槽出湯温検出手段11の検出温度が前記貯湯槽湯切れ判断温度より高く検出されて湯切れになっていないと判断され、その結果が、給湯器16の燃焼制御手段47に加えられる。なお、貯湯槽2内に高温の湯が残っていない場合には、前記パージ後も湯の通路9内には高温の湯が流れないので、貯湯槽湯切れ検出手段34により湯切れ状態になっていると判断され、その結果が、給湯器16の燃焼制御手段47に加えられる。 In the case of this figure, the cold start is performed with the hot water remaining in the hot water storage tank 2, so that the high temperature from the hot water storage tank 2 reaches the arrangement region of the hot water discharge temperature detecting means 11. The hot water flows and the state is as shown by the dots in the figure. Therefore, the detection temperature of the hot water storage tank outlet temperature detecting means 11 after the set purge time is derived is determined by the hot water storage tank hot water shortage detecting means 34 to determine whether or not the hot water running out state is reached. It is determined that the temperature is higher than the temperature and the hot water is not exhausted, and the result is added to the combustion control means 47 of the water heater 16. If no hot water remains in the hot water storage tank 2, the hot water does not flow into the hot water passage 9 even after the purging, so that the hot water running out detection means 34 causes the hot water to run out. The result is added to the combustion control means 47 of the water heater 16.

燃焼制御手段47は、貯湯槽湯切れ判断手段34により貯湯槽2が湯切れ状態になったと判断されたときに給湯バーナ61の燃焼を開始し、貯湯槽2が湯切れ状態になっていないと判断された時には給湯バーナ61の燃焼を開始せず、その後、例えば貯湯槽2側から給湯器16側に給湯設定温度の湯の送水ができなくなることが推定されるとき等に制御装置33側からバーナ点火指令が発信された時に給湯バーナ61の燃焼を開始することになる。 The combustion control means 47 starts burning the hot water supply burner 61 when the hot water storage tank 2 is determined to be out of hot water by the hot water storage tank 2 out of hot water determination means 34, and the hot water storage tank 2 is not in the hot water out state. When it is determined, the combustion of the hot water supply burner 61 is not started, and then, for example, when it is estimated that hot water of the hot water supply set temperature cannot be sent from the hot water storage tank 2 side to the water heater 16 side, from the control device 33 side. Combustion of the hot water supply burner 61 is started when the burner ignition command is transmitted.

本実施例は以上のように構成されており、貯湯槽2が湯切れ状態になったか否かの判断を、貯湯槽湯切れ判断手段34により的確に行うことができ、それに基づいて給湯バーナ61の燃焼開始を行うことができるので、貯湯槽2内に貯湯されている高温の湯を使い切れるようにすることができ、燃料電池1による発熱時間を長くすることができる高効率で省エネ性の高い熱源装置とすることができる。 This embodiment is configured as described above, and it is possible to accurately determine whether or not the hot water storage tank 2 has run out of hot water by the hot water storage tank hot water shortage determination means 34, and based on this, the hot water supply burner 61 Since the combustion of the hot water can be started, the hot water stored in the hot water storage tank 2 can be used up, and the heat generation time by the fuel cell 1 can be lengthened. It can be a high heat source device.

なお、本発明は、前記実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば前記実施例では、設定パージ時間は、例えば湯の通路9における貯湯槽2と貯湯槽出湯温検出手段11との間の容量を湯水が流れる時間としたが、この時間より多めに(例えば0.5秒程度多めに)設定パージ時間を設定してもよい。 The present invention is not limited to the above-described embodiment, and various aspects can be adopted as long as the technical scope of the present invention is not deviated. For example, in the above embodiment, the set purge time is set to, for example, the capacity between the hot water storage tank 2 and the hot water storage tank outlet temperature detecting means 11 in the hot water passage 9 as the time for hot water to flow, but is longer than this time (for example, 0). The set purge time may be set (more than about 5 seconds).

