JP6800795B2 - Heat source device - Google Patents

Heat source device Download PDF

Info

Publication number
JP6800795B2
JP6800795B2 JP2017071428A JP2017071428A JP6800795B2 JP 6800795 B2 JP6800795 B2 JP 6800795B2 JP 2017071428 A JP2017071428 A JP 2017071428A JP 2017071428 A JP2017071428 A JP 2017071428A JP 6800795 B2 JP6800795 B2 JP 6800795B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
heat source
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071428A
Other languages
Japanese (ja)
Other versions
JP2018173229A (en
Inventor
翼 内山
翼 内山
俊彦 岩本
俊彦 岩本
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2017071428A priority Critical patent/JP6800795B2/en
Publication of JP2018173229A publication Critical patent/JP2018173229A/en
Application granted granted Critical
Publication of JP6800795B2 publication Critical patent/JP6800795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、主熱源と補助熱源装置とを備えた熱源装置に関するものである。 The present invention relates to a heat source device including a main heat source and an auxiliary heat source device.

主熱源としての貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、参照)、図6には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。 A heat source device including a hot water storage tank as a main heat source is used (see, for example, Patent Document 1), and FIG. 6 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 provided with a hot water storage tank 2 and a hot water passage 9 is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from a fuel such as city gas with oxygen in the air by the reverse reaction of electrolysis of water. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、例えば燃料電池1内の熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる排熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が接続され、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。 The heat recovery passage 3 is a passage for circulating a liquid (here, hot water) between the fuel cell 1 and the hot water storage tank 2 as shown by arrows A and A'in the figure. For example, in the fuel cell 1. The heat recovery passage 3 is provided with a pump (not shown) for circulating a liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water storage tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by the arrow A'in the figure to be used as cooling water, and this water is used at the time of power generation of the fuel cell 1. After heating by the generated exhaust heat, it passes through the heat recovery passage 3 as shown by the arrow A in the figure and is stored in the hot water storage tank 2 as hot water having a temperature of, for example, 60 ° C. A bypass passage 7 is connected to the heat recovery passage 3 via a three-way valve 6, and the liquid flowing from the fuel cell 1 side to the hot water storage tank 2 side is not passed through the hot water storage tank 2 as needed. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図6では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。 In the hot water storage tank 2, hot water temperature detecting means 5 in the hot water storage tank 2 for detecting the temperature of the hot water in the hot water storage tank 2 are interposed in the hot water storage tank 2 or on the outer wall of the hot water storage tank 2 in the vertical direction of the hot water storage tank 2 at intervals. (5 in FIG. 6) are provided. The hot water temperature detecting means 5a in the hot water storage tank provided at the uppermost position is filled with hot water at a position lower than the upper end of the hot water storage tank 2 by a predetermined length, that is, to, for example, the upper end of the hot water storage tank 2. It is provided at the position of the hot water surface when hot water having a hot water amount 20 liters less than that of the hot water storage tank 2 is introduced into the hot water storage tank 2.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、湯の通路9には、湯の通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替える例えばパイロット方式のタンク側電磁弁13とが設けられている。湯の通路9には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁81を備えた圧力逃がし用の通路80が接続されている。 The hot water passage 9 connected to the upper side of the hot water storage tank 2 is a passage for discharging (sending) hot water formed in the hot water storage tank 2, and the hot water passage 9 has a hot water passage 9. The hot water storage tank outlet water temperature detecting means 11 that detects the temperature of the hot water passing through the hot water, the tank hot water mixer 12 that changes the amount of hot water sent through the hot water passage 9, and the presence / absence of hot water being sent through the hot water passage 9. For example, a pilot type tank-side solenoid valve 13 that switches by opening and closing the valve is provided. A pressure relief passage 80 provided with an overpressure relief valve 81 for releasing the pressure to the outside when the pressure in the hot water storage tank 2 exceeds the allowable pressure is connected to the hot water passage 9.

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、前記合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図6はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、合流部10の付近に設けられていてもよい。また、給水通路8は上水道に接続される。 Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, and the water supply passage 8 (8a) on one side is connected to the lower side of the hot water storage tank 2, and the water supply passage 8 on the other side is connected. (8b) is formed so as to join the hot water passage 9 at the merging portion 10. The water supply passage 8b is provided with a water mixer 14 for varying the amount of water flowing from the water supply passage 8b to the merging portion 10 side. In this heat source device, a mixing means for mixing hot water and water merged at the merging portion 10 is formed by having a water mixer 14 and the tank hot water mixing mixer 12, and FIG. 6 shows a system. Although the water mixer 14 and the tank hot water mixer 12 are shown at separate positions because of the configuration diagram, they may be provided in the vicinity of the confluence portion 10. Further, the water supply passage 8 is connected to the water supply.

合流部10には通路18が連通し、通路18には混合サーミスタ28(28a,28b)が設けられている。タンクユニット4は、例えばリモコン装置等を用いて設定される給湯設定温度の湯を、湯の通路9と通路18を通して出湯する機能を有している。通路18には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、図6の矢印Bに示されるように貯湯槽2から湯の通路9と通路18を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように、湯水導入通路15を介して給湯器16の給湯回路62に導入される。 A passage 18 communicates with the merging portion 10, and a mixing thermistor 28 (28a, 28b) is provided in the passage 18. The tank unit 4 has a function of discharging hot water having a hot water supply set temperature set by using, for example, a remote controller or the like through a hot water passage 9 and a passage 18. The hot water introduction side of the water heater 16 as an auxiliary heat source device is connected to the passage 18 via the hot water introduction passage 15, and as shown by the arrow B in FIG. 6, the hot water passage 2 to the hot water passage 9 and the passage are connected. The hot water sent through the hot water 18 (water is sent from the tank unit 4) is introduced into the hot water supply circuit 62 of the water heater 16 via the hot water introduction passage 15 as shown by the arrow B ”in the figure.

給湯器16の給湯回路62は、給湯バーナ61の燃焼熱により加熱される給湯熱交換器17を備えており、同図において、給湯熱交換器17は、給湯バーナ61の燃焼ガスの顕熱を吸収するメインの熱交換器17aと、該メインの熱交換器17aの上流側(湯の流れの上流側)に設けられて給湯バーナ61の燃焼ガスの潜熱を回収する潜熱回収用熱交換器17bとを有する。このように潜熱回収用熱交換器17bを設ける構成とすると、熱効率の高い給湯器16を形成できるために好ましい。 The hot water supply circuit 62 of the water heater 16 includes a hot water supply heat exchanger 17 that is heated by the combustion heat of the hot water supply burner 61. In the figure, the hot water supply heat exchanger 17 heats the combustion gas of the hot water supply burner 61. The main heat exchanger 17a to absorb and the latent heat recovery heat exchanger 17b provided on the upstream side (upstream side of the flow of hot water) of the main heat exchanger 17a to recover the latent heat of the combustion gas of the hot water supply burner 61. And have. It is preferable to provide the latent heat recovery heat exchanger 17b in this way because the water heater 16 having high thermal efficiency can be formed.

また、同図には図示されていないが、例えば給湯バーナ61をガスバーナにより形成する場合、給湯バーナ61に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ61への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ61への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器17の加熱制御が行われる。 Although not shown in the figure, for example, when the hot water supply burner 61 is formed by a gas burner, the hot water supply burner 61 is provided with a gas supply passage for supplying fuel gas, and the gas supply passage is provided with a hot water supply passage through the gas supply passage. A gas on-off valve (gas solenoid valve) for controlling the presence or absence of supply to the burner 61 and a gas proportional valve for adjusting the supply amount thereof are provided. In addition, appropriate components (not shown) such as a combustion fan that supplies and exhausts air to the hot water supply burner 61 are provided, and by controlling the components, the heating of the hot water supply heat exchanger 17 can be controlled. Will be done.

給湯回路62の入口側の通路には、流量検出手段42が設けられており、給湯熱交換器17の出側の通路には、給湯熱交換器17の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出手段67が設けられ、さらに、その下流側には、給湯回路62を通して給湯される湯の温度(給湯温度)を検出する給湯温度検出手段76が設けられている。給湯回路62の出側には給湯通路19が設けられており、流量検出手段42は、給湯通路19を通して給湯される給湯流量を検出する。 A flow rate detecting means 42 is provided in the passage on the inlet side of the hot water supply circuit 62, and the temperature on the outlet side of the hot water supply heat exchanger 17 (the passage on the outlet side) is provided in the passage on the outlet side of the hot water supply heat exchanger 17. A hot water supply heat exchange side temperature detecting means 67 for detecting the passing hot water temperature) is provided, and further, on the downstream side thereof, a hot water supply temperature detecting means 76 for detecting the temperature of the hot water supplied through the hot water supply circuit 62 (hot water supply temperature). Is provided. A hot water supply passage 19 is provided on the outlet side of the hot water supply circuit 62, and the flow rate detecting means 42 detects the flow rate of hot water supplied through the hot water supply passage 19.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられている。バイパス通路68の容量は給湯熱交換器17の容量に比べると格段に小さく、一例としてあげると、給湯熱交換器17のメインの熱交換器17aの容量が0.6リットル、潜熱回収用熱交換器17bの容量が0.7リットルに対し、バイパス通路68の容量は0.06リットル程度である。なお、図6は、模式的なシステム図であり、メインの熱交換器17aと潜熱回収用熱交換器17bとバイパス通路68の大きさは、それぞれの容量と対応してはいない。 Further, the hot water supply circuit 62 is provided with a bypass passage 68 for leading the hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17. The capacity of the bypass passage 68 is much smaller than the capacity of the hot water supply heat exchanger 17, and as an example, the capacity of the main heat exchanger 17a of the hot water supply heat exchanger 17 is 0.6 liters, and the heat exchange for latent heat recovery is performed. The capacity of the vessel 17b is 0.7 liters, while the capacity of the bypass passage 68 is about 0.06 liters. Note that FIG. 6 is a schematic system diagram, and the sizes of the main heat exchanger 17a, the latent heat recovery heat exchanger 17b, and the bypass passage 68 do not correspond to their respective capacities.

バイパス通路68には例えばステッピングモータを備えたバイパスサーボ69が設けられており、バイパスサーボ69の制御によって、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合とが予め定められる割合変化範囲内で制御される構成と成している。 For example, a bypass servo 69 provided with a stepping motor is provided in the bypass passage 68, and the distribution ratio of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage 68 are controlled by the bypass servo 69. The configuration is such that the distribution ratio to the side is controlled within a predetermined ratio change range.

例えばバイパスサーボ69の制御により、例えばバイパス比(給湯熱交換器17側とバイパス通路68側との比)を1:0として、給湯回路62に導入された湯水を例えば100%給湯熱交換器17側に通すことができるし、バイパス比を1:3.5になるような割合で、バイパス通路68側に多く分岐させて通すこともできる。バイパスサーボ69の制御による給湯熱交換器17側とバイパス通路68側との比は、例えば1:0〜1:3.5といった予め定められるバイパス割合変化範囲内の適宜の値となるように適宜可変設定される。 For example, by controlling the bypass servo 69, for example, the bypass ratio (the ratio between the hot water supply heat exchanger 17 side and the bypass passage 68 side) is set to 1: 0, and the hot water introduced into the hot water supply circuit 62 is, for example, 100% hot water supply heat exchanger 17. It can be passed to the side, or it can be branched to the bypass passage 68 side at a ratio such that the bypass ratio is 1: 3.5. The ratio of the hot water supply heat exchanger 17 side and the bypass passage 68 side controlled by the bypass servo 69 is appropriately set to an appropriate value within a predetermined bypass ratio change range such as 1: 0 to 1: 3.5. Variable setting.

熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱(追い加熱)して給湯する追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、非追い加熱給湯機能の動作時には、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する(このようにバイパスサーボ69を制御する)。 The heat source device has a follow-up heating hot water supply function in which hot water introduced into the hot water supply circuit 62 of the water heater 16 is heated (additionally heated) by the hot water supply heat exchanger 17 from the hot water passage 9 side, and hot water is supplied from the hot water passage 9. It has a non-additional heating hot water supply function in which hot water introduced into the circuit 62 is supplied to the hot water supply destination through the hot water supply circuit 62 without being heated. The water heater 16 supplies hot water introduced into the hot water supply circuit 62 mainly through the bypass passage 68 (in this way, the bypass servo 69 is controlled) when the non-additional heating hot water supply function is operated.

給湯器16の給湯回路62を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、給湯通路19を順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓(シャワーの操作レバー等も含む)が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。 The hot water that has passed through the hot water supply circuit 62 of the water heater 16 can be either hot water that has passed through the hot water supply circuit 62 while being heated by the additional heating hot water supply function, or hot water that has passed through the hot water supply circuit 62 without being heated by the non-additional heating hot water supply function. Hot water is supplied to one or more hot water supply destinations in order through the hot water supply passage 19. Although not shown in the figure, a hot water tap (including a shower operation lever) is provided on the tip side of the hot water supply passage 19, and by opening the hot water tap, the water can be stored in the hot water storage tank 2. The hot water that has been collected passes through the hot water passage 9 under the water supply pressure, and is mixed with the water from the water supply passage 8b as necessary, is additionally heated by the water heater 16, or is mixed with water. Hot water is supplied as it is without additional heating.

また、図示されていないが、給湯器16には例えば風呂の追い焚き用の回路が設けられ、この回路を利用して浴槽への湯張りや浴槽湯水の追い焚きが可能と成している。 Further, although not shown, the water heater 16 is provided with, for example, a circuit for reheating the bath, and the circuit can be used to fill the bathtub with hot water or reheat the hot water in the bathtub.

なお、図6の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50,51は逆止弁、52〜57はバルブ、58は低温感知サーミスタ、59,60はフィルタ、82はオーバーフロー通路、83は排水電磁弁、84は排水通路をそれぞれ示している。 In the figure of FIG. 6, reference numeral 25 is a water entry temperature thermistor, reference numeral 26 is an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water storage tank 2, and reference numeral 27 is from the hot water storage tank 2 to the fuel cell 1 side. Derived FC low temperature thermistors for hot water temperature detection are shown, reference numerals 29 are water supply flow rate sensors, reference numerals 50 and 51 are check valves, 52 to 57 are valves, 58 are low temperature sensing thermistors, 59 and 60 are filters, 82. Indicates an overflow passage, 83 indicates a drainage electromagnetic valve, and 84 indicates a drainage passage.

図6に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。 The heat source device shown in FIG. 6 is provided with a control device (not shown), and the control device controls the tank hot water mixer 12 to control the flow rate of hot water flowing from the hot water passage 9 to the confluence portion 10 side. Mixing flow rate control means that controls and controls the water mixer 14 to control the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side so that the merging portion 10 forms a mixed hot water of an appropriate temperature. Is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図6の矢印Bに示されるように湯の通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図6の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。 When the hot water supply is stopped, for example, the mixing flow rate control means closes the tank-side solenoid valve 13 so that the flow rate of the hot water flowing from the hot water passage 9 to the confluence 10 side (hot water discharged from the hot water storage tank 2) becomes zero. .. Then, when the hot water tap provided on the tip side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and the tank side electromagnetic valve 13 By controlling the tank hot water mixer 12, the flow rate of hot water flowing from the hot water passage 9 to the confluence 10 side is adjusted as shown by the arrow B in FIG. 6, and by controlling the water mixer 14, FIG. As shown by the arrow B'of 6, the flow rate of the water flowing from the water supply passage 8b to the merging portion 10 side is adjusted, and the temperature of the mixed hot water formed at the merging portion 10 is set to be about the same as, for example, the hot water supply set temperature. Set the mixing temperature.

なお、貯湯槽2内に貯湯されている湯水には、例えば図7の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる排熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。 In the hot water stored in the hot water storage tank 2, for example, layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. 7 are formed, and the upper layer of the hot water storage tank 2 is formed. Hot water of high temperature Ta (for example, 60 ° C.) heated by the exhaust heat generated during power generation of the fuel cell 1 is stored in the (high temperature layer) Wa, and the hot water storage tank is stored in the lower layer (low temperature layer) Wc of the hot water storage tank 2. Water having the same temperature Tc (for example, 15 ° C.) as the water supply temperature to be supplied is stored in 2, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc between them. .. Therefore, when the hot water in the layer Wa runs out, cold water may be sent from the hot water passage 9 instead of the hot water, but for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression of being merged into the merging portion 10 is used.

例えば図7に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。 For example, as shown in FIG. 7, in the hot water in the hot water storage tank 2, for example, the boundary between the layer Wa and the layer Wb is below the arrangement region of the hot water temperature detecting means 5a in the hot water storage tank, and the hot water temperature detecting means in the hot water storage tank When the detected temperature of 5a is higher than the threshold value set to be 5 ° C higher than the hot water supply set temperature, the temperature of the hot water discharged from the hot water storage tank 2 is a substantially constant value such as 60 ° C.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。 Therefore, in the mixing flow rate control means, the detection temperature of the mixing thermistor 28 (28a, 28b) is set to be mixed based on the difference between the detection temperature of the mixing thermistor 28 (28a, 28b) and the mixing set temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to have a temperature, the flow rate of hot water flowing from the hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side Control to adjust. The mixing flow rate control means may perform only feedback control without performing feedforward control when controlling the mixing flow rate.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図6の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。 Then, when the temperature of the mixed hot water formed at the confluence 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by such a kissing flow rate control means, the mixed hot water is changed. , As shown by the arrow B "in FIG. 6, the water heater 16 is introduced from the confluence 10 through the hot water introduction passage 15, but at this time, the water heater 16 is not heated by the hot water heat exchanger 17 ( By the operation of the non-heated hot water supply function), hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下で、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合には、例えば混合設定温度を給湯設定温度より低い温度に設定する。一例として、混合設定温度を給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げ、その混合湯水を給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱することにより給湯設定温度の湯が作り出され、この湯が給湯通路19を通して給湯先に給湯される。また、タンクユニット4側からは給湯器16側に湯水を供給せずに、給水通路8bから給湯器16側に供給される水を給湯熱交換器17により加熱して給湯設定温度の湯を作り出し、給湯先に給湯することも必要に応じて行われる。 On the other hand, if the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or lower than the threshold value, it is not possible to supply hot water having a mixed set temperature set to a temperature equivalent to the hot water supply set temperature only by the flow rate control by the mixing flow rate control means. In this case, for example, the mixing set temperature is set to a temperature lower than the hot water supply set temperature. As an example, the mixed hot water is lowered to a value obtained by subtracting the temperature that rises when the water of the hot water supply flow rate is heated by the MIN number (minimum combustion number) of the water heater 16 from the hot water supply set temperature, and the mixed hot water is supplied. Hot water having a set temperature for hot water supply is produced by heating by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function of the water heater 16, and this hot water is supplied to the hot water supply destination through the hot water supply passage 19. Further, instead of supplying hot water from the tank unit 4 side to the water heater 16 side, the water supplied from the water supply passage 8b to the water heater 16 side is heated by the hot water heat exchanger 17 to produce hot water at the hot water supply set temperature. , Hot water is also supplied to the hot water supply destination as needed.

なお、従来の貯湯槽2を備えた熱源装置においては、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。 In the conventional heat source device provided with the hot water storage tank 2, a type (integrated type) heat source device in which the tank unit 4 and the water heater 16 are arranged adjacent to each other has been used, but the heat source device under development is An individually arranged heat source device in which the tank unit 4, the water heater 16, and the fuel cell 1 are individually arranged and connected to each other by piping is also possible. In this way, for example, among the plurality of types of tank units 4, the user selects the tank unit 4 provided with the hot water storage tank 2 having the required capacity, and selects the tank unit 4 and the plurality of types of water heaters 16. It is possible to combine the water heater 16 and the fuel cell 1 selected from the plurality of types of fuel cells 1 to increase the variation. Further, the individually arranged heat source device as described above has an advantage that the tank unit 4 or the like can be connected to the existing water heater 16 to form the heat source device.

特許第3728265号公報Japanese Patent No. 3728265

ところで、図6に示したような熱源装置において、貯湯槽2内に前記閾値より高い温度の湯が貯湯されている場合等、実質的に給湯設定温度以上(例えば湯が貯湯槽2から給湯器16を通って給湯先に給湯されるまでに冷える分以上、給湯設定温度よりも例えば0.5℃といった温度以上高い温度)の湯が貯湯されている場合には、貯湯槽2から給湯器16に送られる湯を非加熱で(給湯器16の給湯熱交換器17による追い加熱を行わずに)給湯することが可能であるが、このように貯湯槽2内の湯温が高い場合でも、熱源装置設置後の初めての給湯や、給湯停止から例えば8.5分以上といった時間が経過してからの再出湯時等のように湯水導入通路15や給湯器16内の管路が冷えている場合等は、これらの管路内の水を加熱することが必要となる。特に冬場では配管の冷えが激しいので前記給湯停止からの時間が3分以下であっても影響が大きい。 By the way, in the heat source device as shown in FIG. 6, when hot water having a temperature higher than the threshold value is stored in the hot water storage tank 2, the hot water supply temperature is substantially higher than the set hot water supply temperature (for example, the hot water is from the hot water storage tank 2 to the water heater). When hot water is stored from the hot water storage tank 2 to the water heater 16 when hot water is stored at a temperature higher than the set temperature of the hot water supply, for example, 0.5 ° C., which is more than the amount of water that cools before being supplied to the hot water supply destination through 16. It is possible to supply hot water to the hot water without heating (without additional heating by the hot water supply heat exchanger 17 of the water heater 16), but even when the hot water temperature in the hot water storage tank 2 is high in this way, The hot water introduction passage 15 and the pipeline in the water heater 16 are cold, such as when the hot water is supplied for the first time after the heat source device is installed, or when the hot water is discharged again after a time such as 8.5 minutes or more has passed since the hot water supply was stopped. In some cases, it is necessary to heat the water in these pipelines. Especially in winter, the pipes are extremely cold, so even if the time from the stop of hot water supply is 3 minutes or less, the effect is large.

