JP6858621B2 - Heat source device - Google Patents

Heat source device Download PDF

Info

Publication number
JP6858621B2
JP6858621B2 JP2017071427A JP2017071427A JP6858621B2 JP 6858621 B2 JP6858621 B2 JP 6858621B2 JP 2017071427 A JP2017071427 A JP 2017071427A JP 2017071427 A JP2017071427 A JP 2017071427A JP 6858621 B2 JP6858621 B2 JP 6858621B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
timing
heat source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071427A
Other languages
Japanese (ja)
Other versions
JP2018173228A (en
Inventor
翼 内山
翼 内山
想子 山下
想子 山下
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2017071427A priority Critical patent/JP6858621B2/en
Publication of JP2018173228A publication Critical patent/JP2018173228A/en
Application granted granted Critical
Publication of JP6858621B2 publication Critical patent/JP6858621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯槽と補助熱源装置とを備えた熱源装置に関するものである。 The present invention relates to a heat source device including a hot water storage tank and an auxiliary heat source device.

主熱源としての貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、参照)、図2には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。 A heat source device including a hot water storage tank as a main heat source is used (see, for example, Patent Document 1), and FIG. 2 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 provided with a hot water storage tank 2 and a hot water passage 9 is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from a fuel such as city gas with oxygen in the air by the reverse reaction of electrolysis of water. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、例えば燃料電池1内を通る熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる排熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が接続され、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。 The heat recovery passage 3 is a passage for circulating a liquid (here, hot water) between the fuel cell 1 and the hot water storage tank 2 as shown by arrows A and A'in the figure, for example, in the fuel cell 1. The heat recovery passage 3 through which the fuel passes is provided with a pump (not shown) for circulating a liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water storage tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by the arrow A'in the figure to be used as cooling water, and this water is used at the time of power generation of the fuel cell 1. After heating by the generated exhaust heat, it is passed through the heat recovery passage 3 as shown by the arrow A in the figure, and is accumulated in the hot water storage tank 2 as hot water having a temperature of, for example, 60 ° C. A bypass passage 7 is connected to the heat recovery passage 3 via a three-way valve 6, and the liquid flowing from the fuel cell 1 side to the hot water storage tank 2 side is not passed through the hot water storage tank 2 as needed. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図2では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。 In the hot water storage tank 2, hot water temperature detecting means 5 in the hot water storage tank 2 for detecting the temperature of the hot water in the hot water storage tank 2 are interposed in the hot water storage tank 2 or on the outer wall of the hot water storage tank 2 in the vertical direction of the hot water storage tank 2 at intervals. (5 in FIG. 2) are provided. The hot water temperature detecting means 5a in the hot water storage tank provided at the uppermost position is filled with hot water at a position lower than the upper end of the hot water storage tank 2 by a predetermined length, that is, to, for example, the upper end of the hot water storage tank 2. It is provided at the position of the hot water surface when hot water having a hot water amount 20 liters less than that of the hot water storage tank 2 is introduced into the hot water storage tank 2.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、湯の通路9には、該湯の通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替える例えばパイロット方式のタンク側電磁弁13とが設けられている。湯の通路9には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁81を備えた圧力逃がし用の通路80が接続されている。 The hot water passage 9 connected to the upper side of the hot water storage tank 2 is a passage for discharging (sending) hot water formed in the hot water storage tank 2, and the hot water passage 9 is a hot water passage. A hot water storage tank that detects the temperature of hot water passing through 9, a hot water temperature detecting means 11, a tank hot water mixer 12 that changes the amount of hot water sent through the hot water passage 9, and the presence or absence of hot water being sent through the hot water passage 9. For example, a pilot type tank-side solenoid valve 13 is provided to switch the temperature by opening and closing the valve. A pressure relief passage 80 provided with an overpressure relief valve 81 for releasing the pressure to the outside when the pressure in the hot water storage tank 2 exceeds the allowable pressure is connected to the hot water passage 9.

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、湯水合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから湯水合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、湯水合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図2はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、湯水合流部10の付近に設けられていてもよい。また、給水通路8は上水道に接続される。 Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, and the water supply passage 8 (8a) on one side is connected to the lower side of the hot water storage tank 2, and the water supply passage 8 on the other side is connected. (8b) is formed so as to join the hot water passage 9 at the hot water merging portion 10. The water supply passage 8b is provided with a water mixer 14 for varying the amount of water flowing from the water supply passage 8b to the hot water confluence portion 10 side. In this heat source device, a mixing means for mixing hot water and water merged at the hot water confluence portion 10 is formed by having a water mixer 14 and the tank hot water mixing mixer 12, and FIG. 2 shows a system. Although the water mixer 14 and the tank hot water mixer 12 are shown at separate positions because of the configuration diagram, they may be provided in the vicinity of the hot water confluence portion 10. Further, the water supply passage 8 is connected to the water supply.

湯水合流部10には通路18が連通し、通路18には混合サーミスタ28(28a,28b)が設けられており、タンクユニット4は、例えばリモコン装置等を用いて設定される給湯設定温度の湯を、湯の通路9と通路18を通して出湯する機能を有している。通路18には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、図2の矢印Bに示されるように貯湯槽2から湯の通路9と通路18を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように、湯水導入通路15を介して給湯器16の給湯回路62に導入される。 A passage 18 communicates with the hot water confluence portion 10, and a mixing thermistor 28 (28a, 28b) is provided in the passage 18, and the tank unit 4 is a hot water having a hot water supply set temperature set by using, for example, a remote controller or the like. Has a function of discharging hot water through the hot water passage 9 and the passage 18. The hot water introduction side of the water heater 16 as an auxiliary heat source device is connected to the passage 18 via the hot water introduction passage 15, and as shown by the arrow B in FIG. 2, the hot water passage 2 to the hot water passage 9 and the passage are connected. The hot water sent through the hot water 18 (water is sent from the tank unit 4) is introduced into the hot water supply circuit 62 of the water heater 16 via the hot water introduction passage 15 as shown by the arrow B ”in the figure.

給湯器16の給湯回路62は、給湯バーナ61の燃焼熱により加熱される給湯熱交換器17を備えており、同図において、給湯熱交換器17は、給湯バーナ61の燃焼ガスの顕熱を吸収するメインの熱交換器17aと、該メインの熱交換器17aの上流側(湯の流れの上流側)に設けられて給湯バーナ61の燃焼ガスの潜熱を回収する潜熱回収用熱交換器17bとを有する。このように潜熱回収用熱交換器17bを設ける構成とすると、熱効率の高い給湯器16を形成できるために好ましい。 The hot water supply circuit 62 of the hot water supply device 16 includes a hot water supply heat exchanger 17 that is heated by the combustion heat of the hot water supply burner 61. The main heat exchanger 17a that absorbs heat and the latent heat recovery heat exchanger 17b that is provided on the upstream side (upstream side of the hot water flow) of the main heat exchanger 17a and recovers the latent heat of the combustion gas of the hot water supply burner 61. And have. It is preferable to provide the latent heat recovery heat exchanger 17b in this way because the water heater 16 having high thermal efficiency can be formed.

また、同図には図示されていないが、例えば給湯バーナ61をガスバーナにより形成する場合、給湯バーナ61に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ61への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ61への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器17の加熱制御が行われる。 Although not shown in the figure, for example, when the hot water supply burner 61 is formed by a gas burner, the hot water supply burner 61 is provided with a gas supply passage for supplying fuel gas, and the gas supply passage is provided with a hot water supply passage through the gas supply passage. A gas on-off valve (gas electromagnetic valve) for controlling the presence or absence of supply to the burner 61 and a gas proportional valve for adjusting the supply amount thereof are provided. In addition, appropriate components (not shown) such as a combustion fan that supplies and exhausts air to the hot water supply burner 61 are provided, and by controlling the components, the heating of the hot water supply heat exchanger 17 can be controlled. Will be done.

給湯回路62の入口側の通路には、流量検出センサ42と給水温度検出手段71が設けられており、給湯熱交換器17の出側の通路には、給湯熱交換器17の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出手段67が設けられ、さらに、その下流側には、給湯回路62を通して給湯される湯の温度(給湯温度)を検出する給湯温度検出手段76が設けられている。給湯回路62の出側には給湯通路19が設けられており、流量検出センサ42は、給湯通路19を通して給湯される給湯流量を検出する。給水温度検出手段71は給湯器62に導入される湯水温を検出するものであり、場合によっては省略することもできる。 A flow rate detection sensor 42 and a water supply temperature detecting means 71 are provided in the passage on the inlet side of the hot water supply circuit 62, and the temperature on the outlet side of the hot water supply heat exchanger 17 is provided in the passage on the outlet side of the hot water supply heat exchanger 17. A hot water supply heat exchange side temperature detecting means 67 for detecting (the temperature of hot water passing through the passage on the outlet side) is provided, and further, on the downstream side thereof, the temperature of hot water supplied through the hot water supply circuit 62 (hot water supply temperature) is detected. The hot water supply temperature detecting means 76 is provided. A hot water supply passage 19 is provided on the outlet side of the hot water supply circuit 62, and the flow rate detection sensor 42 detects the flow rate of hot water supplied through the hot water supply passage 19. The water supply temperature detecting means 71 detects the temperature of hot water introduced into the water heater 62, and may be omitted in some cases.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられている。バイパス通路68の容量は給湯熱交換器17の容量に比べると格段に小さく、一例としてあげると、給湯熱交換器17のメインの熱交換器17aの容量が0.6リットル、潜熱回収用熱交換器17bの容量が0.7リットルに対し、バイパス通路68の容量は0.06リットル程度である。なお、図2は、模式的なシステム図であり、メインの熱交換器17aと潜熱回収用熱交換器17bとバイパス通路68の大きさは、それぞれの容量と対応してはいない。 Further, the hot water supply circuit 62 is provided with a bypass passage 68 for leading the hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17. The capacity of the bypass passage 68 is much smaller than the capacity of the hot water supply heat exchanger 17, for example, the capacity of the main heat exchanger 17a of the hot water supply heat exchanger 17 is 0.6 liters, and the heat exchange for latent heat recovery is performed. The capacity of the vessel 17b is 0.7 liters, while the capacity of the bypass passage 68 is about 0.06 liters. Note that FIG. 2 is a schematic system diagram, and the sizes of the main heat exchanger 17a, the latent heat recovery heat exchanger 17b, and the bypass passage 68 do not correspond to their respective capacities.

バイパス通路68には例えばステッピングモータを備えたバイパスサーボ69が設けられており、バイパスサーボ69の制御によって、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合とが予め定められる割合変化範囲内で制御される構成と成している。 For example, a bypass servo 69 provided with a stepping motor is provided in the bypass passage 68, and the distribution ratio of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage 68 are controlled by the bypass servo 69. The configuration is such that the distribution ratio to the side is controlled within a predetermined ratio change range.

