JP2017009215A - Auxiliary heat source machine - Google Patents
Auxiliary heat source machine Download PDFInfo
- Publication number
- JP2017009215A JP2017009215A JP2015126272A JP2015126272A JP2017009215A JP 2017009215 A JP2017009215 A JP 2017009215A JP 2015126272 A JP2015126272 A JP 2015126272A JP 2015126272 A JP2015126272 A JP 2015126272A JP 2017009215 A JP2017009215 A JP 2017009215A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- heat source
- auxiliary heat
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は、補助熱源機に関し、特に貯湯ユニットから供給される湯水を再加熱して設定温度で出湯する補助熱源機に関するものである。 The present invention relates to an auxiliary heat source apparatus, and more particularly to an auxiliary heat source apparatus that reheats hot water supplied from a hot water storage unit and outputs hot water at a set temperature.
従来から、高温の湯水を貯湯し、給湯栓等の所望の給湯先に供給可能な貯湯給湯装置が実用に供されている。この種の貯湯給湯装置は、高温の湯水を貯留する為の貯湯タンクと、湯水混合弁等の各種の弁類や各種の通路類と、貯湯タンクの湯水を加熱する為の主熱源機と、貯湯タンクに貯留されている湯水温度が低い場合等に再加熱する為の補助熱源機と、これら主熱源機や補助熱源機等を制御する為の制御ユニット等を備えている。 Conventionally, hot water storage hot water supply devices that store hot hot water and supply it to a desired hot water supply destination such as a hot water tap have been put to practical use. This type of hot water storage and hot water supply system includes a hot water storage tank for storing hot hot water, various valves and various passages such as a hot water mixing valve, a main heat source machine for heating hot water in the hot water storage tank, An auxiliary heat source machine for reheating when the temperature of hot water stored in the hot water storage tank is low, a control unit for controlling these main heat source machines, auxiliary heat source machines, and the like are provided.
上記の補助熱源機として、加熱部と、入水側通路と、出湯側通路と、加熱部をバイパスするバイパス通路と、このバイパス通路に流れる水量を調整するためのバイパス調整弁と、加熱部への入水の入水温度検知手段と、加熱部からの出湯の出湯温度検知手段等を備えたバイパス式給湯器が採用されている場合がある(特許文献1)。 As said auxiliary heat source machine, a heating part, a water entrance side passage, a hot water side passage, a bypass passage bypassing the heating part, a bypass adjustment valve for adjusting the amount of water flowing in this bypass passage, and a heating part There is a case where a bypass type water heater provided with an incoming water temperature detecting means and a hot water temperature detecting means for the hot water from the heating section is employed (Patent Document 1).
前記制御ユニットには、補助熱源機の入水温度と、補助熱源機の加熱部出口温度(缶体温度)とをパラメータとして、補助熱源機の燃焼を禁止する燃焼禁止領域と、燃焼禁止を解除する燃焼禁止解除領域とを予め設定したマップが格納されている。前記制御ユニットは、燃焼禁止条件が成立すると補助熱源機に燃焼禁止信号を出力して燃焼を停止させ、燃焼禁止解除条件が成立すると補助熱源機に燃焼禁止解除信号を出力して燃焼を開始させる。 In the control unit, the combustion prohibition region in which combustion of the auxiliary heat source unit is prohibited and the combustion prohibition are canceled using the inlet temperature of the auxiliary heat source unit and the heating part outlet temperature (can temperature) of the auxiliary heat source unit as parameters. The map which preset the combustion prohibition cancellation | release area | region is stored. When the combustion prohibition condition is satisfied, the control unit outputs a combustion prohibition signal to the auxiliary heat source machine to stop combustion, and when the combustion prohibition release condition is satisfied, the control unit outputs a combustion prohibition cancellation signal to the auxiliary heat source apparatus to start combustion. .
貯湯ユニットから補助熱源機までの配管長の幅が広い(1.5 〜10m)ため、湯待ち改善策として給湯アシストモードがあり、貯湯ユニットからの補助熱源機までの配管や補助熱源機が冷えている場合は、出湯と同時に貯湯ユニットから設定温度の湯水を出湯させつつ補助熱源機を燃焼させる。その後、制御ユニットは、補助熱源機の入水温度や缶体温度を監視し、燃焼禁止条件が成立すると、適宜のタイミングで補助熱源機の燃焼を停止させて、バックアップ出湯からタンク出湯に切換える。 Since the pipe length from the hot water storage unit to the auxiliary heat source machine is wide (1.5 to 10m), there is a hot water supply assist mode as a hot water waiting improvement measure, and the pipe and auxiliary heat source machine from the hot water storage unit to the auxiliary heat source machine are cold. In this case, the auxiliary heat source machine is burned while discharging hot water at a set temperature from the hot water storage unit at the same time as hot water. Thereafter, the control unit monitors the incoming water temperature and can temperature of the auxiliary heat source unit, and when the combustion prohibition condition is satisfied, stops the combustion of the auxiliary heat source unit at an appropriate timing and switches from the backup hot water to the tank hot water.
この場合、補助熱源機が貯湯ユニットから離れた場所に設置されている場合等では、検出信号や制御信号の遅れ(タイムラグ)や補助熱源機における燃焼開始や停止の動作の遅れが生じるため、出湯温度を(設定温度±3℃)に抑えることが容易ではない。 In this case, when the auxiliary heat source unit is installed at a location away from the hot water storage unit, the detection signal and control signal are delayed (time lag), and combustion start and stop operations are delayed in the auxiliary heat source unit. It is not easy to suppress the temperature to (set temperature ± 3 ° C.).
補助熱源機の制御部は、制御ユニットからの燃焼禁止解除信号や燃焼禁止信号に基づいて燃焼開始や燃焼停止を実行するだけで、補助熱源機の制御部自身が燃焼開始や燃焼停止を判断するようなシステムには構成されていない。
但し、補助熱源機の制御部には、異常時の対策として、出湯温度が(設定温度+8℃)以上になると予測した場合には、自律的に燃焼を停止する制御が組み込まれているが、この制御では前記の(設定温度+3℃)を必ずオーバーしてしまう。
The control unit of the auxiliary heat source unit simply starts combustion and stops combustion based on the combustion prohibition release signal and combustion prohibition signal from the control unit, and the control unit of the auxiliary heat source unit determines whether combustion starts or stops. Such a system is not configured.
However, the control unit of the auxiliary heat source unit incorporates a control for autonomously stopping combustion when it is predicted that the tapping temperature will be (set temperature + 8 ° C.) or higher as a countermeasure in case of abnormality, In this control, the above (set temperature + 3 ° C.) is surely exceeded.