また、特に、湯水導入通路15が長い場合には、貯湯槽2から給湯器16に送られる湯が給湯器16に到達するまでの時間が長くなるため、利用者が給湯栓を開いてからなるべく早く給湯設定温度の湯を給湯するためには、給湯が開始されたときに給湯器16の給湯バーナ61を燃焼させて迅速に湯を形成することが重要となる。そして、給湯器16に貯湯槽2から送水される湯が到達する適切なタイミングで給湯バーナ61の燃焼停止を行うことが重要であると考えられる。 Further, in particular, when the hot water introduction passage 15 is long, it takes a long time for the hot water sent from the hot water storage tank 2 to the water heater 16 to reach the water heater 16, so that it is possible after the user opens the water heater. In order to quickly supply hot water at a set temperature, it is important to burn the hot water burner 61 of the water heater 16 to quickly form hot water when the hot water supply is started. Then, it is considered important to stop the combustion of the hot water supply burner 61 at an appropriate timing when the hot water supplied from the hot water storage tank 2 reaches the water heater 16.

しかしながら、図6に示したようなシステム構成の熱源装置においては、給湯器16に導入される湯水の温度を検出する温度センサが設けられておらず、予め定められた手法を用いて給湯器16に導入される湯水の温度を給水温度演算値(認識値)として演算により求めており、その求めた温度に基づき給湯器16に貯湯槽2から実質的に給湯設定温度の湯が到達したと判断されたときに給湯バーナ61の燃焼を停止する制御を試みたが、十分に満足のいく結果が得られなかった。 However, in the heat source device having the system configuration as shown in FIG. 6, a temperature sensor for detecting the temperature of the hot water introduced into the water heater 16 is not provided, and the water heater 16 uses a predetermined method. The temperature of the hot water introduced into the water heater is calculated as a calculated water temperature (recognized value), and based on the calculated temperature, it is determined that the hot water of the hot water supply set temperature has substantially reached the water heater 16 from the hot water storage tank 2. Attempts were made to stop the combustion of the hot water supply burner 61 when the temperature was increased, but sufficiently satisfactory results were not obtained.

本発明は、上記課題を解決するためになされたものであり、その目的は、主熱源の下流側に補助熱源装置の湯水導入側を設けた熱源装置において、給湯開始時に主熱源からの湯を補助熱源装置に送って給湯する際の給湯温度の安定化を図ることができる熱源装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide hot water from a main heat source at the start of hot water supply in a heat source device in which a hot water introduction side of an auxiliary heat source device is provided on the downstream side of the main heat source. It is an object of the present invention to provide a heat source device capable of stabilizing a hot water supply temperature when sending hot water to an auxiliary heat source device to supply hot water.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、湯を出湯する機能を有する主熱源を有し、該主熱源から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されており、前記補助熱源装置には、前記給湯回路の湯水導入側に導入される湯水の温度を検出する給水温度検出手段と、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯熱交換器の出側の温度を検出する給湯熱交出側温度検出手段と、前記給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路と、該バイパス通路に設けられるバイパスサーボとが設けられて、該バイパスサーボがバイパスサーボ制御手段により制御されて前記給湯回路に導入される湯水の前記給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが予め定められるバイパス割合変化範囲内で制御される構成を有しており、給湯が開始されたときに給湯設定温度の湯を前記主熱源側から前記補助熱源装置の給湯回路側に送ると共に前記補助熱源装置の前記燃焼制御手段が前記給湯バーナの燃焼を開始させる機能を有して前記給湯回路を通る湯水を前記給湯熱交換器により加熱して給湯しながら前記給水温度検出手段の検出温度を取り込み、該検出温度が前記給湯設定温度と前記給湯熱交出側温度検出手段の検出温度と前記バイパス割合変化範囲における前記バイパス通路側へのバイパス割合の最大値とにより予め求められる値であって前記給湯設定温度よりは低い給水限界温度以上になったときに前記給湯バーナの燃焼を停止して給湯を継続する構成をもって課題を解決するための手段としている。 In order to achieve the above object, the present invention is a means for solving a problem with the following configuration. That is, the first invention has a hot water supply circuit of an auxiliary heat source device having a main heat source having a function of discharging hot water and having a hot water supply heat exchanger on the downstream side of the passage of hot water discharged from the main heat source. The hot water introduction side is connected, and the auxiliary heat source device includes a hot water supply temperature detecting means for detecting the temperature of the hot water introduced to the hot water introduction side of the hot water supply circuit, a hot water supply burner for heating the hot water supply heat exchanger, and the like. The combustion control means for controlling the combustion of the hot water supply burner, the hot water supply heat exchange side temperature detecting means for detecting the temperature on the outlet side of the hot water supply heat exchanger, and the hot water supply heat exchanger for hot water introduced into the hot water supply circuit. A bypass passage for deriving from the hot water supply circuit without passing through the hot water supply circuit and a bypass servo provided in the bypass passage are provided, and the bypass servo is controlled by the bypass servo control means to be introduced into the hot water supply circuit. Has a configuration in which the distribution ratio to the hot water supply heat exchanger side and the distribution ratio to the bypass passage side are controlled within a predetermined bypass ratio change range, and the hot water supply is set when hot water supply is started. Hot water at a temperature is sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device, and the combustion control means of the auxiliary heat source device has a function of starting combustion of the hot water supply burner to allow hot water to pass through the hot water supply circuit. While supplying hot water by heating with the hot water supply heat exchanger, the detection temperature of the water supply temperature detecting means is taken in, and the detection temperature is the detection temperature of the hot water supply set temperature, the hot water supply heat exchange side temperature detecting means, and the bypass ratio change range. When the maximum value of the bypass ratio to the bypass passage side in the above is obtained in advance and the water supply limit temperature is lower than the hot water supply set temperature, the combustion of the hot water supply burner is stopped and hot water supply is continued. It is a means to solve problems with a structure.

また、第2の発明は、前記第1の発明の構成に加え、前記補助熱源装置は、給湯熱交換器を通って該給湯熱交換器から出る湯の温度が予め求められる熱交基準温度となるように燃焼制御手段によって給湯バーナの燃焼を制御し、前記給湯熱交換器から出る前記熱交基準温度の湯と該熱交基準温度の湯にバイパス通路を通って合流する湯との割合をバイパスサーボ制御手段がバイパスサーボの制御によって可変することにより前記給湯熱交換器の湯が給湯されるように制御する給湯温度制御構成を有することを特徴とする。 Further, in the second invention, in addition to the configuration of the first invention, the auxiliary heat source device has a heat exchange reference temperature at which the temperature of hot water discharged from the hot water supply heat exchanger through the hot water supply heat exchanger is obtained in advance. The combustion of the hot water supply burner is controlled by the combustion control means so that the ratio of the hot water of the heat exchange reference temperature discharged from the hot water supply heat exchanger and the hot water of the hot water exchange reference temperature merging through the bypass passage is determined. The bypass servo control means is characterized by having a hot water supply temperature control configuration that controls so that hot water of the hot water supply heat exchanger is supplied by being variable by the control of the bypass servo.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記バイパスサーボ制御手段は、給湯バーナを停止した以降はバイパス通路側への流通割合が前記割合変化範囲内で最大となるようにバイパスサーボを制御することを特徴とする。 Further, in the third invention, in addition to the configuration of the first or second invention, the bypass servo control means has a maximum distribution ratio to the bypass passage side within the ratio change range after the hot water supply burner is stopped. It is characterized in that the bypass servo is controlled so as to be.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記補助熱源装置の給湯熱交換器は、給湯バーナの燃焼ガスの顕熱を吸収するメインの熱交換器と、該メインの熱交換器の上流側に設けられて前記燃焼ガスの潜熱を回収する潜熱回収用熱交換器とを有し、主熱源から前記補助熱源装置に送られる湯を前記潜熱回収用熱交換器と前記メインの熱交換器に順に通して給湯先に給湯する機能を有しており、主熱源側には該主熱源側から前記補助熱源装置の給湯回路側に送られる湯の温度を調節する送湯温度調節手段が設けられ、熱源装置の試運転時の給湯動作における前記給湯バーナの燃焼開始後の該給湯バーナの燃焼停止以降に検出される給湯熱交出側温度検出手段の検出温度に基づいて、前記給湯バーナの停止時から前記給湯熱交出側温度検出手段の検出温度が給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、前記メインの熱交換器の出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを前記送湯温度調節手段の温度調節用情報として設定する温度調節情報設定手段を有し、該温度調節用情報に基づいて前記送湯温度調節手段が前記主熱源側から前記補助熱源装置の給湯回路側に送る湯の温度を給湯開始から該湯の容量が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも前記嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とすることを特徴とする。 Further, in the fourth invention, in addition to the configuration of the first, second or third invention, the hot water supply heat exchanger of the auxiliary heat source device is a main heat exchange that absorbs the actual heat of the combustion gas of the hot water supply burner. It has a device and a heat exchanger for latent heat recovery provided on the upstream side of the main heat exchanger to recover the latent heat of the combustion gas, and recovers the hot water sent from the main heat source to the auxiliary heat source device. It has a function to supply hot water to the hot water supply destination by passing it through the hot water exchanger and the main heat exchanger in order, and on the main heat source side, the hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device. A hot water supply temperature adjusting means for adjusting the temperature is provided, and the hot water supply heat discharge side temperature detecting means detected after the combustion of the hot water supply burner is stopped after the combustion of the hot water supply burner is started in the hot water supply operation during the trial operation of the heat source device. Based on the detected temperature, the first set capacity based on the time required from the stop of the hot water supply burner to the detection temperature of the hot water supply heat exchange side temperature detecting means lower than the hot water supply set temperature and the hot water supply flow rate, and the hot water supply The second set capacity based on the time required to return to the hot water supply set temperature after the detection temperature of the heat exchange side temperature detecting means falls below the hot water supply set temperature and the hot water supply flow rate, and the output side of the main heat exchanger. It has a temperature control information setting means for setting the raising temperature based on the temperature characteristics until the temperature of the hot water supply becomes lower than the hot water supply set temperature and then returns to the hot water supply set temperature as the temperature control information of the hot water supply temperature control means. Based on the temperature control information, the hot water temperature control means sends the temperature of hot water from the main heat source side to the hot water supply circuit side of the auxiliary heat source device from the start of hot water supply until the capacity of the hot water reaches the first set capacity. Is set to a temperature higher than the hot water supply set temperature from reaching the first set capacity until reaching the second set capacity, and after reaching the second set capacity, the hot water supply setting It is characterized by having a temperature.

さらに、第5の発明は、前記第4の発明の構成に加え、前記温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする。 Further, in the fifth invention, in addition to the configuration of the fourth invention, the temperature control information setting means is a means for detecting the temperature on the hot water supply heat exchange side after the combustion of the hot water supply burner that started burning at the start of hot water supply is stopped. The detection information is monitored for each hot water supply operation of the heat source device, for each predetermined number of hot water supply operations, or for each predetermined monitor timing for each predetermined set period, and at the time of the monitoring, the hot water supply heat delivery side temperature detecting means The temperature difference from the hot water supply set temperature in the temperature drop region where the detected temperature of is lower than the hot water supply set temperature exceeds the allowable range predetermined for the temperature difference from the hot water supply set temperature in the temperature drop region during the trial run. When they are different, the temperature control information to be applied after the next hot water supply operation of the monitored hot water supply operation is changed and set according to a different degree beyond the allowable range of the temperature difference. To do.

さらに、第6の発明は、前記第4の発明の構成に加え、前記給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を有し、温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の前記給湯温度検出手段の検出温度が給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする。 Further, the sixth invention has, in addition to the configuration of the fourth invention, a hot water supply temperature detecting means for detecting the temperature of hot water supplied through the hot water supply circuit as a hot water supply temperature, and the temperature control information setting means is a hot water supply. The hot water supply temperature detected by the hot water supply temperature detecting means after the combustion of the hot water supply burner that started combustion at the start is stopped is set for each hot water supply operation of the heat source device, for each predetermined number of hot water supply operations, or for each predetermined set period. It is monitored at each predetermined monitor timing, and when the detection temperature of the hot water supply temperature detecting means at the time of monitoring becomes different from the predetermined allowable range with respect to the hot water supply set temperature, the monitoring is performed. It is characterized in that the raising temperature of the temperature control information applied after the next hot water supply operation of the hot water supply operation is changed and set according to a different degree beyond the allowable range of the hot water supply temperature.

さらに、第7の発明は、前記第4または第5または第6の発明の構成に加え、前記補助熱源装置の湯水導入側には主熱源から出湯される湯の通路の他に給水通路が接続されており、主熱源と補助熱源装置の給湯回路の湯水導入側とが接続用配管を介して接続されていて該接続用配管の長さが予め与えられる設定長さより短い場合には、給湯が開始されたときに前記主熱源側から前記補助熱源装置の給湯回路側に湯を送る代わりに給湯開始から予め定められている水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入する給湯開始時導入湯水可変手段を有することを特徴とする。 Further, in the seventh invention, in addition to the configuration of the fourth, fifth or sixth invention, a water supply passage is connected to the hot water introduction side of the auxiliary heat source device in addition to the hot water passage discharged from the main heat source. If the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device are connected via a connection pipe and the length of the connection pipe is shorter than the preset length given in advance, the hot water supply is performed. Instead of sending hot water from the main heat source side to the hot water supply circuit side of the auxiliary heat source device when it is started, the auxiliary heat source device is used from the water supply passage until a predetermined water introduction time elapses from the start of hot water supply. It is characterized by having a hot water introduction variable means at the start of hot water supply, in which water is introduced into the auxiliary heat source device and hot water discharged from the main heat source through the hot water passage is introduced into the auxiliary heat source device after the water introduction time has elapsed. ..

さらに、第8の発明は、前記第1乃至第7のいずれか一つの発明の構成に加え、前記主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、該ミキシング流量制御手段に送湯温度調節手段が指令を加えて前記主熱源から前記補助熱源装置側に送られる湯の温度を調節することを特徴とする。 Further, in the eighth invention, in addition to the configuration of any one of the first to seventh inventions, the main heat source has a hot water storage tank, and a passage for hot water discharged from the hot water storage tank and a water supply passage are provided. A mixing means for mixing hot water and water to be merged at the merging portion is provided, a hot water introduction passage for introducing the hot water formed by mixing by the mixing means into an auxiliary heat source device, and the above. It has a mixing flow rate control means for controlling the flow rate of hot water and the flow rate of water flowing to the confluence by controlling the mixing means, and the hot water supply temperature adjusting means gives a command to the mixing flow rate control means to give a command to the main heat source. It is characterized in that the temperature of the hot water sent from the auxiliary heat source device to the auxiliary heat source device is adjusted.

本発明によれば、湯を出湯する機能を備えた主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側を接続し、前記主熱源から送られる湯を補助熱源装置の給湯回路を通して給湯するが、給湯が開始されたときに補助熱源装置内の給湯バーナの燃焼を開始させる機能を有しており、例えばコールドスタート時等、補助熱源装置の給湯回路内の湯水や主熱源と補助熱源装置とを接続する通路(管路)内の湯水が給湯設定温度より低い場合でも、その湯水を前記給湯バーナ燃焼により給湯熱交換器で加熱して給湯設定温度またはその近傍温度まで高めて給湯することができる。 According to the present invention, the hot water introduction side of the hot water supply circuit of the auxiliary heat source device equipped with the hot water supply heat exchanger is connected to the downstream side of the passage of the hot water discharged from the main heat source having the function of discharging hot water. The hot water sent from the main heat source is supplied through the hot water supply circuit of the auxiliary heat source device, but it has a function to start the combustion of the hot water supply burner in the auxiliary heat source device when the hot water supply is started, for example, at the time of cold start. Even if the hot water in the hot water supply circuit of the auxiliary heat source device or the hot water in the passage (pipeline) connecting the main heat source and the auxiliary heat source device is lower than the hot water supply set temperature, the hot water is supplied by the hot water supply burner combustion in the hot water supply heat exchanger. Hot water can be supplied by heating to a set temperature for hot water supply or its vicinity.

また、前記のように給湯が開始されたときに補助熱源装置内の給湯バーナの燃焼を開始させると共に、給湯設定温度の湯を前記主熱源側から前記補助熱源装置の給湯回路側に送る動作を行う場合、補助熱源装置の燃焼制御手段は給水温度検出手段の検出温度(給湯回路の湯水導入側に導入される湯水の温度)を取り込み、該検出温度が給湯設定温度より低い給水限界温度以上になったときに前記給湯バーナの燃焼を停止するため、的確なタイミングで給湯バーナを燃焼停止して給湯を継続することができ、主熱源から補助熱源装置に到達した湯を余分に加熱することにより生じる給湯温度のオーバーシュートを防ぐことができる。 Further, when the hot water supply is started as described above, the combustion of the hot water supply burner in the auxiliary heat source device is started, and the hot water of the hot water supply set temperature is sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device. When doing so, the combustion control means of the auxiliary heat source device takes in the detection temperature of the water supply temperature detecting means (the temperature of the hot water introduced to the hot water introduction side of the hot water supply circuit), and the detected temperature becomes equal to or higher than the water supply limit temperature lower than the hot water supply set temperature. Since the combustion of the hot water supply burner is stopped when the temperature is reached, the hot water supply burner can be stopped at an appropriate timing to continue the hot water supply, and the hot water that has reached the auxiliary heat source device from the main heat source is heated excessively. It is possible to prevent overshoot of the hot water supply temperature that occurs.

つまり、前記給水限界温度は、給湯設定温度と、給湯熱交出側温度検出手段の検出温度と、バイパス割合変化範囲における前記バイパス通路側へのバイパス割合の最大値とにより予め求められる値であって、給湯設定温度よりも低い温度であるが、前記給水限界温度を求めるための情報(例えば演算式)は、例えば実験やシミュレーション等によって得て与えられるものであり、この温度の湯水が補助熱源装置に導入された時に給湯バーナの燃焼を停止することにより給湯温度のオーバーシュートの発生を抑制できる温度を給水限界温度として求められるように、与えられるものである。したがって、給水温度検出手段の検出温度が給水限界温度以上になったときに給湯バーナの燃焼を停止することによって、非常に的確なタイミングで給湯バーナ燃焼を停止させ、主熱源から補助熱源装置に到達した湯を余分に加熱することにより生じる給湯温度のオーバーシュートを防ぐことができる。 That is, the water supply limit temperature is a value obtained in advance by the hot water supply set temperature, the detection temperature of the hot water supply heat exchange side temperature detecting means, and the maximum value of the bypass ratio to the bypass passage side in the bypass ratio change range. Although the temperature is lower than the hot water supply set temperature, the information for obtaining the water supply limit temperature (for example, an arithmetic expression) is obtained and given by, for example, an experiment or a simulation, and the hot water at this temperature is the auxiliary heat source. It is given so that a temperature capable of suppressing the occurrence of overshoot of the hot water supply temperature by stopping the combustion of the hot water supply burner when introduced into the apparatus can be obtained as the water supply limit temperature. Therefore, by stopping the combustion of the hot water supply burner when the detection temperature of the water supply temperature detecting means exceeds the water supply limit temperature, the combustion of the hot water supply burner is stopped at a very accurate timing, and the combustion reaches from the main heat source to the auxiliary heat source device. It is possible to prevent overshoot of the hot water supply temperature caused by excessive heating of the hot water.

また、補助熱源装置の給湯バーナの燃焼を停止した以降も、給湯熱交換器が冷え切るまでの間は、給湯熱交換器の保有熱量によって給湯熱交換器を通る湯水が加熱されるものであり、給湯熱交換器の保有熱量は給湯バーナの燃焼量に応じて変わるものである。そのため、本発明において、給湯熱交換器を通って該給湯熱交換器から出る湯の温度が予め求められる熱交基準温度となるように燃焼制御手段によって給湯バーナの燃焼を制御し、前記給湯熱交換器から出る前記熱交基準温度の湯と該熱交基準温度の湯にバイパス通路を通って合流する湯との割合をバイパスサーボの制御によって可変することにより前記給湯熱交換器の湯が給湯されるように制御すると(このような給湯温度制御構成を設けると)、給湯設定温度に因らず給湯熱交換器の燃焼停止後の保有熱量を一定の値とすることができる。 In addition, even after the combustion of the hot water supply burner of the auxiliary heat source device is stopped, the hot water passing through the hot water supply heat exchanger is heated by the amount of heat possessed by the hot water supply heat exchanger until the hot water supply heat exchanger cools down. , The amount of heat possessed by the hot water heat exchanger changes according to the amount of heat burned by the hot water burner. Therefore, in the present invention, the combustion of the hot water supply burner is controlled by the combustion control means so that the temperature of the hot water discharged from the hot water supply heat exchanger through the hot water supply heat exchanger becomes the heat exchange reference temperature obtained in advance, and the hot water supply heat. The hot water of the hot water supply heat exchanger is supplied by changing the ratio of the hot water of the heat exchange reference temperature that comes out of the exchanger and the hot water that joins the hot water of the heat exchange reference temperature through the bypass passage by controlling the bypass servo. When controlled so as to be performed (providing such a hot water supply temperature control configuration), the amount of heat retained after the combustion of the hot water supply heat exchanger is stopped can be set to a constant value regardless of the hot water supply set temperature.