例えばバイパスサーボ69の制御により、例えばバイパス比(給湯熱交換器17側とバイパス通路68側との比)を1:0として、給湯回路62に導入された湯水を例えば100%給湯熱交換器17側に通すことができるし、バイパス比を1:3.5になるような割合で、バイパス通路68側に多く分岐させて通すこともできる。バイパスサーボ69の制御による給湯熱交換器17側とバイパス通路68側との比は、例えば1:0〜1:3.5といった予め定められるバイパス割合変化範囲内の適宜の値となるように適宜可変設定される。 For example, by controlling the bypass servo 69, for example, the bypass ratio (ratio between the hot water supply heat exchanger 17 side and the bypass passage 68 side) is set to 1: 0, and the hot water introduced into the hot water supply circuit 62 is, for example, 100% hot water supply heat exchanger 17. It can be passed to the side, or it can be branched to the bypass passage 68 side at a ratio such that the bypass ratio is 1: 3.5. The ratio of the hot water supply heat exchanger 17 side and the bypass passage 68 side controlled by the bypass servo 69 is appropriately set to an appropriate value within a predetermined bypass ratio change range such as 1: 0 to 1: 3.5. Variable setting.

この熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱(追い加熱)して給湯する追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、非追い加熱給湯機能の動作時には、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する(このようにバイパスサーボ69を制御する)。 This heat source device has a follow-up heating hot water supply function that heats (additionally heats) hot water introduced into the hot water supply circuit 62 of the water heater 16 from the hot water passage 9 side by the hot water supply heat exchanger 17 and supplies hot water from the hot water passage 9. It has a non-additional heating hot water supply function in which hot water introduced into the hot water supply circuit 62 is supplied to the hot water supply destination through the hot water supply circuit 62 without being heated. The water heater 16 supplies hot water introduced into the hot water supply circuit 62 mainly through the bypass passage 68 (in this way, the bypass servo 69 is controlled) when the non-additional heating hot water supply function is operated.

給湯器16の給湯回路62を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、給湯通路19を通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓(シャワーの操作レバー等も含む)が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。 The hot water that has passed through the hot water supply circuit 62 of the water heater 16 can be either hot water that has passed through the hot water supply circuit 62 while being heated by the additional heating hot water supply function, or hot water that has passed through the hot water supply circuit 62 without being heated by the non-additional heating hot water supply function. Hot water is supplied to one or more hot water supply destinations through the hot water supply passage 19. Although not shown in the figure, a hot water tap (including a shower operation lever) is provided on the tip side of the hot water supply passage 19, and by opening this hot water tap, it is stored in the hot water storage tank 2. The hot water that has been collected passes through the hot water passage 9 under the water supply pressure, and is mixed with the water from the water supply passage 8b as necessary, is additionally heated by the water heater 16, or is mixed with water. Hot water is supplied as it is without additional heating.

また、図示されていないが、給湯器16には例えば風呂の追い焚き用の回路が設けられ、この回路を利用して浴槽への湯張りや浴槽湯水の追い焚きが可能と成している。 Further, although not shown, the water heater 16 is provided with, for example, a circuit for reheating the bath, and it is possible to fill the bathtub with hot water or reheat the hot water in the bathtub by using this circuit.

なお、図2の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50,51は逆止弁、52〜57はバルブ、58は低温感知サーミスタ、59,60はフィルタ、82はオーバーフロー通路、83は排水電磁弁、84は排水通路をそれぞれ示している。 In the figure of FIG. 2, reference numeral 25 is a water entry temperature thermistor, reference numeral 26 is an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water storage tank 2, and reference numeral 27 is from the hot water storage tank 2 to the fuel cell 1 side. Derived FC low temperature thermistors for hot water temperature detection are shown, reference numeral 29 is a water supply flow rate sensor, reference numerals 50 and 51 are check valves, 52 to 57 are valves, 58 is a low temperature sensing thermistor, 59 and 60 are filters, 82. Indicates an overflow passage, 83 indicates a drainage electromagnetic valve, and 84 indicates a drainage passage.

図2に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から湯水合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから湯水合流部10側に流れる水の流量を制御し、湯水合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。 The heat source device shown in FIG. 2 is provided with a control device (not shown), and the control device controls the tank hot water mixer 12 to flow the flow rate of hot water flowing from the hot water passage 9 to the hot water confluence portion 10 side. Mixing to control the flow rate of water flowing from the water supply passage 8b to the hot water confluence portion 10 side, and to form a mixed hot water of an appropriate temperature at the hot water confluence portion 10. A flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から湯水合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図2の矢印Bに示されるように湯の通路9から湯水合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図2の矢印B’に示されるように給水通路8bから湯水合流部10側に流れる水の流量を調節し、湯水合流部10で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。 When the hot water supply is stopped, for example, the mixing flow rate control means closes the tank-side solenoid valve 13 so that the flow rate of the hot water flowing from the hot water passage 9 to the hot water confluence 10 side (hot water discharged from the hot water storage tank 2) becomes zero. To do. Then, when the hot water tap provided on the tip side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and the tank side electromagnetic valve 13 By controlling the tank hot water mixer 12, the flow rate of hot water flowing from the hot water passage 9 to the hot water confluence 10 side is adjusted as shown by the arrow B in FIG. 2, and by controlling the water mixer 14. As shown by the arrow B'in FIG. 2, the flow rate of the water flowing from the water supply passage 8b to the hot water confluence portion 10 side is adjusted so that the temperature of the mixed hot water formed by the hot water confluence portion 10 is, for example, about the same as the hot water supply set temperature. Make sure that the set mixing temperature is set.

なお、貯湯槽2内に貯湯されている湯水には、例えば図3の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる排熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記湯水合流部10に合流されるという表現を用いる。 In the hot water stored in the hot water storage tank 2, for example, layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. 3 are formed, and the upper layer of the hot water storage tank 2 is formed. Hot water of high temperature Ta (for example, 60 ° C.) heated by the exhaust heat generated during power generation of the fuel cell 1 is stored in the (high temperature layer) Wa, and the hot water storage tank is stored in the lower layer (low temperature layer) Wc of the hot water storage tank 2. Water having the same temperature Tc (for example, 15 ° C.) as the water supply temperature to be supplied is stored in 2, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc between them. .. Therefore, when the hot water in the layer Wa runs out, cold water may be sent from the hot water passage 9 instead of the hot water, but for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression of being merged with the hot water confluence portion 10 is used.

例えば図3に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。 For example, as shown in FIG. 3, in the hot water in the hot water storage tank 2, for example, the boundary between the layer Wa and the layer Wb is below the arrangement region of the hot water temperature detecting means 5a in the hot water storage tank, and the hot water temperature detecting means in the hot water storage tank When the detected temperature of 5a is higher than the threshold value set to be 5 ° C higher than the hot water supply set temperature, the temperature of the hot water discharged from the hot water storage tank 2 is a substantially constant value such as 60 ° C.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から湯水合流部10側に流れる湯の流量と給水通路8bから湯水合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。 Therefore, in the mixing flow rate control means, the detection temperature of the mixing thermistor 28 (28a, 28b) is set to be mixed based on the difference between the detection temperature of the mixing thermistor 28 (28a, 28b) and the mixing set temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to reach the temperature, the flow rate of the hot water flowing from the hot water passage 9 to the hot water confluence 10 side and the water flowing from the water supply passage 8b to the hot water confluence 10 side. Controls to adjust the flow rate. The mixing flow rate control means may perform only feedback control without performing feedforward control when controlling the mixing flow rate.

そして、このようなキシング流量制御手段による制御によって、湯水合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図2の矢印B”に示されるように、湯水合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。 Then, when the temperature of the mixed hot water formed at the hot water confluence portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by such a kissing flow rate control means, the mixed hot water Is introduced into the water heater 16 from the hot water confluence portion 10 through the hot water introduction passage 15 as shown by the arrow B "in FIG. 2, but at this time, the water heater 16 is not heated by the hot water supply heat exchanger 17. (By the operation of the non-heated hot water supply function), hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

また、給湯途中で貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下となり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができなくなる場合には、例えば混合設定温度を給湯設定温度より低い温度に設定し、給湯器16により追い加熱を行う。例えば、混合設定温度を給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで徐々に下げ、その混合湯水を給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱することにより給湯設定温度の湯を作り出し、この湯を給湯通路19を通して給湯先に給湯する。 Further, the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank becomes equal to or lower than the threshold value during hot water supply, and hot water having a mixed set temperature set to the same temperature as the hot water supply set temperature is supplied only by the flow rate control by the mixing flow rate control means. If this is not possible, for example, the mixing set temperature is set to a temperature lower than the hot water supply set temperature, and additional heating is performed by the water heater 16. For example, the mixing set temperature is gradually lowered to a value obtained by subtracting the temperature that rises when the water of the hot water supply flow rate is heated by the MIN number (minimum combustion number) of the water heater 16 from the hot water supply set temperature, and the mixed hot water is reduced. Hot water having a set temperature for hot water supply is produced by heating by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function of the water heater 16, and this hot water is supplied to the hot water supply destination through the hot water supply passage 19.

なお、従来の貯湯槽2を備えた熱源装置においては、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。 In the conventional heat source device provided with the hot water storage tank 2, a type (integrated type) heat source device in which the tank unit 4 and the water heater 16 are arranged adjacent to each other has been used. An individually arranged heat source device in which the tank unit 4, the water heater 16, and the fuel cell 1 are individually arranged and connected to each other by piping is also possible. In this way, for example, among the plurality of types of tank units 4, the user selects the tank unit 4 provided with the hot water storage tank 2 having the required capacity, and selects the tank unit 4 and the plurality of types of water heaters 16. It is possible to combine the water heater 16 and the fuel cell 1 selected from the plurality of types of fuel cells 1 to increase the variation. Further, the individually arranged heat source device as described above has an advantage that the tank unit 4 or the like can be connected to the existing water heater 16 to form the heat source device.

特許4359339号公報Japanese Patent No. 4359339

ところで、図2に示したような熱源装置において、貯湯槽2内に前記閾値より高い温度の湯が貯湯されている場合等、実質的に給湯設定温度以上(例えば湯が貯湯槽2から給湯器16を通って給湯先に給湯されるまでに冷える分以上、給湯設定温度よりも例えば0.5℃といった温度以上高い温度)の湯が貯湯されている場合には、貯湯槽2から給湯器16に送られる湯を非加熱で(給湯器16の給湯熱交換器17による追い加熱を行わずに)給湯することが可能であるが、給湯の途中で、高温層Waの湯を使い切ってしまうと、貯湯槽2から送水される湯の温度が給湯設定温度より低くなってしまって給湯設定温度の湯を給湯器16側に送ることができなくなることがある。 By the way, in the heat source device as shown in FIG. 2, when hot water having a temperature higher than the threshold value is stored in the hot water storage tank 2, the hot water supply temperature is substantially higher than the set hot water supply temperature (for example, the hot water is from the hot water storage tank 2 to the water heater). When hot water is stored from the hot water storage tank 2 to the water heater 16 when hot water is stored at a temperature higher than the set temperature of the hot water supply, for example, 0.5 ° C. It is possible to supply hot water to the hot water without heating (without additional heating by the hot water supply heat exchanger 17 of the water heater 16), but if the hot water in the high temperature layer Wa is used up in the middle of hot water supply. , The temperature of the hot water sent from the hot water storage tank 2 may become lower than the hot water supply set temperature, and the hot water of the hot water supply set temperature may not be sent to the water heater 16 side.