特許文献2に記載の給湯装置においては、給湯部(熱源機)の熱交換器へ給水する給水管と熱交換器から出湯する給湯管とを接続するバイパス管を設け、このバイパス管に流量制御手段を設け、この流量制御手段おける給水バイパス比(熱交換器への給水量とバイパス管へのバイパス水量との比)を決定するバイパス比決定手段を設け、給湯設定温度と給水温度とバイパス比とに基づいて熱交換器から出湯される予測出湯温度を算出し、この予測出湯温度が熱交換器でドレンが発生する温度より高くなるようにバイパス比を制御する技術が採用されている。 In the hot water supply apparatus described in Patent Document 2, a bypass pipe that connects a water supply pipe that supplies water to the heat exchanger of the hot water supply section (heat source unit) and a hot water supply pipe that discharges water from the heat exchanger is provided, and flow control is performed on the bypass pipe. And a bypass ratio determining means for determining a water supply bypass ratio (ratio of the amount of water supplied to the heat exchanger and the amount of bypass water supplied to the bypass pipe) in the flow rate control means, and a hot water supply set temperature, a water supply temperature, and a bypass ratio. Based on the above, a technique for calculating the predicted hot water temperature discharged from the heat exchanger and controlling the bypass ratio so that the predicted hot water temperature becomes higher than the temperature at which the drain is generated in the heat exchanger is employed.
前記燃焼禁止領域と、燃焼禁止解除領域を設定するマップは、補助熱源機への入水温度と熱交換器出口の缶体温度をパラメータとして設定されているため、補助熱源機の機種毎にそのマップを設計するのに多大の労力を要するうえ、実際の運転中の制御においてもマップに基づいて演算処理を実行するため演算処理の負荷が高くなる。 The map for setting the combustion prohibition area and the combustion prohibition release area is set using the temperature of the water entering the auxiliary heat source unit and the temperature of the can at the outlet of the heat exchanger as parameters. In addition, it takes a great deal of labor to design the system, and the calculation process is increased because the calculation process is executed based on the map even in the actual control during the operation.
従来の補助熱源機においては、基本的に制御ユニットからの指令に基づいて燃焼開始/停止を行うように構成されており、制御ユニットと補助熱源機の制御部の間では、2芯の通信線を介して制御信号を授受しているが、通信時に信号の遅延等が生じるため精度を高めることが難しく、補助熱源機の制御部自身が燃焼開始/停止を判断できることが望ましい。 The conventional auxiliary heat source unit is basically configured to start / stop combustion based on a command from the control unit, and a two-core communication line between the control unit and the control unit of the auxiliary heat source unit. However, it is difficult to improve accuracy because a signal delay occurs during communication, and it is desirable that the control unit of the auxiliary heat source unit can determine the start / stop of combustion.
特許文献1の給湯装置では、給湯設定温度と給水温度とバイパス比とに基づいて熱交換器から出湯される予測出湯温度を算出するものの、この予測出湯温度を熱源機の燃焼開始/停止の制御に活用するものではない。 In the hot water supply apparatus of Patent Document 1, although the predicted hot water temperature discharged from the heat exchanger is calculated based on the hot water supply set temperature, the feed water temperature, and the bypass ratio, this predicted hot water temperature is used to control combustion start / stop of the heat source machine. It is not intended for use.
本発明の目的は、バイパス比と入水温度と出湯温度とを用いて算出した予測出湯温度と、設定温度とに基づいて加熱動作を開始/停止するようにした補助熱源機を提供することである。 An object of the present invention is to provide an auxiliary heat source apparatus that starts / stops a heating operation based on a predicted hot water temperature calculated using a bypass ratio, an incoming water temperature, and a hot water temperature, and a set temperature. .
請求項1の補助熱源機は、貯湯ユニットの出湯通路に配置され、貯湯ユニットから供給される湯水を再加熱して予め設定された設定温度で出湯する補助熱源機であって、加熱部と、入水側通路と、出湯側通路と、加熱部をバイパスして入水側通路と出湯側通路とを接続するバイパス通路と、このバイパス通路に流れる水量を調整するためのバイパス調整弁と、入水側通路に流れる湯水温度を検知する入水温度検知手段と、バイパス通路の合流部より上流側において出湯側通路に流れる湯水温度を検知する出湯温度検知手段とを備えた補助熱源機において、前記バイパス調整弁を全開にした場合のバイパス比と、前記入水温度検知手段で検知された入水温度と、前記出湯温度検知手段で検知された出湯温度とから予測出湯温度を算出し、前記設定温度と前記予測出湯温度との温度差に基づいて補助熱源機の加熱動作を開始/停止することを特徴としている。 The auxiliary heat source device according to claim 1 is an auxiliary heat source device that is disposed in a hot water passage of the hot water storage unit, reheats hot water supplied from the hot water storage unit, and outputs hot water at a preset temperature, a heating unit, An inlet side passage, an outlet side passage, a bypass passage that bypasses the heating section and connects the inlet side passage and the outlet side passage, a bypass adjustment valve for adjusting the amount of water flowing in the bypass passage, and an inlet side passage In the auxiliary heat source machine comprising an incoming water temperature detecting means for detecting the temperature of hot water flowing in the hot water, and a hot water temperature detecting means for detecting the temperature of hot water flowing in the hot water outlet side passage upstream of the junction of the bypass passage, The predicted hot water temperature is calculated from the bypass ratio when fully opened, the incoming water temperature detected by the incoming water temperature detecting means, and the outgoing hot water temperature detected by the outgoing hot water temperature detecting means, It is characterized in that to start / stop heating operation of the auxiliary heat source apparatus based on the temperature difference between the temperature and the predicted tapping temperature.
請求項2の補助熱源機は、請求項1の発明において、前記予測出湯温度の算出と、補助熱源機の加熱動作の開始/停止の制御を補助熱源機を制御する補助制御ユニットにおいて行うことを特徴としている。 According to a second aspect of the present invention, there is provided an auxiliary heat source unit according to the first aspect of the invention, wherein the calculation of the predicted hot water temperature and the start / stop control of the heating operation of the auxiliary heat source unit are performed in an auxiliary control unit that controls the auxiliary heat source unit. It is a feature.
請求項1の発明によれば、バイパス調整弁を全開にした場合のバイパス比と、検知された入水温度と、検知された出湯温度とから予測出湯温度を算出し、予め設定された設定温度と算出した予測出湯温度との温度差に基づいて補助熱源機の加熱動作を開始/停止するように構成したため、特殊なマップ等を用いることなく、簡単な演算式でもって予測出湯温度を算出し、設定温度とその予測出湯温度との温度差に基づいて補助熱源機の加熱動作を開始/停止することができる。 According to the first aspect of the present invention, the predicted hot water temperature is calculated from the bypass ratio when the bypass adjustment valve is fully opened, the detected incoming water temperature, and the detected outgoing hot water temperature, and a preset set temperature and Since the heating operation of the auxiliary heat source machine is configured to start / stop based on the temperature difference from the calculated predicted hot water temperature, the predicted hot water temperature is calculated with a simple arithmetic expression without using a special map, The heating operation of the auxiliary heat source unit can be started / stopped based on the temperature difference between the set temperature and the predicted hot water temperature.