つまり、上記構成の給湯温度制御構成を設けることにより、給水限界温度を給湯設定温度に左右されない値とすることができ、給水温度検出手段の検出温度が給水限界温度以上になったときに給湯バーナの燃焼を停止して給湯を継続することにより、給湯温度を安定化することができる。 That is, by providing the hot water supply temperature control configuration having the above configuration, the water supply limit temperature can be set to a value that is not affected by the hot water supply set temperature, and when the detection temperature of the water supply temperature detecting means becomes equal to or higher than the hot water supply limit temperature, the hot water supply burner The hot water supply temperature can be stabilized by stopping the combustion of the hot water and continuing the hot water supply.

さらに、本発明において、給湯バーナを停止した以降はバイパス通路側への流通割合が前記割合変化範囲内において最大となるようにバイパスサーボを制御し、主熱源からの湯を主にバイパス通路側を通して給湯することにより、給湯熱交換器の熱の単位時間当たりの影響を受けにくい状態で給湯することができ、給湯温度の安定化を適切に行うことができる。 Further, in the present invention, after the hot water supply burner is stopped, the bypass servo is controlled so that the distribution ratio to the bypass passage side becomes maximum within the ratio change range, and hot water from the main heat source is mainly passed through the bypass passage side. By supplying hot water, it is possible to supply hot water in a state where it is not easily affected by the heat of the hot water supply heat exchanger per unit time, and the hot water supply temperature can be appropriately stabilized.

また、補助熱源装置の給湯熱交換器が、給湯バーナの燃焼ガスの顕熱を吸収するメインの熱交換器と、該メインの熱交換器の上流側に設けられて前記燃焼ガスの潜熱を回収する潜熱回収用熱交換器とを有する補助熱源装置が近年多く用いられるようになり、このようなタイプの補助熱源装置は熱効率を向上できるメリットがある。 Further, the hot water supply heat exchanger of the auxiliary heat source device is provided in the main heat exchanger that absorbs the sensible heat of the combustion gas of the hot water supply burner and on the upstream side of the main heat exchanger to recover the latent heat of the combustion gas. Auxiliary heat source devices having a heat exchanger for recovering latent heat have become widely used in recent years, and such types of auxiliary heat source devices have an advantage of being able to improve thermal efficiency.

ただし、このようなタイプの補助熱源装置においては、主熱源から補助熱源装置に送られる湯が潜熱回収用熱交換器を通った後に下流側のメインの熱交換器を通って導出され、前記バイパス通路側を通って導出される湯水と合流して給湯回路から出て給湯されるため、以下に述べるように、給湯熱交換器側を通る湯水とバイパス通路側を通る湯水の温度の時間的変化をそれぞれ考慮する必要がある。そこで、その考慮を行った上での以下のような制御を行うことにより、以下に述べるように、補助熱源装置の給湯バーナ停止後の給湯温度の安定化を図ることができる。 However, in this type of auxiliary heat source device, the hot water sent from the main heat source to the auxiliary heat source device is led out through the main heat exchanger on the downstream side after passing through the latent heat recovery heat exchanger, and the bypass is described. Since it merges with the hot water that is led out through the passage side and exits from the hot water supply circuit to be supplied, the temperature of the hot water that passes through the hot water supply heat exchanger side and the hot water that passes through the bypass passage side changes over time as described below. It is necessary to consider each. Therefore, by performing the following control after taking this into consideration, it is possible to stabilize the hot water supply temperature after the hot water supply burner of the auxiliary heat source device is stopped, as described below.

つまり、本発明においては、前記の如く、給湯開始時に燃焼開始した補助熱源装置の給湯バーナを、給水温度検出手段の検出温度が前記給水限界温度以上になったときに給湯バーナの燃焼を停止するが、このとき、バイパス通路内の湯水は加熱されていない低めの温度の湯水である。一方、給湯熱交換器を前記のように潜熱回収用熱交換器とメインの熱交換器を有する構成とすると、給湯熱交換器のメインの熱交換器においては、出口側の湯の温度が例えば高い温度に設定される前記熱交基準温度であり、入口側の温度は、潜熱回収用熱交換器で加熱されてはいるが、潜熱回収用熱交換器とメインの熱交換器で上昇する温度の例えば14%位(=4/28位)しか加熱されていない低めの温度(ほぼ加熱されていない低めの温度)の湯水温度となっている。 That is, in the present invention, as described above, the hot water supply burner of the auxiliary heat source device that started combustion at the start of hot water supply stops the combustion of the hot water supply burner when the detection temperature of the water supply temperature detecting means becomes equal to or higher than the water supply limit temperature. However, at this time, the hot water in the bypass passage is unheated hot water at a low temperature. On the other hand, if the hot water supply heat exchanger is configured to have the latent heat recovery heat exchanger and the main heat exchanger as described above, in the main heat exchanger of the hot water supply heat exchanger, the temperature of the hot water on the outlet side is, for example. It is the heat exchange reference temperature set to a high temperature, and the temperature on the inlet side is a temperature that rises in the latent heat recovery heat exchanger and the main heat exchanger, although it is heated by the latent heat recovery heat exchanger. For example, the hot water temperature is a low temperature (a low temperature that is almost unheated) in which only about 14% (= 4/28) is heated.

そして、この給湯バーナの燃焼停止直後には給湯熱交換器のメインの熱交換器は熱いままであり(保有熱量が大きく)、例えば給湯バーナの燃焼停止時に、給湯回路に導入される湯水のうちバイパス通路側を通して給湯する流量をバイパスサーボの制御によるバイパス割合の変化範囲内で最大にする(例えば給湯熱交換器側とバイパス通路側とのバイパス比を1:3.5にする)といったように、給湯回路に導入される湯水のバイパス通路側への流量を増やすと、(通常は、燃焼中は給湯熱交換器側への流量比が大きいので)熱い状態のメインの熱交換器を通る湯の流量が給湯バーナの燃焼中よりは小さくなるが、メインの熱交換器から導出される湯の温度が給湯設定温度よりもまだ高く、その高めの温度の湯と前記バイパス通路から導出される加熱されていない低めの温度の湯水とがバイパス通路の出口側で合流することにより、ほぼ給湯設定温度として給湯回路から給湯することができる。なお、本明細書において、ほぼ給湯設定温度とは、給湯設定温度またはその近傍の温度をいう。 Immediately after the hot water burner stops burning, the main heat exchanger of the hot water heat exchanger remains hot (the amount of heat held is large). For example, of the hot water introduced into the hot water supply circuit when the hot water burner stops burning. Maximize the flow rate of hot water supplied through the bypass passage side within the range of change in the bypass ratio under the control of the bypass servo (for example, set the bypass ratio between the hot water supply heat exchanger side and the bypass passage side to 1: 3.5). If the flow rate of hot water introduced into the hot water supply circuit to the bypass passage side is increased, hot water passes through the main heat exchanger in a hot state (because the flow rate ratio to the hot water supply heat exchanger side is usually large during combustion). Although the flow rate is smaller than during combustion of the hot water supply burner, the temperature of the hot water derived from the main heat exchanger is still higher than the set temperature of the hot water supply, and the hot water at a higher temperature and the heating derived from the bypass passage By merging hot water with a lower temperature that has not been provided at the outlet side of the bypass passage, hot water can be supplied from the hot water supply circuit as the set temperature for hot water supply. In this specification, the hot water supply set temperature means a temperature at or near the hot water supply set temperature.

なお、通常、バイパス通路の容量は給湯熱交換器の容量に比べて小さく形成され、かつ、給湯バーナの燃焼停止後にバイパス通路側への流量が大きくされるので、給湯バーナの燃焼停止時にバイパス通路の中にあった低めの温度の湯水は直ぐに全てバイパス通路から導出される。 Normally, the capacity of the bypass passage is formed smaller than the capacity of the hot water supply heat exchanger, and the flow rate to the bypass passage side is increased after the combustion of the hot water supply burner is stopped. Therefore, the bypass passage is normally formed when the combustion of the hot water supply burner is stopped. All the cold water in the room is immediately taken out from the bypass passage.

また、補助熱源装置の給湯熱交換器がメインの熱交換器と潜熱回収用熱交換器とを有する構成の本発明において、例えば熱源装置の試運転を行う試運転モードの給湯動作時に、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を検出し、該検出情報に基づき、温度調節情報設定手段が送湯温度調節手段による温度調節用情報として設定することが行われる。 Further, in the present invention in which the hot water supply heat exchanger of the auxiliary heat source device has a main heat exchanger and a heat exchanger for latent heat recovery, for example, during a hot water supply operation in a trial run mode in which a trial run of the heat source device is performed, combustion occurs at the start of hot water supply. The detection information of the hot water supply heat exchange side temperature detecting means after the start of combustion of the hot water supply burner is stopped is detected, and based on the detection information, the temperature control information setting means serves as the temperature control information by the hot water supply temperature control means. The setting is done.

その設定事項の一つとして、前記給湯熱交出側温度検出手段の検出温度が前記給湯バーナの停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づいて第1設定容量を設定し、主熱源から補助熱源装置側に送る湯の温度を該湯の容量が該第1設定容量に達するまでは給湯設定温度とする制御を行うと、前記バイパス通路の中にあった低めの温度の湯水が導出された後に、バイパス通路には、給湯バーナの燃焼停止から少し遅れて、主熱源側から給湯回路の湯水導入側に到達した給湯設定温度の湯が導入され、この湯がバイパス通路を通って導出される。 As one of the setting items, the first set capacity is based on the time required from the stop of the hot water supply burner to the temperature lower than the hot water supply set temperature and the hot water supply flow rate. When the temperature of the hot water sent from the main heat source to the auxiliary heat source device side is controlled to be the hot water supply set temperature until the capacity of the hot water reaches the first set capacity, the temperature is lower than that in the bypass passage. After the hot water of the above temperature was derived, hot water of the hot water supply set temperature that reached the hot water introduction side of the hot water supply circuit from the main heat source side was introduced into the bypass passage a little later than the combustion stop of the hot water supply burner. Derived through a bypass passage.

一方、給湯熱交換器側では、給湯バーナの燃焼停止後に、メインの熱交換器の出口側にあった湯が導出された後、その湯よりはメインの熱交換器の入口側に近い位置にあった湯がメインの熱交換器から導出されていくといった如く、前記第1設定容量の湯が補助熱源装置に導入されるまでの間、メインの熱交換器の保有水量の湯が、順次、メインの熱交換器から導出されていく。このようにして、メインの熱交換器から導出される湯の温度は、(例えば給湯バーナの燃焼停止直後にメインの熱交換器を通って導出される湯によってメインの熱交換器の保有熱量が奪われていくこと等により)給湯バーナの燃焼停止直後にメインの熱交換器を通って導出される湯に比べると低くなっていくが、給湯設定温度より高めの温度である。 On the other hand, on the hot water supply heat exchanger side, after the combustion of the hot water supply burner is stopped, the hot water on the outlet side of the main heat exchanger is taken out, and then the hot water is closer to the inlet side of the main heat exchanger than the hot water. Until the first set capacity of hot water is introduced into the auxiliary heat source device, the amount of hot water held by the main heat exchanger is sequentially increased, such that the existing hot water is derived from the main heat exchanger. It is derived from the main heat exchanger. In this way, the temperature of the hot water derived from the main heat exchanger is (for example, the amount of heat held by the main heat exchanger is determined by the hot water derived through the main heat exchanger immediately after the combustion of the hot water supply burner is stopped. It becomes lower than the hot water that is drawn out through the main heat exchanger immediately after the combustion of the hot water supply burner is stopped (due to being robbed, etc.), but it is higher than the hot water supply set temperature.

そして、この給湯熱交換器側から導出される給湯設定温度よりも高めの温度の湯が、バイパス通路を通って導出される給湯設定温度の湯と合流することになるが、前記の如く、給湯バーナの燃焼停止後に給湯熱交換器側とバイパス通路側とのバイパス比を例えば1:3.5にする等、バイパス通路側を通る湯の流量を給湯熱交換器側を通る湯の流量よりも多くすることにより、合流されて給湯回路から出る湯の温度は給湯設定温度よりは高めであるものの、その温度差を小さくすることができ(例えば2℃以下といった許容範囲にすることができ)、給湯設定温度に近い湯を給湯回路から給湯することができる。 Then, the hot water having a temperature higher than the hot water set temperature derived from the hot water heat exchanger side merges with the hot water set temperature led out through the bypass passage. As described above, the hot water supply The flow rate of hot water passing through the bypass passage side is larger than the flow rate of hot water passing through the hot water supply heat exchanger side, for example, by setting the bypass ratio between the hot water supply heat exchanger side and the bypass passage side to 1: 3.5 after the burner has stopped burning. By increasing the number, the temperature of the hot water that merges and exits the hot water supply circuit is higher than the hot water supply set temperature, but the temperature difference can be reduced (for example, it can be within an allowable range of 2 ° C or less). Hot water that is close to the hot water supply set temperature can be supplied from the hot water supply circuit.

また、第1設定容量の湯が導入された後には、給湯設定温度よりも予め定められる嵩上げ温度高い温度の湯がバイパス通路側と給湯熱交換器側にそれぞれ導入される。なお、この設定温度よりも嵩上げ温度高い温度の湯は、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づいて設定される第2設定容量だけ補助熱源装置に導入されることになる。 Further, after the hot water having the first set capacity is introduced, hot water having a temperature higher than the hot water supply set temperature, which is a predetermined raising temperature, is introduced into the bypass passage side and the hot water supply heat exchanger side, respectively. For hot water having a temperature higher than the set temperature, the time required for returning to the hot water supply set temperature and the hot water supply flow rate after the detection temperature of the hot water supply heat exchange side temperature detecting means falls below the hot water supply set temperature. Only the second set capacity set based on the above will be introduced into the auxiliary heat source device.

ここで、バイパス通路に導入された給湯設定温度よりも嵩上げ温度高い温度の湯は直ぐにバイパス通路を通って導出されるが、給湯熱交換器側おいては、このとき、給湯バーナの燃焼停止時に潜熱回収用熱交換器内にあった湯がメインの熱交換器を通って導出され、バイパス通路から導出される湯と合流する。 Here, hot water having a temperature higher than the hot water supply set temperature introduced in the bypass passage is immediately derived through the bypass passage, but on the hot water supply heat exchanger side, at this time, when the hot water supply burner stops burning. The hot water in the latent heat recovery heat exchanger is led out through the main heat exchanger and merges with the hot water drawn out from the bypass passage.

この給湯バーナの燃焼停止時に潜熱回収用熱交換器内にあった給湯設定温度よりも低めの温度の湯は、メインの熱交換器を通るときに、その残留熱量によって多少温められるものの給湯設定温度よりもだいぶ低い温度だが、このときにバイパス通路を通って導出される湯が給湯設定温度よりも前記嵩上げ温度高い温度の湯であるため、これらの湯が合流されて給湯回路を通って給湯される湯の温度が給湯設定温度よりも低くなることを防ぐことができ、ほぼ給湯設定温度の湯の給湯を可能とすることができる。 Hot water at a temperature lower than the hot water supply set temperature that was in the latent heat recovery heat exchanger when the hot water supply burner stopped burning is slightly warmed by the residual heat amount when passing through the main heat exchanger, but the hot water supply set temperature Although the temperature is much lower than that of the hot water, the hot water drawn out through the bypass passage at this time is the hot water having a temperature higher than the hot water supply set temperature, so these hot waters are merged and supplied through the hot water supply circuit. It is possible to prevent the temperature of the hot water from becoming lower than the set temperature for hot water supply, and it is possible to supply hot water at almost the set temperature for hot water supply.

その後、第2設定容量の湯の補助熱源装置への導入が終了する頃には、給湯熱交換器側では、給湯バーナの燃焼停止時に給湯熱交換器側に保有されていた湯は全て給湯回路を通って給湯され、主熱源から補助熱源装置に送られた給湯設定温度の湯が給湯熱交換器を通って導出された後、給湯設定温度より前記嵩上げ温度高い温度の湯が給湯熱交換器を通って導出され、その後、給湯設定温度の湯が導出される。 After that, by the time the introduction of the hot water of the second set capacity to the auxiliary heat source device is completed, on the hot water supply heat exchanger side, all the hot water held on the hot water supply heat exchanger side when the combustion of the hot water supply burner is stopped is the hot water supply circuit. After the hot water of the hot water supply set temperature sent from the main heat source to the auxiliary heat source device is derived through the hot water supply heat exchanger, the hot water having a temperature higher than the hot water supply set temperature is the hot water supply heat exchanger. It is derived through the hot water, and then the hot water at the hot water supply set temperature is derived.

一方、バイパス通路側では、第2設定容量の湯の補助熱源装置への導入が終了する頃には、主熱源から補助熱源装置に送られる給湯設定温度の湯がバイパス通路側を通って導出されるので、前記給湯熱交換器側から導出される給湯設定温度または給湯設定温度より前記嵩上げ温度高い温度の湯とバイパス通路側から導出される給湯設定温度の湯とが例えば1:3.5の割合で合流して給湯されることになり、給湯回路から給湯される湯の温度(給湯温度)は、給湯設定温度または給湯設定温度よりやや高めであるものの給湯設定温度に近い温度の湯が給湯される。以上のことから、メインの熱交換器と潜熱回収用熱交換器とを有する補助熱源装置において、前記構成により、給湯温度のオーバーシュートのみならずアンダーシュートも的確に抑制できる。 On the other hand, on the bypass passage side, by the time the introduction of the hot water of the second set capacity into the auxiliary heat source device is completed, the hot water of the hot water supply set temperature sent from the main heat source to the auxiliary heat source device is led out through the bypass passage side. Therefore, the hot water set temperature derived from the hot water supply heat exchanger side or the hot water having a temperature higher than the hot water supply set temperature and the hot water having a hot water supply set temperature derived from the bypass passage side are, for example, 1: 3.5. The hot water is supplied by merging at a rate, and the temperature of the hot water supplied from the hot water supply circuit (hot water supply temperature) is slightly higher than the hot water supply set temperature or the hot water supply set temperature, but the hot water is supplied at a temperature close to the hot water supply set temperature. Will be done. From the above, in the auxiliary heat source device having the main heat exchanger and the latent heat recovery heat exchanger, not only the overshoot of the hot water supply temperature but also the undershoot can be accurately suppressed by the above configuration.

なお、補助熱源装置において、より詳細に述べれば、給湯回路には、湯水導入口からバイパス通路の入口までの通路があり、潜熱回収用熱交換器とメインの熱交換器とを有する構成においては、バイパス通路の入口と潜熱回収用熱交換器の入口との間の通路、メインの熱交換器の出口とバイパス通路の出口との間の通路が形成されていることが一般的であり、各通路を湯水が通るが、通常、各通路の容量は給湯熱交換器の容量に比べて小さく、影響は小さい。 In the auxiliary heat source device, more specifically, in the configuration in which the hot water supply circuit has a passage from the hot water introduction port to the entrance of the bypass passage, and has a latent heat recovery heat exchanger and a main heat exchanger. , A passage between the inlet of the bypass passage and the inlet of the latent heat recovery heat exchanger, and a passage between the outlet of the main heat exchanger and the outlet of the bypass passage are generally formed. Hot water passes through the passages, but the capacity of each passage is usually smaller than the capacity of the hot water heat exchanger, and the effect is small.

また、熱源装置に導入される湯水の温度等は例えば季節の違いによる外気温度の違い等によって変動するものであるため、試運転時に、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の前記給湯熱交出側温度検出手段の検出情報を検出して、その検出情報に基づいて嵩上げ温度を設定しても、実際の給湯運転時には前記熱源装置への導入湯水温度の違い等によって、前記のように、送湯温度調節手段が第1設定容量の湯を送った後に、第2設定容量の湯を給湯設定温度よりも嵩上げ温度高い温度の湯として送るようにしても、前記のような給湯温度の安定化を十分に行えない可能性もある。 Further, since the temperature of the hot water introduced into the heat source device fluctuates due to, for example, the difference in the outside air temperature due to the difference in seasons, the combustion of the hot water burner is stopped after the combustion of the hot water burner is started during the trial run. Even if the detection information of the hot water supply heat delivery side temperature detecting means is detected and the raising temperature is set based on the detection information, due to the difference in the hot water temperature introduced into the heat source device during the actual hot water supply operation, etc. As described above, even if the hot water supply temperature adjusting means sends the hot water of the first set capacity and then sends the hot water of the second set capacity as hot water having a temperature higher than the hot water supply set temperature, as described above. There is a possibility that the hot water supply temperature cannot be sufficiently stabilized.

それに対し、温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタし、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更することにより、より一層確実に給湯温度の安定化を図ることができる。 On the other hand, the temperature control information setting means obtains the detection information of the hot water supply heat delivery side temperature detecting means after the combustion of the hot water supply burner that started burning at the start of hot water supply is stopped for each hot water supply operation of the heat source device or a predetermined hot water supply operation. The hot water supply is monitored every number of times or at each predetermined monitor timing for each predetermined set period, and the hot water supply in the temperature drop region where the detection temperature of the hot water supply heat delivery side temperature detecting means is lower than the hot water supply set temperature at the time of monitoring. When the temperature difference from the set temperature differs from the temperature difference from the hot water supply set temperature in the temperature drop region during the trial run beyond a predetermined allowable range, after the hot water supply operation following the hot water supply operation in which the monitoring is performed. By changing the raising temperature of the applied temperature control information according to a different degree beyond the allowable range of the temperature difference, it is possible to more reliably stabilize the hot water supply temperature.