また、例えば、図1の破線に示されるように、貯湯槽湯切れ検出手段34は、コールドスタート時に貯湯槽内湯水温検出手段5aの検出温度を取り込み、その検出温度が前記閾値以下の時に貯湯槽2側から湯の通路9を通して貯湯槽2内の湯を前記設定パージ時間だけ導出するようにして、その導出後の貯湯槽出湯温検出手段11の検出温度が予め定められる貯湯槽湯切れ判断温度より高い時には貯湯槽2から給湯器16側に前記給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断し、貯湯槽出湯温検出手段11の検出温度が前記貯湯槽湯切れ判断温度以下の時には貯湯槽2が前記湯切れ状態になったと判断するようにしてもよい。 Further, for example, as shown by the broken line in FIG. 1, the hot water storage tank hot water shortage detecting means 34 takes in the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank at the time of cold start, and when the detection temperature is equal to or lower than the threshold value, the hot water storage tank The hot water in the hot water storage tank 2 is led out from the 2 side through the hot water passage 9 for the set purge time, and the detection temperature of the hot water storage tank outlet temperature detecting means 11 after the derivation is predetermined. When it is higher, it is determined that the hot water of the hot water supply set temperature cannot be sent from the hot water storage tank 2 to the water heater 16 side, and the hot water running out state is not reached. When the temperature is below the determination temperature, it may be determined that the hot water storage tank 2 has run out of hot water.

さらに、前記実施例では、図2〜図4に示すようなシステム構成を有するものとしたが、システム構成の詳細は特に限定されるものでなく適宜設定されるものである。例えば前記実施例では、給湯器16の給湯熱交換器17がメインの熱交換器17aと潜熱回収用熱交換器17bとを有する構成としたが、潜熱回収用熱交換器17bを有していなくてもよいし、石油燃焼式のバーナ装置により給湯熱交換器17を加熱するタイプの給湯器としてもよく、給湯器16の構成は適宜設定されるものである。 Further, in the above-described embodiment, the system configuration as shown in FIGS. 2 to 4 is assumed, but the details of the system configuration are not particularly limited and are appropriately set. For example, in the above embodiment, the hot water supply heat exchanger 17 of the water heater 16 has a main heat exchanger 17a and a latent heat recovery heat exchanger 17b, but does not have the latent heat recovery heat exchanger 17b. Alternatively, it may be a type of water heater that heats the hot water supply heat exchanger 17 with an oil combustion type burner device, and the configuration of the water heater 16 is appropriately set.

本発明の熱源装置は、貯湯槽に貯湯した湯を十分に使い切って燃料電池による発電を効率的に行うことができるので、例えば家庭用の熱源装置として利用できる。 Since the heat source device of the present invention can sufficiently use up the hot water stored in the hot water storage tank to efficiently generate electricity by the fuel cell, it can be used as a heat source device for home use, for example.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
8,8a,8b 給水通路
湯の通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
16 給湯器
29 給水流量センサ
33 制御装置
34 貯湯槽湯切れ検出手段
37 メモリ部
46 制御装置
47 燃焼制御手段
1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means in hot water storage tank 8, 8a, 8b Water supply passage 9 Hot water passage 10 Confluence 11 Hot water storage tank Out hot water temperature detection means 12 Tank hot water mixer 16 Water heater 29 Water supply flow rate sensor 33 Control device 34 Hot water storage tank Hot water shortage detection means 37 Memory unit 46 Control device 47 Combustion control means

Claims (3)