そのため、複数機種の補助熱源機に前記演算式を共通に採用できるため、貯湯ユニットと補助熱源機を制御する制御ユニット又は補助熱源機を制御する制御部の設計と製作を簡単化できるうえ、実際の運転時にも前記演算式に基づいて予測出湯温度を簡単に演算できるから、制御時の演算負荷を低減可能であり、必要に応じて、補助熱源機の制御部において加熱動作の開始/停止を決定可能になる。 For this reason, since the arithmetic expression can be commonly used for multiple types of auxiliary heat source machines, the design and production of the control unit for controlling the hot water storage unit and the auxiliary heat source machine or the control unit for controlling the auxiliary heat source machine can be simplified. Since the predicted hot water temperature can be easily calculated based on the above equation even during operation, the calculation load during control can be reduced, and if necessary, the heating unit can be started / stopped in the control section of the auxiliary heat source machine. It becomes possible to decide.
しかも、前記入水温度と出湯温度だけでなく、バイパス調整弁を全開にした場合のバイパス比も用いて予測出湯温度を算出するため、入水温度を大きく反映し且つ出湯温度を小さく反映する予測出湯温度であって、燃焼停止タイミングの付近において数秒後の入水温度を表すような予測出湯温度を算出でき、この予測出湯温度に基づいて加熱動作の停止のタイミングを適切に設定することができる。 Moreover, since the predicted hot water temperature is calculated not only using the incoming water temperature and the hot water temperature but also using the bypass ratio when the bypass adjustment valve is fully opened, the predicted hot water temperature that largely reflects the incoming water temperature and reflects the lower hot water temperature. The predicted hot water temperature that represents the incoming water temperature after several seconds in the vicinity of the combustion stop timing can be calculated, and the timing for stopping the heating operation can be appropriately set based on this predicted hot water temperature.
請求項2の発明によれば、前記予測出湯温度の算出と、補助熱源機の加熱動作の開始/停止の制御を補助熱源機を制御する補助制御ユニットにおいて行うため、信号線の断線等が発生した場合に、補助熱源機側において自律的に加熱動作の開始/停止の制御を行うことができる。 According to the invention of claim 2, since the calculation of the predicted hot water temperature and the start / stop control of the heating operation of the auxiliary heat source unit are performed in the auxiliary control unit that controls the auxiliary heat source unit, a disconnection of the signal line or the like occurs. In such a case, it is possible to control the start / stop of the heating operation autonomously on the auxiliary heat source machine side.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
先ず、本発明の貯湯給湯装置1の全体構造について説明する。
図1に示すように、貯湯給湯装置1は、貯湯、給湯、本実施例では省略するが浴槽への給湯及び浴槽の追焚き、床暖房パネル等の温水暖房端末への暖房水の供給等の機能を有するものであり、貯湯タンク3を備えた貯湯ユニット2、貯湯タンク3内の湯水の加熱を行う外部の主熱源機4、貯湯タンク3からの湯水の温度が設定温度以下である場合に再加熱を行う補助熱源機5、貯湯ユニット2や主熱源機4及び補助熱源機5等を制御する為の制御ユニット9等を備えている。
First, the overall structure of the hot water storage and hot water supply apparatus 1 of the present invention will be described.
As shown in FIG. 1, a hot water storage and hot water supply apparatus 1 includes hot water storage, hot water supply, hot water supply to a bathtub, chasing of a bathtub, supply of heating water to a hot water heating terminal such as a floor heating panel, etc. The hot water storage unit 2 having the hot water storage tank 3, the external main heat source unit 4 for heating the hot water in the hot water storage tank 3, and the temperature of the hot water from the hot water storage tank 3 is lower than the set temperature. An auxiliary heat source machine 5 for reheating, a hot water storage unit 2, a main heat source machine 4, a control unit 9 for controlling the auxiliary heat source machine 5 and the like are provided.
この貯湯給湯装置1において、貯湯ユニット2と補助熱源機5とは、離隔して(例えば1.5m〜10m程度離して)設置されている。貯湯ユニット2の貯湯タンク3と補助熱源機5は配管長の長い出湯通路7の外部出湯通路部7cを介して接続されている。尚、外部の主熱源機4としては、ヒートポンプ式熱源機や燃料電池発電装置が活用されるが、特にこれらに限定するものではなく、適宜変更可能である。 In this hot water storage hot water supply apparatus 1, the hot water storage unit 2 and the auxiliary heat source unit 5 are installed apart (for example, separated by about 1.5 m to 10 m). The hot water storage tank 3 of the hot water storage unit 2 and the auxiliary heat source machine 5 are connected via an external hot water passage portion 7c of the hot water passage 7 having a long piping length. As the external main heat source unit 4, a heat pump type heat source unit or a fuel cell power generator is used, but is not particularly limited thereto, and can be changed as appropriate.
次に、貯湯ユニット2について説明する。
図1に示すように、貯湯ユニット2は、貯湯タンク3、給水通路6、出湯通路7、湯水循環回路8、混合弁13等の各種の弁類、各種のセンサ類及び各種のポンプ類、主制御ユニット20等を備え、これら大部分は外装ケース11内に収納されて構成されている。
Next, the hot water storage unit 2 will be described.
As shown in FIG. 1, the hot water storage unit 2 includes a hot water storage tank 3, a water supply passage 6, a hot water passage 7, a hot water circulation circuit 8, various valves such as a mixing valve 13, various sensors, various pumps, A control unit 20 and the like are provided, and most of these are housed in the outer case 11.
貯湯タンク3は、外部の主熱源機4で加熱された高温の湯水(例えば65〜90℃)を貯留可能な密閉タンクで構成され、貯留された湯水の放熱を防ぐ為にタンク周囲は断熱材で覆われている。貯湯タンク3の外周部に、下側から上側に向かって等間隔に複数の温度センサ17a〜17dが順に設けられ、これら複数の温度センサ17a〜17dにより貯湯タンク3内の複数の貯留層の湯水温度が検出される。 The hot water storage tank 3 is composed of a sealed tank capable of storing high-temperature hot water (for example, 65 to 90 ° C.) heated by an external main heat source unit 4, and a heat insulating material is provided around the tank to prevent heat dissipation of the stored hot water. Covered with. A plurality of temperature sensors 17a to 17d are sequentially provided on the outer peripheral portion of the hot water storage tank 3 from the lower side toward the upper side, and the hot water of the plurality of reservoirs in the hot water storage tank 3 is provided by the plurality of temperature sensors 17a to 17d. The temperature is detected.
給水通路6は、上水源から低温の水を貯湯タンク3等に供給するものであり、上流給水通路部6a、下流給水通路部6bを有し、上流端が上水源に接続され、下流端が貯湯タンク3の下部に接続されている。上流給水通路部6aと下流給水通路部6bとの間から出湯通路7に接続するバイパス通路12が分岐されている。上流給水通路部6aに、温度センサ17eが設けられ、下流給水通路部6bに、逆止弁19aが設けられている。バイパス通路12に、逆止弁19bが設けられている。 The water supply passage 6 supplies low-temperature water from a water supply source to the hot water storage tank 3 and the like, and has an upstream water supply passage portion 6a and a downstream water supply passage portion 6b. The upstream end is connected to the water supply source, and the downstream end is It is connected to the lower part of the hot water storage tank 3. A bypass passage 12 connected to the hot water supply passage 7 is branched from between the upstream water supply passage portion 6a and the downstream water supply passage portion 6b. A temperature sensor 17e is provided in the upstream water supply passage 6a, and a check valve 19a is provided in the downstream water supply passage 6b. A check valve 19 b is provided in the bypass passage 12.