なお、前記モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差よりも低下許容範囲を超えて大きかったとき(つまり温度差が大きかったとき)には、嵩上げ温度を大きくする方向に変更し、その逆に許容範囲を超えて小さかったとき(つまり温度差が小さかったとき)には小さくする方向に変更する。このようにすることで、例えば熱源装置への導入湯水温度の違い等に対応させて嵩上げ温度の変更ができるので、より一層確実に給湯温度の安定化を図ることができる。 The temperature difference from the hot water supply set temperature in the temperature drop region where the detection temperature of the hot water supply heat delivery side temperature detecting means is lower than the hot water supply set temperature at the time of the monitor is the hot water supply setting in the temperature drop region during the trial run. When the temperature difference from the temperature is larger than the allowable range of decrease (that is, when the temperature difference is large), the raising temperature is changed to increase, and conversely, when the temperature difference is larger than the allowable range (that is, when the temperature difference is large). In other words, when the temperature difference is small), change to a smaller temperature. By doing so, for example, the raising temperature can be changed in response to the difference in the temperature of the hot water introduced into the heat source device, so that the hot water supply temperature can be stabilized more reliably.

また、モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、給湯器等の補助熱源装置の買い替えが行われたことや、隣家が建て替えて設置環境が変わったこと、補助熱源装置の移設により状況が変わった等が考えられるので、以下に述べるような試運転相当運転を行い、温度調節用情報を取得する。 Further, the temperature difference from the hot water supply set temperature in the temperature drop region where the detection temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water supply set temperature during monitoring is the hot water supply set temperature in the temperature drop region during the trial run. When the temperature difference between the two and the above exceeds a predetermined allowable range, the auxiliary heat source device such as a water heater has been replaced, the neighboring house has been rebuilt and the installation environment has changed, and the auxiliary heat source device has been relocated. Since it is possible that the situation has changed due to this, perform the test run equivalent operation as described below and acquire the temperature control information.

この試運転相当運転は、前記モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なった給湯運転の動作終了後において行われるもので、補助熱源装置に設けられる燃焼制御手段の制御に基づき、前回給湯後の再出湯までの時間が長い場合等、貯湯槽等の主熱源側と給湯器等の補助熱源装置側とを接続する接続配管内の湯が冷えていて補助熱源装置に導入される給水温度が低い場合の給湯開始時(コールドスタート時)に行われる運転であり、試運転時と同等の運転である。 In this trial run equivalent operation, the temperature difference from the hot water supply set temperature in the temperature drop region where the detection temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water supply set temperature during the monitor is the temperature drop region during the trial run. It is performed after the operation of the hot water supply operation, which is different from the temperature difference from the hot water supply set temperature in the above, exceeds a predetermined allowable range, and is performed last time based on the control of the combustion control means provided in the auxiliary heat source device. When the time until the hot water is discharged again is long, the hot water in the connection pipe connecting the main heat source side such as the hot water storage tank and the auxiliary heat source device side such as the water heater is cold and the water supply temperature introduced into the auxiliary heat source device This operation is performed at the start of hot water supply (cold start) when the temperature is low, and is equivalent to the test operation.

この試運転相当運転時に、給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する領域における前記給湯設定温度との温度差の検出を行い、該検出情報に基づき、温度調節情報設定手段が送湯温度調節手段による温度調節用情報として設定する。これにより、温度調節用情報を更新すると共に、第1設定容量、第2設定容量等も更新を行う。前記試運転相当運転も含めて試運転とすることが好ましい(つまり、試運転相当運転が行われたときには、このデータを試運転におけるデータとして更新していき、その更新データと前記モニタ時のデータとの比較を行うとよい)。 During this trial run equivalent operation, the temperature difference from the hot water supply set temperature is detected in the region where the detection temperature of the hot water supply heat delivery side temperature detecting means is lower than the hot water supply set temperature, and the temperature control information is set based on the detection information. The means is set as the temperature control information by the hot water supply temperature control means. As a result, the temperature control information is updated, and the first set capacity, the second set capacity, and the like are also updated. It is preferable to perform a test run including the test run equivalent operation (that is, when a test run equivalent operation is performed, this data is updated as data in the test run, and the updated data is compared with the data at the time of monitoring. Good to do).

また、給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を設け、温度調節情報設定手段は、給湯開始後に給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、前記給湯温度検出手段の検出温度が給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を変更設定する(給湯温度検出手段の検出温度が給湯設定温度より許容範囲を超えて高かったときには嵩上げ温度を小さくし、給湯温度検出手段の検出温度が給湯設定温度より許容範囲を超えて低かったときには嵩上げ温度を大きくする)ようにしても、前記と同様に、例えば熱源装置への導入湯水温度の違い等に対応させて嵩上げ温度の変更ができるので、より一層確実に給湯温度の安定化を図ることができる。 Further, a hot water supply temperature detecting means for detecting the temperature of the hot water supplied through the hot water supply circuit as the hot water supply temperature is provided, and the temperature control information setting means is provided by the hot water supply temperature detecting means after the combustion of the hot water supply burner is stopped after the hot water supply is started. The detected hot water supply temperature is monitored for each hot water supply operation of the heat source device, each predetermined number of hot water supply operations, or each predetermined monitor timing for each predetermined set period, and the detection temperature of the hot water supply temperature detecting means is the hot water supply. When the temperature exceeds the preset allowable range and becomes different from the set temperature, the raising temperature of the temperature control information applied after the next hot water supply operation after the hot water supply operation performed by the monitor is changed and set ( When the detection temperature of the hot water supply temperature detecting means is higher than the allowable range of the hot water supply set temperature, the raising temperature is reduced, and when the detection temperature of the hot water supply temperature detecting means is lower than the allowable range of the hot water supply set temperature, the raising temperature is increased. However, in the same manner as described above, the raising temperature can be changed in response to the difference in the temperature of the hot water introduced into the heat source device, for example, so that the hot water supply temperature can be stabilized more reliably.

さらに、給湯熱交換器がメインの熱交換器と潜熱回収用熱交換器とを有する補助熱源装置の湯水導入側には、主熱源から出湯される湯の通路の他に給水通路を接続し、主熱源と補助熱源装置の給湯回路の湯水導入側とを接続する接続用配管の長さが予め与えられる設定長さより短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入することにより、以下のように、接続用配管が短い場合でも給湯温度の安定化をより一層的確に図ることができる。 Further, on the hot water introduction side of the auxiliary heat source device in which the hot water supply heat exchanger has a main heat exchanger and a heat exchanger for latent heat recovery, a water supply passage is connected in addition to the passage of hot water discharged from the main heat source. If the length of the connection pipe connecting the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device is shorter than the preset length given in advance, from the start of hot water supply until the predetermined water introduction time elapses. During the period, water is introduced into the auxiliary heat source device from the water supply passage, and hot water discharged from the main heat source through the hot water passage after the water introduction time has elapsed is introduced into the auxiliary heat source device. As described below, even when the connection pipe is short, the hot water supply temperature can be stabilized even more accurately.

つまり、接続用配管の長さが予め与えられる設定長さ(例えば4m)より短い場合には、給湯開始時に補助熱源装置の給湯バーナの燃焼を開始しても、給湯バーナの燃焼により加熱される給湯熱交換器内の湯が給湯設定温度まで加熱されるよりも主熱源から送られた給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に届く時間の方が早くなり、潜熱回収用熱交換器内の湯の温度がより低い状態のときに主熱源からの給湯設定温度の湯が届くことになる。そのため、主熱源から送られた給湯設定温度の湯を、給湯バーナを停止してから主にバイパス通路側に通しても、バイパス通路を通って導出される湯と給湯熱交換器側を通って導出される湯とが合流すると給湯設定温度よりも低くなってしまい、給湯温度の安定化を適切に図ることができなくなることがある。 That is, when the length of the connection pipe is shorter than the preset length (for example, 4 m), even if the hot water supply burner of the auxiliary heat source device starts burning at the start of hot water supply, it is heated by the combustion of the hot water supply burner. The hot water in the hot water supply heat exchanger is heated to the hot water supply set temperature earlier than the hot water supply set temperature hot water sent from the main heat source reaches the hot water introduction side of the hot water supply circuit of the auxiliary heat source device, and the latent heat is recovered. When the temperature of the hot water in the heat exchanger is lower, the hot water of the hot water supply set temperature from the main heat source arrives. Therefore, even if the hot water of the hot water supply set temperature sent from the main heat source is passed mainly through the bypass passage side after the hot water supply burner is stopped, it passes through the hot water drawn out through the bypass passage and the hot water supply heat exchanger side. When the derived hot water merges, the temperature becomes lower than the set hot water supply temperature, and it may not be possible to properly stabilize the hot water supply temperature.

そこで、給湯バーナの燃焼により加熱される給湯熱交換器内の湯が給湯設定温度あるいは、それより幾分高めの温度まで加熱されてから、主熱源から送られた給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に届くように、給湯熱交換器のメインの熱交換器内の湯が給湯設定温度まで加熱される時間と前記接続用配管の長さに応じて(つまり、接続用配管内を通る湯水量に応じて)前記水導入時間を設定し、その水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入することにより、接続用配管が短い場合でも給湯温度の安定化を確実に図ることができる。 Therefore, after the hot water in the hot water supply heat exchanger heated by the combustion of the hot water supply burner is heated to the hot water supply set temperature or a temperature slightly higher than that, the hot water supply hot water set temperature sent from the main heat source is the auxiliary heat source. Depending on the time that the hot water in the main heat exchanger of the hot water supply heat exchanger is heated to the hot water supply set temperature and the length of the connection pipe so that it reaches the hot water introduction side of the hot water supply circuit of the device (that is, connection) The water introduction time is set (according to the amount of hot water passing through the water pipe), water is introduced from the water supply passage to the auxiliary heat source device until the water introduction time elapses, and the water introduction time elapses. After that, by introducing the hot water discharged from the main heat source through the hot water passage into the auxiliary heat source device, it is possible to surely stabilize the hot water supply temperature even when the connecting pipe is short.

さらに、貯湯槽を有する主熱源を設けることにより、例えば太陽熱や燃料電池等の排熱を利用して形成される湯を貯湯槽に貯湯して効率的に利用することができる。そして、貯湯槽を有する主熱源の貯湯槽から出湯される湯の通路と給水通路とを合流部で合流し、合流部には合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路を設けて、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御することによって、合流部で形成されて補助熱源装置側に送られる湯の温度を適切に制御することができ、前記の効果によって、給湯温度の安定化を図ることができる。 Further, by providing a main heat source having a hot water storage tank, hot water formed by utilizing, for example, solar heat or exhaust heat of a fuel cell or the like can be stored in the hot water storage tank and used efficiently. Then, a mixing means for merging the hot water passage and the water supply passage discharged from the hot water storage tank of the main heat source having the hot water storage tank at the merging portion and mixing the merging hot water and water at the merging portion, and the mixing means. By providing a hot water introduction passage for introducing the hot water mixed and formed by the above into the auxiliary heat source device and controlling the mixing means to control the flow rate of the hot water flowing to the merging portion and the flow rate of the water, the merging portion The temperature of the hot water formed by the above and sent to the auxiliary heat source device side can be appropriately controlled, and the hot water supply temperature can be stabilized by the above effect.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat source apparatus which concerns on this invention. 実施例の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus of an Example. 実施例の熱源装置の給湯時における給湯バーナ燃焼停止後の給湯熱交換器出口温度と給湯回路入口温度と給湯温度の時間的変化例を示すグラフである。It is a graph which shows the time change example of the hot water supply heat exchanger outlet temperature, the hot water supply circuit inlet temperature, and the hot water supply temperature after the hot water supply burner combustion is stopped at the time of hot water supply of the heat source apparatus of the Example. 実施例の熱源装置の給湯時における給湯バーナ燃焼停止後の、バイパス通路に導入される湯の熱量と、給湯バーナの燃焼停止時に給湯熱交換器が保有していた湯が給湯バーナの燃焼後に導出されることによる給湯熱交換器の出側の熱量と、給湯バーナ燃焼停止後に主熱源からの湯が給湯熱交換器に導入されて給湯熱交換器を通って導出されることによる給湯熱交換器の出側の熱量および、これらの熱量の加算量の時間的変化例を説明するための模式的なグラフである。The amount of heat of the hot water introduced into the bypass passage after the hot water supply burner combustion is stopped during the hot water supply of the heat source device of the embodiment and the hot water held by the hot water supply heat exchanger when the hot water supply burner is stopped are derived after the hot water supply burner is burned. The amount of heat on the outlet side of the hot water supply heat exchanger and the hot water from the main heat source after the hot water supply burner has stopped burning are introduced into the hot water supply heat exchanger and led out through the hot water supply heat exchanger. It is a schematic graph for demonstrating the time change example of the heat quantity of the output side and the addition amount of these heat quantities. 図4に示した各熱量および熱量の加算量の時間的変化例を、開発中の熱源装置の給湯時において貯湯槽から給湯器に送る湯の温度を給湯設定温度として一定にして給湯した場合について説明するための模式的なグラフである。An example of temporal changes in the amount of heat and the amount of heat added shown in FIG. 4 is the case where the temperature of the hot water sent from the hot water storage tank to the water heater is kept constant as the hot water supply set temperature during hot water supply of the heat source device under development. It is a schematic graph for demonstrating. 開発中の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus under development. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the distribution example of the temperature layer in a hot water storage tank.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of this embodiment, the same components as those of the examples described so far are designated by the same reference numerals, and the duplicated description thereof will be omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されており、図2には、そのシステム構成が示されている。図2に示されるように、本実施例の熱源装置は、図6に示した熱源装置とほぼ同様のシステム構成を有しているが、本実施例の熱源装置は、給湯器16に、給湯回路62の湯水導入側に導入される湯水の温度を検出する給水温度検出手段71が設けられており、さらに、図1に示される特徴的な制御構成を有している。 FIG. 1 shows a main part control configuration of an embodiment of the heat source device according to the present invention by a block diagram, and FIG. 2 shows the system configuration. As shown in FIG. 2, the heat source device of this embodiment has almost the same system configuration as the heat source device shown in FIG. 6, but the heat source device of this embodiment supplies hot water to the water heater 16. A water supply temperature detecting means 71 for detecting the temperature of the hot water introduced into the hot water introduction side of the circuit 62 is provided, and further has a characteristic control configuration shown in FIG.

同図に示されるように、給湯器16の制御装置46は、燃焼制御手段47、メモリ部73、バイパスサーボ制御手段74を有しており、燃焼制御手段47は、給湯設定温度設定操作手段45を備えたリモコン装置43に接続されている。リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。 As shown in the figure, the control device 46 of the water heater 16 includes a combustion control means 47, a memory unit 73, and a bypass servo control means 74, and the combustion control means 47 is a hot water supply set temperature setting operation means 45. It is connected to the remote control device 43 provided with. The remote controller 43 is installed indoors in an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

また、本実施例において、タンクユニット4内の制御装置33には、ミキシング流量制御手段35、送湯温度調節手段36、メモリ部37、温度調節情報設定手段38が設けられており、制御装置33はリモコン装置43と制御装置46とに信号接続されている。 Further, in the present embodiment, the control device 33 in the tank unit 4 is provided with the mixing flow rate control means 35, the hot water supply temperature control means 36, the memory unit 37, and the temperature control information setting means 38. Is signal-connected to the remote control device 43 and the control device 46.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、タンクユニット4の制御装置33の送湯温度調節手段36と温度調節情報設定手段38と給湯器16の制御装置46の燃焼制御手段47とに加えられる。 The hot water supply set temperature setting operation means 45 is an operation means for setting the hot water supply set temperature by a user or the like, and is formed by, for example, an operation button provided on the surface side of the remote controller device 43. The value of the hot water supply set temperature set by the hot water supply set temperature setting operation means 45 is the combustion of the hot water supply temperature control means 36 of the control device 33 of the tank unit 4, the temperature control information setting means 38, and the control device 46 of the water heater 16. It is added to the control means 47.

流量検出手段42は、給湯通路19を通って給湯される給湯流量を検出し、制御装置46の燃焼制御手段47に給湯流量の検出流量(検出値)を加える。また、給水流量センサ29も給湯通路19を通って給湯される給湯流量を検出し、制御装置33のミキシング流量制御手段35に給湯流量の検出流量(検出値)を加える。 The flow rate detecting means 42 detects the hot water supply flow rate supplied through the hot water supply passage 19, and adds the detected flow rate (detected value) of the hot water supply flow rate to the combustion control means 47 of the control device 46. Further, the water supply flow rate sensor 29 also detects the hot water supply flow rate supplied through the hot water supply passage 19, and adds the detected flow rate (detection value) of the hot water supply flow rate to the mixing flow rate control means 35 of the control device 33.

燃焼制御手段47は、熱源装置の初回運転時や、前回給湯後の再出湯までの時間が長い場合等、貯湯槽2側と給湯器16側とを接続する接続配管内の湯が冷えていて給湯器16に導入される給水温度が低い場合の給湯開始時(コールドスタート時)や、給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯の給湯開始時には、流量検出手段42により検出される給湯流量が給湯バーナ61の燃焼のための最低作動流量に達したときに給湯バーナ61を燃焼開始する構成を有している。そして、後述する判断タイミングにおいて給湯バーナ61の燃焼を停止させる。 In the combustion control means 47, the hot water in the connecting pipe connecting the hot water storage tank 2 side and the water heater 16 side is cold, such as when the heat source device is operated for the first time or when it takes a long time to re-deliver hot water after the previous hot water supply. Flow rate detecting means 42 at the start of hot water supply (cold start) when the water supply temperature introduced into the water heater 16 is low, or at the start of hot water supply for re-delivery when the hot water supply set temperature is changed significantly after the hot water supply is stopped. The hot water supply burner 61 is configured to start burning when the hot water supply flow rate detected by the above reaches the minimum operating flow rate for combustion of the hot water supply burner 61. Then, the combustion of the hot water supply burner 61 is stopped at the determination timing described later.

なお、本実施例において、給湯器16は、給湯熱交換器17を通って該給湯熱交換器17から出る湯の温度が予め求められる熱交基準温度(例えば60℃)となるように燃焼制御手段47により給湯バーナ61の燃焼を制御し、給湯熱交換器17から出る前記熱交基準温度の湯と該熱交基準温度の湯にバイパス通路68を通って合流する湯との割合を、バイパスサーボ制御手段74の制御によるバイパスサーボ69の制御によって可変することにより、給湯熱交換器の湯が給湯されるように制御する給湯温度制御構成を有する。 In this embodiment, the water heater 16 is burn-controlled so that the temperature of the hot water that passes through the hot water supply heat exchanger 17 and exits from the hot water supply heat exchanger 17 becomes a heat exchange reference temperature (for example, 60 ° C.) that is obtained in advance. The combustion of the hot water supply burner 61 is controlled by the means 47, and the ratio of the hot water of the heat exchange reference temperature discharged from the hot water supply heat exchanger 17 and the hot water of the hot water of the heat exchange reference temperature merging through the bypass passage 68 is bypassed. It has a hot water supply temperature control configuration that controls so that hot water in the hot water supply heat exchanger is supplied by varying by controlling the bypass servo 69 under the control of the servo control means 74.

つまり、バイパスサーボ制御手段74は、給湯バーナ61の燃焼中は、給湯設定温度設定操作手段45による給湯設定温度の設定情報と燃焼制御手段47の制御情報とを取り込み、給湯熱交換器17から出る前記熱交基準温度の湯と該湯にバイパス通路68を通って合流する湯との割合を、バイパスサーボ69の制御によって可変して、熱交基準温度の湯とバイパス通路を通る湯との混合により給湯設定温度の湯が形成されるようにする。 That is, the bypass servo control means 74 takes in the hot water supply set temperature setting information by the hot water supply set temperature setting operation means 45 and the control information of the combustion control means 47 during the combustion of the hot water supply burner 61, and exits from the hot water supply heat exchanger 17. The ratio of the hot water of the heat exchange reference temperature to the hot water that joins the hot water through the bypass passage 68 is changed by the control of the bypass servo 69, and the hot water of the heat exchange reference temperature and the hot water passing through the bypass passage are mixed. To form hot water at a set temperature for hot water supply.

このようにすると、例えば給湯熱交換器17を通る湯とバイパス通路68を通る湯との混合比を略一定として給湯熱交換器17から出る湯の温度を変えることにより給湯設定温度の湯を形成するものに比して、給湯熱交換器17の保有熱量を略一定の値にすることができる。なお、給湯熱交換器17から出る湯の温度を変えて給湯設定温度の湯を形成する構成においては、前記混合比を略一定としてもしななくても、給湯熱交換器17の保有熱量は、給湯熱交換器17から出る湯の温度(給湯熱交換器17により加熱されて形成される湯の温度)によって変化するものであり、給湯熱交換器17から出る湯の温度が高くなると給湯熱交換器17の保有熱量も多くなる、といったように給湯熱交換器17の保有熱量が変化する。 In this way, for example, hot water having a set temperature for hot water supply is formed by changing the temperature of the hot water discharged from the hot water supply heat exchanger 17 while keeping the mixing ratio of the hot water passing through the hot water supply heat exchanger 17 and the hot water passing through the bypass passage 68 substantially constant. The amount of heat possessed by the hot water supply heat exchanger 17 can be set to a substantially constant value as compared with the heat exchanger. In the configuration in which the temperature of the hot water discharged from the hot water supply heat exchanger 17 is changed to form hot water at the hot water supply set temperature, the amount of heat possessed by the hot water supply heat exchanger 17 may or may not be substantially constant. It changes depending on the temperature of the hot water discharged from the hot water supply heat exchanger 17 (the temperature of the hot water formed by being heated by the hot water supply heat exchanger 17), and when the temperature of the hot water discharged from the hot water supply heat exchanger 17 becomes high, the hot water supply heat exchange The amount of heat held by the hot water supply heat exchanger 17 changes, such that the amount of heat held by the container 17 also increases.

また、本実施例において、給湯バーナ61を停止した以降は、バイパスサーボ制御手段74は、バイパス通路68側への流通割合が前記割合変化範囲内で最大となるように、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3.5になるような割合で通すようにする。 Further, in the present embodiment, after the hot water supply burner 61 is stopped, the bypass servo control means 74 is introduced into, for example, the hot water supply circuit 62 so that the distribution ratio to the bypass passage 68 side becomes the maximum within the ratio change range. The hot water is passed through at a ratio of 1: 3.5 between the hot water supply heat exchanger 17 side and the bypass passage 68 side.