そこで、例えば高温層Waの湯を使い切ってしまう前に給湯器16側に送る湯の温度を徐々に下げていき、それと共に給湯器16側では、温度が低下し始める湯(湯の温度の境界部)が給湯器16に到達するときに給湯バーナ61の点火指令を発信し、給湯器16側に送られてくる徐々に温度が低下する湯を給湯バーナ61により加熱(追い加熱)することにより給湯設定温度の湯を作り出して給湯することが考えられる。 Therefore, for example, the temperature of the hot water sent to the water heater 16 side is gradually lowered before the hot water in the high temperature layer Wa is used up, and at the same time, the temperature of the hot water starts to decrease on the water heater 16 side (the boundary of the hot water temperature). When the part) reaches the water heater 16, the ignition command of the hot water supply burner 61 is transmitted, and the hot water sent to the water heater 16 side whose temperature gradually decreases is heated (additionally heated) by the hot water supply burner 61. It is conceivable to create hot water with a hot water supply set temperature and supply hot water.

しかしながら、給湯バーナ61の点火指令を発信しても、その指令と同時には湯の温度を急激に上昇させることができず、特に、例えば点火時の確認のため等の点火シーケンスプログラムにしたがって行われる動作のための燃焼遅れ時間があるために、前記のような動作によっては給湯設定温度の湯が形成されずに給湯温度のアンダーシュートが発生してしまい、特に流量が大きい場合にはアンダーシュートが大きくなってしまうといった問題が生じた。 However, even if the ignition command of the hot water supply burner 61 is transmitted, the temperature of the hot water cannot be raised rapidly at the same time as the command, and in particular, it is performed according to an ignition sequence program such as for confirmation at the time of ignition. Due to the combustion delay time due to the operation, hot water with the hot water supply set temperature is not formed and undershoot of the hot water supply temperature occurs depending on the above operation, and the undershoot occurs especially when the flow rate is large. There was a problem that it became large.

本発明は、上記課題を解決するためになされたものであり、その目的は、貯湯槽内の湯水の出湯途中で貯湯槽内の高温の湯が無くなってしまったときでも、給湯温度のアンダーシュートが生じることを防げ給湯温度の安定化を図れる熱源装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to undershoot the hot water supply temperature even when the hot water in the hot water storage tank runs out in the middle of discharging the hot water in the hot water storage tank. It is an object of the present invention to provide a heat source device capable of preventing the occurrence of the above-mentioned problems and stabilizing the hot water supply temperature.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、主熱源としての貯湯槽を有し、該貯湯槽から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されて、前記補助熱源装置内には前記給湯熱交換器を加熱する給湯バーナが設けられ、給湯中に前記貯湯槽側から前記補助熱源装置の前記給湯回路側に送る湯水の流量を検出する流量検出手段と、前記給湯バーナの燃焼停止での非燃焼の給湯中に前記貯湯槽に貯湯されている湯の温度が低下して前記貯湯槽側から前記補助熱源装置側に給湯設定温度の湯を送水できなくなる湯切れの情報を検出する湯切れ検出手段とを有し、前記給湯バーナの燃焼停止中での非燃焼の給湯中に前記貯湯槽側から前記給湯設定温度の湯を前記補助熱源装置側に送水している途中で前記湯切れが生じ前記補助熱源装置内の前記給湯回路における予め定めた湯切れ入水タイミングの判断位置に入水する湯水温が前記湯切れ前の前記給湯設定温度から前記湯切れにより前記給湯設定温度未満の湯切れ温度に切り替わる湯切れ入水タイミングを前記湯切れ検出手段の湯切れ検出情報と前記流量検出手段の検出流量と前記貯湯槽から前記補助熱源装置の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量とに基づいて求める湯切れ入水タイミング算出手段を有し、前記給湯バーナが点火指令を受けてから燃焼開始するまでに要する燃焼遅れ時間の情報が予め与えられており、前記湯切れ検出手段により湯切れ情報が検出されたときにはその湯切れ検出時から前記湯切れ入水タイミング算出手段により算出される前記湯切れ入水タイミングより前記燃焼遅れ時間だけ手前の点火前倒しタイミングが経過した時点で前記給湯バーナの点火指令を発信する給湯バーナ点火指令発信手段が設けられている構成をもって課題を解決するための手段としている。 In order to achieve the above object, the present invention is a means for solving a problem with the following configuration. That is, in the first invention, there is a hot water storage tank as a main heat source, and a hot water introduction side of a hot water supply circuit of an auxiliary heat source device equipped with a hot water supply heat exchanger is located downstream of the passage of hot water discharged from the hot water storage tank. is connected, the auxiliary the heat source in the equipment Water burner for heating the hot water supply heat exchanger is provided, which detects the hot water flow rate sent to the hot water supply circuit side of the auxiliary heat source apparatus from the hot water storage tank side during the hot water supply The temperature of the hot water stored in the hot water storage tank drops during the flow detection means and the non-combustible hot water supply when the hot water supply burner stops burning, and the hot water of the hot water supply set temperature is sent from the hot water storage tank side to the auxiliary heat source device side. It has a hot water shortage detecting means for detecting information on hot water running out that makes it impossible to supply water, and during non-burning hot water supply while the hot water supply burner is stopped, hot water of the hot water supply set temperature is used as the auxiliary heat source from the hot water storage tank side. The hot water runs out while the water is being sent to the device side, and the temperature of the hot water entering the predetermined hot water supply circuit in the auxiliary heat source device at the predetermined position of the hot water supply timing is from the hot water supply set temperature before the hot water runs out. The hot water supply timing of switching to the hot water shortage temperature lower than the hot water supply set temperature due to the hot water shortage is the hot water shortage detection information of the hot water shortage detecting means, the detected flow rate of the flow rate detecting means, and the hot water supply of the auxiliary heat source device from the hot water storage tank. has a water shortage water inlet timing calculating hand stages determined based on the pipe volume leading to determine the position of the hot water out water inlet timing in the circuit, the hot water supply burner combustion delay time required to start the combustion after receiving ignition command Information is given in advance, and when the hot water running out information is detected by the hot water running out detecting means, only the combustion delay time is obtained from the hot water running out water entering timing calculated by the hot water running out water entering timing calculating means from the time of detecting the hot water running out. A means for solving the problem is provided with a hot water supply burner ignition command transmitting means for transmitting an ignition command for the hot water supply burner when the timing for accelerating the ignition ahead of the front has elapsed.

また、第2の発明は、前記第1の発明の構成に加え、前記補助熱源装置の前記給湯回路には該給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路が設けられ、前記給湯回路に導入される湯水が前記給湯熱交換器側の通路と前記バイパス通路側とに分かれて通過した後に該バイパス通路と前記給湯熱交換器側の通路との合流部で合流して前記給湯回路から導出される構成と成し、該合流部が前記湯切れ入水タイミングの判断位置として設定され、前記湯切れ入水タイミング算出手段は湯切れによって前記給湯設定温度以上から給湯設定温度未満となる境界部の湯水が前記補助熱源装置内の前記合流部に至るタイミングを湯切れ入水タイミングとして算出することを特徴とする。 The second invention is, in addition to the configuration of the first aspect of the present invention, from the hot water supply circuit hot water to be introduced into the fed-water circuit to the hot water supply circuit of the auxiliary heat source apparatus without passing through the hot water supply heat exchanger a bypass passage for deriving are provided, hot water introduced into the hot water supply circuit of the bypass passage and the hot water supply heat exchanger side after passing divided into said bypass passage side and passage of the hot water supply heat exchanger-side forms a structure which merge at the merging portion of the passage is derived from the hot water supply circuit, is set confluence unit as determined position of said hot water out incoming water timing, the melt-out water inlet timing calculating means the hot water supply by water shortage It is characterized in that the timing at which the hot water at the boundary portion from the set temperature or higher to the hot water supply set temperature is lower than the set temperature reaches the confluence portion in the auxiliary heat source device is calculated as the hot water shortage / inflow timing.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記給湯バーナ点火指令発信手段は、前記貯湯槽から前記補助熱源装置側に送水される湯水の送水時間を前記貯湯槽から送水される湯水の積算流量に換算した値で求め、前記点火前倒しタイミングを前記貯湯槽から前記補助熱源装置内の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量から前記湯切れ入水タイミングと前記点火前倒しタイミングとの間の時間に対応する積算流量を差し引いた積算流量差し引き値として求め、前記湯切れ検出時からの送水湯水の積算流量が前記積算流量差し引き値に達したときに給湯バーナの点火指令を発信する構成としたことを特徴とする。 Furthermore, a third invention, in addition to the configuration of the first or second invention, the hot water supply burner ignition command transmitting means, said hot water of the water supply time to be water in the auxiliary heat source apparatus side from the hot water tank hot-water determined by the value in terms of hot water accumulated flow that is water from the bath, said from the pipe capacity leading to determine the position of the hot water out water inlet timing in the hot water supply circuit inside the auxiliary heat source apparatus the ignition accelerated timing from the hot water tank calculated as the integrated flow rate subtracted value obtained by subtracting the cumulative flow rate corresponding to the time between the hot water out water inlet timing and the ignition ahead timing, water hot water accumulated flow from the time the melt breakage detection reaches the integrated flow rate subtracted value The feature is that the ignition command of the hot water supply burner is sometimes transmitted.

本発明によれば、貯湯槽から出湯される湯の通路の下流側には、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されているので、貯湯槽から出湯される湯を補助熱源装置内に通して給湯することができる。なお、補助熱源装置内には前記給湯熱交換器を加熱する給湯バーナが設けられているので、貯湯槽側から湯が補助熱源装置に導入されたときに、その湯の温度が低めの時には補助熱源装置の給湯熱交換器で加熱して給湯設定温度として給湯することができるし、加熱が必要ないときには補助熱源装置に導入される湯を加熱せずにそのまま補助熱源装置を通して給湯することもできる。 According to the present invention, since the hot water introduction side of the hot water supply circuit of the auxiliary heat source device equipped with the hot water supply heat exchanger is connected to the downstream side of the passage of the hot water discharged from the hot water storage tank, the hot water is discharged from the hot water storage tank. Hot water can be supplied by passing it through the auxiliary heat source device. Since a hot water supply burner for heating the hot water supply heat exchanger is provided in the auxiliary heat source device, when hot water is introduced into the auxiliary heat source device from the hot water storage tank side, it is assisted when the temperature of the hot water is low. The hot water can be heated by the hot water supply heat exchanger of the heat source device and supplied as the hot water supply set temperature, or when heating is not required, the hot water introduced into the auxiliary heat source device can be supplied as it is through the auxiliary heat source device without heating. ..