出湯通路7は、貯湯タンク3に貯湯された湯水を補助熱源機5を介して給湯栓等の所望の給湯先に供給するものであり、上流出湯通路部7a、下流出湯通路部7b、外部出湯通路部7c、熱源出湯通路部7dを有し、上流端が貯湯タンク3の上部に接続され、下流端が給湯栓等に接続されている。上流出湯通路部7aに、温度センサ17fと流量センサ18aが設けられ、下流出湯通路部7bに、温度センサ17gと流量センサ18bが設けられている。 The hot water supply passage 7 supplies hot water stored in the hot water storage tank 3 to a desired hot water supply destination such as a hot water tap through the auxiliary heat source unit 5, and includes an upper effluent hot water passage portion 7a, a lower effluent hot water passage portion 7b, It has an external hot water supply passage portion 7c and a heat source hot water supply passage portion 7d, the upstream end is connected to the upper part of the hot water storage tank 3, and the downstream end is connected to a hot water tap or the like. A temperature sensor 17f and a flow rate sensor 18a are provided in the upper effluent hot water passage portion 7a, and a temperature sensor 17g and a flow rate sensor 18b are provided in the lower effluent hot water passage portion 7b.
上流出湯通路部7aと下流出湯通路部7bとの間に、混合弁13が設けられ、この混合弁13に給水通路6から分岐したバイパス通路12が接続されている。混合弁13は、出湯温度が目標給湯設定温度になるように上水源からの低温の水と貯湯タンク3からの高温の湯水の混合比を調整するものである。バイパス通路12から分岐した分岐通路14が、下流出湯通路部7bに接続され、分岐通路14に、高温出湯回避用の開閉弁15が設けられている。 A mixing valve 13 is provided between the upper effluent hot water passage portion 7 a and the lower effluent hot water passage portion 7 b, and a bypass passage 12 branched from the water supply passage 6 is connected to the mixing valve 13. The mixing valve 13 adjusts the mixing ratio of the low-temperature water from the water source and the high-temperature hot water from the hot water storage tank 3 so that the hot water temperature becomes the target hot water supply set temperature. A branch passage 14 branched from the bypass passage 12 is connected to the lower effluent hot water passage portion 7b, and an open / close valve 15 for avoiding high temperature hot water is provided in the branch passage 14.
外部出湯通路部7cと熱源出湯通路部7dとの間に、補助熱源機5が設けられている。尚、外部出湯通路部7cの配管長は、貯湯タンクユニット2と補助熱源機5とが離隔状に設置されている構造上、例えば1.5m〜10m程度と外装ケース11内に設置された上流出湯通路部7aや下流出湯通路部7bと比較して長く設定されている。 An auxiliary heat source machine 5 is provided between the external hot water supply passage portion 7c and the heat source hot water supply passage portion 7d. In addition, the pipe length of the external hot water outlet passage portion 7c is, for example, about 1.5 m to 10 m and is installed in the outer case 11 because of the structure in which the hot water storage tank unit 2 and the auxiliary heat source unit 5 are installed in a spaced manner. It is set longer than the outflow hot water passage portion 7a and the lower outflow hot water passage portion 7b.
湯水循環回路8は、貯湯タンク3と外部の主熱源機4との間に湯水を循環させて湯水を加熱する閉回路であり、低温側循環通路部8a、高温側循環通路部8b等を有し、上流端が貯湯タンク3の下部に接続され、下流端が貯湯タンク3の上部に接続されている。低温側循環通路部8aと高温側循環通路部8bとの間に、外部の主熱源機4が設けられている。低温側循環通路部8aには、循環ポンプ16が設けられている。 The hot water circulation circuit 8 is a closed circuit that heats hot water by circulating hot water between the hot water storage tank 3 and the external main heat source unit 4, and has a low temperature side circulation passage portion 8a, a high temperature side circulation passage portion 8b, and the like. The upstream end is connected to the lower part of the hot water storage tank 3, and the downstream end is connected to the upper part of the hot water storage tank 3. An external main heat source unit 4 is provided between the low temperature side circulation passage portion 8a and the high temperature side circulation passage portion 8b. A circulation pump 16 is provided in the low temperature side circulation passage portion 8a.
次に、補助熱源機5について説明する。
図1に示すように、補助熱源機5は、貯湯タンク3から延びる出湯通路7の途中部に設けられた公知のガス給湯器(バイパス式給湯器)で構成されている。補助熱源機5は、貯湯タンク3に高温の湯水が十分にある場合には燃焼禁止状態に設定されているが、混合弁13の出湯温度又は補助熱源機5の入水温度が低下した場合に限り燃焼禁止状態が解除されて燃焼作動され、目標給湯設定温度となるように貯湯ユニット2から流入する湯水を加熱するものである。
Next, the auxiliary heat source unit 5 will be described.
As shown in FIG. 1, the auxiliary heat source unit 5 is configured by a known gas water heater (bypass type water heater) provided in the middle of a hot water passage 7 extending from the hot water storage tank 3. The auxiliary heat source unit 5 is set in a combustion prohibited state when there is sufficient hot water in the hot water storage tank 3, but only when the outlet temperature of the mixing valve 13 or the incoming water temperature of the auxiliary heat source unit 5 is lowered. The hot water flowing from the hot water storage unit 2 is heated so that the combustion prohibition state is canceled and the combustion operation is performed to reach the target hot water supply set temperature.
即ち、補助熱源機5は、燃焼用空気を供給する為の送風ファン(図示略)、燃料ガスを燃焼させるバーナーユニット5a、貯湯タンクユニット2から湯水が流入する入水通路部21、この入水通路部21から流入した湯水を燃焼ガスによって加熱する熱交換器22、この熱交換器22で加熱された後の湯水の出湯を行う出湯通路部23、熱交換器22をバイパスするバイパス通路24、このバイパス通路24を流れる湯水の流量を調整するバイパス流量調整弁25、補助熱源機5を制御する補助制御ユニット26及び各種のセンサ類等を備え、これら大部分は外装ケース27内に収納されて構成されている。 That is, the auxiliary heat source unit 5 includes a blower fan (not shown) for supplying combustion air, a burner unit 5a for burning fuel gas, a water inlet passage portion 21 through which hot water flows from the hot water storage tank unit 2, and the water inlet passage portion. A heat exchanger 22 for heating hot water flowing in from the combustion gas, a discharge passage section 23 for discharging hot water heated by the heat exchanger 22, a bypass passage 24 for bypassing the heat exchanger 22, and this bypass A bypass flow rate adjusting valve 25 that adjusts the flow rate of hot water flowing through the passage 24, an auxiliary control unit 26 that controls the auxiliary heat source unit 5, various sensors, and the like are provided, most of which are housed in an exterior case 27. ing.