制御装置33の温度調節情報設定手段38は、熱源装置の試運転を行う試運転モードの給湯動作時に、給湯バーナ61の燃焼開始後に該給湯バーナ61の燃焼が停止された以降の給湯熱交出側温度検出手段67の検出情報を検出し、該検出情報に基づき、送湯温度調節手段36による温度調節情報における以下に述べるファクタを設定し、設定した値をメモリ部37に格納する。 The temperature control information setting means 38 of the control device 33 is the temperature on the hot water supply heat discharge side after the combustion of the hot water supply burner 61 is stopped after the combustion of the hot water supply burner 61 is started during the hot water supply operation in the trial run mode in which the heat source device is commissioned. The detection information of the detection means 67 is detected, the factors described below in the temperature control information by the hot water supply temperature control means 36 are set based on the detection information, and the set values are stored in the memory unit 37.

つまり、温度調節情報設定手段38は、給湯器16の燃焼制御手段47を介して前記試運転モードの給湯動作時の給湯熱交出側温度検出手段67の検出情報を検出し、給湯熱交出側温度検出手段67の検出温度が給湯バーナ61の停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、給湯熱交出側温度検出手段67の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、メインの熱交換器17aの出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを、送湯温度調節手段36の温度調節用情報として設定し、メモリ部37に格納する。 That is, the temperature control information setting means 38 detects the detection information of the hot water supply heat exchange side temperature detection means 67 during the hot water supply operation in the trial operation mode via the combustion control means 47 of the water supply device 16, and the hot water supply heat exchange side. The first set capacity based on the time required from when the hot water supply burner 61 is stopped until the temperature detected by the temperature detecting means 67 drops below the hot water supply set temperature and the hot water supply flow rate, and the detection temperature of the hot water supply heat exchange side temperature detecting means 67. The second set capacity based on the time required to return to the hot water supply set temperature and the hot water supply flow rate after the temperature drops below the hot water supply set temperature, and the temperature on the outlet side of the main heat exchanger 17a are lower than the hot water supply set temperature. The raising temperature based on the temperature characteristics until the temperature returns to the hot water supply set temperature is set as the temperature control information of the hot water supply temperature adjusting means 36, and is stored in the memory unit 37.

一例を挙げると、熱源装置の試運転を行う試運転モードの給湯動作時に、給湯バーナ61を燃焼開始して給湯熱交換器出側温度検出手段67の検出温度が60℃となるように燃焼させた後に、該給湯バーナ61の燃焼を停止した以降の給湯熱交出側温度検出手段67による検出温度が図3の特性線aに示される特性の場合、特性線aに示される温度が給湯バーナ61の停止時から給湯設定温度(ここでは40℃)より低下するまでに要する時間t1’と給湯流量とに基づいて求められる容量を補正した値により第1設定容量が例えば1リットルと設定される。この第1設定容量の湯が給湯器16内を流れる時間がt1となる。なお、熱源装置の試運転を行う試運転モードの時に、ガス等の供給等が間に合わずに、給湯動作なしの試運転が行われる場合があるが、このような時には前記の試運転相当運転を用いて第1設定容量や以下に述べる第2設定容量等を設定する。 As an example, after the hot water supply burner 61 is started to burn and burned so that the detection temperature of the hot water supply heat exchanger outlet side temperature detecting means 67 becomes 60 ° C. during the hot water supply operation in the trial run mode in which the heat source device is commissioned. When the temperature detected by the hot water supply heat exchange side temperature detecting means 67 after the combustion of the hot water supply burner 61 is stopped is the characteristic shown in the characteristic line a of FIG. 3, the temperature shown in the characteristic line a is the hot water supply burner 61. The first set capacity is set to, for example, 1 liter by a value obtained by correcting the capacity obtained based on the time t1'and the hot water supply flow rate required from the time of stopping until the temperature drops below the hot water supply set temperature (40 ° C. in this case). The time for the hot water of the first set capacity to flow in the water heater 16 is t1. In addition, in the test run mode in which the test run of the heat source device is performed, the test run without the hot water supply operation may be performed because the gas or the like is not supplied in time. In such a case, the first test run equivalent operation is used. Set the set capacity and the second set capacity described below.

また、特性線aに示される温度給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間t2’と給湯流量とに基づいて求められる容量を補正した値により第2設定容量が例えば6リットルと設定される。なお、この第2設定容量の湯が給湯器16内を流れる時間がt2となる。そして、特性線aに示される温度が給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づいて嵩上げ温度Tuは例えば4℃と設定される。 Further, the second set capacity is, for example, 6 based on a value obtained by correcting the capacity obtained based on the time t2'and the hot water supply flow rate required to return to the hot water supply set temperature after the temperature falls below the temperature hot water supply set temperature shown in the characteristic line a. Set to liter. The time for the hot water of the second set capacity to flow in the water heater 16 is t2. Then, the raising temperature Tu is set to, for example, 4 ° C. based on the temperature characteristics until the temperature shown on the characteristic line a returns to the hot water supply set temperature after the temperature drops below the hot water supply set temperature.

ミキシング流量制御手段35は、タンク側電磁弁13とタンク湯水混合器12と水混合器14を制御することによって、合流部10側に出湯通路9から流れる湯の流量と給水通路8bから合流部10側に流れる水の流量を制御し、送湯温度調節手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。 The mixing flow rate control means 35 controls the tank-side solenoid valve 13, the tank hot water mixer 12, and the water mixer 14, so that the flow rate of hot water flowing from the hot water outlet 9 to the confluence 10 side and the confluence 10 from the water supply passage 8b. The flow rate of the water flowing to the side is controlled so that the mixed hot water of the set mixed temperature set by the hot water temperature adjusting means 36 is formed at the confluence portion 10.

送湯温度調節手段36は、温度調節情報設定手段38によって設定される温度調節情報に基づき、貯湯槽2から出湯される湯と給水通路8bからの湯の混合により形成される混合湯水の設定温度(混合設定温度)を設定し、その設定した混合湯水温度の湯が形成されるようにミキシング流量制御手段35に指令を加えることにより、貯湯槽2側から給湯器16の給湯回路62側に送られる湯の温度を調節するものである。 The hot water supply temperature adjusting means 36 is a set temperature of mixed hot water formed by mixing hot water discharged from the hot water storage tank 2 and hot water from the water supply passage 8b based on the temperature control information set by the temperature control information setting means 38. By setting (mixing set temperature) and adding a command to the mixing flow rate control means 35 so that hot water having the set mixed hot water temperature is formed, the temperature is sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16. It regulates the temperature of hot water.

本実施例においては、給湯が開始されたときには、給湯設定温度の湯を貯湯槽2側から給湯器16の給湯回路側に送ることが行われ、それと共に、前記の如く、給湯器16の燃焼制御手段47が給湯バーナ61の燃焼を開始させて給湯回路を通る湯水を給湯熱交換器17により加熱して給湯するが、燃焼制御手段47は、この燃焼制御時に、時々刻々と給水温度検出手段71の検出温度を取り込み、該検出温度が予め定められる給水限界温度以上になったときに給湯バーナ61の燃焼を停止する(図1に示されているガス開閉弁48を閉じ、また、燃焼ファンの停止等の適宜の制御を行う)。なお、給湯バーナ61の燃焼は停止されても、貯湯槽2側から送られる湯は給湯回路62を通して給湯先に送られ、給湯は継続される。 In this embodiment, when hot water supply is started, hot water having a hot water supply set temperature is sent from the hot water storage tank 2 side to the hot water supply circuit side of the water heater 16, and at the same time, as described above, the water heater 16 is burned. The control means 47 starts the combustion of the hot water supply burner 61 and heats the hot water passing through the hot water supply circuit by the hot water supply heat exchanger 17 to supply hot water. The combustion control means 47 is a means for detecting the temperature of the hot water supply every moment during this combustion control. The detection temperature of 71 is taken in, and when the detection temperature exceeds a predetermined water supply limit temperature, the combustion of the hot water supply burner 61 is stopped (the gas on-off valve 48 shown in FIG. 1 is closed, and the combustion fan is also used. Perform appropriate control such as stopping the water heater). Even if the combustion of the hot water supply burner 61 is stopped, the hot water sent from the hot water storage tank 2 side is sent to the hot water supply destination through the hot water supply circuit 62, and the hot water supply is continued.

本実施例において、前記給水限界温度を求める情報がメモリ部73に格納されており、給水限界温度は、給湯設定温度と、給湯熱交出側温度検出手段67の検出温度と、前記バイパス割合変化範囲における前記バイパス通路側へのバイパス割合の最大値(最大バイパス比)とにより、例えば以下の式(1)により予め求められるものである。なお、給湯設定温度よりも給湯熱交換器の出側の温度(給湯熱交出側温度検出手段67の検出温度)の方が高いので、この式(1)からも分かるように、給水限界温度は給湯設定温度より低い温度である。 In this embodiment, the information for obtaining the water supply limit temperature is stored in the memory unit 73, and the water supply limit temperature is the hot water supply set temperature, the detection temperature of the hot water supply heat delivery side temperature detecting means 67, and the bypass ratio change. It is obtained in advance by, for example, the following equation (1), based on the maximum value (maximum bypass ratio) of the bypass ratio to the bypass passage side in the range. Since the temperature on the outlet side of the hot water supply heat exchanger (detection temperature of the hot water supply heat exchange side temperature detecting means 67) is higher than the hot water supply set temperature, as can be seen from this equation (1), the water supply limit temperature. Is a temperature lower than the hot water supply set temperature.

給水限界温度=給湯設定温度+(給湯設定温度−給湯熱交出側温度検出手段の検出温度)/最大バイパス比・・・(1) Water supply limit temperature = hot water supply set temperature + (hot water supply set temperature-hot water supply heat delivery side temperature detection means detection temperature) / maximum bypass ratio ... (1)

一例を挙げると、給湯設定温度が40℃、給湯熱交出側温度検出手段の検出温度が60℃で最大バイパス比が3.5(給湯熱交換器側へのバイパス割合:バイパス通路側へのバイパス割合が1:3.5)の場合には、給水限界温度は、40+(40−60)/3.5≒34.3となり、約34.3℃である。つまり、本実施例では、貯湯槽2側から給湯設定温度の湯が給湯器16に届く少し前のタイミングで(貯湯槽2と給湯器16との間の管内に停留していた低温の湯(水)と貯湯槽2側から送られる給湯設定温度の湯との境目近傍で境目よりも手前(給湯器16寄り)にある給水限界温度の湯が給湯器16に届くタイミングで)給湯バーナ61の燃焼を停止することになる。 As an example, the hot water supply set temperature is 40 ° C., the detection temperature of the hot water supply heat exchange side temperature detecting means is 60 ° C., and the maximum bypass ratio is 3.5 (bypass ratio to the hot water supply heat exchanger side: bypass passage side). When the bypass ratio is 1: 3.5), the water supply limit temperature is 40+ (40-60) /3.5≈34.3, which is about 34.3 ° C. That is, in this embodiment, the low-temperature hot water (which was stopped in the pipe between the hot water storage tank 2 and the water heater 16) was shortly before the hot water of the hot water supply set temperature reached the water heater 16 from the hot water storage tank 2 side. (At the timing when the hot water at the water heater limit temperature, which is near the boundary between the water) and the hot water of the hot water supply set temperature sent from the hot water storage tank 2 side and before the boundary (closer to the water heater 16), reaches the water heater 16) Burning will be stopped.

なお、本実施例において、給湯が開始されたときには、前記の如く、給湯設定温度の湯を貯湯槽2側から給湯器16の給湯回路62側に送るが、前記コールドスタート時や給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯等の給湯開始時には、送湯温度調節手段36が、貯湯槽2側から給湯器16側に送る湯の温度を以下に述べるような特徴的な温度とするようにしている。 In this embodiment, when hot water supply is started, hot water having a hot water supply set temperature is sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16 as described above, but at the time of the cold start or after the hot water supply stop. At the start of hot water supply such as re-delivery when the hot water supply set temperature is changed significantly higher, the hot water supply temperature control means 36 has the characteristics described below as the temperature of the hot water sent from the hot water storage tank 2 side to the water heater 16 side. I try to keep the temperature at a high level.

つまり、本実施例においては、温度調節情報設定手段38によって前記第1設定容量と第2設定容量と嵩上げ温度の値が設定されてメモリ部37に格納されており、送湯温度調節手段36は、これらの値と給水流量センサ29による流量検出値とに基づき、貯湯槽2側から給湯器16の給湯回路62側に送る湯の温度を、給湯開始から該湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも予め定められる嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とする。 That is, in this embodiment, the values of the first set capacity, the second set capacity, and the raising temperature are set by the temperature control information setting means 38 and stored in the memory unit 37, and the hot water supply temperature control means 36 Based on these values and the flow rate detection value by the water supply flow rate sensor 29, the temperature of the hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16 is determined by the capacity (integrated flow rate) of the hot water from the start of hot water supply. Until the first set capacity is reached, the hot water supply set temperature is set to a temperature higher than the hot water supply set temperature from the time when the first set capacity is reached until the second set capacity is reached, and the second setting is performed. After reaching the capacity, the hot water supply set temperature is set.

なお、以下に述べる説明において、特に断らない限り、給湯開始時とは、前記のような場合、すなわち、コールドスタート時や給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯の給湯開始時のことをいうものであり、給湯停止から短時間後に給湯設定温度の大きな変更無しで再出湯される給湯開始時を除くものである。 In the explanation described below, unless otherwise specified, the start of hot water supply means the re-delivery of hot water in the above cases, that is, when the set temperature of hot water supply is changed significantly higher at the time of cold start or after the stop of hot water supply. It refers to the start of hot water supply, and excludes the start of hot water supply in which hot water is re-delivered shortly after the hot water supply is stopped without a major change in the hot water supply set temperature.

つまり、前回の給湯停止からの時間が短い場合で、給湯設定温度を大幅に高くする変更がない再出湯時の給湯開始時には、給湯器16の給湯回路62内の湯や貯湯槽2と給湯器16とを接続する接続管路内の湯が貯湯槽2側から送られた給湯設定温度または給湯設定温度近傍の温度であり、このような場合は、給湯器16の給湯バーナ61の燃焼も行われず、送湯温度調節手段36による貯湯槽2側から給湯器16側に送られる湯の温度設定も前記のように時間に応じて変化させずに、貯湯槽2内の湯温が閾値より高い温度であれば、例えば給湯設定温度の値と同じ値または、それより0.5℃といった温度だけ高めとする。 That is, when the time from the previous stop of hot water supply is short and there is no change to significantly increase the hot water supply set temperature, at the start of hot water supply at the time of re-delivery, the hot water in the hot water supply circuit 62 of the water heater 16 or the hot water storage tank 2 and the water heater The hot water in the connecting pipeline connecting the water heater 16 is the hot water supply set temperature sent from the hot water storage tank 2 side or a temperature close to the hot water supply set temperature. In such a case, the hot water supply burner 61 of the water heater 16 is also burned. Instead, the temperature setting of the hot water sent from the hot water storage tank 2 side to the water heater 16 side by the hot water supply temperature adjusting means 36 does not change according to the time as described above, and the hot water temperature in the hot water storage tank 2 is higher than the threshold value. If it is a temperature, for example, it is set to the same value as the value of the hot water supply set temperature or a temperature higher than that, such as 0.5 ° C.

なお、送湯温度調節手段36は、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の時には、例えば混合設定温度を給湯設定温度よりも低い適宜の温度に設定する。その場合、その低い温度の湯水を給湯器16で追い加熱する。また、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の時に、貯湯槽2側からは湯を送らずに、給水通路8bからの水を給湯器16で加熱する制御によって給湯設定温度の湯が給湯されるようにする場合もある。 When the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or less than the threshold value, the hot water supply temperature adjusting means 36 sets, for example, the mixing set temperature to an appropriate temperature lower than the hot water supply set temperature. In that case, the low temperature hot water is additionally heated by the water heater 16. Further, when the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is equal to or lower than the threshold value, the hot water supply set temperature is controlled by heating the water from the water supply passage 8b with the water heater 16 without sending hot water from the hot water storage tank 2 side. In some cases, hot water is supplied.

ミキシング流量制御手段35は、給水流量センサ29によって給湯通路19を通って給湯される給湯流量が検出されたときにタンク側電磁弁13を開き、タンク湯水混合器12および水混合器14の制御による湯の流量と水の流量との制御により、合流部10で形成される混合湯水の温度が送湯温度調節手段36により設定される混合設定温度となるようにするものであり、貯湯槽内湯水温検出手段5aの検出温度が前記閾値より高いときの給湯開始時には給湯設定温度(または給湯設定温度より0.5℃といった温度だけ高めの温度)となるように制御する。 The mixing flow rate control means 35 opens the tank-side electromagnetic valve 13 when the hot water supply flow rate of hot water supplied through the hot water supply passage 19 is detected by the water supply flow rate sensor 29, and is controlled by the tank hot water mixer 12 and the water mixer 14. By controlling the flow rate of hot water and the flow rate of water, the temperature of the mixed hot water formed at the confluence 10 is set to the mixed set temperature set by the hot water supply temperature adjusting means 36, and the hot water temperature in the hot water storage tank is set. At the start of hot water supply when the detection temperature of the detection means 5a is higher than the threshold value, the temperature is controlled to be the hot water supply set temperature (or a temperature higher than the hot water supply set temperature by 0.5 ° C.).

なお、この制御によって形成された湯は、通路18と湯水導入通路15を通って給湯器16の給湯回路62に導入されるため、この湯を給湯器16側で追い加熱する必要はないが、この湯が給湯器16側に到達するまでには時間がかかり、その間は給湯器16の給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する必要があるので、前記の如く、給湯バーナ61の燃焼により給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する。 Since the hot water formed by this control is introduced into the hot water supply circuit 62 of the water heater 16 through the passage 18 and the hot water introduction passage 15, it is not necessary to reheat the hot water on the water heater 16 side. It takes time for this hot water to reach the water heater 16 side, and during that time, it is necessary to heat the water in the passage in the hot water supply circuit 62 and the hot water introduction passage 15 of the water heater 16 with the hot water heat exchanger 17. As described above, the water in the passage in the hot water supply circuit 62 and the hot water introduction passage 15 is heated by the hot water supply heat exchanger 17 by the combustion of the hot water supply burner 61.

そして、燃焼制御手段47は、給湯バーナ61の燃焼制御中に時々刻々と給水温度検出手段71の検出値をモニタし、該検出値(検出温度)が前記給水限界温度(給湯設定温度と給湯熱交出側温度検出手段67の検出温度とバイパス割合変化範囲における前記バイパス通路68側へのバイパス割合の最大値とにより予め求められる値であって給湯設定温度よりは低い温度)以上になったときに給湯バーナ61の燃焼を停止する。この給湯バーナ61の燃焼停止により余分な追い加熱が行われず、給湯温度のオーバーシュートが生じることを防ぐことができる。 Then, the combustion control means 47 monitors the detection value of the water supply temperature detecting means 71 every moment during the combustion control of the hot water supply burner 61, and the detected value (detection temperature) is the water supply limit temperature (hot water supply set temperature and hot water supply heat). When the temperature exceeds the value obtained in advance by the detection temperature of the delivery side temperature detecting means 67 and the maximum value of the bypass ratio to the bypass passage 68 side in the bypass ratio change range, which is lower than the hot water supply set temperature). The combustion of the hot water supply burner 61 is stopped. By stopping the combustion of the hot water supply burner 61, extra heating is not performed, and it is possible to prevent overshoot of the hot water supply temperature.

ところで、本実施例において、給湯器16の給湯熱交換器17は、メインの熱交換器17aと潜熱回収用熱交換器17bとを有しており、給湯開始以降に給湯バーナ61の燃焼停止が行われたとき、潜熱回収用熱交換器17b内の湯は、給湯バーナ61の燃焼中に給湯バーナ61の燃焼ガスの潜熱を吸収することにより多少は加熱されているものの、給湯設定温度よりはかなり低い温度である。 By the way, in this embodiment, the hot water supply heat exchanger 17 of the water heater 16 has a main heat exchanger 17a and a latent heat recovery heat exchanger 17b, and the combustion of the hot water supply burner 61 is stopped after the start of hot water supply. When this is done, the hot water in the heat exchanger 17b for latent heat recovery is heated to some extent by absorbing the latent heat of the combustion gas of the hot water supply burner 61 during the combustion of the hot water supply burner 61, but it is higher than the hot water supply set temperature. It is a fairly low temperature.

そのため、前記開発中の熱源装置潜熱回収用熱交換器17bを備えた給湯器16を適用した場合に、潜熱回収用熱交換器17b内の湯が給湯バーナ61の燃焼停止後に給湯されることにより生じる給湯温度のアンダーシュートを防ぐために、本実施例では、前記の如く送湯温度調節手段36による特徴的な温度調節を行うようにしている。以下、この特徴的な温度調節に伴う、給湯バーナ61の燃焼停止後の給湯温度の安定化について、図3〜図5を参照しながら説明する。 Therefore, when the water heater 16 provided with the heat source device latent heat recovery heat exchanger 17b under development is applied, the hot water in the latent heat recovery heat exchanger 17b is supplied after the combustion of the hot water supply burner 61 is stopped. In order to prevent the resulting undershoot of the hot water supply temperature, in this embodiment, the characteristic temperature control is performed by the hot water supply temperature adjusting means 36 as described above. Hereinafter, stabilization of the hot water supply temperature after the combustion of the hot water supply burner 61 is stopped due to this characteristic temperature control will be described with reference to FIGS. 3 to 5.