また、本発明においては、給湯中に前記貯湯槽側から前記補助熱源装置の給湯回路側に送る湯水の流量を検出する流量検出手段と、前記給湯バーナの燃焼停止での非燃焼の給湯中に前記貯湯槽に貯湯されている湯の温度が低下して前記貯湯槽側から前記補助熱源装置側に前記給湯設定温度の湯を送水できなくなる湯切れの情報を検出する湯切れ検出手段とを有しており、これらの検出手段の検出情報に基づき、前記給湯バーナの燃焼停止での非燃焼の給湯中に前記貯湯槽側から前記補助熱源装置側に前記給湯設定温度の湯を送水している途中で前記湯切れが生じ、補助熱源装置の前記給湯回路における予め定めた湯切れ入水タイミングの判断位置に入水する湯水温が前記湯切れ前の前記給湯設定温度から前記湯切れにより前記給湯設定温度未満の湯切れ温度に切り替わる湯切れ入水タイミングを湯切れ入水タイミング算出手段によって検出することができる。 Further, in the present invention, during hot water supply, a flow rate detecting means for detecting the flow rate of hot water sent from the hot water storage tank side to the hot water supply circuit side of the auxiliary heat source device , and non-combustible hot water supply when the hot water supply burner is stopped. There is a hot water shortage detecting means for detecting information on hot water running out that the temperature of the hot water stored in the hot water storage tank drops and the hot water of the hot water supply set temperature cannot be sent from the hot water storage tank side to the auxiliary heat source device side. Based on the detection information of these detection means, hot water of the hot water supply set temperature is sent from the hot water storage tank side to the auxiliary heat source device side during non-combustion hot water supply when the combustion of the hot water supply burner is stopped. The hot water runs out on the way, and the temperature of the hot water entering the predetermined hot water supply circuit of the auxiliary heat source device at the predetermined position of the hot water supply timing is changed from the hot water supply set temperature before the hot water drainage to the hot water supply set temperature due to the hot water running out. The out-of-water inflow timing that switches to a temperature below the out-of-water can be detected by the hot-water inflow timing calculation means.

つまり、本発明では、湯切れ入水タイミング算出手段が、前記湯切れ検出手段の湯切れ検出情報と、前記流量検出手段の検出流量と、前記貯湯槽から前記補助熱源装置の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量とに基づいて、前記湯切れ入水タイミングを検出するようにしており、例えば前記配管容量を前記流量検出手段の検出流量(単位時間あたりの流量)で割ることにより、湯切れ入水タイミングを的確に検出することができる。 That is, in the present invention, the hot water running out timing calculation means uses the hot water running out detection information of the hot water running out detecting means, the detected flow rate of the flow rate detecting means, and the hot water in the hot water supply circuit of the auxiliary heat source device from the hot water storage tank. The pipe capacity is detected based on the pipe capacity reaching the determination position of the water cut-off timing. For example, the pipe capacity is divided by the detected flow rate (flow rate per unit time) of the flow rate detecting means. Therefore, it is possible to accurately detect the timing of running out of hot water and entering water.

なお、前記の如く、貯湯槽から補助熱源装置側に湯が送られている途中で湯切れが生じても、補助熱源装置の給湯バーナが点火されれば、給湯設定温度よりも低い湯を補助熱源装置の給湯熱交換器で加熱できて給湯設定温度の湯を給湯できるが、補助熱源装置に設けられる給湯バーナの点火指令を受けてから給湯バーナが燃焼開始するまでにある程度の時間を要し(例えば点火指令を受けてから直ぐには点火せず、点火のための確認事項を確認する等の点火時シーケンスプログラムにしたがった動作を行ってから燃焼が開始され)、この時間が経過するまでは給湯バーナの燃焼が開始されないので、この間は加熱されない湯が補助熱源装置内を流れていくことになる。 As described above, even if hot water runs out while hot water is being sent from the hot water storage tank to the auxiliary heat source device side, if the hot water supply burner of the auxiliary heat source device is ignited, hot water lower than the hot water supply set temperature is assisted. It can be heated by the hot water supply heat exchanger of the heat source device and can supply hot water at the set temperature of the hot water supply, but it takes some time from receiving the ignition command of the hot water supply burner provided in the auxiliary heat source device until the hot water supply burner starts burning. (For example, it does not ignite immediately after receiving the ignition command, but the combustion starts after performing the operation according to the ignition sequence program such as confirming the confirmation items for ignition), until this time elapses. Since the hot water supply burner does not start burning, unheated hot water will flow through the auxiliary heat source device during this period.

そこで、本発明では、補助熱源装置が例えば前記点火時シーケンスプログラムにしたがった動作をするために要する時間等、補助熱源装置がバーナ点火指令を受けてから給湯バーナの燃焼が開始されるまでの時間を燃焼遅れ時間の情報として予め与え、前記湯切れ検出手段により湯切れ情報が検出されたときに、給湯バーナ点火指令発信手段が、前記湯切れ検出時から前記湯切れ入水タイミング算出手段により算出される前記湯切れ入水タイミングより前記燃焼遅れ時間だけ手前の点火前倒しタイミングが経過した時点で前記給湯バーナの点火指令を発信することにより、前記燃焼遅れ時間が経過する間に給湯バーナにより加熱されない湯が補助熱源装置内を流れてしまうことを防ぐことができ、給湯設定温度よりも低いままの湯が給湯されることを防止できる。 Therefore, in the present invention, the time from when the auxiliary heat source device receives the burner ignition command to when the combustion of the hot water supply burner is started, such as the time required for the auxiliary heat source device to operate according to the ignition sequence program, for example. Is given in advance as information on the combustion delay time, and when the hot water shortage information is detected by the hot water shortage detecting means, the hot water supply burner ignition command transmitting means is calculated by the hot water running out water entry timing calculating means from the time when the hot water running out is detected. By issuing an ignition command for the hot water supply burner when the ignition advance timing before the combustion delay time elapses from the hot water shortage inflow timing, the hot water that is not heated by the hot water supply burner during the combustion delay time elapses. It is possible to prevent the hot water from flowing through the auxiliary heat source device, and it is possible to prevent the hot water being supplied while the temperature is lower than the hot water supply set temperature.

つまり、本発明では、前記燃焼遅れ時間だけ手前で給湯バーナの点火指令を発信することにより、低温の湯が加熱されずに給湯側に送られることはなく(燃焼遅れ時間が経過する間に非加熱の低温の湯が流れてしまうことはなく)、給湯設定温度以上と給湯設定温度未満との境界部の湯水が補助熱源装置内に入水されるときに給湯バーナ燃焼によって湯の加熱が的確に開始されて給湯設定温度の湯が形成され、給湯温度のアンダーシュートを発生させずに、給湯設定温度またはその温度に近い温度の湯を安定的に給湯できる。 That is, in the present invention, by transmitting the ignition command of the hot water supply burner before the combustion delay time, the low temperature hot water is not sent to the hot water supply side without being heated (during the combustion delay time elapses). (The low-temperature hot water does not flow), and when the hot water at the boundary between the hot water supply set temperature or higher and the hot water supply set temperature is lower than the hot water supply set temperature enters the auxiliary heat source device, the hot water is accurately heated by the hot water supply burner combustion. Hot water with a hot water supply set temperature is formed when it is started, and hot water with a hot water supply set temperature or a temperature close to that temperature can be stably supplied without causing an undershoot of the hot water supply temperature.

また、補助熱源装置の給湯回路に、該給湯回路に導入される湯水を給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路を設け、前記給湯回路に導入される湯水が前記給湯熱交換器側と前記バイパス通路側とに分かれて通過した後に該バイパス通路と前記給湯熱交換器側の通路との合流部で合流して前記給湯回路から導出される構成とすると、以下の効果を奏することができる。 Further, the hot water supply circuit of the auxiliary heat source device is provided with a bypass passage for leading the hot water to be introduced into the hot water supply circuit from the hot water supply circuit without passing through the hot water supply heat exchanger, and the hot water to be introduced into the hot water supply circuit is described. Assuming that after passing through the hot water supply heat exchanger side and the bypass passage side separately, they merge at the confluence of the bypass passage and the passage on the hot water supply heat exchanger side and are derived from the hot water supply circuit, the following is assumed. It can be effective.

つまり、湯切れによって温度が給湯設定温度以上から給湯設定温度未満となる境界部の湯水が補助熱源装置内の前記合流部に至ると、その後は、バイパス通路を通ってから合流部を通る湯水の温度が徐々に低下していくが、その時点で給湯バーナの燃焼が開始されれば、バイパス通路からの前記のように温度が徐々に低下していく湯水と、給湯熱交換器を通って加熱されて徐々に湯水温が上昇していく湯水とが、合流部で合流して給湯設定温度の湯が形成されることになる。 That is, when the hot water at the boundary where the temperature becomes lower than the hot water supply set temperature due to the hot water running out reaches the confluence portion in the auxiliary heat source device, after that, the hot water water passes through the bypass passage and then the confluence portion. The temperature gradually decreases, but if combustion of the hot water supply burner starts at that point, the hot water from the bypass passage and the hot water that gradually decreases in temperature as described above and the hot water supply heat exchanger are heated. The hot water and the hot water whose temperature gradually rises merge at the confluence to form hot water with a set temperature for hot water supply.

そこで、前記合流部を前記湯切れ入水タイミングの判断位置として設定し、湯切れによって前記湯切れ前の前記給湯設定温度以上から前記湯切れにより前記給湯設定温度未満となる境界部の湯水が補助熱源装置内の前記合流部に至るタイミングに給湯バーナの燃焼が開始されるように(前記境界部の湯水が前記合流部に到達するときには給湯バーナ点火指令発信後、燃焼遅れ時間が経過し、湯の加熱が開始されるように)、境界部の湯水が補助熱源装置内の前記合流部に至るタイミングより前記燃焼遅れ時間だけ早く(手前に)給湯バーナの点火指令を発信するようにすれば(湯切れ入水タイミング算出手段が前記合流部に至るタイミングを湯切れ入水タイミングとして算出し、そのタイミングより前記燃焼遅れ時間だけ手前で給湯バーナ点火指令を発信することにより)、非常に確実に、給湯設定温度またはその温度に近い温度の湯を安定的に給湯できる。 Therefore, the confluence portion is set as a determination position for the hot water supply timing, and the hot water at the boundary portion where the hot water supply set temperature before the hot water drainage becomes lower than the hot water supply set temperature due to the hot water supply is the auxiliary heat source. The combustion of the hot water supply burner is started at the timing when the hot water supply burner reaches the confluence in the device (when the hot water at the boundary reaches the confluence, the combustion delay time elapses after the hot water supply burner ignition command is issued, and the hot water is charged. If the ignition command of the hot water supply burner is transmitted (in front of) the combustion delay time earlier than the timing when the hot water at the boundary reaches the confluence in the auxiliary heat source device (so that heating is started). The hot water supply burner ignition command is issued very reliably before the hot water supply burner ignition command by the hot water supply burner ignition command, which is calculated by the cut-off water timing calculation means as the hot water cut-off water entry timing, and the hot water supply burner ignition command is issued before the combustion delay time. Alternatively, hot water having a temperature close to that temperature can be stably supplied.