熱交換器22は、湯水の流れ方向の下流側に設けられ且つ燃焼ガスの主として顕熱を回収する顕熱回収用熱交換器22a、湯水の流れ方向の上流側に設けられ且つ顕熱回収後の燃焼排気ガスの主として潜熱を回収する潜熱回収用熱交換器22b、この潜熱回収用熱交換器22bで発生したドレン水を回収するドレン水回収部(図示略)等を備えている。 The heat exchanger 22 is provided on the downstream side in the flowing direction of the hot water and the sensible heat recovery heat exchanger 22a for recovering mainly sensible heat of the combustion gas, and provided on the upstream side in the flowing direction of the hot water and after the sensible heat recovery. A latent heat recovery heat exchanger 22b that mainly recovers the latent heat of the combustion exhaust gas, a drain water recovery unit (not shown) that recovers the drain water generated by the latent heat recovery heat exchanger 22b, and the like are provided.
入水通路部21の上流端は、貯湯タンクユニット2から延びる外部出湯通路部7cの下流端に接続され、入水通路部21の下流端は、潜熱回収用熱交換器22bに接続されている。入水通路部21には、温度センサ28aと流量センサ29が設けられている。入水通路部21の温度センサ28aと流量センサ29の上流側から分岐されたバイパス通路24が出湯通路部23に接続され、この分岐部にバイパス流量調整弁25が設けられている。 The upstream end of the water inlet passage 21 is connected to the downstream end of the external hot water outlet passage 7c extending from the hot water storage tank unit 2, and the downstream end of the water inlet passage 21 is connected to the latent heat recovery heat exchanger 22b. A temperature sensor 28 a and a flow rate sensor 29 are provided in the water inlet passage 21. A bypass passage 24 branched from the upstream side of the temperature sensor 28a and the flow rate sensor 29 of the incoming water passage portion 21 is connected to the hot water passage portion 23, and a bypass flow rate adjusting valve 25 is provided at this branch portion.
出湯通路部23の上流端は、顕熱回収用熱交換器22aに接続され、出湯通路部23の下流端は、熱源出湯通路部7dの上流端に接続されている。出湯通路部23のバイパス通路24が接続される接続部の上流側には、温度センサ28bが設けられ、出湯通路部23の接続部の下流側には、温度センサ28cが設けられている。 The upstream end of the hot water passage portion 23 is connected to the sensible heat recovery heat exchanger 22a, and the downstream end of the hot water passage portion 23 is connected to the upstream end of the heat source hot water passage portion 7d. A temperature sensor 28 b is provided on the upstream side of the connection portion to which the bypass passage 24 of the hot water passage portion 23 is connected, and a temperature sensor 28 c is provided on the downstream side of the connection portion of the hot water passage portion 23.
バイパス流量調整弁25において、タンク出湯中は、パイパス通路24の流量が最大となるように弁ポジションがバイパス通路24側全開に調整され、バックアップ出湯中は、熱交換器22で加熱された高温の湯水とバイパス通路24を流れる低温の湯水とを混合調整して給湯設定温度の湯水が補助熱源機5から出湯されるように弁ポジションが適宜調整される。 In the bypass flow rate adjustment valve 25, the valve position is adjusted to the bypass passage 24 side fully open so that the flow rate of the bypass passage 24 is maximized during the tank hot water, and the high temperature heated by the heat exchanger 22 is high during the backup hot water. The valve position is adjusted as appropriate so that hot water and low temperature hot water flowing through the bypass passage 24 are mixed and adjusted so that hot water having a hot water supply set temperature is discharged from the auxiliary heat source unit 5.
次に、制御ユニット9について説明する。
この貯湯給湯装置1は、主制御ユニット20と補助制御ユニット26からなる制御ユニット9によって制御される。貯湯ユニット2側において、各種のセンサの検出信号が主制御ユニット20に送信され、補助熱源機5側において、各種のセンサ類の検出信号が補助制御ユニット26に送信され、これら主制御ユニット20と補助制御ユニット26によって、貯湯ユニット2の動作、主熱源機4の動作、補助熱源機5の動作、各種のポンプ類の作動・停止、各種の弁類の開閉状態の切り換え及び開度調整等を制御し、各種運転(貯湯運転、出湯運転等)を実行する。
Next, the control unit 9 will be described.
This hot water storage and hot water supply apparatus 1 is controlled by a control unit 9 including a main control unit 20 and an auxiliary control unit 26. On the hot water storage unit 2 side, detection signals of various sensors are transmitted to the main control unit 20, and on the auxiliary heat source unit 5, detection signals of various sensors are transmitted to the auxiliary control unit 26. By the auxiliary control unit 26, the operation of the hot water storage unit 2, the operation of the main heat source unit 4, the operation of the auxiliary heat source unit 5, the operation / stop of various pumps, the switching of the opening / closing states of various valves, the opening degree adjustment, etc. Control and execute various operations (hot water storage operation, hot water operation, etc.).
主制御ユニット20は、補助熱源機5の補助制御ユニット26とデータ通信可能であり、また、主制御ユニット20は、ユーザーが操作可能な操作リモコン(図示略)とデータ通信可能である。操作リモコンのスイッチ操作により各種の運転が設定されると、その指令信号が操作リモコンから主制御ユニット20に送信される。例えば、操作リモコンのスイッチ操作により目標給湯設定温度が設定されると、その目標給湯設定温度データが操作リモコンから主制御ユニット20に送信される。 The main control unit 20 can perform data communication with the auxiliary control unit 26 of the auxiliary heat source unit 5, and the main control unit 20 can perform data communication with an operation remote controller (not shown) that can be operated by the user. When various operations are set by the switch operation of the operation remote controller, the command signal is transmitted from the operation remote controller to the main control unit 20. For example, when the target hot water set temperature is set by operating the switch of the operation remote controller, the target hot water set temperature data is transmitted from the operation remote controller to the main control unit 20.
主制御ユニット20は、貯湯タンク3の湯水の貯留状況に応じて又は貯湯タンク3からの湯水の出湯温度(混合弁13の出湯温度又は補助熱源機5の入水温度)に応じて、補助熱源機5の燃焼及び燃焼禁止の制御を実行し、燃焼を許可する場合は燃焼禁止フラグを「0」にリセットし、また燃焼禁止の場合は燃焼禁止フラグを「1」とし、データ通信を介して補助制御ユニット26へ補助熱源機5の燃焼可否を指令する。 The main control unit 20 is connected to the auxiliary heat source unit according to the hot water storage status of the hot water storage tank 3 or the hot water discharge temperature from the hot water storage tank 3 (the hot water temperature of the mixing valve 13 or the incoming water temperature of the auxiliary heat source unit 5). 5 is executed, the combustion prohibition flag is reset to “0” when combustion is permitted, and the combustion prohibition flag is set to “1” when combustion is prohibited. The control unit 26 is instructed whether or not the auxiliary heat source machine 5 is combustible.