なお、図3〜図5は、給湯設定温度を40℃とし、給湯流量を8リットル/分として、給湯開始と共に燃焼開始した給湯バーナ61の燃焼が停止された後(給水温度検出手段71の検出温度が前記給水限界温度以上になって給湯バーナ燃焼が停止された後)の温度変化等について求めた実験データおよび、その解析データを示す。 In FIGS. 3 to 5, the hot water supply set temperature is set to 40 ° C., the hot water supply flow rate is set to 8 liters / minute, and after the combustion of the hot water supply burner 61 that started combustion at the start of hot water supply is stopped (detection of the hot water supply temperature detecting means 71). The experimental data obtained for the temperature change (after the hot water supply burner combustion is stopped) when the temperature exceeds the water supply limit temperature and the analysis data thereof are shown.

図3の特性線aは、前記の如く、給湯熱交出側温度検出手段67の検出温度を示し、特性線bは貯湯槽2から給湯器16に導入される湯の温度、特性線cは本実施例の熱源装置の給湯温度(給湯器16を通って給湯される湯の給湯温度)をそれぞれ示しており、特性線dは給湯流量を示している。なお、給湯バーナ61の燃焼中も給湯流量は8リットル/分としているが、図3の特性線dは貯湯槽2から送られた湯の給湯流量(給湯回路62に導入される湯の流量)を示しており、貯湯槽2からの湯が到達する前の給湯バーナ61燃焼中の給湯流量は0と記している。給湯流量が0から立ち上がっている時点が、貯湯槽2から給湯設定温度で送られた湯が、給湯バーナ61の燃焼停止タイミングより少し遅れて給湯器16に導入されるタイミングを示す。 As described above, the characteristic line a of FIG. 3 shows the detection temperature of the hot water supply heat exchange side temperature detecting means 67, the characteristic line b is the temperature of the hot water introduced from the hot water storage tank 2 to the water heater 16, and the characteristic line c is. The hot water supply temperature of the heat source device of this embodiment (the hot water supply temperature of the hot water supplied through the water heater 16) is shown, and the characteristic line d shows the hot water supply flow rate. Although the hot water supply flow rate is set to 8 liters / minute even during the combustion of the hot water supply burner 61, the characteristic line d in FIG. 3 shows the hot water supply flow rate of the hot water sent from the hot water storage tank 2 (the flow rate of the hot water introduced into the hot water supply circuit 62). Is shown, and the hot water supply flow rate during combustion of the hot water supply burner 61 before the hot water from the hot water storage tank 2 arrives is described as 0. The time when the hot water supply flow rate rises from 0 indicates the timing at which the hot water sent from the hot water storage tank 2 at the hot water supply set temperature is introduced into the water heater 16 slightly later than the combustion stop timing of the hot water supply burner 61.

また、図4において、特性線aは給湯温度を示しており、図4(b)の特性線bおよび図4(a)の領域bはバイパス通路68の入側における熱量、図4(b)の特性線cおよび図4(a)の領域cは給湯バーナ61の燃焼停止時に給湯熱交換器17(メインの熱交換器17aおよび潜熱回収用熱交換器17b)内にあった湯が給湯バーナ61の燃焼停止後に、メインの熱交換器17aと潜熱回収用熱交換器17bの順に給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量、図4(b)の特性線dおよび図4(a)の領域dは、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量をそれぞれ示している。 Further, in FIG. 4, the characteristic line a indicates the hot water supply temperature, and the characteristic line b in FIG. 4 (b) and the region b in FIG. 4 (a) are the amount of heat on the entry side of the bypass passage 68, FIG. 4 (b). In the characteristic line c of the above and the region c of FIG. 4A, the hot water in the hot water supply heat exchanger 17 (main heat exchanger 17a and latent heat recovery heat exchanger 17b) when the combustion of the hot water supply burner 61 is stopped is the hot water supply burner. After the combustion of 61 is stopped, the amount of heat on the outlet side of the hot water supply heat exchanger 17 by being led out from the hot water supply heat exchanger 17 in the order of the main heat exchanger 17a and the latent heat recovery heat exchanger 17b, FIG. 4 (b). In the characteristic line d and the region d in FIG. 4A, the hot water from the hot water storage tank 2 introduced into the hot water supply heat exchanger 17 after the combustion of the hot water supply burner 61 is stopped passes through the hot water supply heat exchanger 17 and the hot water supply heat exchanger 17 The amount of heat on the outlet side of the hot water supply heat exchanger 17 derived from is shown.

図4(b)の特性線b〜cは、各熱量を個別に示し、図4(a)においては、その熱量を領域として加算した図を示しており、その詳細については後述するが、いずれも、熱量を示す一般的な単位ではなく湯の温度に相当する値として計算したものであり、図4(a)、(b)のAで示した点が給湯設定温度に対応する。 The characteristic lines b to c in FIG. 4B show each calorific value individually, and in FIG. 4A, the calorific value is added as a region, and the details will be described later. Is also calculated as a value corresponding to the temperature of hot water, not as a general unit indicating the amount of heat, and the points shown by A in FIGS. 4A and 4B correspond to the set temperature of hot water supply.

本実施例においては、前記の如く給湯開始時に給湯バーナ61を燃焼させた後、給水温度検出手段71の検出温度が前記給水限界温度以上になったときに給湯バーナ61の燃焼を停止するが、この時、バイパス通路68内の湯水は加熱されていない低めの温度の湯水である。一方、給湯熱交換器17のメインの熱交換器17aにおいては、出口側の湯の温度はほぼ60℃であり、入口側の温度は出口側の温度よりもやや低めの温度となっており、潜熱回収用熱交換器17b内の湯の温度はその温度よりもかなり低い温度となっている。 In this embodiment, after the hot water supply burner 61 is burned at the start of hot water supply as described above, the combustion of the hot water supply burner 61 is stopped when the detection temperature of the water supply temperature detecting means 71 becomes equal to or higher than the water supply limit temperature. At this time, the hot water in the bypass passage 68 is unheated hot water at a lower temperature. On the other hand, in the main heat exchanger 17a of the hot water supply heat exchanger 17, the temperature of the hot water on the outlet side is approximately 60 ° C., and the temperature on the inlet side is slightly lower than the temperature on the outlet side. The temperature of the hot water in the latent heat recovery heat exchanger 17b is considerably lower than that temperature.

また、給湯バーナ61の燃焼停止直後には給湯熱交換器17のメインの熱交換器17aは熱いままであり、給湯バーナ61の燃焼停止時に、給湯回路62に導入される湯水のバイパス通路68側への分岐割合(バイパス比に対応)を増やすと、熱い状態のメインの熱交換器17aを通る湯の流量が給湯バーナ61の燃焼中より小さくなることから、図3の特性線aに示されるように、メインの熱交換器17aから導出される湯の温度が給湯バーナ61の燃焼停止後には60℃よりも高くなり、その高めの温度の湯がメインの熱交換器17aを通って導出され、その後、メインの熱交換器17aから導出される湯の温度は、給湯バーナ61の燃焼停止直後に比べて少しずつ低下していく。 Immediately after the hot water supply burner 61 stops burning, the main heat exchanger 17a of the hot water supply heat exchanger 17 remains hot, and when the hot water supply burner 61 stops burning, the hot water bypass passage 68 side introduced into the hot water supply circuit 62 When the branching ratio (corresponding to the bypass ratio) to is increased, the flow rate of hot water passing through the main heat exchanger 17a in the hot state becomes smaller than that during the combustion of the hot water supply burner 61, which is shown in the characteristic line a in FIG. As described above, the temperature of the hot water derived from the main heat exchanger 17a becomes higher than 60 ° C. after the combustion of the hot water supply burner 61 is stopped, and the hot water at the higher temperature is derived through the main heat exchanger 17a. After that, the temperature of the hot water derived from the main heat exchanger 17a gradually decreases as compared with immediately after the combustion of the hot water supply burner 61 is stopped.

その後、給湯バーナ61の燃焼停止時にメインの熱交換器17aが保有していた水量の湯が全て導出されると、給湯バーナ61の燃焼停止時に潜熱回収用熱交換器17b内にあった湯が導出されることから、湯の温度は給湯設定温度よりもかなり低くなる。図4(b)の特性線cは、このように、給湯バーナ61の燃焼停止時に給湯熱交換器17が保有していた湯が給湯熱交換器17側から導出されることによる湯の熱量が温度に相当する値により示されており、この値は、図3の特性線aに示した給湯熱交換出口温度に基づき、給湯熱交換出口温度×給湯熱交換器17側の前記分岐率(ここでは0.22)により求めている。 After that, when all the hot water of the amount of water held in the main heat exchanger 17a was derived when the combustion of the hot water supply burner 61 was stopped, the hot water in the latent heat recovery heat exchanger 17b when the combustion of the hot water supply burner 61 was stopped was discharged. Since it is derived, the temperature of the hot water is considerably lower than the set temperature of the hot water supply. In the characteristic line c of FIG. 4B, the amount of heat of hot water due to the hot water held by the hot water supply heat exchanger 17 when the combustion of the hot water supply burner 61 is stopped is derived from the hot water supply heat exchanger 17 side. It is indicated by a value corresponding to the temperature, and this value is based on the hot water supply heat exchange outlet temperature shown in the characteristic line a of FIG. 3, and the hot water supply heat exchange outlet temperature × the branching rate on the hot water supply heat exchanger 17 side (here). Then, it is obtained by 0.22).

一方、給湯バーナ61の燃焼停止時に、バイパス通路68内の湯水は加熱されていない低めの温度の湯水であるが、バイパス通路68の容量は例えば0.06リットルで給湯熱交換器17の容量に比べて小さく、かつ、給湯バーナ61の燃焼停止後に給湯器16の給湯回路62に導入されて給湯熱交換器17側とバイパス通路68側とに分岐される分岐比(バイパス比)が1:3.5とされるので、給湯バーナ61の燃焼停止時にバイパス通路68の中にあった低めの温度の湯水は直ぐにバイパス通路68を通過し、バイパス通路68から導出される。その後、バイパス通路68には、給湯バーナ61の停止タイミングより少し遅れて(給湯バーナ61の停止タイミングと貯湯槽2からの湯の給湯器16への到達タイミングとの時間差の経過後に)、貯湯槽2から給湯器16に到達した湯が導入されて、その湯がバイパス通路68を通り導出されるが、バイパス通路68を通過する時間は前記の如く短い。 On the other hand, when the combustion of the hot water supply burner 61 is stopped, the hot water in the bypass passage 68 is unheated hot water at a low temperature, but the capacity of the bypass passage 68 is, for example, 0.06 liters, which is the capacity of the hot water supply heat exchanger 17. The branch ratio (bypass ratio) is 1: 3, which is smaller than that and is introduced into the hot water supply circuit 62 of the water heater 16 after the combustion of the hot water supply burner 61 is stopped and branched into the hot water supply heat exchanger 17 side and the bypass passage 68 side. Since it is set to .5, the low temperature hot water that was in the bypass passage 68 when the combustion of the hot water supply burner 61 is stopped immediately passes through the bypass passage 68 and is derived from the bypass passage 68. After that, in the bypass passage 68, a little later than the stop timing of the hot water supply burner 61 (after the lapse of a time difference between the stop timing of the hot water supply burner 61 and the arrival timing of the hot water from the hot water storage tank 2 to the water heater 16), the hot water storage tank The hot water that has reached the water heater 16 is introduced from No. 2, and the hot water is led out through the bypass passage 68, but the time for passing through the bypass passage 68 is short as described above.

つまり、図4(b)の特性線bには、バイパス通路68に導入される湯の熱量が湯の温度に相当する値により示されており、この値は、貯湯槽2側から給湯器16の給湯回路62に導入される湯の温度×バイパス通路68側の分岐率(ここでは0.78)により求めているが、この熱量はバイパス通路68の出側における熱量とほぼ同様となる。なお、厳密に言えば、バイパス通路68を通って導出される湯の熱量は、バイパス通路68の容量÷給湯流量÷バイパス通路68側の分岐率で求められる遅延時間だけ遅れる値となるが、バイパス通路68の容量が0.06リットルの場合は、0.06リットル÷8(リットル/分)÷0.78≒0.01分=0.6秒)遅れる値(0.6秒右にずれたデータ)であるので、特性線bとほぼ同様となる。 That is, the characteristic line b of FIG. 4B shows the amount of heat of the hot water introduced into the bypass passage 68 by a value corresponding to the temperature of the hot water, and this value is from the hot water storage tank 2 side to the water heater 16. It is obtained by multiplying the temperature of the hot water introduced into the hot water supply circuit 62 by the branching rate on the bypass passage 68 side (0.78 in this case), but this amount of heat is almost the same as the amount of heat on the exit side of the bypass passage 68. Strictly speaking, the amount of heat of hot water derived through the bypass passage 68 is a value delayed by the delay time obtained by the capacity of the bypass passage 68 ÷ the hot water supply flow rate ÷ the branching rate on the bypass passage 68 side, but the bypass When the capacity of the passage 68 is 0.06 liters, 0.06 liters ÷ 8 (liters / minute) ÷ 0.78 ≒ 0.01 minutes = 0.6 seconds) Delay value (0.6 seconds shifted to the right) Since it is data), it is almost the same as the characteristic line b.

また、図4(b)の特性線dには、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量が示されており、この値は、給湯器16の給湯回路62に導入される湯の温度×給湯熱交換器17側の分岐率(ここでは0.22)により求めた値を、湯が潜熱回収用熱交換器17bとメインの熱交換器17aとを通って導出されてバイパス通路68から導出される湯と合流するまでに要する時間だけ遅延させた(右にずらした)ものである。この遅延時間tdは、(潜熱回収用熱交換器17bの保有水量+メインの熱交換器17aの保有水量)÷給湯流量÷給湯熱交換器17側の分岐率であり、(0.7リットル+0.6リットル)÷(8リットル/分)÷0.22≒0.74分=44秒である。 Further, on the characteristic line d of FIG. 4B, hot water from the hot water storage tank 2 introduced into the hot water supply heat exchanger 17 after the combustion of the hot water supply burner 61 is stopped passes through the hot water supply heat exchanger 17 and is supplied to the hot water supply heat exchanger 17. The amount of heat on the outlet side of the hot water supply heat exchanger 17 derived from is shown, and this value is the temperature of the hot water introduced into the hot water supply circuit 62 of the hot water supply device 16 × the branching rate on the hot water supply heat exchanger 17 side. It takes the value obtained in (0.22 here) until the hot water is led out through the latent heat recovery heat exchanger 17b and the main heat exchanger 17a and merges with the hot water led out from the bypass passage 68. It is delayed by the time (shifted to the right). This delay time td is (the amount of water retained in the latent heat recovery heat exchanger 17b + the amount of water retained in the main heat exchanger 17a) ÷ the hot water supply flow rate ÷ the branching rate on the hot water supply heat exchanger 17 side, and is (0.7 liter + 0). .6 liters) ÷ (8 liters / minute) ÷ 0.22 ≈ 0.74 minutes = 44 seconds.

本実施例においては、給湯器16の給湯回路62において、バイパス通路68側から導出される湯と給湯熱交換器17側から導出される湯とが合流して給湯回路62から出て給湯されるので、給湯温度は、バイパス通路68の出側の熱量と給湯熱交換器側17の出側の熱量との合計の熱量に対応する値となる。つまり、図4(b)の特性線b〜cにそれぞれ示されている熱量を加算することによって図4(a)に示されるようになるが、図4に示されている各熱量は、前記の如く、湯の温度に相当する値として求めたものであるので、図4(b)の特性線b〜cにそれぞれ示されている熱量を、図4(a)の領域b〜dに示されるように加算した値が、図4(a)、(b)の特性線aに示されるように給湯温度となる。 In this embodiment, in the hot water supply circuit 62 of the water heater 16, the hot water led out from the bypass passage 68 side and the hot water drawn out from the hot water supply heat exchanger 17 side merge and are discharged from the hot water supply circuit 62. Therefore, the hot water supply temperature is a value corresponding to the total heat quantity of the heat quantity on the outlet side of the bypass passage 68 and the heat quantity on the outlet side of the hot water supply heat exchanger side 17. That is, by adding the amount of heat shown in the characteristic lines b to c of FIG. 4B, the amount of heat shown in FIG. 4A is obtained, and each amount of heat shown in FIG. 4 is described above. Since it was obtained as a value corresponding to the temperature of the hot water as described above, the amount of heat shown in the characteristic lines b to c of FIG. 4 (b) is shown in the regions b to d of FIG. 4 (a). The added value is the hot water supply temperature as shown by the characteristic lines a in FIGS. 4 (a) and 4 (b).

そして、これらの図からも明らかなように、本実施例において、給湯バーナ61の燃焼停止直後には、給湯熱交換器17側から導出される給湯設定温度よりも高めの温度の湯とバイパス通路68を通って導出される加熱されていない湯水とが合流して給湯回路62から出るため、ほぼ給湯設定温度となり、その後、給湯熱交換器17側から導出される給湯設定温度よりも高めの温度の湯が、バイパス通路68を通って導出される給湯設定温度の湯と1:3.5の割合(バイパス比に対応する割合)で合流することになるため、給湯バーナ61の燃焼停止から前記第1設定容量の湯が給湯器16に導入されるまでの時間(t1)が経過するまでの間は、給湯設定温度よりもやや高めだが、ほぼ給湯設定温度の湯が給湯され、徐々に湯の温度が下がってほぼ給湯設定温度の湯が給湯回路から給湯される。 As is clear from these figures, in this embodiment, immediately after the combustion of the hot water supply burner 61 is stopped, hot water and a bypass passage having a temperature higher than the hot water supply set temperature derived from the hot water supply heat exchanger 17 side. Since the unheated hot water derived through 68 merges and exits from the hot water supply circuit 62, the hot water supply set temperature is almost reached, and then a temperature higher than the hot water supply set temperature derived from the hot water supply heat exchanger 17 side. Since the hot water of the hot water merges with the hot water of the hot water supply set temperature led out through the bypass passage 68 at a ratio of 1: 3.5 (ratio corresponding to the bypass ratio), the above-mentioned from the combustion stop of the hot water supply burner 61. Until the time (t1) until the hot water of the first set capacity is introduced into the water heater 16 elapses, the hot water is slightly higher than the hot water supply set temperature, but the hot water of almost the hot water supply set temperature is gradually supplied. The temperature of the hot water drops and hot water of almost the set temperature is supplied from the hot water supply circuit.

そして、時間t1の経過後には、前記第2設定容量の湯が給湯器16に導入されるまでの時間(t2)が経過するまでの間、バイパス通路68と給湯熱交換器17には、それぞれ、給湯設定温度よりも前記嵩上げ温度高い温度の湯が導入され、ここで、バイパス通路68に導入された湯は直ぐにバイパス通路68を通って導出されるが、このときには、まだ、給湯熱交換器17側においては、給湯バーナ61の燃焼停止時に潜熱回収用熱交換器17b内にあった給湯設定温度よりも低い温度の湯がメインの熱交換器17aを通って導出される。そのため、この低い温度の湯とバイパス通路68から導出される給湯設定温度より嵩上げ温度高い温度の湯と1:3.5の割合で合流することにより、給湯設定温度よりは高めであるが給湯設定温度に近い温度の湯が給湯される(図4(b)の特性線b、cおよび、図4(a)の領域b、c参照)。 Then, after the lapse of time t1, the bypass passage 68 and the hot water heat exchanger 17 are connected to each other until the time (t2) until the hot water of the second set capacity is introduced into the water heater 16 elapses. , Hot water having a temperature higher than the hot water supply set temperature is introduced, and the hot water introduced into the bypass passage 68 is immediately led out through the bypass passage 68, but at this time, the hot water heat exchanger is still used. On the 17 side, hot water having a temperature lower than the hot water supply set temperature in the latent heat recovery heat exchanger 17b when the combustion of the hot water supply burner 61 is stopped is led out through the main heat exchanger 17a. Therefore, by merging the hot water with a lower temperature and the hot water with a temperature higher than the hot water supply set temperature derived from the bypass passage 68 at a ratio of 1: 3.5, the hot water supply setting is higher than the hot water supply set temperature. Hot water having a temperature close to the temperature is supplied (see the characteristic lines b and c in FIG. 4B and the regions b and c in FIG. 4A).

さらに、時間t2が経過する頃には、給湯バーナ61の燃焼停止時に給湯熱交換器17側に保有されていた湯は全て給湯回路62を通って給湯され、貯湯槽2から給湯器16に送られる給湯設定温度の湯が給湯熱交換器17を通って導出された後、給湯設定温度より前記嵩上げ温度高い温度の湯が給湯熱交換器17を通って導出され、その後、給湯設定温度の湯が導出される(図4(b)の特性線d、参照)。 Further, when the time t2 elapses, all the hot water held on the hot water supply heat exchanger 17 side when the hot water supply burner 61 stops burning is supplied through the hot water supply circuit 62 and sent from the hot water storage tank 2 to the water heater 16. After the hot water of the hot water supply set temperature is derived through the hot water supply heat exchanger 17, the hot water having a temperature higher than the hot water supply set temperature is derived through the hot water supply heat exchanger 17, and then the hot water of the hot water supply set temperature is derived. Is derived (see characteristic line d in FIG. 4B).