燃料電池の排熱により形成される湯を貯湯する貯湯槽と、該貯湯槽から導出される湯の通路とを有し、該湯の通路の下流側には給湯バーナを備えた補助熱源装置の給湯回路が接続され、該給湯回路は給湯熱交換器を有して該給湯熱交換器に導入される湯水を前記給湯バーナによって加熱する機能を有し、前記貯湯槽側から前記補助熱源装置側に湯を送水して該湯を前記給湯回路に通し前記給湯バーナによる加熱を行って又は該加熱を行わずに非加熱のまま前記給湯回路から給湯設定温度の湯を出湯する機能を備えた熱源装置であって、前記湯の通路には前記貯湯槽から導出される湯の温度を検出する貯湯槽出湯温検出手段が設けられており、前回の給湯終了時から予め定められる設定待機時間が経過した後の再給湯開始時に前記貯湯槽から前記湯の通路を通して前記貯湯槽内の湯を予め定められる設定パージ時間だけ導出した後の前記貯湯槽出湯温検出手段の検出温度が予め定められる貯湯槽湯切れ判断温度より高い時には前記貯湯槽側から前記補助熱源装置側に前記給湯設定温度の湯を送水できなくなる湯切れ状態にはなっていないと判断し、前記貯湯槽出湯温検出手段の検出温度が前記貯湯槽湯切れ判断温度以下の時には前記貯湯槽が前記湯切れ状態になったと判断する貯湯槽湯切れ判断手段が設けられていることを特徴とする熱源装置。 An auxiliary heat source device having a hot water storage tank for storing hot water formed by exhaust heat of a fuel cell and a hot water passage derived from the hot water storage tank, and a hot water supply burner on the downstream side of the hot water passage. A hot water supply circuit is connected, and the hot water supply circuit has a hot water supply heat exchanger and has a function of heating hot water introduced into the hot water supply heat exchanger by the hot water supply burner, and from the hot water storage tank side to the auxiliary heat source device side. A heat source having a function of sending hot water to the hot water supply circuit, passing the hot water through the hot water supply circuit, heating with the hot water supply burner, or discharging hot water of a hot water supply set temperature from the hot water supply circuit without heating. In the device, the hot water passage is provided with a hot water storage tank outlet temperature detecting means for detecting the temperature of hot water derived from the hot water storage tank, and a predetermined standby time has elapsed since the end of the previous hot water supply. When the hot water supply is started again, the hot water in the hot water storage tank is derived from the hot water storage tank through the hot water passage for a predetermined purge time, and then the detection temperature of the hot water discharge temperature detecting means is predetermined. When the temperature is higher than the hot water exhaustion determination temperature, it is determined that the hot water is not in a state of running out that the hot water of the hot water supply set temperature cannot be sent from the hot water storage tank side to the auxiliary heat source device side, and the detection temperature of the hot water outlet temperature detecting means of the hot water storage tank The heat source device is provided with a hot water storage tank hot water shortage determination means for determining that the hot water storage tank is in the hot water shortage state when the temperature is equal to or lower than the hot water shortage determination temperature. 設定パージ時間は湯の通路における貯湯槽と貯湯槽出湯温検出手段との間の容量を湯水が流れる時間とすることを特徴とする請求項1記載の熱源装置。 The heat source device according to claim 1, wherein the set purge time is the time during which hot water flows, with the capacity between the hot water storage tank and the hot water outlet temperature detecting means in the hot water passage. 補助熱源装置には給湯バーナの燃焼制御を行う燃焼制御手段が設けられ、該燃焼制御手段は貯湯槽湯切れ判断手段により貯湯槽が湯切れ状態になったと判断されたときに前記給湯バーナの燃焼を開始することを特徴とする請求項1または請求項2記載の熱源装置。 The auxiliary heat source device is provided with a combustion control means for controlling the combustion of the hot water supply burner, and the combustion control means burns the hot water supply burner when the hot water storage tank is determined to be out of hot water by the hot water storage tank out of hot water determination means. The heat source device according to claim 1 or 2, wherein the heat source device is started.
JP2017075923A 2017-04-06 2017-04-06 Heat source device Active JP6843679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075923A JP6843679B2 (en) 2017-04-06 2017-04-06 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075923A JP6843679B2 (en) 2017-04-06 2017-04-06 Heat source device

Publications (2)

Publication Number Publication Date
JP2018179341A JP2018179341A (en) 2018-11-15
JP6843679B2 true JP6843679B2 (en) 2021-03-17

Family

ID=64274924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075923A Active JP6843679B2 (en) 2017-04-06 2017-04-06 Heat source device

Country Status (1)

Country Link
JP (1) JP6843679B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620908B2 (en) * 2001-07-17 2011-01-26 東京瓦斯株式会社 Hot water storage water heater
JP6303808B2 (en) * 2014-05-22 2018-04-04 株式会社ノーリツ Hot water system

Also Published As

Publication number Publication date
JP2018179341A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP2006214619A (en) Hot-water supply device
JP6858621B2 (en) Heat source device
JP6055356B2 (en) Heat source equipment
JP5887038B2 (en) Heat source equipment
JP6843679B2 (en) Heat source device
JP5708975B2 (en) Water heater
JP6228881B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP6138548B2 (en) Heat source equipment
JP4487140B2 (en) Hot water supply system
JP5671304B2 (en) Heat source equipment
JP6125877B2 (en) Heat source equipment
JP6800795B2 (en) Heat source device
JP6811445B2 (en) Cogeneration system and its operation method
JP5106567B2 (en) Hot water storage hot water supply system
JP5224115B2 (en) Water heater
JP3970194B2 (en) Heat source equipment
JP2005076932A (en) Storage type hot water supply system
JP2008292028A (en) Heat supply device
JP5107759B2 (en) Hot water storage hot water supply system
JP4154367B2 (en) Water heater with learning function
JP6320118B2 (en) Heat source equipment
JP6320117B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
JP6133661B2 (en) Heat source equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6843679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250