次に、補助熱源機5の燃焼開始/燃焼停止を制御する燃焼開始停止制御について図2のフローチャートに基づいて説明する。本実施例の場合、この燃焼開始停止制御は補助熱源機5の補助制御ユニット26により実行される。
この制御が開始されると、S1においてバックアップ出湯のため補助熱源機5の燃焼が必要となる所定条件成立か否か判定される。出湯栓や浴槽等へ出湯中(流量センサ29が流量を検出中)であれば、前記の所定条件成立と判定される。
Next, the combustion start / stop control for controlling the combustion start / combustion stop of the auxiliary heat source unit 5 will be described based on the flowchart of FIG. In this embodiment, this combustion start / stop control is executed by the auxiliary control unit 26 of the auxiliary heat source unit 5.
When this control is started, it is determined in S1 whether or not a predetermined condition that requires combustion of the auxiliary heat source unit 5 for backup hot water is satisfied. If the hot water is being discharged to a hot water tap, a bathtub, or the like (the flow sensor 29 is detecting the flow rate), it is determined that the predetermined condition is satisfied.
次に、S2において、温度センサ28a,28bの検出信号を読み込んで、補助熱源機5へ供給される入水の入水温度Tiと、補助熱源機5の出湯温度To(熱交換器22の出口温度、缶体温度)が検出される。次に、S3において、バイパス流量調整弁25を全開にした場合のバイパス全開予測出湯温度Taが次式により演算される。 Next, in S2, the detection signals of the temperature sensors 28a and 28b are read, and the incoming water temperature Ti supplied to the auxiliary heat source unit 5 and the hot water temperature To of the auxiliary heat source unit 5 (the outlet temperature of the heat exchanger 22, Can body temperature) is detected. Next, in S3, the bypass fully open predicted hot water temperature Ta when the bypass flow rate adjustment valve 25 is fully opened is calculated by the following equation.
Ta=(Ti×バイパス全開比+To×1)/(バイパス全開比+1)・・・(1)
このバイパス全開予測出湯温度Taは、バイパス流量調整弁25を全開にしたと仮定して、バイパス通路24への流量と熱交換器22側への流量の比率を全開(例えば2:1)にした場合における、バイパス通路24と出湯通路部23との合流部よりも下流側の給湯温度Tu(温度センサ28cの所の温度)を示すものである。
Ta = (Ti × Bypass Fully Open Ratio + To × 1) / (Bypass Fully Open Ratio + 1) (1)
This bypass fully open predicted hot water temperature Ta assumes that the bypass flow rate adjustment valve 25 is fully opened, and the ratio of the flow rate to the bypass passage 24 and the flow rate to the heat exchanger 22 side is fully open (for example, 2: 1). In this case, the hot water supply temperature Tu (temperature at the temperature sensor 28c) on the downstream side of the joining portion between the bypass passage 24 and the hot water passage portion 23 is shown.
次に、S4において、前記予測出湯温度Ta≦(給湯設定温度Ts−4℃)か否か判定され、入水温度Ti及び出湯温度Toが低いためS4の判定がYesになった場合は、S5において、補助熱源機5の加熱動作(燃焼)を開始させ、また燃焼中の場合は燃焼を継続させる。その後S6へ移行する。S4の判定がNoの場合もS6へ移行する。 Next, in S4, it is determined whether or not the predicted hot water temperature Ta ≦ (hot water supply set temperature Ts−4 ° C.). If the incoming water temperature Ti and the hot water temperature To are low and the determination in S4 is Yes, in S5 Then, the heating operation (combustion) of the auxiliary heat source unit 5 is started, and the combustion is continued when the combustion is in progress. Thereafter, the process proceeds to S6. Also when the determination of S4 is No, the process proceeds to S6.
S6では、前記予測出湯温度Ta≧(給湯設定温度Ts−2℃)か否か判定され、その判定がYesの場合は、S7において補助熱源機の加熱動作(燃焼)を停止させ、S7からS1へリターンし、S6の判定がNoの場合にもS1へリターンし、その後S1以降が繰り返し実行される。 In S6, it is determined whether or not the predicted hot water temperature Ta ≧ (hot water supply set temperature Ts−2 ° C.). If the determination is Yes, the heating operation (combustion) of the auxiliary heat source machine is stopped in S7, and S1 to S1. When the determination in S6 is No, the process also returns to S1, and then S1 and subsequent steps are repeatedly executed.
ここで、図3には、貯湯タンク3の出湯温度Tk、流量、補助熱源機への入水温度Ti、熱交換器の出口温度To(缶体温度)、補助熱源機5の出口の給湯温度Tu(給湯先への給湯温度)、流量調整弁25の弁ポジション、バイパス全開予測出湯温度Ta、燃焼禁止フラグが図示されている。 Here, in FIG. 3, the hot water temperature Tk of the hot water storage tank 3, the flow rate, the incoming water temperature Ti to the auxiliary heat source machine, the outlet temperature To (can temperature) of the heat exchanger, and the hot water supply temperature Tu at the outlet of the auxiliary heat source machine 5 are shown. (The hot water supply temperature to the hot water supply destination), the valve position of the flow rate adjusting valve 25, the bypass fully open predicted hot water temperature Ta, and the combustion prohibition flag are illustrated.
時刻t1において、出湯が開始されて流量が発生すると、燃焼禁止フラグが「0」にリセットされ、前記の燃焼開始停止制御が開始される。このとき、入水温度Tiも缶体温度Toも十分に低く、予測出湯温度Taも十分に低い値になるため、前記フローチャートのS4の判定がYesとなり、時刻t2において補助熱源機5の燃焼が開始される。 When the hot water is started and the flow rate is generated at time t1, the combustion prohibition flag is reset to “0”, and the combustion start / stop control is started. At this time, since the incoming water temperature Ti and the can body temperature To are sufficiently low and the predicted hot water temperature Ta is sufficiently low, the determination of S4 in the flowchart is Yes, and combustion of the auxiliary heat source unit 5 starts at time t2. Is done.
その後、缶体温度Toと給湯温度Tuは急速に上昇し、貯湯タンク3からの出湯温度Tkも上昇し、予測出湯温度Taが徐々に上昇し、この予測出湯温度Taに追従するかのようにこれに遅れて入水温度Tiが徐々に上昇していく。一方、流量調整弁25の弁ポジションは、バイパス通路24への流量を増す方向へ切換えられていく。その後、時刻t3において燃焼禁止フラグがセットされ、時刻t4において、前記フローチャートのS6の判定がYesとなるため、補助熱源機5の燃焼が停止される。 Thereafter, the can body temperature To and the hot water supply temperature Tu rise rapidly, the hot water temperature Tk from the hot water storage tank 3 also rises, and the predicted hot water temperature Ta gradually rises, as if following this predicted hot water temperature Ta. The incoming water temperature Ti gradually rises behind this. On the other hand, the valve position of the flow rate adjusting valve 25 is switched in the direction of increasing the flow rate to the bypass passage 24. Thereafter, the combustion prohibition flag is set at time t3. At time t4, the determination of S6 in the flowchart becomes Yes, so that combustion of the auxiliary heat source unit 5 is stopped.