また、バイパス通路68側では、時間t2が経過する頃には、貯湯槽2から給湯器16に送られる給湯設定温度の湯がバイパス通路68側を通って導出されるので(図4(b)の特性線b、参照)、給湯熱交換器17側から導出される給湯設定温度または給湯設定温度より前記嵩上げ温度高い温度の湯と、バイパス通路68側から導出される給湯設定温度の湯とが例えば1:3.5の割合で合流して給湯されることになり、給湯設定温度または給湯設定温度よりやや高めであるもののほぼ給湯設定温度の湯が給湯される(図4(b)の特性線b〜dおよび、図4(a)の領域b〜dの加算領域、参照)。以上のように、本実施例では、給湯温度はほぼ安定した温度とすることができ、非常に快適に利用することができる。 Further, on the bypass passage 68 side, when the time t2 elapses, hot water of the hot water supply set temperature sent from the hot water storage tank 2 to the water heater 16 is led out through the bypass passage 68 side (FIG. 4B). (Refer to the characteristic line b), the hot water set temperature derived from the hot water supply heat exchanger 17 side or the hot water having a raising temperature higher than the hot water supply set temperature and the hot water set temperature derived from the bypass passage 68 side. For example, hot water is supplied by merging at a ratio of 1: 3.5, and hot water is supplied at a hot water supply set temperature or a hot water supply set temperature that is slightly higher than the hot water supply set temperature (characteristic of FIG. 4 (b)). Lines b to d and the addition area of regions b to d in FIG. 4 (a)). As described above, in this embodiment, the hot water supply temperature can be set to a substantially stable temperature, and can be used very comfortably.

なお、貯湯槽2から給湯器16に送られる湯の給湯器16による受け入れ対し、前記のようにして給湯器16の給湯バーナ61の燃焼停止タイミングを合わせることにより給湯温度をほぼ安定した温度とするが、給湯熱交換器17の給湯バーナ燃焼停止タイミングにおける保有熱量は、例えば給湯熱交換器17から出湯される湯の温度が高くなるほど大となるので、例えば貯湯槽2から送られる湯の受け入れに対応させた給湯バーナ61の燃焼停止タイミングにおける給湯熱交換器17の保有熱量に合わせて、貯湯槽2から給湯器16に送る湯の嵩上げ温度(温度Tu)を可変することが好ましい。 The hot water supply temperature is set to a substantially stable temperature by adjusting the combustion stop timing of the hot water supply burner 61 of the water heater 16 as described above for the reception of hot water sent from the hot water storage tank 2 to the water heater 16 by the water heater 16. However, the amount of heat held at the hot water supply burner combustion stop timing of the hot water supply heat exchanger 17 increases, for example, as the temperature of the hot water discharged from the hot water supply heat exchanger 17 increases, so that, for example, for receiving hot water sent from the hot water storage tank 2. It is preferable to change the raising temperature (temperature Tu) of the hot water sent from the hot water storage tank 2 to the hot water supply 16 according to the amount of heat held by the hot water supply heat exchanger 17 at the corresponding combustion stop timing of the hot water supply burner 61.

例えば給湯熱交換器17の保有熱量を給湯器16の制御装置46側からタンクユニット4の制御装置33側に伝えるようにし、その保有熱量に応じた嵩上げ温度を制御装置33側の温度調節情報設定手段38が設定するようにしてもよい。 For example, the amount of heat held by the hot water supply heat exchanger 17 is transmitted from the control device 46 side of the water heater 16 to the control device 33 side of the tank unit 4, and the temperature control information setting on the control device 33 side is set according to the amount of heat held. The means 38 may be set.

また、本実施例のように、給湯熱交換器17から出る湯の温度を略一定に固定して、給湯熱交換器17から出る前記熱交基準温度の湯と該湯にバイパス通路68を通って合流する湯との割合をバイパスサーボ69の制御によって可変し、熱交基準温度の湯とバイパス通路を通る湯との混合により給湯設定温度の湯が形成されるようにすると、給湯熱交換器17の保有熱量を略一定の値にすることができる。 Further, as in the present embodiment, the temperature of the hot water discharged from the hot water supply heat exchanger 17 is fixed to be substantially constant, and the hot water having the heat exchange reference temperature discharged from the hot water supply heat exchanger 17 and the hot water pass through the bypass passage 68. When the ratio of the hot water to be merged is changed by the control of the bypass servo 69 and the hot water of the heat exchange reference temperature and the hot water passing through the bypass passage are mixed to form the hot water of the hot water supply set temperature, the hot water supply heat exchanger The amount of heat retained in 17 can be set to a substantially constant value.

そのため、給湯熱交換器17の保有熱量の値を予め制御装置33側で把握できるようにでき(例えばメモリ部37に予め格納しておくこともでき)、給湯熱交換器17の保有熱量を給湯器16の制御装置46側からタンクユニット4の制御装置33側に伝えて温度調節情報設定手段38により前記嵩上げ温度を設定するといった制御を省くことができるし、燃焼停止タイミングを合わせる手間も省くことができて、前記の如く給湯温度を楽にほぼ安定した温度とすることができる。 Therefore, the value of the retained heat of the hot water supply heat exchanger 17 can be grasped in advance on the control device 33 side (for example, it can be stored in the memory unit 37 in advance), and the retained heat of the hot water supply heat exchanger 17 can be supplied with hot water. It is possible to omit the control of transmitting the heat from the control device 46 side of the device 16 to the control device 33 side of the tank unit 4 and setting the raising temperature by the temperature control information setting means 38, and also saves the trouble of adjusting the combustion stop timing. As described above, the hot water supply temperature can be easily set to a substantially stable temperature.

なお、図5には、本実施例の比較例として、開発中の熱源装置において、本実施例の特徴的な送湯温度調節手段36の制御構成を設けずに、給湯開始後に貯湯槽2から給湯器16側に送る湯の温度を常に給湯設定温度とした場合の給湯温度特性(図5(a)、(b)の特性線a)と熱量特性(図5(a)の領域b〜dと図(b)の特性線b〜d)がそれぞれ示されている。 Note that FIG. 5 shows, as a comparative example of this embodiment, from the hot water storage tank 2 after the start of hot water supply, without providing the control configuration of the hot water supply temperature adjusting means 36 characteristic of this embodiment in the heat source device under development. Hot water supply temperature characteristics (characteristic lines a in FIGS. 5 (a) and 5 (b)) and calorific value characteristics (regions b to d in FIG. 5 (a)) when the temperature of hot water sent to the water heater 16 side is always set to the hot water supply set temperature. And the characteristic lines b to d) of FIG. (B) are shown respectively.

具体的には、図5(b)の特性線bおよび図5(a)の領域bはバイパス通路68の入側における熱量、図5(b)の特性線cおよび図5(a)の領域cは給湯バーナ61の燃焼停止時に給湯熱交換器17内にあった湯が給湯バーナ61の燃焼停止後に給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量、図5(b)の特性線dおよび図5(a)の領域dは、給湯バーナ61の燃焼停止後に貯湯槽2からの湯が給湯熱交換器17に導入されて給湯熱交換器17を通り、給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量をそれぞれ示している。 Specifically, the characteristic line b in FIG. 5 (b) and the region b in FIG. 5 (a) are the amount of heat on the entry side of the bypass passage 68, the characteristic line c in FIG. 5 (b) and the region in FIG. 5 (a). c is the amount of heat on the outlet side of the hot water supply heat exchanger 17 due to the hot water in the hot water supply heat exchanger 17 being drawn out from the hot water supply heat exchanger 17 after the hot water supply burner 61 has stopped burning. In the characteristic line d of 5 (b) and the region d of FIG. 5 (a), hot water from the hot water storage tank 2 is introduced into the hot water heat exchanger 17 and passes through the hot water heat exchanger 17 after the combustion of the hot water burner 61 is stopped. The amount of heat on the outlet side of the hot water supply heat exchanger 17 derived from the hot water supply heat exchanger 17 is shown.

これらの図から明らかなように、開発中の熱源装置において、本実施例の特徴的な送湯温度調節手段36の制御構成を設けずに、給湯開始後に貯湯槽2から給湯器16側に送る湯の温度を常に給湯設定温度とした場合には、給湯温度に大きなアンダーシュートが発生するものであるのに対し、本実施例は、前記の如く、給湯バーナ61の燃焼を的確なタイミングで停止することにより給湯温度のオーバーシュートが生じることを抑制できることに加え、送湯温度調節手段36の特徴的な制御構成によって、給湯温度のアンダーシュートの発生も抑制することができ、非常に快適に利用することができる。 As is clear from these figures, in the heat source device under development, the water is sent from the hot water storage tank 2 to the water heater 16 side after the start of hot water supply without providing the control configuration of the hot water supply temperature adjusting means 36 characteristic of this embodiment. When the temperature of the hot water is always set to the set temperature for hot water supply, a large undershoot occurs in the hot water supply temperature, whereas in this embodiment, the combustion of the hot water supply burner 61 is stopped at an accurate timing as described above. In addition to being able to suppress the occurrence of overshoot of the hot water supply temperature, the characteristic control configuration of the hot water supply temperature adjusting means 36 can also suppress the occurrence of undershoot of the hot water supply temperature, making it extremely comfortable to use. can do.

なお、本発明は、前記実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば前記実施例では、温度調節情報設定手段38をタンクユニット4の制御装置33に設けたが、温度調節情報設定手段38は給湯器16の制御装置46に設けてもよい。 The present invention is not limited to the above-described embodiment, and various aspects can be adopted without departing from the technical scope of the present invention. For example, in the above embodiment, the temperature control information setting means 38 is provided in the control device 33 of the tank unit 4, but the temperature control information setting means 38 may be provided in the control device 46 of the water heater 16.

また、温度調節情報設定手段38は、給湯バーナ61の燃焼開始後に該給湯バーナ61の燃焼が停止された以降の給湯熱交出側温度検出手段67の検出情報を、熱源装置の運転毎または、予め定められる給湯運転回数毎、あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において給湯熱交出側温度検出手段67の検出温度が給湯設定温度よりも低下する温度低下領域における給湯設定温度との温度差が、試運転時における温度低下領域における給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を、前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定するようにしてもよい。 Further, the temperature control information setting means 38 transmits the detection information of the hot water supply heat supply side temperature detecting means 67 after the combustion of the hot water supply burner 61 is stopped after the start of combustion of the hot water supply burner 61 for each operation of the heat source device or. By monitoring at each predetermined number of hot water supply operations or at each predetermined monitor timing for each predetermined set period, the detection temperature of the hot water supply heat delivery side temperature detecting means 67 is lower than the hot water supply set temperature at the time of monitoring. When the temperature difference from the hot water supply set temperature in the temperature drop region is different from the temperature difference from the hot water supply set temperature in the temperature drop region during the trial run beyond a predetermined allowable range, the hot water supply operation performed by the monitoring is performed. The raising temperature of the temperature control information applied after the next hot water supply operation may be changed and set according to a different degree beyond the allowable range of the temperature difference.

さらに、温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナ61の燃焼が停止された以降に給湯温度検出手段76によって検出される給湯温度を熱源装置の給湯運転毎、または予め定められる給湯運転回数毎、あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の給湯温度検出手段76の検出温度が給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を、給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定するようにしてもよい。 Further, the temperature control information setting means sets the hot water supply temperature detected by the hot water supply temperature detecting means 76 after the combustion of the hot water supply burner 61 which started combustion at the start of hot water supply is stopped for each hot water supply operation of the heat source device or a predetermined hot water supply. By monitoring for each number of operations or for each predetermined monitor timing for each predetermined set period, the detection temperature of the hot water supply temperature detecting means 76 at the time of monitoring sets a predetermined allowable range with respect to the hot water supply set temperature. When the temperature exceeds the allowable range and becomes different, the raising temperature of the temperature control information applied after the next hot water supply operation after the hot water supply operation performed by the monitor is changed according to the degree of difference exceeding the allowable range of the hot water supply temperature. You may set it.

これらの学習機能を設けると、試運転モードの給湯動作時と実際の給湯時とで外気温等の様々な条件が異なる場合でも、適切に給湯温度の安定化を図ることができる。 By providing these learning functions, it is possible to appropriately stabilize the hot water supply temperature even when various conditions such as the outside air temperature differ between the hot water supply operation in the test run mode and the actual hot water supply operation.

さらに、前記第1設定容量は、給湯回路62に導入されて給湯熱交換器17側とバイパス通路68側とに分岐して流れる湯水の、給湯熱交換器17側への分岐率とメインの熱交換器の保有水量とに対応する値に設定してもよく、この場合、例えば、式(2)により求められる。 Further, the first set capacity is the branching fraction of hot water that is introduced into the hot water supply circuit 62 and flows by branching to the hot water supply heat exchanger 17 side and the bypass passage 68 side to the hot water supply heat exchanger 17 side and the main heat. It may be set to a value corresponding to the amount of water held in the exchanger, and in this case, it is obtained by, for example, the equation (2).

第1設定容量=(メインの熱交換器17aの保有水量÷給湯熱交換器17側の分岐率−補正水量)・・・(2) First set capacity = (Amount of water retained in the main heat exchanger 17a ÷ Branching fraction on the hot water supply heat exchanger 17 side-Corrected water amount) ... (2)

例えば、前記実施例に当てはめた場合、給湯開始後の給湯バーナ61の燃焼停止以降は、給湯回路62に導入される湯水を給湯熱交換器17側とバイパス通路68側との比(バイパス比)を1:3.5とすることから、給湯熱交換器17側への分岐率は約0.22となり、メインの熱交換器17aの保有水量が0.6リットルであるから、補正水量を0.4リットルとした場合には、第1設定容量は、式(2)により、(0.6リットル÷0.22−0.4リットル)≒2.3リットルとなる。 For example, in the case of applying to the above embodiment, after the combustion of the hot water supply burner 61 is stopped after the hot water supply is started, the ratio of the hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage 68 side (bypass ratio). Since the value is 1: 3.5, the branching rate to the hot water supply heat exchanger 17 side is about 0.22, and the amount of water held by the main heat exchanger 17a is 0.6 liters, so the corrected water amount is set to 0. In the case of .4 liters, the first set capacity is (0.6 liters ÷ 0.22-0.4 liters) ≈2.3 liters according to the formula (2).

なお、式(2)における補正水量とは、メインの熱交換器17a内全てが高温の湯で満たされてはいない為の補正(メインの熱交換器17a入口側の温度はほぼ加熱されていない低めの温度(仮に加熱程度14%)であり、出口側の湯の温度が例えば60℃(仮に加熱程度100%)とした時に、平均加熱程度が100%とならないので、減算補正するための補正値)であり、予め実験等により求められて設定されるものである。ここで、給湯流量を8リットル/分とした場合、第1設定容量の湯を流すのに要する時間t1は、2リットル÷8リットル/分=0.25分=15秒とすることができる。 The amount of corrected water in the formula (2) is the correction because the inside of the main heat exchanger 17a is not completely filled with hot water (the temperature on the inlet side of the main heat exchanger 17a is almost not heated). When the temperature is low (temporarily heating degree 14%) and the temperature of the hot water on the outlet side is, for example, 60 ° C. (temporarily heating degree 100%), the average heating degree does not reach 100%, so correction for subtraction correction Value), which is obtained and set in advance by experiments or the like. Here, assuming that the hot water supply flow rate is 8 liters / minute, the time t1 required to flow the hot water of the first set capacity can be 2 liters ÷ 8 liters / minute = 0.25 minutes = 15 seconds.

なお、式(2)では減算補正を行ったが、平均加熱程度を用いて除積算で補正を行ってもよい。 In addition, although the subtraction correction was performed in the equation (2), the correction may be performed by subtraction and integration using the average heating degree.

また、第2設定容量は前記分岐率と潜熱回収用熱交換器17bの保有水量に対応する値に設定されており、第2設定容量は、式(3)により求められる値としてもよい。 Further, the second set capacity is set to a value corresponding to the branching fraction and the amount of water held in the latent heat recovery heat exchanger 17b, and the second set capacity may be a value obtained by the equation (3).

第2設定容量=(潜熱回収用熱交換器17bの保有水量÷給湯熱交換器17側の分岐率+第1補正値+第2補正値)・・・(3) 2nd set capacity = (Amount of water retained in the latent heat recovery heat exchanger 17b ÷ Branching fraction on the hot water supply heat exchanger 17 side + 1st correction value + 2nd correction value) ... (3)

前記実施例に当てはめた場合、潜熱回収用熱交換器17bの保有水量は0.7リットルであり、第1補正値は0.4リットル、第2補正値は1.3リットルであり、第2設定容量は、式(3)により、(0.7ットル÷0.22+0.4リットル+1.3リットル)≒4.88リットルとなる。 When applied to the above embodiment, the latent heat recovery heat exchanger 17b has 0.7 liters of water, the first correction value is 0.4 liters, the second correction value is 1.3 liters, and the second. The set capacity is (0.7 ttle ÷ 0.22 + 0.4 liter + 1.3 liter) ≈ 4.88 liter according to the formula (3).

また、式(3)における第1補正値は、式(2)の補正水量である。第2補正値は、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量が給湯器16の給湯回路62に導入される湯の温度×給湯熱交換器17側の分岐率(本実施例では約0.22)により求めた値と全く等しくはならずに、潜熱回収用熱交換器17bに熱を奪われる(ので、なだらかにしか温度が上昇せず、その上昇遅れ)分を補償する補正値であり、それぞれ予め実験等により求められて設定されるものである。ここで、給湯流量を8リットル/分とした場合、第2設定容量の湯を流すのに要する時間t2は、4.88リットル÷8リットル/分=0.61分≒37秒とすることができる。 The first correction value in the formula (3) is the correction water amount in the formula (2). The second correction value is the hot water supply heat obtained by the hot water from the hot water storage tank 2 introduced into the hot water supply heat exchanger 17 after the combustion of the hot water supply burner 61 is stopped is derived from the hot water supply heat exchanger 17 through the hot water supply heat exchanger 17. The amount of heat on the outlet side of the exchanger 17 is exactly the same as the value obtained by the temperature of the hot water introduced into the hot water supply circuit 62 of the water heater 16 × the branching rate on the hot water supply heat exchanger 17 side (about 0.22 in this embodiment). It is a correction value that compensates for the heat lost to the latent heat recovery heat exchanger 17b (so the temperature rises only gently and the rise is delayed), and each is obtained in advance by experiments or the like. It is set. Here, assuming that the hot water supply flow rate is 8 liters / minute, the time t2 required to flow the second set capacity of hot water may be 4.88 liters ÷ 8 liters / minute = 0.61 minutes ≒ 37 seconds. it can.

さらに、前記実施例では、貯湯槽2側から給湯器16の給湯回路62側に送る湯の温度を、給湯開始から該湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも予め定められる嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度としたが、貯湯槽2側から給湯器16側に湯が届く間に外気温等に応じて湯が冷めることを考慮して例えば0.5℃といった割り増し温度を設定し、給湯開始から湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度に割り増し温度を加算した値として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度に割り増し温度を加算した値に嵩上げ温度を加えた温度とし、前記第2設定容量に達した以降は前記給湯設定温度に割り増し温度を加算した値としてもよい。 Further, in the above embodiment, the temperature of the hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16 is set to the hot water supply from the start of the hot water supply until the capacity (integrated flow rate) of the hot water reaches the first set capacity. As the set temperature, the temperature is set to be higher than the hot water supply set temperature from the time when the first set capacity is reached until the second set capacity is reached, and after the second set capacity is reached, the hot water supply set temperature is set. However, considering that the hot water cools according to the outside temperature while the hot water reaches the hot water supply tank 16 side from the hot water storage tank 2, set an extra temperature such as 0.5 ° C, and start the hot water supply. Until the capacity (integrated flow rate) reaches the first set capacity, the hot water supply set temperature is added to the hot water supply set temperature, and the hot water supply set temperature is reached after the first set capacity is reached until the second set capacity is reached. The temperature may be obtained by adding the raising temperature to the value obtained by adding the extra temperature, and may be the value obtained by adding the extra temperature to the hot water supply set temperature after reaching the second set capacity.

さらに、前記実施例では、送湯温度調節手段36は、貯湯槽2側から給湯器16側に送る湯の容量が前記第1設定容量に達してから、湯の温度を給湯設定温度よりも予め定められる嵩上げ温度高い温度とする際、例えば図3の特性線bに示したように湯の温度を一気に嵩上げ温度分高くなるようにした(温度変化が階段状になるようにした)が、このようにするのではなく、緩やかに温度を上昇させていって(例えば図3の特性線aの給湯バーナの燃焼を停止した後の温度降下のなだらかな曲線を補完できるように、例えば嵩上げする湯の温度の温度上昇勾配が図3の特性線aの温度下降勾配の絶対値と略同等となるように)湯の温度が給湯設定温度よりも嵩上げ温度高い温度となるようにしてもよい。 Further, in the above embodiment, the hot water supply temperature adjusting means 36 sets the temperature of the hot water in advance of the hot water supply set temperature after the capacity of the hot water sent from the hot water storage tank 2 side to the hot water supply device 16 side reaches the first set capacity. When the specified raising temperature is set to a high temperature, for example, as shown in the characteristic line b in FIG. 3, the temperature of the hot water is raised by the raising temperature at once (the temperature change is made stepwise). Instead of doing so, for example, the hot water is raised slowly so that the gentle curve of the temperature drop after stopping the combustion of the hot water supply burner of the characteristic line a in FIG. 3 can be complemented. The temperature of the hot water may be higher than the set temperature of the hot water supply so that the temperature rise gradient of the temperature of the above temperature is substantially equal to the absolute value of the temperature fall gradient of the characteristic line a in FIG.

さらに、湯温度調節手段36は、貯湯槽2側から給湯器16側に送る湯の容量が前記第2設定容量に達してから、湯の温度を給湯設定温度とする際にも、同様に、緩やかに温度を下降させていって給湯設定温度に戻してもよい。すなわち、前記実施例では、温度変化特性線が図3の特性線bに示したような矩形状になるように嵩上げしたが、これにとらわれず、台形状に嵩上げするようにしてもかまわない。 Further, when the hot water temperature adjusting means 36 sets the hot water temperature as the hot water supply set temperature after the capacity of the hot water sent from the hot water storage tank 2 side to the water heater 16 side reaches the second set capacity, the same applies. The temperature may be gradually lowered to return to the hot water supply set temperature. That is, in the above embodiment, the temperature change characteristic line is raised so as to have a rectangular shape as shown in the characteristic line b in FIG. 3, but the temperature change characteristic line may be raised to a trapezoidal shape without being limited to this.

さらに、前記実施例では、温度調節情報設定手段38は、第1設定容量と第2設定容量と嵩上げ温度とを設定したが、第1設定容量や第2設定容量の代わりに、第1設定容量や第2設定容量と給湯流量とから、第1設定容量の湯を流すのに要する時間を求める演算式や第2設定容量の湯を流すのに要する時間を求める演算式等を与えてもよい。 Further, in the above embodiment, the temperature control information setting means 38 sets the first set capacity, the second set capacity, and the raised temperature, but instead of the first set capacity and the second set capacity, the first set capacity Or, a calculation formula for calculating the time required to flow the hot water of the first set capacity, a calculation formula for calculating the time required to flow the hot water of the second set capacity, or the like may be given from the second set capacity and the hot water supply flow rate. ..

また、前記のような学習機能を設けると、給湯器16等の補助熱源装置の買い替えが行われたことや、隣家が建て替えて設置環境が変わったこと、補助熱源装置の移設により状況が変わった等を迅速、かつ、的確に判断でき、その場合に、嵩上げ温度等の温度調節用情報を試運転時ではなく、前記試運転相当運転時に取得することができるため、給湯器16等の買い換えなどに対しても的確な対応をとることができる。 In addition, when the learning function as described above was provided, the situation changed due to the replacement of the auxiliary heat source device such as the water heater 16, the rebuilding of the neighboring house and the change in the installation environment, and the relocation of the auxiliary heat source device. Etc. can be determined quickly and accurately, and in that case, temperature control information such as the raising temperature can be obtained not at the time of the test run but at the time of the test run equivalent operation, so that the replacement of the water heater 16 etc. However, it is possible to take appropriate measures.

さらに、例えば給湯器16等の補助熱源装置の交換が行われた際に、補助熱源装置をリモコン装置43に信号接続することによりリモコン装置43側で補助熱源装置の号数等の情報を得られるようにし、主熱源側(例えばタンクユニット4側)の制御装置33が、リモコン装置43側からの情報を得て、その情報に基づき、予め複数設定しておいた前記第1設定容量や第2設定容量や嵩上げ温度等の情報値から適宜の値を自動的に選択できるようにしてもよい。 Further, for example, when the auxiliary heat source device such as the water heater 16 is replaced, the remote control device 43 can obtain information such as the number of the auxiliary heat source device by connecting the auxiliary heat source device to the remote control device 43 by a signal. In this way, the control device 33 on the main heat source side (for example, the tank unit 4 side) obtains information from the remote control device 43 side, and based on the information, a plurality of the first set capacities and the second set capacity are set in advance. An appropriate value may be automatically selected from the information values such as the set capacity and the raising temperature.

さらに、貯湯槽2と給湯器16の給湯回路62の湯水導入側とを接続する接続用配管(図6における湯水導入通路15)の長さが予め与えられる設定長さ(例えば4m)より短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は、貯湯槽2から出湯される湯の代わりに給水通路8bから給湯器15に水を導入し、前記水導入時間が経過した以降に貯湯槽2から出湯される湯を湯の通路9を通して給湯器15に導入するようにする給湯開始時導入湯水可変手段を設けてもよい。 Further, when the length of the connection pipe (hot water introduction passage 15 in FIG. 6) connecting the hot water storage tank 2 and the hot water introduction side of the hot water supply circuit 62 of the water heater 16 is shorter than the preset length (for example, 4 m) given in advance. In the above period, from the start of hot water supply to the elapse of a predetermined water introduction time, water is introduced into the water heater 15 from the water supply passage 8b instead of the hot water discharged from the hot water storage tank 2, and the water introduction time is described. A hot water introduction variable means at the start of hot water supply may be provided so that the hot water discharged from the hot water storage tank 2 is introduced into the water heater 15 through the hot water passage 9 after the lapse of time.

なお、前記水導入時間は、給水通路8bから給湯器16に導入される水が給湯バーナ61の燃焼により加熱されてメインの熱交換器17a内の湯が給湯設定温度あるいは給湯設定温度より予め定められる温度高めの温度まで加熱されるまでの時間とする、または、この時間から湯水導入通路15の容量分差し引いた時間とする等、適宜の時間に設定される。 The water introduction time is set in advance from the hot water supply set temperature or the hot water supply set temperature when the water introduced into the water heater 16 from the water supply passage 8b is heated by the combustion of the hot water supply burner 61 and the hot water in the main heat exchanger 17a is heated. The time is set to an appropriate time, such as the time until the water is heated to a higher temperature, or the time obtained by subtracting the capacity of the hot water introduction passage 15 from this time.

さらに、本発明の熱源装置の詳細なシステム構成は適宜設定されるものであり、例えば前記実施例ではタンク湯水混合器12と水混合器14も共に2方弁として、これらの混合器12,14で2カ所で混合比を調整したが、例えば2方弁を用いる代わりに、1カ所に3方弁を設けて混合比を調整するようにしてもよい。 Further, the detailed system configuration of the heat source device of the present invention is appropriately set. For example, in the above embodiment, the tank hot water mixer 12 and the water mixer 14 are both two-way valves, and these mixers 12, 14 Although the mixing ratio was adjusted at two places in the above, for example, instead of using a two-way valve, a three-way valve may be provided at one place to adjust the mixing ratio.

さらに、前記実施例では、給水流量センサ29と流量検出手段42を別々のものとして両方を熱源装置に設けたが、どちらか1つで兼用してもよい。例えば流量検出手段42のみ設ける場合には、流量検出手段42の検出信号をミキシング流量制御手段35にも加えるようにする。なお、給水流量センサ29と流量検出手段42の両方を設ける場合にも、流量検出手段42の検出信号をミキシング流量制御手段35等に加えてもよいが、ミキシング流量制御手段35等には給水流量センサ29の検出信号を加えるようにする方が、給湯器16等の補助熱源装置とタンクユニット4間の情報融通を行わずにすみ、制御構成を簡略化できる。 Further, in the above embodiment, the water supply flow rate sensor 29 and the flow rate detecting means 42 are separated and both are provided in the heat source device, but either one may be used in combination. For example, when only the flow rate detecting means 42 is provided, the detection signal of the flow rate detecting means 42 is also added to the mixing flow rate controlling means 35. When both the water supply flow rate sensor 29 and the flow rate detecting means 42 are provided, the detection signal of the flow rate detecting means 42 may be added to the mixing flow rate controlling means 35 or the like, but the water supply flow rate to the mixing flow rate controlling means 35 or the like. By adding the detection signal of the sensor 29, it is not necessary to exchange information between the auxiliary heat source device such as the water heater 16 and the tank unit 4, and the control configuration can be simplified.

さらに、給湯器16も、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよい。 Further, the water heater 16 may also be a type of water heater in which the hot water supply heat exchanger 17 is heated by, for example, an oil combustion type burner device.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。 Further, in the above embodiment, the hot water storage tank 2 is thermally connected to the fuel cell 1, but instead of the fuel cell 1, a solar heat collector, a heat pump, or the like may be connected.

本発明の熱源装置は、給湯温度の安定化を図ることができ、使い勝手が良好であるので、例えば家庭用の熱源装置として利用できる。 The heat source device of the present invention can stabilize the hot water supply temperature and is easy to use, so that it can be used as a heat source device for home use, for example.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
8,8a,8b 給水通路
9 出湯通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
16 給湯器
47 燃焼制御手段
67 給湯熱交換出側温度検出手段
71 給水温度検出手段
73 メモリ部
74 バイパスサーボ制御手段
1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means in hot water storage tank 8, 8a, 8b Water supply passage 9 Hot water outlet passage 10 Confluence 11 Hot water storage tank hot water temperature detection means 12 Tank hot water mixer 16 Water heater 47 Combustion control means 67 Hot water supply heat exchange outlet side temperature detection means 71 Water supply temperature detection means 73 Memory unit 74 Bypass servo control means

Claims (8)

湯を出湯する機能を有する主熱源を有し、該主熱源から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されており、前記補助熱源装置には、前記給湯回路の湯水導入側に導入される湯水の温度を検出する給水温度検出手段と、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯熱交換器の出側の温度を検出する給湯熱交出側温度検出手段と、前記給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路と、該バイパス通路に設けられるバイパスサーボとが設けられて、該バイパスサーボがバイパスサーボ制御手段により制御されて前記給湯回路に導入される湯水の前記給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが予め定められるバイパス割合変化範囲内で制御される構成を有しており、給湯が開始されたときには給湯設定温度の湯を前記主熱源側から前記補助熱源装置の給湯回路側に送ると共に前記補助熱源装置の前記燃焼制御手段が前記給湯バーナの燃焼を開始させる機能を有して前記給湯回路を通る湯水を前記給湯熱交換器により加熱して給湯しながら前記給水温度検出手段の検出温度を取り込み、該検出温度が前記給湯設定温度と前記給湯熱交出側温度検出手段の検出温度と前記バイパス割合変化範囲における前記バイパス通路側へのバイパス割合の最大値とにより予め求められる値であって前記給湯設定温度よりは低い給水限界温度以上になったときに前記給湯バーナの燃焼を停止して給湯を継続することを特徴とする熱源装置。 It has a main heat source that has the function of discharging hot water, and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device equipped with the hot water supply heat exchanger is connected to the downstream side of the passage of the hot water discharged from the main heat source. The auxiliary heat source device performs a water supply temperature detecting means for detecting the temperature of hot water introduced into the hot water introduction side of the hot water supply circuit, a hot water supply burner for heating the hot water supply heat exchanger, and combustion control of the hot water supply burner. Combustion control means, hot water supply heat exchange side temperature detecting means for detecting the temperature on the outlet side of the hot water supply heat exchanger, and hot water introduced into the hot water supply circuit from the hot water supply circuit without passing through the hot water supply heat exchanger. A bypass passage for deriving and a bypass servo provided in the bypass passage are provided, and the bypass servo is controlled by the bypass servo control means to the hot water supply heat exchanger side of the hot water introduced into the hot water supply circuit. Has a configuration in which the distribution ratio and the distribution ratio to the bypass passage side are controlled within a predetermined bypass ratio change range, and when hot water supply is started, hot water at a hot water supply set temperature is supplied from the main heat source side. The hot water supply heat exchanger heats the hot water passing through the hot water supply circuit, which has a function of sending to the hot water supply circuit side of the auxiliary heat source device and the combustion control means of the auxiliary heat source device starts combustion of the hot water supply burner. While supplying hot water, the detection temperature of the water supply temperature detecting means is taken in, and the detection temperature is the detection temperature of the hot water supply set temperature, the hot water supply heat exchange side temperature detecting means, and the bypass ratio to the bypass passage side in the bypass ratio change range. A heat source device characterized in that combustion of the hot water supply burner is stopped and hot water supply is continued when the water supply limit temperature is lower than the hot water supply set temperature, which is a value obtained in advance by the maximum value of the hot water supply burner. 補助熱源装置は、給湯熱交換器を通って該給湯熱交換器から出る湯の温度が予め求められる熱交基準温度となるように燃焼制御手段によって給湯バーナの燃焼を制御し、前記給湯熱交換器から出る前記熱交基準温度の湯と該熱交基準温度の湯にバイパス通路を通って合流する湯との割合をバイパスサーボ制御手段がバイパスサーボの制御によって可変することにより前記給湯熱交換器の湯が給湯されるように制御する給湯温度制御構成を有することを特徴とする請求項1記載の熱源装置。 The auxiliary heat source device controls the combustion of the hot water supply burner by the combustion control means so that the temperature of the hot water discharged from the hot water supply heat exchanger through the hot water supply heat exchanger becomes the heat exchange reference temperature obtained in advance, and the hot water supply heat exchange The hot water supply heat exchanger is such that the bypass servo control means changes the ratio of the hot water of the heat exchange reference temperature and the hot water of the heat exchange reference temperature that joins the hot water through the bypass passage by the control of the bypass servo. The heat source device according to claim 1, further comprising a hot water supply temperature control configuration for controlling the hot water to be supplied. バイパスサーボ制御手段は、給湯バーナを停止した以降はバイパス通路側への流通割合が前記割合変化範囲内で最大となるようにバイパスサーボを制御することを特徴とする請求項1または請求項2または請求項3記載の熱源装置。 The bypass servo control means according to claim 1 or 2, wherein the bypass servo is controlled so that the distribution ratio to the bypass passage side becomes the maximum within the ratio change range after the hot water supply burner is stopped. The heat source device according to claim 3. 補助熱源装置の給湯熱交換器は、給湯バーナの燃焼ガスの顕熱を吸収するメインの熱交換器と、該メインの熱交換器の上流側に設けられて前記燃焼ガスの潜熱を回収する潜熱回収用熱交換器とを有し、主熱源から前記補助熱源装置に送られる湯を前記潜熱回収用熱交換器と前記メインの熱交換器に順に通して給湯先に給湯する機能を有しており、主熱源側には該主熱源側から前記補助熱源装置の給湯回路側に送られる湯の温度を調節する送湯温度調節手段が設けられ、熱源装置の試運転時の給湯動作における前記給湯バーナの燃焼開始後の該給湯バーナの燃焼停止以降に検出される前記給湯熱交出側温度検出手段の検出温度に基づいて、前記給湯バーナの停止時から給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、前記メインの熱交換器の出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを前記送湯温度調節手段の温度調節用情報として設定する温度調節情報設定手段を有し、該温度調節用情報に基づいて前記送湯温度調節手段が前記主熱源側から前記補助熱源装置の給湯回路側に送る湯の温度を給湯開始から該湯の容量が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも前記嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とすることを特徴とする請求項1または請求項2または請求項3記載の熱源装置。 The hot water supply heat exchanger of the auxiliary heat source device is a main heat exchanger that absorbs the apparent heat of the combustion gas of the hot water supply burner and a latent heat that is provided on the upstream side of the main heat exchanger to recover the latent heat of the combustion gas. It has a heat exchanger for recovery, and has a function of passing hot water sent from the main heat source to the auxiliary heat source device in order through the latent heat recovery heat exchanger and the main heat exchanger to supply hot water to the hot water supply destination. A hot water supply temperature adjusting means for adjusting the temperature of hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device is provided on the main heat source side, and the hot water supply burner in the hot water supply operation during the trial run of the heat source device. Based on the detection temperature of the hot water supply heat exchange side temperature detecting means detected after the hot water supply burner has stopped burning after the start of combustion, the time required from when the hot water supply burner is stopped until the temperature drops below the hot water supply set temperature. A first set capacity based on the hot water supply flow rate, and a second set based on the time required for returning to the hot water supply set temperature after the detection temperature of the hot water supply heat exchange side temperature detecting means falls below the hot water supply set temperature and the hot water supply flow rate. For temperature control of the hot water supply temperature adjusting means, the set capacity and the raising temperature based on the temperature characteristics until the temperature on the outlet side of the main heat exchanger drops below the hot water supply set temperature and then returns to the hot water supply set temperature. It has a temperature control information setting means for setting as information, and the temperature of hot water sent by the hot water supply temperature control means from the main heat source side to the hot water supply circuit side of the auxiliary heat source device is set from the start of hot water supply based on the temperature control information. Until the capacity of the hot water reaches the first set capacity, the hot water supply set temperature is set to a temperature higher than the hot water supply set temperature from the time when the first set capacity is reached until the second set capacity is reached. The heat source device according to claim 1, claim 2 or claim 3, wherein the hot water supply set temperature is set after the second set capacity is reached. 温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする請求項4記載の熱源装置。 The temperature control information setting means obtains the detection information of the hot water supply heat delivery side temperature detecting means after the combustion of the hot water supply burner that started burning at the start of hot water supply is stopped for each hot water supply operation of the heat source device or for each predetermined number of hot water supply operations. The hot water supply set temperature in the temperature drop region where the detection temperature of the hot water supply heat delivery side temperature detecting means is lower than the hot water supply set temperature at the time of monitoring by monitoring at each predetermined monitor timing for each predetermined set period. When the temperature difference between and is different from the temperature difference from the hot water supply set temperature in the temperature drop region during the trial run beyond a predetermined allowable range, it is applied after the next hot water supply operation of the hot water supply operation in which the monitoring is performed. The heat source device according to claim 4, wherein the raising temperature of the temperature control information is changed and set according to a different degree beyond the allowable range of the temperature difference. 給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を有し、温度調節情報設定手段は、給湯開始と共に燃焼開始した給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の前記給湯温度検出手段の検出温度が給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする請求項4記載の熱源装置。 It has a hot water supply temperature detecting means that detects the temperature of hot water supplied through the hot water supply circuit as the hot water supply temperature, and the temperature control information setting means detects the hot water supply temperature after the combustion of the hot water supply burner that started burning at the start of hot water supply is stopped. The hot water supply temperature detected by the means is monitored for each hot water supply operation of the heat source device, for each predetermined number of hot water supply operations, or for each predetermined monitor timing for each predetermined set period, and the hot water supply temperature is detected at the time of monitoring. When the detection temperature of the means exceeds the predetermined allowable range for the hot water supply set temperature and becomes a different temperature, the temperature control information applied after the hot water supply operation after the hot water supply operation in which the monitoring is performed is raised. The heat source device according to claim 4, wherein the temperature is changed and set according to a different degree beyond the allowable range of the hot water supply temperature. 補助熱源装置の湯水導入側には主熱源から出湯される湯の通路の他に給水通路が接続されており、主熱源と補助熱源装置の給湯回路の湯水導入側とが接続用配管を介して接続されていて該接続用配管の長さが予め与えられる設定長さより短い場合には、給湯が開始されたときに前記主熱源側から前記補助熱源装置の給湯回路側に湯を送る代わりに給湯開始から予め定められている水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入する給湯開始時導入湯水可変手段を有することを特徴とする請求項4または請求項5または請求項6記載の熱源装置。 A water supply passage is connected to the hot water introduction side of the auxiliary heat source device in addition to the hot water passage from the main heat source, and the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device are connected via a connection pipe. If the connection pipe is connected and the length of the connection pipe is shorter than the preset length given in advance, hot water is supplied instead of being sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device when hot water supply is started. Water is introduced from the water supply passage into the auxiliary heat source device from the start until a predetermined water introduction time elapses, and after the water introduction time elapses, hot water is discharged from the main heat source through the hot water passage. The heat source device according to claim 4, claim 5 or claim 6, wherein the hot water introduced at the start of hot water supply variable means for introducing the hot water to be introduced into the auxiliary heat source device. 主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、該ミキシング流量制御手段に送湯温度調節手段が指令を加えて前記主熱源から前記補助熱源装置側に送られる湯の温度を調節することを特徴とする請求項1乃至請求項7のいずれか一つに記載の熱源装置。 The main heat source has a hot water storage tank, and a confluence portion where the hot water passage and the water supply passage confluent from the hot water storage tank is provided, and a mixing means for mixing the hot water and water merged at the confluence portion, and A hot water introduction passage for introducing hot water mixed and formed by the mixing means into an auxiliary heat source device, and a mixing flow rate control means for controlling the flow rate of hot water and the flow rate of water flowing to the confluence by controlling the mixing means. 1 to claim, wherein the hot water supply temperature adjusting means gives a command to the mixing flow rate controlling means to adjust the temperature of the hot water sent from the main heat source to the auxiliary heat source device side. The heat source device according to any one of 7.
JP2017071428A 2017-03-31 2017-03-31 Heat source device Active JP6800795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071428A JP6800795B2 (en) 2017-03-31 2017-03-31 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071428A JP6800795B2 (en) 2017-03-31 2017-03-31 Heat source device

Publications (2)

Publication Number Publication Date
JP2018173229A JP2018173229A (en) 2018-11-08
JP6800795B2 true JP6800795B2 (en) 2020-12-16

Family

ID=64107266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071428A Active JP6800795B2 (en) 2017-03-31 2017-03-31 Heat source device

Country Status (1)

Country Link
JP (1) JP6800795B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218428Y2 (en) * 1985-04-15 1990-05-23
JP3533799B2 (en) * 1995-12-28 2004-05-31 株式会社ノーリツ Water heater
JP6154286B2 (en) * 2013-10-29 2017-06-28 株式会社コロナ Hot water bath equipment
JP6228881B2 (en) * 2014-03-28 2017-11-08 株式会社ガスター Heat source equipment
JP6376390B2 (en) * 2014-10-27 2018-08-22 株式会社ノーリツ Hot water storage hot water system
JP6607375B2 (en) * 2015-06-24 2019-11-20 株式会社ノーリツ Auxiliary heat source machine

Also Published As

Publication number Publication date
JP2018173229A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6858621B2 (en) Heat source device
JP6055356B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP5887038B2 (en) Heat source equipment
JP6800795B2 (en) Heat source device
JP5613039B2 (en) Heat source equipment
JP6209117B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP2009002599A (en) Heat pump type water heater
JP6125877B2 (en) Heat source equipment
JP6843679B2 (en) Heat source device
JP2018031523A (en) Storage water heater
JP5567947B2 (en) Heat source equipment
JP5671304B2 (en) Heat source equipment
JP6320118B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
JP6320117B2 (en) Heat source equipment
JP2014059126A (en) Heat source device
JP6133661B2 (en) Heat source equipment
JP2008292028A (en) Heat supply device
JP6475982B2 (en) Hot water system
KR101588538B1 (en) Storage type hot water supply device
JP5470422B2 (en) Thermal equipment
JP2009299927A (en) Storage type water heater
JP5893992B2 (en) Heat supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150