さらに、給湯バーナ点火指令発信手段が、貯湯槽から補助熱源装置側に送水される湯水の送水時間を前記貯湯槽から送水される湯水の積算流量に換算した値で求めると、流量検出手段の検出流量に基づき、湯水の送水時間を容易に、かつ、正確に求めることができる。 Further, when the hot water supply burner ignition command transmitting means obtains the water supply time of the hot water sent from the hot water storage tank to the auxiliary heat source device side by a value converted into the integrated flow rate of the hot water sent from the hot water storage tank, the flow rate detecting means is detected. Based on the flow rate, the water supply time of hot water can be easily and accurately determined.

つまり、給湯バーナ点火指令発信手段が、点火前倒しタイミングを、貯湯槽から補助熱源装置内の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量から前記湯切れ入水タイミングと前記点火前倒しタイミングとの間の時間に対応する積算流量を差し引いた積算流量差し引き値として求め、湯切れ時点からの送水湯水の積算流量が前記積算流量差し引き値に達したときに給湯バーナの点火指令を発信することにより、流量検出手段の検出流量に基づき、容易に、かつ、的確に、前記点火前倒しタイミングに給湯バーナの点火指令を発信できる。そのため、貯湯槽から補助熱源装置に送られる湯が給湯設定温度以上から給湯設定温度未満となる境界部の湯が補助熱源装置内に導入されるタイミングと、その湯を給湯バーナで加熱開始するタイミングとが合うようにでき、非常に確実に、安定した給湯温度の湯を給湯できる。 That is, the hot water supply burner ignition instruction transmission means, igniting the accelerated timing, the melt-out water inlet timing and the ignition ahead from the piping capacity leading to determine the position of the hot water out water inlet timing in the hot water supply circuit in the auxiliary heat source apparatus from the hot water tank Obtained as the integrated flow rate deduction value obtained by subtracting the integrated flow rate corresponding to the time between the timing, and when the integrated flow rate of the hot water sent from the time of running out of hot water reaches the integrated flow rate deduction value, the ignition command of the hot water supply burner is transmitted. Thereby, the ignition command of the hot water supply burner can be easily and accurately transmitted at the timing of advancing the ignition based on the detected flow rate of the flow rate detecting means. Therefore, the timing at which the hot water sent from the hot water storage tank to the auxiliary heat source device is introduced into the auxiliary heat source device at the boundary where the hot water is above the set temperature for hot water supply and below the set temperature for hot water supply, and the timing at which the hot water is started to be heated by the hot water supply burner. It is possible to supply hot water with a stable hot water temperature with great certainty.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat source apparatus which concerns on this invention. 実施例の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus of an Example. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the distribution example of the temperature layer in a hot water storage tank. 実施例の熱源装置における、給湯バーナ点火指令発信タイミングおよび給湯バーナ点火タイミングと、貯湯槽から給湯器に送られる湯の温度変化と、給湯バーナの加熱による湯の温度変化と、給湯温度との関係を説明するための模式的なグラフである。Relationship between hot water supply burner ignition command transmission timing and hot water supply burner ignition timing, temperature change of hot water sent from the hot water storage tank to the water heater, temperature change of hot water due to heating of the hot water supply burner, and hot water supply temperature in the heat source device of the embodiment. It is a schematic graph for explaining.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of this embodiment, the same components as those of the examples described so far are designated by the same reference numerals, and the duplicated description thereof will be omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されている。本実施例の熱源装置は、図2に示した熱源装置と同様のシステム構成を有しているが、図1に示される特徴的な制御構成を有している。 FIG. 1 shows a block diagram of a main part control configuration of an embodiment of the heat source device according to the present invention. The heat source device of this embodiment has the same system configuration as the heat source device shown in FIG. 2, but has a characteristic control configuration shown in FIG.

同図に示されるように、給湯器16の制御装置46は、燃焼制御手段47、バイパスサーボ制御手段74を有しており、燃焼制御手段47は、給湯設定温度設定操作手段45を備えたリモコン装置43に接続されている。リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。 As shown in the figure, the control device 46 of the water heater 16 has a combustion control means 47 and a bypass servo control means 74, and the combustion control means 47 is a remote controller including a hot water supply setting temperature setting operation means 45. It is connected to the device 43. The remote controller 43 is installed indoors in an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

また、本実施例において、タンクユニット4内の制御装置33には、ミキシング流量制御手段35、送湯温度調節手段36、メモリ部37、湯切れ検出手段34、湯切れ入水タイミング算出手段72、給湯バーナ点火指令発信手段75が設けられており、制御装置33はリモコン装置43と制御装置46とに信号接続されている。 Further, in the present embodiment, the control device 33 in the tank unit 4 includes a mixing flow rate control means 35, a hot water supply temperature adjusting means 36, a memory unit 37, a hot water shortage detecting means 34, a hot water running out timing calculating means 72, and a hot water supply. A burner ignition command transmitting means 75 is provided, and the control device 33 is signal-connected to the remote control device 43 and the control device 46.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、タンクユニット4の制御装置33の送湯温度調節手段36と給湯器16の制御装置46の燃焼制御手段47とに加えられる。 The hot water supply set temperature setting operation means 45 is an operation means for setting the hot water supply set temperature by a user or the like, and is formed by, for example, an operation button provided on the surface side of the remote controller device 43. The value of the hot water supply set temperature set by the hot water supply set temperature setting operation means 45 is added to the hot water supply temperature adjusting means 36 of the control device 33 of the tank unit 4 and the combustion control means 47 of the control device 46 of the water heater 16. ..

燃焼制御手段47は、給湯バーナ61の燃焼開始時にガス開閉弁48を開いて給湯バーナ61の燃焼を開始させると共にその燃焼制御を行い、また、それに伴う燃焼ファン(図示せず)の制御等を行うものである。この燃焼制御方法は周知であるので、その詳細説明は省略するが、従来から知られている燃焼制御方法や、今後提案される燃焼制御方法等、適宜の燃焼制御方法が適用される。 The combustion control means 47 opens the gas on-off valve 48 at the start of combustion of the hot water supply burner 61 to start combustion of the hot water supply burner 61 and controls the combustion thereof, and also controls a combustion fan (not shown) and the like. It is something to do. Since this combustion control method is well known, detailed description thereof will be omitted, but an appropriate combustion control method such as a conventionally known combustion control method or a combustion control method proposed in the future is applied.

バイパスサーボ制御手段74は、バイパスサーボ69の制御により、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合を制御するものであり、燃焼制御手段47の燃焼制御信号を取り込み、バイパスサーボ69を適宜制御する。 The bypass servo control means 74 controls the distribution ratio of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the distribution ratio to the bypass passage 68 side by controlling the bypass servo 69, and burns. The combustion control signal of the control means 47 is taken in, and the bypass servo 69 is appropriately controlled.

流量検出センサ42は、給湯通路19を通って給湯される給湯流量を検出し、制御装置46の燃焼制御手段47に給湯流量の検出流量(検出値)を加える。なお、給湯熱交出側温度検出手段67の検出温度、給湯温度検出手段76の検出温度も燃焼制御手段47に加えられ、これらの検出値に基づき、燃焼制御手段47による前記給湯バーナ61(図1には図示せず)の燃焼制御が行われる。 The flow rate detection sensor 42 detects the flow rate of hot water supplied through the hot water supply passage 19, and adds the detected flow rate (detected value) of the hot water supply flow rate to the combustion control means 47 of the control device 46. The detection temperature of the hot water supply heat delivery side temperature detecting means 67 and the detection temperature of the hot water supply temperature detecting means 76 are also added to the combustion control means 47, and based on these detected values, the hot water supply burner 61 by the combustion control means 47 (FIG. Combustion control (not shown in 1) is performed.

給水流量センサ29は、本実施例において、給湯中に貯湯槽2側から給湯器16の給湯回路62側に送る湯水の流量を検出する流量検出手段として機能するものであり、制御装置33のミキシング流量制御手段35と送湯温度調節手段36と湯切れ入水タイミング算出手段72、給湯バーナ点火指令発信手段75に検出流量(検出値)を加える。 In this embodiment, the water supply flow rate sensor 29 functions as a flow rate detecting means for detecting the flow rate of hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the water heater 16 during hot water supply, and mixes the control device 33. The detected flow rate (detection value) is added to the flow rate control means 35, the hot water supply temperature control means 36, the hot water outflow / inflow timing calculation means 72, and the hot water supply burner ignition command transmission means 75.

送湯温度調節手段36は、貯湯槽2から出湯される湯と給水通路8bからの湯の混合により形成される混合湯水の設定温度(混合設定温度)を設定し、その設定した混合湯水温度の湯が形成されるようにミキシング流量制御手段35に指令を加える。 The hot water supply temperature adjusting means 36 sets a set temperature (mixing set temperature) of the mixed hot water formed by mixing the hot water discharged from the hot water storage tank 2 and the hot water from the water supply passage 8b, and sets the set temperature of the mixed hot water. A command is given to the mixing flow rate control means 35 so that hot water is formed.

ミキシング流量制御手段35は、給水流量センサ29によって給湯通路19を通って給湯される給湯流量が検出されたときにタンク側電磁弁13を開き、タンク湯水混合器12および水混合器14の制御による湯の流量と水の流量との制御により、湯水合流部10で形成される混合湯水の温度が送湯温度調節手段36により設定される混合設定温度となるようにするものである。 The mixing flow rate control means 35 opens the tank-side electromagnetic valve 13 when the hot water supply flow rate of hot water supplied through the hot water supply passage 19 is detected by the water supply flow rate sensor 29, and is controlled by the tank hot water mixer 12 and the water mixer 14. By controlling the flow rate of hot water and the flow rate of water, the temperature of the mixed hot water formed by the hot water confluence portion 10 is set to the mixed set temperature set by the hot water supply temperature adjusting means 36.

ミキシング流量制御手段35は、貯湯槽内湯水温検出手段5aの検出温度が前記閾値より高い温度のときには混合湯水の温度が給湯設定温度(または給湯設定温度より0.5℃といった温度だけ高めの温度)となるように制御し、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下となったら、例えば給湯設定温度から給湯器16の最小燃焼号数で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで徐々に下げるように制御する。 In the mixing flow rate control means 35, when the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is higher than the threshold value, the temperature of the mixed hot water is set to the hot water supply set temperature (or a temperature 0.5 ° C. higher than the hot water supply set temperature). When the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank becomes equal to or lower than the above threshold value, the temperature rises when, for example, the water of the hot water supply flow rate is heated from the hot water supply set temperature with the minimum combustion number of the hot water supply device 16. Control is performed so that the value is gradually lowered to the value obtained by subtracting the temperature component.

なお、給湯器16に設けられている給湯熱交換器17は、例えば銅製の顕熱熱交換器のみ、または、銅製の顕熱熱交換器にステンレス製の潜熱回収用熱交換器が付加されており、いずれの構成においても熱容量を持つ。したがって、給湯バーナ燃焼は停止した状態であっても、前記のように貯湯槽2側から給湯器16側に送る湯の湯温を徐々に下げることにより給湯熱交換器17を通過する湯温が徐々に下がると、給湯熱交換器17に蓄えられていた熱が放出されて通過する湯に伝わるので、給湯熱交換器17に入る湯の温度に対して給湯熱交換器17から出る湯の温度は若干高めとなる。そして、給湯熱交換器17を通る湯の流速の大小にかかわらず、給湯熱交換器17に導入する湯の湯温の下げ速度を一定とすると、給湯熱交換器17に蓄えられていた保有熱は通過する湯の流速が早いほど早く減るので、後述の給湯器16での給湯バーナ61の点火時加熱熱量を多めにするか、給湯バーナ61の点火タイミングを早めるか、といったことが必要となる。 The hot water supply heat exchanger 17 provided in the water heater 16 is, for example, only a copper sensible heat exchanger, or a copper sensible heat exchanger to which a stainless steel latent heat recovery heat exchanger is added. It has a heat capacity in both configurations. Therefore, even when the hot water supply burner combustion is stopped, the hot water temperature passing through the hot water supply heat exchanger 17 is gradually lowered by gradually lowering the hot water temperature sent from the hot water storage tank 2 side to the water heater 16 side as described above. When the temperature gradually decreases, the heat stored in the hot water supply heat exchanger 17 is released and transferred to the passing hot water, so that the temperature of the hot water discharged from the hot water supply heat exchanger 17 is relative to the temperature of the hot water entering the hot water supply heat exchanger 17. Will be slightly higher. Then, assuming that the rate of lowering the temperature of the hot water introduced into the hot water supply heat exchanger 17 is constant regardless of the magnitude of the flow velocity of the hot water passing through the hot water supply heat exchanger 17, the retained heat stored in the hot water supply heat exchanger 17 is maintained. As the flow velocity of the passing hot water decreases faster, it is necessary to increase the amount of heat of heating at the time of ignition of the hot water supply burner 61 in the water heater 16 described later, or to advance the ignition timing of the hot water supply burner 61. ..

そこで、本実施例では、貯湯槽2側から給湯器16側に送る湯の湯温の下げ速度を湯の流速の大小に応じて可変させるのではなく、湯温の下げ速度を湯の流量の大小に応じて可変し、流量が大きいほど湯温の下げ速度も大きくするようにしている。なお、実際には流速の大小により給湯熱交換器17から給湯熱交換器17を通る湯への伝熱係数による差異が生じるので、流量と流速を加味して湯温の下げ速度を可変させてもよいが、給湯熱交換器17を流れる湯の流量が大きいほど(湯の流量が大きいと伝熱係数が大きい分)、早く給湯熱交換器17に蓄えていた保有熱が奪われる。 Therefore, in this embodiment, the lowering speed of the hot water sent from the hot water storage tank 2 side to the water heater 16 side is not changed according to the magnitude of the flow velocity of the hot water, but the lowering speed of the hot water temperature is set to the flow rate of the hot water. It is variable according to the size, and the larger the flow rate, the faster the rate of lowering the hot water temperature. Actually, there is a difference due to the heat transfer coefficient from the hot water supply heat exchanger 17 to the hot water passing through the hot water supply heat exchanger 17 depending on the magnitude of the flow velocity. However, the larger the flow rate of the hot water flowing through the hot water supply heat exchanger 17 (the larger the flow rate of the hot water, the larger the heat transfer coefficient), the faster the stored heat stored in the hot water supply heat exchanger 17 is taken away.

湯切れ検出手段34は、給湯バーナ61の燃焼停止での非燃焼の給湯中に貯湯槽2に貯湯されている湯の温度が低下して、貯湯槽2側(タンクユニット4側)から給湯器16側に給湯設定温度の湯を送水できなくなる湯切れの情報を検出するものであり、例えば貯湯槽内湯水温検出手段5aの検出温度を時々刻々と取り込み、この検出温度が前記閾値以下となったら湯切れとなったと判断する。 In the hot water shortage detecting means 34, the temperature of the hot water stored in the hot water storage tank 2 drops during non-combustible hot water supply when the hot water supply burner 61 stops burning, and the water heater starts from the hot water storage tank 2 side (tank unit 4 side). Information on running out of hot water that makes it impossible to supply hot water at the set temperature of hot water supply to the 16 side is detected. For example, the detection temperature of the hot water temperature detecting means 5a in the hot water storage tank is taken in every moment, and when this detection temperature becomes equal to or lower than the above threshold value. Judge that the water has run out.

湯切れ入水タイミング算出手段72は、貯湯槽2側から給湯設定温度の湯を給湯器16側に送水している途中で前記湯切れが生じ、給湯器16内に入水する湯水温が前記湯切れ前の前記給湯設定温度から前記湯切れにより前記給湯設定温度未満の湯切れ温度に切り替わる湯切れ入水タイミングを、湯切れ検出手段34の湯切れ検出情報と、給水流量センサ29の検出流量と、貯湯槽2から給湯器16の給湯回路62内に至る配管容量とに基づいて求める。 In the hot water supply timing calculation means 72, the hot water runs out while the hot water of the hot water supply set temperature is being sent from the hot water storage tank 2 side to the water heater 16 side, and the hot water temperature entering the water heater 16 becomes the hot water runout. hot water out water inlet timing from before the hot water set temperature is switched to the hot water out temperature below the hot water set temperature by the hot water out, and the hot water out detection information of the hot water out detector 34, and detects the flow rate of feed water flow sensor 29, the hot water storage It is obtained based on the piping capacity from the tank 2 to the inside of the hot water supply circuit 62 of the water heater 16.

本実施例において、給湯器16は、給湯回路62に導入される湯水が給湯熱交換器17側の通路とバイパス通路68側とに分かれて通過した後に該バイパス通路68と給湯熱交換器17側の通路との合流部70で合流して給湯回路62から導出される構成と成しており、湯切れ入水タイミング算出手段72は、湯切れによって給湯設定温度以上から給湯設定温度未満となる境界部の湯水が給湯器16内の合流部70に至るタイミングを湯切れ入水タイミングとして算出する。 In the present embodiment, in the water heater 16, the hot water introduced into the hot water supply circuit 62 is divided into a passage on the hot water supply heat exchanger 17 side and a bypass passage 68 side, and then passes through the bypass passage 68 and the hot water supply heat exchanger 17 side. It is configured to be derived from the hot water supply circuit 62 by merging at the merging portion 70 with the passage of the hot water supply, and the hot water shortage inflow timing calculation means 72 is a boundary portion where the hot water supply set temperature is changed from the hot water supply set temperature to less than the hot water supply set temperature due to the hot water running out. The timing at which the hot water reaches the confluence 70 in the water heater 16 is calculated as the hot water out-of-water inflow timing.

なお、貯湯槽2から給湯器16の給湯回路62における前記湯切れ入水タイミングの判断位置(詳しくは給湯回路62の合流部70)に至る配管容量の情報はメモリ部37に格納されており、湯切れ入水タイミング算出手段72は、この情報を取り込み、貯湯槽2から給湯器16の給湯回路62の合流部70に至る配管容量を給水流量センサ29の検出流量(単位時間あたりの流量)で割ることにより、前記湯切れ入水タイミングを算出する。 Information on the piping capacity from the hot water storage tank 2 to the determination position of the hot water running out / entering timing in the hot water supply circuit 62 of the water heater 16 (specifically, the merging portion 70 of the hot water supply circuit 62) is stored in the memory unit 37, and the hot water The cut-in water timing calculation means 72 takes in this information and divides the pipe capacity from the hot water storage tank 2 to the confluence 70 of the hot water supply circuit 62 of the water heater 16 by the detected flow rate (flow rate per unit time) of the water supply flow rate sensor 29. Therefore, the timing of running out of hot water and entering water is calculated.

また、メモリ部37には、給湯バーナ61が点火指令を受けてから燃焼開始するまでに要する燃焼遅れ時間の情報(燃焼遅れ時間=例えば3秒)が予め与えられている。給湯バーナ点火指令発信手段75は、湯切れ検出手段34により湯切れ情報が検出されたときには、湯切れ入水タイミング算出手段72により算出される前記湯切れ入水タイミングより前記燃焼遅れ時間だけ手前の点火前倒しタイミングで給湯バーナ61の点火指令を発信し、燃焼制御手段47に加える。 Further, the memory unit 37 is provided with information (combustion delay time = for example, 3 seconds) of the combustion delay time required from the reception of the ignition command by the hot water supply burner 61 to the start of combustion. When the hot water shortage detecting means 34 detects the hot water running out information, the hot water supply burner ignition command transmitting means 75 advances the ignition forward by the combustion delay time before the hot water running out water entering timing calculated by the hot water running out water entering timing calculating means 72. The ignition command of the hot water supply burner 61 is transmitted at the timing, and the ignition command is added to the combustion control means 47.