燃焼停止後やや遅れて缶体温度Toは急低下し、予測出湯温度Taと入水温度Tiが緩やかに上昇し、給湯温度Tuは給湯設定温度Tsに近い温度を維持し、燃焼停止(時刻t4)から約10秒後には、缶体温度Toと予測出湯温度Taと入水温度Tiと給湯温度Tuが給湯設定温度Tsに略等しい温度の1点に収束する。これは、燃焼停止のタイミングが極めて適切なタイミングであったことを示している。 The can body temperature To suddenly decreases slightly after the combustion is stopped, the predicted hot water temperature Ta and the incoming water temperature Ti are gradually increased, the hot water supply temperature Tu is maintained at a temperature close to the hot water supply set temperature Ts, and the combustion is stopped (time t4). After about 10 seconds, the can body temperature To, the predicted hot water temperature Ta, the incoming water temperature Ti, and the hot water supply temperature Tu converge to one point at a temperature substantially equal to the hot water supply set temperature Ts. This indicates that the timing of stopping the combustion was extremely appropriate.
ここで、燃焼停止する時刻t4の付近において、予測出湯温度Taと入水温度Tiは同様の上昇特性で変化しており、予測出湯温度Taに対して入水温度Tiが約5秒程度遅れた特性になっている。つまり、予測出湯温度Taから約5秒後の入水温度Tiを推定可能であり、この予測出湯温度Ta≧(給湯設定温度Ts−2℃)という条件で、バックアップ給湯のための補助熱源機5の燃焼を停止させることで、過不足のない加熱により給湯温度Tuを給湯設定温度Tsにほぼ一致させることができる。 Here, near the time t4 when the combustion is stopped, the predicted hot water temperature Ta and the incoming water temperature Ti change with the same rising characteristics, and the incoming water temperature Ti is delayed by about 5 seconds with respect to the predicted hot water temperature Ta. It has become. That is, the incoming water temperature Ti after about 5 seconds can be estimated from the predicted hot water temperature Ta, and the auxiliary heat source machine 5 for backup hot water supply 5 is used under the condition of the predicted hot water temperature Ta ≧ (hot water supply set temperature Ts−2 ° C.). By stopping the combustion, the hot water supply temperature Tu can be made substantially coincident with the hot water supply set temperature Ts by heating without excess or deficiency.
次に、本発明の貯湯給湯装置1の作用、効果について説明する。
通常のタンク出湯中、貯湯タンク3にかかる給水圧によって貯湯タンク3の上部から高温の湯水が上流出湯通路部7aに押し出され、この高温の湯水は混合弁13においてバイパス通路12から供給される低温の水と混合されて給湯設定温度Tsに調整され、この給湯設定温度Tsの湯水の大部分は、燃焼禁止状態の補助熱源機5のバイパス通路24を経由して給湯栓から出湯される。但し、一部の湯水は熱交換器22を経由して給湯栓から出湯される。
Next, the operation and effect of the hot water storage hot water supply apparatus 1 of the present invention will be described.
During normal tank hot water, hot hot water is pushed out from the upper part of the hot water storage tank 3 to the upper effluent hot water passage portion 7 a by the feed water pressure applied to the hot water storage tank 3, and this hot hot water is supplied from the bypass passage 12 at the mixing valve 13. It is mixed with low temperature water and adjusted to the hot water supply set temperature Ts, and most of the hot water at the hot water supply set temperature Ts is discharged from the hot water tap via the bypass passage 24 of the auxiliary heat source unit 5 in the combustion prohibited state. However, some hot water is discharged from the hot water tap via the heat exchanger 22.
貯湯ユニット2から給湯設定温度Tsよりも低温の湯水が出湯される場合には、前記のような燃焼開始停止制御により補助熱源機5の燃焼が開始されて、外部出湯通路部7cから補助熱源機5へ供給される湯水の一部は熱交換器22で加熱され、バイパス通路24を通過した湯水の残部と熱交換器22で加熱された湯水とが熱源出湯通路部7dにおいて混合されて給湯設定温度Tsにして出湯される。 When hot water having a temperature lower than the hot water supply set temperature Ts is discharged from the hot water storage unit 2, the combustion of the auxiliary heat source unit 5 is started by the combustion start / stop control as described above, and the auxiliary heat source unit is started from the external hot water passage passage portion 7c. A part of the hot water supplied to 5 is heated by the heat exchanger 22, and the remaining hot water passed through the bypass passage 24 and the hot water heated by the heat exchanger 22 are mixed in the heat source outlet passage portion 7d to set hot water supply. Hot water is discharged at the temperature Ts.
前記燃焼開始停止制御においては、前記フローチャートのS3に示す演算式(1)によりバイパス全開予測出湯温度Taを演算し、この予測出湯温度Taが(給湯設定温度Ts−4℃)以下の場合は、補助熱源機5の燃焼を開始させ、予測出湯温度Taが(給湯設定温度Ts−2℃)以上の場合は補助熱源機5の燃焼を停止させる。この予測出湯温度Taを用いることで燃焼停止のタイミングを適切に設定することができる。 In the combustion start / stop control, the bypass fully-open predicted hot water temperature Ta is calculated by the arithmetic expression (1) shown in S3 of the flowchart, and when the predicted hot water temperature Ta is equal to or lower than (hot water supply set temperature Ts-4 ° C), Combustion of the auxiliary heat source unit 5 is started, and combustion of the auxiliary heat source unit 5 is stopped when the predicted hot water temperature Ta is equal to or higher than (hot water supply set temperature Ts−2 ° C.). By using this predicted hot water temperature Ta, the timing of stopping combustion can be set appropriately.
前記の演算式(1)は、バイパス全開比の他に、検出した入水温度Tiと検出した出湯温度Toを用いて演算できるため、制御上の演算処理負荷も小さく、補助制御ユニット26の設計も簡単になる。 Since the calculation formula (1) can be calculated using the detected incoming water temperature Ti and the detected hot water temperature To in addition to the bypass full open ratio, the control processing load on the control is small, and the design of the auxiliary control unit 26 is also reduced. It will be easy.
しかも、補助熱源機5を制御する補助制御ユニット26において燃焼開始停止制御を行うように構成したため、主制御ユニット20と補助制御ユニット26間の通信線の断線等の際にも補助制御ユニット26により燃焼開始/停止を実行できるから、フェールセーフを図ることができる。 In addition, since the auxiliary control unit 26 that controls the auxiliary heat source unit 5 is configured to perform the combustion start / stop control, the auxiliary control unit 26 also performs disconnection of the communication line between the main control unit 20 and the auxiliary control unit 26. Since combustion start / stop can be executed, fail-safe can be achieved.