本実施例において、給湯バーナ点火指令発信手段75は、給水流量センサ29の検出流量を取り込み、貯湯槽2から給湯器16側に送水される湯水の送水時間を貯湯槽2から送水される湯水の積算流量に換算した値で求め、前記点火前倒しタイミングを、前記湯切れ検出時に貯湯槽2から送水される湯水が貯湯槽2から給湯器16内の湯切れ入水タイミングの判断位置(ここでは合流部70)まで流れてくるまでの(合流部70に至るまでの)送水湯水の積算流量(つまり、貯湯槽2から合流部70に至る配管容量)から前記湯切れ入水タイミングと前記点火前倒しタイミングとの間の時間(燃焼遅れ時間に対応する時間であり、例えば3秒間)に対応する積算流量を差し引いた積算流量差し引き値として求める。そして、湯切れ時点からの貯湯槽2から給湯器16への送水湯水の積算流量が前記積算流量差し引き値に達したときに、給湯バーナ16の点火指令を発信する。この発信信号は燃焼制御手段47に加えられ、燃焼制御手段47による給湯バーナ16の点火制御が行われる。 In this embodiment, the hot water supply burner ignition command transmitting means 75 takes in the detected flow rate of the water supply flow rate sensor 29, and sets the water supply time of the hot water supplied from the hot water storage tank 2 to the water heater 16 side as the hot water water supplied from the hot water storage tank 2. The ignition advance timing is determined by the value converted to the integrated flow rate, and the hot water sent from the hot water storage tank 2 at the time of detecting the hot water shortage is determined from the hot water storage tank 2 to the hot water shortage inflow timing in the water heater 16 (here, the confluence portion). up flowing to 70) (up to the merging portion 70) water supply hot water accumulated flow (i.e., from the piping volume) leading to the merging portion 70 from the hot water tank 2 and the ignition accelerated timing and the hot water out water inlet timing It is obtained as an integrated flow rate deduction value obtained by subtracting the integrated flow rate corresponding to the intervening time (time corresponding to the combustion delay time, for example, 3 seconds). Then, when the integrated flow rate of the hot water supplied from the hot water storage tank 2 to the water heater 16 from the time when the hot water runs out reaches the integrated flow rate deduction value, the ignition command of the hot water supply burner 16 is transmitted. This transmission signal is added to the combustion control means 47, and the combustion control means 47 controls the ignition of the hot water supply burner 16.

このように、本実施例では、前記湯切れ入水タイミングの算出も前記点火前倒しタイミングの算出も、前記送水湯水の積算流量の算出に基づいて行われるので、各タイミングの算出を、容易に、かつ、的確に行うことができ、点火前倒しタイミングで行われる給湯バーナ16の点火指令発信を的確なタイミングで行うことができる。 As described above, in the present embodiment, both the calculation of the hot water drainage and inflow timing and the calculation of the ignition advance timing are performed based on the calculation of the integrated flow rate of the hot water supply and hot water, so that each timing can be calculated easily and. It is possible to accurately perform the ignition command transmission of the hot water supply burner 16 which is performed at the timing of accelerating the ignition at an accurate timing.

本実施例は以上のように構成されており、給湯流量が小さくて前記燃焼遅れ時間に対応する送水湯水の積算流量が小さい場合と、その逆に給湯流量が大きくて前記燃焼遅れ時間に対応する積算流量が大きい場合とを比較すると、給湯流量が大きい場合には、前記燃焼遅れ時間が経過する間に流れる流量が大きい分だけ燃焼遅れ時間に対応する点火前倒しタイミングも早めとなり、給湯バーナ16の点火指令発信も早めとなる。 This embodiment is configured as described above, and corresponds to the case where the hot water supply flow rate is small and the integrated flow rate of the hot water supply corresponding to the combustion delay time is small, and conversely the hot water supply flow rate is large and corresponds to the combustion delay time. Comparing with the case where the integrated flow rate is large, when the hot water supply flow rate is large, the ignition advance timing corresponding to the combustion delay time is advanced by the amount of the large flow rate during the elapsed combustion delay time, and the hot water supply burner 16 The ignition command is also sent earlier.

したがって、例えば、給湯流量が大きい場合には貯湯槽2から給湯器16側に送水される湯水が給湯器16に到達するよりもかなり前に給湯バーナ16の点火指令が発信されることがあるし、給湯流量が小さい場合には貯湯槽2から給湯器16側に送水される湯水が給湯器16内に導入されてから給湯バーナ16の点火指令が発信されることもある。 Therefore, for example, when the hot water supply flow rate is large, the ignition command of the hot water supply burner 16 may be transmitted long before the hot water supplied from the hot water storage tank 2 to the water heater 16 side reaches the water heater 16. When the hot water supply flow rate is small, the ignition command of the hot water supply burner 16 may be transmitted after the hot water water sent from the hot water storage tank 2 to the water heater 16 side is introduced into the water heater 16.

なお、給湯熱交換器17を流れる湯の流量が大きいほど、給湯バーナ16の点火前に給湯熱交換器17に蓄えられていた保有熱が多く奪われるので、点火前倒しタイミングも早めとすることで、保有熱補充の増分に早期に対応することができ、早めに湯温が安定する。そこで、前記燃焼遅れ時間に対応する分の点火前倒しに付加して、給湯熱交換器17の保有熱の増減に対応する前記点火前倒しタイミングの制御を行ってもよい(例えば貯湯槽2から給湯器16側に送る湯の流量が大きくて給湯熱交換器17に蓄えられていた保有熱が多く奪われる場合には、より早めに給湯バーナ15の点火指令を発信してもよい)。このような制御を行う構成においては、例えばメモリ部37に、貯湯槽2から給湯器16側に送る湯の流量に基づいて点火前倒しタイミングを求める情報(例えばテーブルデータや演算式等の適宜の情報)も格納しておき、その情報に基づいて給湯バーナ点火指令発信手段75が給湯バーナ61の点火指令を発信するとよい。 The larger the flow rate of the hot water flowing through the hot water supply heat exchanger 17, the more heat stored in the hot water supply heat exchanger 17 before the ignition of the hot water supply burner 16 is taken away. , It is possible to respond to the increase in heat replenishment at an early stage, and the hot water temperature stabilizes early. Therefore, in addition to the ignition advance timing corresponding to the combustion delay time, the ignition advance timing corresponding to the increase / decrease in the retained heat of the hot water supply heat exchanger 17 may be controlled (for example, the water heater from the hot water storage tank 2). If the flow rate of hot water sent to the 16 side is large and a large amount of retained heat stored in the hot water supply heat exchanger 17 is taken away, the ignition command of the hot water supply burner 15 may be issued earlier). In the configuration for performing such control, for example, information for obtaining the ignition advance timing based on the flow rate of hot water sent from the hot water storage tank 2 to the water heater 16 side in the memory unit 37 (for example, appropriate information such as table data and calculation formula). ) Is also stored, and the hot water supply burner ignition command transmitting means 75 may transmit the ignition command of the hot water supply burner 61 based on the information.

図4には、本実施例において、給湯流量が大きい場合における以下の温度特性の一例が示されている。特性線aは貯湯槽2側から給湯器16側に送られる湯水温の時間的変化を示し、特性線bは給湯バーナ16の加熱によって高められる湯水温の時間的変化を示し、特性線cは給湯温度の時間的変化を示し、図のTbが給湯バーナの点火指令発信タイミングを示している。 FIG. 4 shows an example of the following temperature characteristics when the hot water supply flow rate is large in this embodiment. The characteristic line a shows the temporal change of the hot water temperature sent from the hot water storage tank 2 side to the water heater 16 side, the characteristic line b shows the temporal change of the hot water temperature increased by heating the hot water burner 16, and the characteristic line c shows the temporal change of the hot water temperature. The time change of the hot water supply temperature is shown, and Tb in the figure shows the ignition command transmission timing of the hot water supply burner.

同図の特性線aに示されるように、湯切れによって給湯設定温度以上から給湯設定温度未満となる境界部の湯水が給湯器16内の合流部70に至るタイミングがTgとなるのに対し、本実施例では、このタイミングよりも前記燃焼遅れ時間(時間ta)だけ早い点火前倒しタイミング(Tb)で給湯バーナ61への点火指令が発信されることにより、特性線bに示されるように、給湯バーナ16の燃焼開始による温度上昇が生じるのが前記タイミングTgとなる。つまり、前記境界部の湯水が合流部70に到達するときに、その境界部の湯の加熱が開始される。 As shown in the characteristic line a in the figure, the timing at which the hot water at the boundary portion where the hot water supply set temperature or higher becomes lower than the hot water supply set temperature due to running out of hot water reaches the confluence 70 in the water heater 16 is Tg. In this embodiment, the ignition command to the hot water supply burner 61 is transmitted at the ignition advance timing (Tb) which is earlier than this timing by the combustion delay time (time ta), so that the hot water supply is as shown in the characteristic line b. It is the timing Tg that the temperature rises due to the start of combustion of the burner 16. That is, when the hot water at the boundary reaches the confluence 70, heating of the hot water at the boundary is started.

そして、合流部70に到達する湯水温が、特性線aに示されるように徐々に低下するのを、給湯バーナ61の燃焼に伴い、特性線bに示されるように徐々に温度が上昇することで、貯湯槽2側から到達する湯の温度低下分を給湯バーナ61の燃焼による温度上昇分で補われ、特性線cに示されるように、給湯温度が給湯設定温度となって安定的に給湯が行われる。なお、給湯流量が小さい場合は、タイミングTbとTgとの間の時間taが短くなるが、同様の動作により同様の効果を奏すことができる。 Then, the temperature of the hot water reaching the confluence 70 gradually decreases as shown in the characteristic line a, but the temperature gradually increases as shown in the characteristic line b as the hot water supply burner 61 burns. Then, the temperature drop of the hot water arriving from the hot water storage tank 2 side is supplemented by the temperature rise due to the combustion of the hot water supply burner 61, and as shown in the characteristic line c, the hot water supply temperature becomes the hot water supply set temperature and the hot water supply is stable. Is done. When the hot water supply flow rate is small, the time ta between the timing Tb and Tg is short, but the same effect can be obtained by the same operation.

なお、本発明は、前記実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば、前記実施例では、湯切れ入水タイミング算出手段72は、湯切れによって該湯切れ前の前記給湯設定温度以上から前記湯切れにより前記給湯設定温度未満となる境界部の湯水が給湯器16内の合流部70に至るタイミングを湯切れ入水タイミングとして算出するようにしたが、湯切れ入水タイミング算出手段72は、前記境界部の湯水が例えば合流部70よりも少し手前側の位置に達するタイミングを湯切れ入水タイミングとして算出してもよい。つまり、湯切れ入水タイミングを検出するための判断位置(湯切れ入水タイミングの判断位置)は前記実施例のように合流部70とすることが好ましいが、合流部70以外での給湯回路62内の適宜の位置にすることができる。 The present invention is not limited to the above-described embodiment, and various aspects can be adopted as long as the technical scope of the present invention is not deviated. For example, in the above embodiment, in the hot water supply timing calculation means 72, the hot water at the boundary portion where the hot water supply set temperature before the hot water drainage becomes lower than the hot water supply set temperature due to the hot water drainage is inside the water heater 16. The timing of reaching the merging portion 70 is calculated as the hot water draining / entering timing, but the hot water running out / entering water timing calculating means 72 determines the timing at which the hot water at the boundary reaches, for example, a position slightly before the merging portion 70. It may be calculated as the timing of running out of hot water and entering water. That is, it is preferable that the determination position for detecting the hot water drainage timing ( determination position of the hot water drainage timing) is the merging portion 70 as in the above embodiment, but in the hot water supply circuit 62 other than the merging portion 70. It can be in an appropriate position.

また、本発明の熱源装置のシステム構成の詳細は必ずしも図2に示される構成とは限らず、適宜設定されるものである。例えば、給湯器16の給湯熱交換器17は潜熱回収用熱交換器を有していないものでもよく、また、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよい。 Further, the details of the system configuration of the heat source device of the present invention are not necessarily the configurations shown in FIG. 2, and are appropriately set. For example, the hot water supply heat exchanger 17 of the water heater 16 may not have a heat exchanger for latent heat recovery, or as a type of water heater that heats the hot water supply heat exchanger 17 by, for example, an oil combustion type burner device. May be good.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。 Further, in the above embodiment, the hot water storage tank 2 is thermally connected to the fuel cell 1, but instead of the fuel cell 1, a solar heat collector, a heat pump, or the like may be connected.

本発明の熱源装置は、給湯温度の安定化を図ることができ、使い勝手が良好であるので、例えば家庭用の熱源装置として利用できる。 The heat source device of the present invention can stabilize the hot water supply temperature and is easy to use, so that it can be used as a heat source device for home use, for example.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
8,8a,8b 給水通路
9 出湯通路
10 湯水合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
37,73 メモリ部
34 湯切れ検出手段
47 燃焼制御手段
72 湯切れ入水タイミング算出手段
75 給湯バーナ点火指令発信手段
1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means in hot water storage tank 8, 8a, 8b Water supply passage 9 Hot water outlet passage 10 Hot water confluence 11 Hot water storage tank hot water temperature detection means 12 Tank hot water mixer 37, 73 Memory unit 34 Hot water shortage detection means 47 Combustion control means 72 Hot water shortage inflow timing calculation means 75 Hot water supply burner Ignition command transmission means

Claims (3)

主熱源としての貯湯槽を有し、該貯湯槽から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されて、前記補助熱源装置内には前記給湯熱交換器を加熱する給湯バーナが設けられ、給湯中に前記貯湯槽側から前記補助熱源装置の前記給湯回路側に送る湯水の流量を検出する流量検出手段と、前記給湯バーナの燃焼停止での非燃焼の給湯中に前記貯湯槽に貯湯されている湯の温度が低下して前記貯湯槽側から前記補助熱源装置側に給湯設定温度の湯を送水できなくなる湯切れの情報を検出する湯切れ検出手段とを有し、前記給湯バーナの燃焼停止中での非燃焼の給湯中に前記貯湯槽側から前記給湯設定温度の湯を前記補助熱源装置側に送水している途中で前記湯切れが生じ前記補助熱源装置内の前記給湯回路における予め定めた湯切れ入水タイミングの判断位置に入水する湯水温が前記湯切れ前の前記給湯設定温度から前記湯切れにより前記給湯設定温度未満の湯切れ温度に切り替わる湯切れ入水タイミングを前記湯切れ検出手段の湯切れ検出情報と前記流量検出手段の検出流量と前記貯湯槽から前記補助熱源装置の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量とに基づいて求める湯切れ入水タイミング算出手段を有し、前記給湯バーナが点火指令を受けてから燃焼開始するまでに要する燃焼遅れ時間の情報が予め与えられており、前記湯切れ検出手段により湯切れ情報が検出されたときにはその湯切れ検出時から前記湯切れ入水タイミング算出手段により算出される前記湯切れ入水タイミングより前記燃焼遅れ時間だけ手前の点火前倒しタイミングが経過した時点で前記給湯バーナの点火指令を発信する給湯バーナ点火指令発信手段が設けられていることを特徴とする熱源装置。 The auxiliary heat source device has a hot water storage tank as a main heat source, and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device equipped with a hot water supply heat exchanger is connected to the downstream side of the passage of hot water discharged from the hot water storage tank. a flow rate detecting means for detecting a hot water flow rate sent hot water burner is provided for heating the hot water supply heat exchanger, from the hot water tank side in the hot water supply to the hot water supply circuit side of the auxiliary heat source unit within the water heater burner Information on hot water running out that the temperature of the hot water stored in the hot water storage tank drops during non-combustion hot water supply at the stop of combustion, and hot water of the hot water supply set temperature cannot be sent from the hot water storage tank side to the auxiliary heat source device side. During non-combustion hot water supply while the hot water supply burner is stopped, hot water of the hot water supply set temperature is being sent from the hot water storage tank side to the auxiliary heat source device side. The temperature of the hot water that enters the hot water supply circuit in the auxiliary heat source device at a predetermined position for determining the timing of the hot water supply is changed from the hot water supply set temperature before the hot water supply to the hot water supply set temperature due to the hot water supply. The hot water running out timing that switches to a hot water running out temperature less than the hot water running out detection information of the hot water running out detecting means, the detected flow rate of the flow rate detecting means, and the hot water running out water entering timing in the hot water supply circuit of the auxiliary heat source device from the hot water storage tank. has a water shortage water inlet timing calculating hand stages determined based on the pipe volume leading to determine the position, the hot water supply burner combustion delay time required to start the combustion after receiving ignition command information are given in advance, When the hot water running out information is detected by the hot water running out detecting means , the ignition advance timing before the burning delay time has elapsed from the hot water running out water entering timing calculation means calculated by the hot water running out water entering timing calculation means. heat source and wherein the hot water supply burner ignition command transmitting means for transmitting an ignition command for the hot water supply burner when it is provided. 前記補助熱源装置の前記給湯回路には該給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路が設けられ、前記給湯回路に導入される湯水が前記給湯熱交換器側の通路と前記バイパス通路側とに分かれて通過した後に該バイパス通路と前記給湯熱交換器側の通路との合流部で合流して前記給湯回路から導出される構成と成し、該合流部が前記湯切れ入水タイミングの判断位置として設定され、前記湯切れ入水タイミング算出手段は湯切れによって前記給湯設定温度以上から給湯設定温度未満となる境界部の湯水が前記補助熱源装置内の前記合流部に至るタイミングを湯切れ入水タイミングとして算出することを特徴とする請求項1記載の熱源装置。 It said auxiliary to the hot water supply circuit of a heat source device is provided with a bypass passage for deriving from the hot water supply circuit without passing through the hot water to be introduced into the fed-water circuit to the hot water supply heat exchanger, hot water introduced into the hot water supply circuit Is divided into a passage on the hot water supply heat exchanger side and a passage on the bypass passage side, and then merges at the confluence of the bypass passage and the passage on the hot water supply heat exchanger side to be derived from the hot water supply circuit. form, is set confluence unit as determined position of said hot water out incoming water timing, hot water of the hot water out incoming water timing calculating means boundaries of the hot water out the hot water set temperature below the above said hot water set temperature is the auxiliary heat source The heat source device according to claim 1, wherein the timing of reaching the confluence in the device is calculated as the timing of running out of hot water and entering water. 前記給湯バーナ点火指令発信手段は、前記貯湯槽から前記補助熱源装置側に送水される湯水の送水時間を前記貯湯槽から送水される湯水の積算流量に換算した値で求め、前記点火前倒しタイミングを前記貯湯槽から前記補助熱源装置内の前記給湯回路における前記湯切れ入水タイミングの判断位置に至る配管容量から前記湯切れ入水タイミングと前記点火前倒しタイミングとの間の時間に対応する積算流量を差し引いた積算流量差し引き値として求め、前記湯切れ検出時からの送水湯水の積算流量が前記積算流量差し引き値に達したときに給湯バーナの点火指令を発信する構成としたことを特徴とする請求項1または請求項2記載の熱源装置。 The hot water supply burner ignition command transmitting means is determined by the value of the hot water storage tank hot water water time that is water in the auxiliary heat source apparatus side in terms of hot water accumulated flow that is water from the hot water tank, the ignition ahead timing subtracting the cumulative flow rate corresponding to the time between the auxiliary heat source wherein the ignition accelerated timing and the hot water out water inlet timing from the piping capacity leading to determine the position of the hot water out water inlet timing in the hot water supply circuit in the apparatus from the hot water tank it was determined as the integrated flow rate subtracted value, claim 1, characterized in that it has a structure in which water hot water accumulated flow from the time the melt breakage detection originates a ignition command of the hot water supply burner when it reaches the integrated flow rate subtracted value Alternatively, the heat source device according to claim 2.
JP2017071427A 2017-03-31 2017-03-31 Heat source device Active JP6858621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071427A JP6858621B2 (en) 2017-03-31 2017-03-31 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071427A JP6858621B2 (en) 2017-03-31 2017-03-31 Heat source device

Publications (2)

Publication Number Publication Date
JP2018173228A JP2018173228A (en) 2018-11-08
JP6858621B2 true JP6858621B2 (en) 2021-04-14

Family

ID=64108411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071427A Active JP6858621B2 (en) 2017-03-31 2017-03-31 Heat source device

Country Status (1)

Country Link
JP (1) JP6858621B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252611B2 (en) 2019-04-15 2023-04-05 パーパス株式会社 Hot water supply methods, systems, programs and hot water storage units
JP7257036B2 (en) 2019-05-31 2023-04-13 パーパス株式会社 Hot water supply method, hot water storage unit, hot water supply system and program
CN111653851B (en) * 2020-04-30 2022-03-08 安徽沃博源科技有限公司 Battery pack convenient for heat transfer calculation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613459B2 (en) * 2001-07-26 2011-01-19 株式会社ノーリツ Hot water system
JP4076939B2 (en) * 2003-10-08 2008-04-16 リンナイ株式会社 Hot water system
JP4546273B2 (en) * 2005-02-02 2010-09-15 リンナイ株式会社 Hot water system
JP4712608B2 (en) * 2006-05-15 2011-06-29 リンナイ株式会社 Hot water storage hot water supply system
JP5816226B2 (en) * 2013-07-01 2015-11-18 リンナイ株式会社 Hot water storage water heater
JP6303808B2 (en) * 2014-05-22 2018-04-04 株式会社ノーリツ Hot water system

Also Published As

Publication number Publication date
JP2018173228A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
KR20110138364A (en) Hot-water supply system
JP6858621B2 (en) Heat source device
JP6032931B2 (en) Hot water system
JP2014016075A (en) Hybrid system
JP6055356B2 (en) Heat source equipment
JP5887038B2 (en) Heat source equipment
JP2013213609A (en) Heating apparatus
JP6209117B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP5938206B2 (en) Hot water storage system
JP2017009215A (en) Auxiliary heat source machine
JP6843679B2 (en) Heat source device
JP2013257083A (en) Heating device
JP6800795B2 (en) Heat source device
JP2012013335A (en) Hot water supply system
JP2017044413A (en) Composite heat source machine
JP6320118B2 (en) Heat source equipment
JP6125877B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
JP6133661B2 (en) Heat source equipment
JP2014059126A (en) Heat source device
JP6320117B2 (en) Heat source equipment
JP2005249340A (en) Hot-water supply system
JP6902740B2 (en) Cogeneration system and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250