次に、前記実施例を部分的に変更した形態について説明する。
[1]前記フローチャートにおける(給湯設定温度Ts−4℃)の「−4℃」は一例であり、(給湯設定温度Ts−2℃)の「−2℃」も一例であり、これらの数値に限るものではなく、機種別に異なる数値を採用する場合もある。
Next, a mode in which the above embodiment is partially changed will be described.
[1] “−4 ° C.” of (hot water set temperature Ts−4 ° C.) in the flowchart is an example, and “−2 ° C.” of (hot water set temperature Ts−2 ° C.) is also an example. It is not limited, and different values may be adopted depending on the model.
[2]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [2] In addition, those skilled in the art can implement the present invention by adding various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.
1 貯湯給湯装置
2 貯湯ユニット
3 貯湯タンク
5 補助熱源機
5a バーナーユニット
7 出湯通路
9 制御ユニット(制御手段)
21 入水通路部(入水側通路)
22 熱交換器
23 出湯通路部(出湯側通路)
24 バイパス通路
25 バイパス流量調整弁(バイパス調整弁)
26 補助制御ユニット
28a 温度センサ(入水温度検知手段)
28b 温度センサ(出湯温度検知手段)
DESCRIPTION OF SYMBOLS 1 Hot water storage hot water supply device 2 Hot water storage unit 3 Hot water storage tank 5 Auxiliary heat source machine 5a Burner unit 7 Hot water passage 9 Control unit (control means)
21 Water entry passage (water entry side passage)
22 Heat exchanger 23 Hot water passage section (hot water side passage)
24 Bypass passage 25 Bypass flow adjustment valve (Bypass adjustment valve)
26 Auxiliary control unit 28a Temperature sensor (incoming water temperature detection means)
28b Temperature sensor (Tapping temperature detection means)
Claims (2)
前記バイパス調整弁を全開にした場合のバイパス比と、前記入水温度検知手段で検知された入水温度と、前記出湯温度検知手段で検知された出湯温度とから予測出湯温度を算出し、前記設定温度と前記予測出湯温度との温度差に基づいて補助熱源機の加熱動作を開始/停止することを特徴とする補助熱源機。 An auxiliary heat source device that is disposed in a hot water supply passage of the hot water storage unit and reheats hot water supplied from the hot water storage unit to discharge hot water at a preset temperature, and includes a heating unit, a water inlet side passage, a hot water side passage, A bypass passage connecting the inlet side passage and the outlet side passage by bypassing the heating unit, a bypass adjusting valve for adjusting the amount of water flowing in the bypass passage, and an inlet temperature for detecting the temperature of the hot water flowing in the inlet side passage In an auxiliary heat source machine comprising detection means and a hot water temperature detection means for detecting the temperature of hot water flowing in the hot water side passage on the upstream side from the junction of the bypass passage,
The predicted hot water temperature is calculated from the bypass ratio when the bypass adjustment valve is fully opened, the incoming water temperature detected by the incoming water temperature detecting means, and the outgoing hot water temperature detected by the outgoing hot water temperature detecting means, and the setting An auxiliary heat source machine that starts / stops the heating operation of the auxiliary heat source machine based on a temperature difference between a temperature and the predicted hot water temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015126272A JP6607375B2 (en) | 2015-06-24 | 2015-06-24 | Auxiliary heat source machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015126272A JP6607375B2 (en) | 2015-06-24 | 2015-06-24 | Auxiliary heat source machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017009215A true JP2017009215A (en) | 2017-01-12 |
JP6607375B2 JP6607375B2 (en) | 2019-11-20 |
Family
ID=57763177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015126272A Active JP6607375B2 (en) | 2015-06-24 | 2015-06-24 | Auxiliary heat source machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6607375B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018173229A (en) * | 2017-03-31 | 2018-11-08 | 株式会社ガスター | Heat source device |
JP2019184146A (en) * | 2018-04-09 | 2019-10-24 | 東杜技研株式会社 | Storage type hot water supply system |
CN111221365A (en) * | 2020-03-20 | 2020-06-02 | 浙江中控技术股份有限公司 | Temperature control method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240342A (en) * | 1995-03-06 | 1996-09-17 | Matsushita Electric Ind Co Ltd | Device for controlling hot water-feeding |
JP2002277056A (en) * | 2001-03-22 | 2002-09-25 | Osaka Gas Co Ltd | Hot-water supplying system |
JP2006214619A (en) * | 2005-02-02 | 2006-08-17 | Osaka Gas Co Ltd | Hot-water supply device |
JP2015048996A (en) * | 2013-09-02 | 2015-03-16 | リンナイ株式会社 | Hot water supply system |
-
2015
- 2015-06-24 JP JP2015126272A patent/JP6607375B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240342A (en) * | 1995-03-06 | 1996-09-17 | Matsushita Electric Ind Co Ltd | Device for controlling hot water-feeding |
JP2002277056A (en) * | 2001-03-22 | 2002-09-25 | Osaka Gas Co Ltd | Hot-water supplying system |
JP2006214619A (en) * | 2005-02-02 | 2006-08-17 | Osaka Gas Co Ltd | Hot-water supply device |
JP2015048996A (en) * | 2013-09-02 | 2015-03-16 | リンナイ株式会社 | Hot water supply system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018173229A (en) * | 2017-03-31 | 2018-11-08 | 株式会社ガスター | Heat source device |
JP2019184146A (en) * | 2018-04-09 | 2019-10-24 | 東杜技研株式会社 | Storage type hot water supply system |
CN111221365A (en) * | 2020-03-20 | 2020-06-02 | 浙江中控技术股份有限公司 | Temperature control method and device |
CN111221365B (en) * | 2020-03-20 | 2021-07-23 | 浙江中控技术股份有限公司 | Temperature control method and device |
Also Published As
Publication number | Publication date |
---|---|
JP6607375B2 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2754683C (en) | Hot-water supply system | |
JP2013224783A (en) | Hot water supply system | |
JP6607375B2 (en) | Auxiliary heat source machine | |
JP2019128073A (en) | Hot water storage water heater | |
JP6350968B2 (en) | Hot water storage system | |
JP2010261618A (en) | Hot water storage type hot water supply device | |
JP5755532B2 (en) | Hot water storage system | |
JP4031484B2 (en) | Combined heat source machine | |
JP2016180539A (en) | Storage water heater | |
JP5516138B2 (en) | Hot water system | |
JP5814643B2 (en) | Hot water storage system | |
JP4880312B2 (en) | Hot water storage hot water source | |
JP5869534B2 (en) | Hot water system | |
JP5505129B2 (en) | Hot water system | |
JP6372188B2 (en) | Water heater | |
JP6197452B2 (en) | Hot water system | |
JP4994291B2 (en) | Heat source machine | |
JP6237988B2 (en) | Hot water storage system | |
JP5901312B2 (en) | Hot water storage system | |
JP5853722B2 (en) | Linked water heater system | |
JP6424463B2 (en) | Heating heat source device | |
JP6350173B2 (en) | Hot water system | |
JP6376388B2 (en) | Hot water mixing device | |
JP2009264707A (en) | Hot water supply system | |
JPH08247547A (en) | Hot water-supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6607375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |