JP6228881B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP6228881B2
JP6228881B2 JP2014070190A JP2014070190A JP6228881B2 JP 6228881 B2 JP6228881 B2 JP 6228881B2 JP 2014070190 A JP2014070190 A JP 2014070190A JP 2014070190 A JP2014070190 A JP 2014070190A JP 6228881 B2 JP6228881 B2 JP 6228881B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
heat source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014070190A
Other languages
Japanese (ja)
Other versions
JP2015190739A (en
Inventor
翼 内山
翼 内山
佐藤 徹哉
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2014070190A priority Critical patent/JP6228881B2/en
Publication of JP2015190739A publication Critical patent/JP2015190739A/en
Application granted granted Critical
Publication of JP6228881B2 publication Critical patent/JP6228881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、主熱源と補助熱源装置とを備えた熱源装置に関するものである。   The present invention relates to a heat source device including a main heat source and an auxiliary heat source device.

主熱源としての貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、参照)、図6には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   A heat source device including a hot water storage tank as a main heat source is used (see, for example, Patent Document 1), and FIG. 6 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 having a hot water tank 2 and a hot water passage 9 is thermally connected to a fuel cell (FC) 1 through a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from fuel such as city gas with oxygen in the air by reverse reaction of water electrolysis. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる廃熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。   The heat recovery passage 3 is a passage that circulates liquid (here, hot water) between the fuel cell 1 and the hot water tank 2 as indicated by arrows A and A ′ in the figure. Is provided with a pump (not shown) for circulating the liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by an arrow A ′ in the figure to be cooling water, and this water is used when the fuel cell 1 generates power. After being heated by the generated waste heat, it passes through the heat recovery passage 3 as indicated by an arrow A in the figure, and accumulates in the hot water tank 2 as hot water having a temperature of 60 ° C., for example. The heat recovery passage 3 is provided with a bypass passage 7 through a three-way valve 6 so that the liquid flowing from the fuel cell 1 side to the hot water tank 2 side can be passed through the fuel cell without passing through the hot water tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図6では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, hot water temperature detecting means 5 in the hot water tank 2 for detecting the temperature of the hot water in the hot water tank 2 is provided in the hot water tank 2 or on the outer wall of the hot water tank 2 with a space therebetween in the vertical direction of the hot water tank 2. A plurality (five in FIG. 6) are provided. The hot water temperature detection means 5a in the hot water tank provided at the top is filled with hot water up to a position lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, to the upper end of the hot water tank 2. The amount of hot water 20 liters less than that of the hot water is provided at the position of the hot water surface when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、貯湯槽2は熱源装置において例えばリモコン装置等を用いて設定される給湯設定温度を湯の通路9を通して出湯する機能を有している。湯の通路9には、湯の通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替えるパイロット方式のタンク側電磁弁13とが設けられている。なお、同図には示されていないが、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁が適宜の位置(例えば湯の通路9に接続された圧力逃がし用の通路等)に設けられている。   The hot water passage 9 connected to the upper side of the hot water tank 2 is a passage for discharging (feeding) the hot water formed in the hot water tank 2, and the hot water tank 2 is a heat source device such as a remote control device. The hot water supply set temperature set using the hot water is discharged through the hot water passage 9. The hot water passage 9 includes a hot water tank outlet hot water temperature detecting means 11 for detecting the temperature of hot water passing through the hot water passage 9, a tank hot water mixer 12 for changing the amount of hot water fed through the hot water passage 9, and hot water. And a pilot-type tank-side electromagnetic valve 13 for switching the presence / absence of water supply through the passage 9 by opening / closing the valve. Although not shown in the figure, when the pressure in the hot water tank 2 exceeds the allowable pressure, an overpressure relief valve for releasing the pressure to the outside is connected to an appropriate position (for example, connected to the hot water passage 9). Provided in a pressure relief passage or the like.

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、前記合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図6はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、合流部10の付近に設けられていてもよい。また、給水通路8は上水道に接続される。   Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, one water supply passage 8 (8a) is connected to the lower side of the hot water tank 2, and the other water supply passage 8 is connected. (8b) is formed so as to join the hot water passage 9 at the joining portion 10. The water supply passage 8b is provided with a water mixer 14 for changing the amount of water flowing from the water supply passage 8b to the merging portion 10 side. In this heat source device, the mixing means for mixing the hot water and water merged at the merge section 10 is formed with a water mixer 14 and the tank hot water mixer 12, and FIG. Since it is a block diagram, the water mixer 14 and the tank hot-water mixer 12 are shown at positions separated from each other, but they may be provided near the junction 10. The water supply passage 8 is connected to the water supply.

なお、図6において、前記燃料電池1から貯湯槽2側に送られる湯の流路と貯湯槽2から湯の通路9を通して合流部10側に流れる湯の流路にはドットを記している。合流部10には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、湯水導入通路15には混合サーミスタ28(28a,28b)が設けられている。そして、図6の矢印Bに示されるように貯湯槽2から湯の通路9を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように湯水導入通路15を介して給湯器16の給湯回路62に導入される。   In FIG. 6, dots are marked on the flow path of hot water sent from the fuel cell 1 to the hot water storage tank 2 side and the flow path of hot water flowing from the hot water storage tank 2 through the hot water passage 9 to the junction 10 side. A hot water introduction side of a water heater 16 as an auxiliary heat source device is connected to the junction 10 via a hot water introduction passage 15, and a mixed thermistor 28 (28 a, 28 b) is provided in the hot water introduction passage 15. . Then, the hot water fed from the hot water tank 2 through the hot water passage 9 as shown by the arrow B in FIG. 6 (water fed from the tank unit 4) is passed through the hot water introduction passage as shown by the arrow B ″ in FIG. 15 is introduced into the hot water supply circuit 62 of the hot water heater 16.

給湯器16の給湯回路62は、燃焼室66内に設けられている給湯バーナ61の燃焼熱により加熱される給湯熱交換器17を備えており、同図において、給湯熱交換器17は、給湯バーナ61の燃焼ガスの顕熱を吸収するメインの熱交換器17aと、該メインの熱交換器17aの上流側(湯の流れの上流側)に設けられて給湯バーナ61の燃焼ガスの潜熱を回収する潜熱回収用熱交換器17bとを有する。このように潜熱回収用熱交換器17bを設ける構成とすると、熱効率の高い給湯器16を形成できるために好ましい。   The hot water supply circuit 62 of the hot water heater 16 includes a hot water supply heat exchanger 17 that is heated by the combustion heat of the hot water supply burner 61 provided in the combustion chamber 66. In FIG. A main heat exchanger 17a that absorbs the sensible heat of the combustion gas of the burner 61, and a latent heat of the combustion gas of the hot water supply burner 61 provided on the upstream side (upstream side of the hot water flow) of the main heat exchanger 17a. A latent heat recovery heat exchanger 17b for recovery. Such a configuration in which the latent heat recovery heat exchanger 17b is provided is preferable because the hot water heater 16 having high thermal efficiency can be formed.

また、同図には図示されていないが、例えば給湯バーナ61をガスバーナにより形成する場合、給湯バーナ61に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ61への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ61への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器17の加熱制御が行われる。   Although not shown in the figure, for example, when the hot water supply burner 61 is formed of a gas burner, a gas supply passage for supplying fuel gas to the hot water supply burner 61 is provided, and the gas supply passage has hot water supply through the gas supply passage. A gas on-off valve (gas solenoid valve) for controlling the presence or absence of supply to the burner 61 and a gas proportional valve for adjusting the supply amount are provided. In addition, appropriate components (not shown) such as a combustion fan for supplying and exhausting air to and from the hot water supply burner 61 are provided, and the heating control of the hot water supply heat exchanger 17 can be controlled by controlling these components. Done.

給湯回路62の入口側の通路には流量検出手段42が設けられ、給湯熱交換器17の出側の通路には、給湯熱交換器17の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出手段67が設けられ、さらに、その下流側には、給湯回路62を通して給湯される湯の温度(給湯温度)を検出する給湯温度検出手段76が設けられている。給湯回路62の出側の通路18は接続手段20を介して給湯通路19に接続されており、流量検出手段42は、通路18と給湯通路19を通して給湯される給湯流量を検出する。   A flow rate detecting means 42 is provided in the passage on the inlet side of the hot water supply circuit 62, and the temperature on the outlet side of the hot water heat exchanger 17 (the temperature of the hot water passing through the outlet side passage) is provided on the outlet side passage of the hot water heat exchanger 17. ) Is provided, and further, on the downstream side thereof, hot water supply temperature detection means 76 for detecting the temperature of hot water supplied through the hot water supply circuit 62 (hot water supply temperature) is provided. ing. The passage 18 on the outlet side of the hot water supply circuit 62 is connected to the hot water supply passage 19 via the connection means 20, and the flow rate detection means 42 detects the flow rate of hot water supplied through the passage 18 and the hot water supply passage 19.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられている。バイパス通路68の容量は給湯熱交換器17の容量に比べると格段に小さく、一例としてあげると、給湯熱交換器17のメインの熱交換器17aの容量が0.6リットル、潜熱回収用熱交換器17bの容量が0.7リットルに対し、バイパス通路68の容量は0.06リットル程度である。なお、図6は、模式的なシステム図であり、メインの熱交換器17aと潜熱回収用熱交換器17bとバイパス通路68の大きさは、それぞれの容量と対応してはいない。   The hot water supply circuit 62 is provided with a bypass passage 68 for leading hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17. The capacity of the bypass passage 68 is much smaller than the capacity of the hot water heat exchanger 17, and as an example, the capacity of the main heat exchanger 17a of the hot water heat exchanger 17 is 0.6 liter, and the heat exchange for latent heat recovery The capacity of the bypass passage 68 is about 0.06 liter while the capacity of the vessel 17b is 0.7 liter. FIG. 6 is a schematic system diagram, and the sizes of the main heat exchanger 17a, the latent heat recovery heat exchanger 17b, and the bypass passage 68 do not correspond to the respective capacities.

バイパス通路68にはバイパス開閉弁としてのバイパス電磁弁69が設けられており、バイパス電磁弁69の開閉によって、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合とが予め定められる割合変化範囲内で制御される構成と成している。   The bypass passage 68 is provided with a bypass electromagnetic valve 69 as a bypass opening / closing valve. By opening / closing the bypass electromagnetic valve 69, the flow rate of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage are increased. The distribution ratio to the 68th side is controlled within a predetermined ratio change range.

例えばバイパス電磁弁69を完全に閉じると給湯回路62に導入された湯水を100%給湯熱交換器17側に通すことができ、一方、パイパス電磁弁69を完全に開いた場合には、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3になるような割合で分岐させて通すように形成されている。   For example, when the bypass solenoid valve 69 is completely closed, hot water introduced into the hot water supply circuit 62 can be passed to the 100% hot water supply heat exchanger 17 side. On the other hand, when the bypass solenoid valve 69 is fully opened, for example, hot water supply The hot water introduced into the circuit 62 is branched and passed at a ratio of 1: 3 between the hot water supply heat exchanger 17 side and the bypass passage 68 side.

熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱(追い加熱)して給湯する追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、例えば追い加熱給湯機能の動作時にはバイパス弁69を閉じて給湯回路62に導入された湯を給湯熱交換器17側に通して加熱し、非追い加熱給湯機能の動作時にはバイパス弁69を開き、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する。   The heat source device has a follow-up hot water supply function that heats (follows up) hot water introduced into the hot water supply circuit 62 of the hot water supply device 16 from the hot water passage 9 side, and supplies hot water from the hot water passage 9. The hot water introduced into the circuit 62 has a non-following hot water supply function for supplying hot water to the hot water supply destination through the hot water supply circuit 62 without heating. For example, the hot water heater 16 closes the bypass valve 69 during operation of the additional heating hot water supply function and heats the hot water introduced into the hot water supply circuit 62 through the hot water supply heat exchanger 17 side, and heats the hot water introduced into the hot water supply heat exchanger 17 side. 69 is opened and hot water introduced into the hot water supply circuit 62 is mainly passed through the bypass passage 68 to supply hot water.

給湯器16の給湯回路62を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、通路18と給湯通路19とを順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓(シャワーの操作レバー等も含む)が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。   The hot water that has passed through the hot water supply circuit 62 of the water heater 16 is either hot water that has passed through the hot water supply circuit 62 while being heated by the follow-up heating hot water supply function, or hot water that has not been heated by the non-following heating hot water supply function. Hot water is supplied to one or more hot water supply destinations through the passage 18 and the hot water supply passage 19 in order. Although not shown in the figure, a hot water tap (including a shower operation lever) is provided at the front end side of the hot water passage 19, and stored in the hot water storage tank 2 by opening the hot water tap. The hot water that has been subjected to the water supply pressure passes through the hot water passage 9 and, as described above, is mixed with the water from the water supply passage 8b as necessary, is heated by the hot water heater 16, or is mixed with water. Hot water is supplied without additional heating.

また、図6の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50は減圧弁、をそれぞれ示している。   In FIG. 6, reference numeral 25 denotes an incoming water temperature thermistor, reference numeral 26 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water tank 2, and reference numeral 27 denotes the hot water tank 2 to the fuel cell 1 side. The FC low temperature thermistors for detecting the hot and cold water temperatures are respectively shown. Reference numeral 29 denotes a feed water flow sensor, and reference numeral 50 denotes a pressure reducing valve.

図7には、図6に示したシステム構成における配管および構成要素の一部を省略または破線で示したシステム構成図が示されており、図7に示されるように、前記通路18には接続手段20を介して接続通路21の一端側が接続され、接続通路21の他端側は、熱回収用通路3において湯水を燃料電池1側から貯湯槽2側に通す通路の途中部に接続されている。また、熱回収用通路3において湯水を貯湯槽2側から燃料電池1側に通す通路の途中部と前記湯の通路9の先端側とを接続する接続通路22が設けられ、接続通路22には、湯水を循環させる循環ポンプ23と、水電磁弁24とが設けられている。   FIG. 7 shows a system configuration diagram in which some of the piping and components in the system configuration shown in FIG. 6 are omitted or shown by broken lines, and as shown in FIG. One end side of the connection passage 21 is connected via the means 20, and the other end side of the connection passage 21 is connected to a middle portion of the passage through which the hot water passes from the fuel cell 1 side to the hot water tank 2 side in the heat recovery passage 3. Yes. In addition, a connection passage 22 is provided in the heat recovery passage 3 to connect a middle portion of a passage for passing hot water from the hot water storage tank 2 side to the fuel cell 1 side and a front end side of the hot water passage 9. A circulating pump 23 for circulating hot water and a water electromagnetic valve 24 are provided.

そして、通路18、接続通路21、熱回収用通路3のうちの通路3a、3b(接続通路21との接続部および接続通路22との接続部よりも貯湯槽2側の領域の一部)と、バイパス通路7、接続通路22、湯水導入通路15を有して、同図の矢印Cに示されるように湯水を循環させる湯水循環通路40が形成されている。水電磁弁24は、循環ポンプ23の駆動による湯水循環通路40への水の循環の有無を弁の開閉により切り替える電磁弁であり、水電磁弁24を開いた状態で循環ポンプ23を駆動させて湯水循環通路40を循環する湯水を、給湯器16が給湯熱交換器17により加熱する循環湯水加熱機能を有している。この循環湯水加熱機能の動作も、給湯器16の前記構成要素を制御することにより行われる。   Of the passage 18, the connection passage 21, and the heat recovery passage 3, the passages 3 a and 3 b (part of the region closer to the hot water tank 2 than the connection portion to the connection passage 21 and the connection portion to the connection passage 22) Further, a hot water circulation passage 40 that has the bypass passage 7, the connection passage 22, and the hot water introduction passage 15 and circulates the hot water as shown by an arrow C in the figure is formed. The water electromagnetic valve 24 is an electromagnetic valve that switches the presence or absence of water circulation to the hot water circulation passage 40 by driving the circulation pump 23 by opening and closing the valve. The water electromagnetic valve 24 is opened to drive the circulation pump 23. The hot water supply device 16 has a circulating hot water heating function in which the hot water supply device 16 heats the hot water circulating through the hot water circulation passage 40 by the hot water supply heat exchanger 17. The operation of the circulating hot water heating function is also performed by controlling the components of the water heater 16.

なお、図7において、加熱により温められた湯水が主に通る通路部分にはドットを記しており、湯水循環通路40においては温められた湯の温度が湯水循環通路40内を通るときに徐々に冷めていくが、湯水循環通路40のうち給湯器16の湯水導出側の通路18からバイパス通路7の入口までの領域にドットを記しており、貯湯槽2側から出湯される湯の通路9(合流部10に至る通路)にもドットを記している。   In FIG. 7, dots are marked in the passage portion through which hot water heated by heating mainly passes, and gradually in the hot water circulation passage 40, the temperature of the heated hot water gradually passes through the hot water circulation passage 40. Although it cools, a dot is marked in the area from the hot water outlet side passage 18 of the hot water heater 16 to the inlet of the bypass passage 7 in the hot water circulation passage 40, and the hot water passage 9 ( Dots are also marked on the passage leading to the junction 10.

また、図6、図7に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   The heat source device shown in FIGS. 6 and 7 is provided with a control device (not shown). The control device controls the tank hot water / water mixer 12 from the hot water passage 9 to the junction 10 side. In addition to controlling the flow rate of flowing hot water, the water mixer 14 is controlled to control the flow rate of water flowing from the water supply passage 8b to the merging portion 10 so that mixed hot water having an appropriate temperature is formed at the merging portion 10. Mixing flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図6の矢印Bに示されるように湯の通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図6の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。   This mixing flow rate control means closes the tank side solenoid valve 13 when hot water supply is stopped, for example, so that the flow rate of hot water (hot water discharged from the hot water storage tank 2) flowing from the hot water passage 9 to the junction 10 side becomes zero. . Then, when the hot water tap provided at the front end side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and receives the detection signal. 6, the flow rate of hot water flowing from the hot water passage 9 to the junction 10 side is adjusted by the control of the tank hot water mixer 12 as shown by the arrow B in FIG. 6, the flow rate of the water flowing from the water supply passage 8b to the merging portion 10 side is adjusted, and the temperature of the mixed hot water formed in the merging portion 10 is set to the same level as the hot water supply set temperature, for example. Set to the mixed set temperature.

なお、貯湯槽2内に貯湯されている湯水には、例えば図8の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる廃熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。   Note that the hot water stored in the hot water tank 2 is formed with layers Wa, Wb, and Wc at temperatures as shown in the schematic diagram of FIG. (High temperature layer) Wa stores hot water of high temperature Ta (for example, 60 ° C.) heated by waste heat generated during power generation of the fuel cell 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores a hot water tank. Water having the same temperature Tc (for example, 15 ° C.) as the temperature of the water supplied in 2 is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc. . Therefore, when there is no hot water in the layer Wa, cold water may be sent from the hot water passage 9 instead of hot water. However, for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression “merge to the junction 10” is used.

例えば図8に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。   For example, as shown in FIG. 8, in the hot water in the hot water tank 2, for example, the boundary between the layer Wa and the layer Wb is below the area where the hot water temperature detecting means 5a in the hot water tank is provided, and the hot water temperature detecting means in the hot water tank. When the detected temperature 5a is higher than a threshold value set higher than the hot water supply set temperature by 5 ° C., for example, the temperature of the hot water discharged from the hot water tank 2 is a substantially constant value such as 60 ° C., for example.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。   Therefore, the mixing flow rate control means sets the detected temperature of the mixed thermistor 28 (28a, 28b) based on the difference between the detected temperature of the mixed thermistor 28 (28a, 28b) and the set mixing temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to reach a temperature, the flow rate of hot water flowing from the hot water passage 9 to the merge portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merge portion 10 side Control to adjust. Note that the mixing flow rate control means may perform only the feedback control without performing the feedforward control in the mixing flow rate control.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図6の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by the kissing flow rate control means, the mixed hot water is As shown by an arrow B ″ in FIG. 6, the hot water is introduced from the junction 10 through the hot water introduction passage 15 into the hot water heater 16, but at this time, the hot water heater 16 is not heated by the hot water heat exchanger 17 ( Hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19 by the operation of the non-heating hot water supply function.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合には、例えば混合設定温度を給湯設定温度より低い温度に設定する。一例として、混合設定温度を給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げ、その混合湯水を給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱することにより給湯設定温度の湯が作り出され、この湯が通路18と給湯通路19を通して給湯先に給湯される。   On the other hand, the detected temperature of the hot water temperature detecting means 5a in the hot water tank is below the threshold value, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature can be supplied only by the flow rate control by the mixing flow rate control means. If it is not possible, for example, the mixing set temperature is set to a temperature lower than the hot water supply set temperature. As an example, the mixing set temperature is lowered from the hot water supply setting temperature to a value obtained by subtracting the temperature that rises when water at the hot water supply flow rate is heated at the MIN number (minimum combustion number) of the water heater 16, and the mixed hot water is supplied Hot water having a hot water supply set temperature is produced by heating by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function of the water heater 16, and this hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

なお、従来の貯湯槽2を備えた熱源装置においては、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。   In addition, in the heat source device provided with the conventional hot water storage tank 2, the type (integrated type) heat source device in which the tank unit 4 and the water heater 16 are disposed adjacent to each other is used, but the heat source device under development is The tank unit 4, the hot water heater 16, and the fuel cell 1 are individually arranged, and an individual arrangement type heat source device in which the tank unit 4, the water heater 16, and the fuel cell 1 are connected to each other by piping is also possible. If it does in this way, the tank unit 4 provided with the hot water storage tank 2 of the capacity | capacitance which a user requires among several types of tank units 4 will be selected, for example, and it will select among the tank units 4 and multiple types of water heaters 16 The water heater 16 thus made and the fuel cell 1 selected from the plural types of fuel cells 1 can be combined, and variations can be increased.

また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。この場合、例えば給湯器16は建物の北側に配置されてタンクユニット4は建物の東側や西側に配置されるといったように、タンクユニット4と給湯器16とが離れて配置されることも想定されるが、そのような場合には、冬場等に、湯水導入通路15および接続通路21内の水が、給湯停止中に凍結することを防止するため等に、水電磁弁24を開いて循環ポンプ23を駆動させ、図7の矢印Cに示したように、湯水循環通路40に湯水を循環させながら給湯熱交換器17により加熱する前記循環湯水加熱機能の動作が適宜行われるような構成が必要になると考えられる。   Further, the individual arrangement type heat source device as described above has an advantage that the heat source device can be formed by connecting the tank unit 4 or the like to the existing water heater 16. In this case, it is assumed that the tank unit 4 and the water heater 16 are arranged apart from each other, for example, the water heater 16 is arranged on the north side of the building and the tank unit 4 is arranged on the east side or the west side of the building. However, in such a case, the water solenoid valve 24 is opened to prevent the water in the hot water introduction passage 15 and the connection passage 21 from freezing during the hot water supply stop in winter and the like. As shown by an arrow C in FIG. 7, the circulating hot water heating function of heating the hot water supply heat exchanger 17 while circulating hot water in the hot water circulation passage 40 is appropriately performed. It is thought that it becomes.

特許第3728265号公報Japanese Patent No. 3728265 特開平8−20113号公報Japanese Patent Laid-Open No. 8-20113

ところで、図6に示したような熱源装置において、貯湯槽2内に前記閾値以上の温度の湯が貯湯されている場合等、実質的に給湯設定温度以上(例えば湯が貯湯槽2から給湯器16を通って給湯先に給湯されるまでに冷える分以上、給湯設定温度よりも例えば0.5℃といった温度以上高い温度)の湯が貯湯されている場合には、貯湯槽2から給湯器16に送られる湯を非加熱で(給湯器16の給湯熱交換器17による追い加熱を行わずに)給湯することが可能であるが、このように貯湯槽2内の湯温が高い場合でも、熱源装置設置後の初めての給湯や、給湯停止から例えば8.5分以上といった時間が経過してからの再出湯時等のように湯水導入通路15や給湯器16内の管路が冷えている場合等は、これらの管路内の水を加熱することが必要となる。特に冬場では配管の冷えが激しいので前記給湯停止からの時間が3分以下であっても影響が大きい。   By the way, in the heat source device as shown in FIG. 6, when hot water having a temperature equal to or higher than the threshold value is stored in the hot water tank 2, the hot water temperature is substantially higher than the hot water supply set temperature (for example, hot water from the hot water tank 2 to the water heater In the case where hot water having a temperature that is higher than the hot water supply set temperature, for example, by a temperature higher than the hot water supply temperature, for example, by 0.5 ° C. or more, is stored. Although it is possible to supply hot water sent to the hot water without heating (without performing additional heating by the hot water supply heat exchanger 17 of the hot water heater 16), even when the hot water temperature in the hot water tank 2 is high in this way, The pipes in the hot water introduction passage 15 and the hot water heater 16 are cooled as in the case of the first hot water supply after the heat source device is installed, or when the hot water is stopped again after a time of, for example, 8.5 minutes or more has elapsed. In some cases, the water in these pipelines can be heated. The cornerstone. Especially in winter, the piping is very cold, so even if the time from the hot water supply stop is 3 minutes or less, the influence is great.

特に、湯水導入通路15が長い場合には、貯湯槽2から給湯器16に送られる湯が給湯器16に到達するまでの時間が長くなるため、利用者が給湯栓を開いてからなるべく早く給湯設定温度の湯を給湯するためには、給湯が開始されたときに給湯器16の給湯バーナ61を燃焼させて迅速に湯を形成することが重要となり、また、給湯器16に貯湯槽2から実質的に給湯設定温度の湯が到達したときには、給湯バーナ61の燃焼を停止し、非加熱のまま給湯設定温度の湯を出湯することが望ましいと考えられる。   In particular, when the hot water introduction passage 15 is long, it takes a long time for the hot water sent from the hot water storage tank 2 to the water heater 16 to reach the water heater 16, so the hot water is supplied as soon as possible after the user opens the hot water tap. In order to supply hot water at a set temperature, it is important to quickly form hot water by burning the hot water supply burner 61 of the water heater 16 when hot water supply is started. When hot water at the hot water supply set temperature has substantially reached, it is considered desirable to stop the combustion of the hot water supply burner 61 and to discharge hot water at the hot water supply set temperature without heating.

しかしながら、前記開発中の熱源装置において、前記の如く、潜熱回収用熱交換器17bを備えた給湯熱交換器17を適用して、給湯器16に貯湯槽2から実質的に給湯設定温度の湯が到達したときに給湯バーナ61の燃焼を停止する制御を試みたところ、給湯バーナ61を燃焼停止して少し時間が経過した後に、給湯温度が給湯設定温度よりもかなり低下してしまうといった問題が生じた。   However, in the heat source device under development, as described above, the hot water supply heat exchanger 17 provided with the latent heat recovery heat exchanger 17b is applied to the hot water heater 16 so that the hot water having a substantially hot water set temperature is supplied from the hot water tank 2. When an attempt was made to stop the combustion of the hot water supply burner 61 when the temperature reached, after a short time had passed since the hot water supply burner 61 was stopped, there was a problem that the hot water temperature dropped considerably below the set hot water temperature. occured.

本発明は、上記課題を解決するためになされたものであり、その目的は、潜熱回収用熱交換器を設けた補助熱源装置の湯水導入側に主熱源を設けて給湯開始時に主熱源からの湯を送って給湯する際の、給湯温度の安定化を図ることができる熱源装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a main heat source on the hot water introduction side of an auxiliary heat source device provided with a heat exchanger for recovering latent heat so that the main heat source can be An object of the present invention is to provide a heat source device capable of stabilizing the hot water supply temperature when hot water is supplied.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、給湯設定温度の湯を出湯する機能を有する主熱源を有し、該主熱源から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されており、前記主熱源側には該主熱源側から前記補助熱源装置の給湯回路側に送られる湯の温度を調節する送湯温度調節手段が設けられ、前記補助熱源装置には、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯熱交換器の出側の温度を検出する給湯熱交出側温度検出手段と、前記給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路とが設けられ、前記給湯熱交換器は前記給湯バーナの燃焼ガスの顕熱を吸収するメインの熱交換器と該メインの熱交換器の上流側に設けられて前記燃焼ガスの潜熱を回収する潜熱回収用熱交換器とを有し、前記主熱源から前記補助熱源装置に送られる湯を前記潜熱回収用熱交換器と前記メインの熱交換器に順に通して給湯先に給湯する機能を有しており、給湯が開始されたときに前記燃焼制御手段によって前記給湯バーナの燃焼を開始させて前記給湯回路を通る湯水を前記給湯熱交換器により加熱して給湯した後、前記主熱源から送られた前記給湯設定温度の湯が前記補助熱源装置の前記給湯回路の前記湯水導入側に到達したと判断されたときに前記給湯バーナの燃焼を停止して給湯を継続する構成を有し、熱源装置の試運転時の給湯動作における前記給湯バーナの燃焼開始後の該給湯バーナの燃焼停止以降に検出される前記給湯熱交出側温度検出手段の検出温度に基づいて、前記給湯バーナの停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、前記メインの熱交換器の出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを前記送湯温度調節手段の温度調節用情報として設定する温度調節情報設定手段を有し、該温度調節用情報に基づいて前記送湯温度調節手段が前記主熱源側から前記補助熱源装置の給湯回路側に送る湯の温度を給湯開始から該湯の容量が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも前記嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とする構成をもって課題を解決するための手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention has a main heat source having a function of discharging hot water at a hot water supply set temperature, and an auxiliary heat source device provided with a hot water supply heat exchanger on the downstream side of the passage of hot water discharged from the main heat source. The hot water supply side of the hot water supply circuit is connected, and the main heat source side is provided with a hot water supply temperature adjusting means for adjusting the temperature of hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device, The auxiliary heat source device includes a hot water supply burner for heating the hot water supply heat exchanger, combustion control means for performing combustion control of the hot water supply burner, and a hot water supply heat exchange temperature for detecting the temperature at the outlet side of the hot water supply heat exchanger. Detection means and a bypass passage for leading hot water introduced into the hot water supply circuit from the hot water supply circuit without passing through the hot water supply heat exchanger are provided, and the hot water heat exchanger exchanges combustion gas of the hot water supply burner. A main heat exchanger that absorbs sensible heat and the A heat exchanger for recovering latent heat of the combustion gas, which is provided upstream of the heat exchanger of the heat exchanger, and heat exchange from the main heat source to the auxiliary heat source device for the heat exchange for the latent heat recovery And the main heat exchanger in order to supply hot water to the hot water supply destination. When hot water supply is started, the combustion control means starts combustion of the hot water burner and passes through the hot water supply circuit. When hot water is heated by the hot water supply heat exchanger to supply hot water, and it is determined that the hot water at the hot water supply set temperature sent from the main heat source has reached the hot water introduction side of the hot water supply circuit of the auxiliary heat source device The hot water supply heat detected after the combustion of the hot water burner is stopped after the start of combustion of the hot water burner in the hot water supply operation during the trial operation of the heat source device. Coming side temperature Based on the detection temperature of the hot water supply means, the first set capacity based on the time required for the hot water supply burner to stop from the hot water supply set temperature and the flow rate of the hot water supply, and detection of the hot water supply heat exchange side temperature detection means The second set capacity based on the time required to return to the hot water supply set temperature after the temperature drops below the hot water set temperature, and the outlet temperature of the main heat exchanger lower than the hot water set temperature Temperature adjustment information setting means for setting as a temperature adjustment information of the hot water supply temperature adjustment means a temperature rise information based on a temperature characteristic until the hot water supply set temperature is returned to the hot water supply set temperature, and based on the temperature adjustment information The temperature of the hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device is set as the hot water supply set temperature from the start of hot water supply until the capacity of the hot water reaches the first set capacity. From the first set capacity until the second set capacity is reached, the raised temperature is higher than the hot water set temperature, and after reaching the second set capacity, the hot water set temperature is used. As a means to solve.

また、第2の発明は、前記第1の発明の構成に加え、前記温度調節情報設定手段は、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする。   Further, in the second invention, in addition to the configuration of the first invention, the temperature adjustment information setting means detects the temperature of the hot water supply heat exchange after the combustion of the hot water supply burner is stopped after the start of combustion of the hot water supply burner. The detection information of the means is monitored for each hot water supply operation of the heat source device, for each predetermined number of hot water supply operations, or for each predetermined monitor timing for each predetermined set period, and at the time of the monitoring, the temperature of the hot water supply heat supply side is detected. The temperature difference from the hot water supply set temperature in a temperature drop region where the detected temperature of the means is lower than the hot water supply set temperature exceeds a predetermined allowable range for the temperature difference from the hot water supply set temperature in the temperature drop region during trial operation. If the temperature difference is different, the raised temperature of the temperature adjustment information applied after the hot water supply operation after the hot water supply operation in which the monitor is performed exceeds the allowable range of the temperature difference. And changes setting according to different degrees Te.

さらに、第3の発明は、前記第1の発明の構成に加え、給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を有し、温度調節情報設定手段は、給湯バーナの燃焼開始後に主熱源から給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に到達したと判断されて前記給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の前記給湯温度検出手段の検出温度が前記給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする。   Further, the third invention has a hot water supply temperature detecting means for detecting the temperature of hot water supplied through the hot water supply circuit as a hot water supply temperature in addition to the structure of the first invention, and the temperature adjustment information setting means includes a hot water supply burner. Is detected by the hot water supply temperature detection means after it is determined that hot water at the hot water supply set temperature has reached the hot water introduction side of the hot water supply circuit of the auxiliary heat source device and combustion of the hot water supply burner has been stopped. The hot water supply temperature is monitored for each hot water supply operation of the heat source device, for each predetermined number of hot water supply operations, or for each predetermined monitor timing for each predetermined set period, and the detected temperature of the hot water supply temperature detection means at the time of monitoring is determined. Applied to the hot water supply operation after the hot water supply operation after the hot water supply operation performed when the temperature is different from the preset allowable range with respect to the hot water supply set temperature. And changes setting according to the degree of the raised temperature of the temperature adjusting information differ by more than the allowable range of the hot water supply temperature that.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記バイパス通路にはバイパス開閉弁が設けられて、給湯回路に導入される湯水の給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが前記バイパス開閉弁の開閉により予め定められる割合変化範囲内で制御される構成と成し、給湯バーナを停止した以降は前記バイパス通路側への流通割合が前記割合変化範囲内で最大となるように前記バイパス開閉弁を制御するバイパス開閉弁制御手段を有することを特徴とする。   Furthermore, a fourth aspect of the invention is the hot water supply heat exchanger side in which a bypass opening / closing valve is provided in the bypass passage in addition to the configuration of the first, second, or third invention, and the hot water introduced into the hot water supply circuit is provided. The flow rate to the bypass passage and the flow rate to the bypass passage side are controlled within a predetermined rate change range by opening and closing the bypass on-off valve, and after the hot water supply burner is stopped, the flow to the bypass passage side. It is characterized by having a bypass on-off valve control means for controlling the bypass on-off valve so that the distribution ratio is maximum within the ratio change range.

さらに、第5の発明は、前記第1乃至第4のいずれか一つの発明の構成に加え、前記補助熱源装置の湯水導入側には主熱源から出湯される湯の通路の他に給水通路が接続されており、主熱源と補助熱源装置の給湯回路の湯水導入側とが接続用配管を介して接続されていて該接続用配管の長さが予め与えられる設定長さより短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は前記主熱源から出湯される湯の代わりに前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入する給湯開始時導入湯水可変手段を有することを特徴とする。   Furthermore, the fifth aspect of the invention includes a water supply passage in addition to the passage of hot water discharged from the main heat source on the hot water introduction side of the auxiliary heat source device in addition to the configuration of any one of the first to fourth aspects of the invention. If the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device are connected via a connection pipe, and the length of the connection pipe is shorter than a preset length, Until the predetermined water introduction time elapses from the start, water is introduced into the auxiliary heat source device from the water supply passage instead of hot water discharged from the main heat source, and after the water introduction time has elapsed And a hot water supply start introduction hot water variable means for introducing hot water discharged from the main heat source through the hot water passage into the auxiliary heat source device.

さらに、第6の発明は、前記第1乃至第5のいずれか一つの発明の構成に加え、前記主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される前記湯の通路からの湯と前記給水通路からの水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、該ミキシング流量制御手段に送湯温度調節手段が指令を加えて前記主熱源から前記補助熱源装置側に送られる湯の温度を調節することを特徴とする。   Furthermore, the sixth aspect of the invention, in addition to the configuration of any one of the first to fifth aspects of the invention, is that the main heat source has a hot water storage tank, and a hot water passage and a water supply passage discharged from the hot water storage tank are provided. A merging portion is provided to join, mixing means for mixing the hot water from the hot water passage and the water from the water supply passage to be joined at the merging portion, and assisting the hot water formed by mixing by the mixing means A hot water supply passage to be introduced into the heat source device; and a mixing flow rate control means for controlling the flow rate of the hot water flowing through the merging portion and the flow rate of the water by controlling the mixing means, and supplying the hot water to the mixing flow rate control means. The temperature adjusting means applies a command to adjust the temperature of hot water sent from the main heat source to the auxiliary heat source device.

さらに、第7の発明は、前記第1乃至第6のいずれか一つの発明の構成に加え、前記補助熱源装置は給湯温度検出手段により検出される給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を給水温度演算値として演算により求める給水温度演算値算出手段を有し、該給水温度演算値算出手段により求められる前記給水温度演算値を燃焼制御手段が給湯中にモニタして該給水温度演算値の温度上昇に基づき主熱源から給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断することを特徴とする。   Further, according to a seventh aspect of the present invention, in addition to the configuration of any one of the first to sixth aspects, the auxiliary heat source device includes a hot water supply temperature detected by a hot water supply temperature detection means, a capacity of a hot water supply heat exchanger, and the hot water supply. A water supply temperature calculation value calculating means for calculating the temperature of the hot water introduced into the auxiliary heat source device as a water supply temperature calculation value based on the heating amount of the heat exchanger; The combustion control means monitors the water supply temperature calculation value during hot water supply, and based on the temperature rise of the water supply temperature calculation value, determines that hot water at a hot water supply set temperature reaches the auxiliary heat source device from the main heat source and is introduced. And

さらに、第8の発明は、前記第7の発明の構成に加え、給水温度演算値算出手段により求められる給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める制御用給水温度算出手段を有し、燃焼制御手段は、前記給水温度演算値から前記制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき又は超えたときに主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断することを特徴とする。   Furthermore, the eighth invention is for the hot water burner combustion control by the combustion control means based on the feed water temperature calculated value obtained by the feed water temperature calculated value calculating means and a predetermined temperature change amount in addition to the configuration of the seventh invention. The control water temperature calculation means for obtaining the control water temperature of the combustion control means, the combustion control means reaches a predetermined combustion stop reference temperature difference by subtracting the control water temperature from the feed water temperature calculated value It is determined that hot water having a hot water supply set temperature is introduced into the auxiliary heat source device from the main heat source when or exceeds the time.

さらに、第9の発明は、前記第8の発明の構成に加え、前記燃焼停止基準温度差は給湯設定温度から制御用給水温度を差し引いた差を予め定められる失火係数で調整した値としたことを特徴とする。   Further, in the ninth invention, in addition to the configuration of the eighth invention, the combustion stop reference temperature difference is a value obtained by adjusting a difference obtained by subtracting the control water supply temperature from the hot water supply set temperature with a predetermined misfire coefficient. It is characterized by.

さらに、第10の発明は、前記第1乃至第9のいずれか一つの発明の構成に加え、前記給湯バーナを停止した直後の給湯温度が前記給湯バーナの停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上低下したときには燃焼制御手段により前記給湯バーナの燃焼を再開させる給湯バーナ燃焼再開指令手段が設けられていることを特徴とすることを特徴とする。   Furthermore, the tenth aspect of the invention is that in addition to the configuration of any one of the first to ninth aspects, a hot water supply temperature immediately after the hot water supply burner is stopped is determined in advance from a hot water supply set temperature immediately before the hot water supply burner is stopped. The hot water supply burner combustion restart command means is provided for restarting the combustion of the hot water supply burner by the combustion control means when the hot water supply restart reference temperature is lowered.

本発明によれば、給湯設定温度の湯を出湯する機能を備えた主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側を接続し、前記主熱源から送られる湯を補助熱源装置の給湯回路を通して給湯するが、給湯が開始されたときに、補助熱源装置内の給湯バーナの燃焼を開始させて給湯熱交換器を加熱することにより、補助熱源装置の給湯回路内の湯水や主熱源と補助熱源装置とを接続する通路(管路)内の湯水が給湯設定温度より低い場合でも、その湯水を加熱して給湯設定温度またはその近傍温度まで高めて給湯することができる。   According to the present invention, the hot water introduction side of the hot water supply circuit of the auxiliary heat source device provided with the hot water supply heat exchanger is provided on the downstream side of the passage of hot water discharged from the main heat source having a function of discharging hot water at the hot water supply set temperature. Connect and supply hot water sent from the main heat source through the hot water supply circuit of the auxiliary heat source device. When hot water supply is started, combustion of the hot water burner in the auxiliary heat source device is started to heat the hot water supply heat exchanger. Therefore, even if the hot water in the hot water supply circuit of the auxiliary heat source device or the hot water in the passage (pipe) connecting the main heat source and the auxiliary heat source device is lower than the hot water supply set temperature, the hot water is heated to set the hot water supply set temperature or Hot water can be supplied by raising the temperature to the vicinity.

なお、補助熱源装置の給湯回路に導入される湯水は、給湯熱交換器側とバイパス通路側とに分けて(分岐させて)流すことができるが、給湯バーナの燃焼中には、例えば給湯回路に導入される湯水を給湯熱交換器側にのみ流す、あるいは、主に給湯熱交換器側に流すようにすることで、給湯温度の立ち上がりを早くすることが好ましい。   The hot water introduced into the hot water supply circuit of the auxiliary heat source apparatus can be divided (branched) into the hot water supply heat exchanger side and the bypass passage side, but during the hot water burner combustion, for example, the hot water supply circuit It is preferable to speed up the hot water supply temperature by flowing the hot water introduced into the hot water supply heat exchanger only, or mainly through the hot water supply heat exchanger.

また、前記主熱源から送られた給湯設定温度の湯が前記補助熱源装置の前記給湯回路の前記湯水導入側に到達したと判断されたときに前記給湯バーナの燃焼を停止することによって、的確なタイミングで給湯バーナを燃焼停止して給湯を継続することができ、主熱源から補助熱源装置に到達した給湯設定温度の湯を余分に加熱することにより生じる給湯温度のオーバーシュートを防ぐことができる。   In addition, when it is determined that hot water having a hot water supply set temperature sent from the main heat source has reached the hot water introduction side of the hot water supply circuit of the auxiliary heat source device, the combustion of the hot water burner is stopped accurately. The hot water supply burner can be stopped from burning at the timing, and the hot water supply can be continued, and the hot water supply temperature overshoot caused by excessively heating the hot water at the hot water supply set temperature that has reached the auxiliary heat source device from the main heat source can be prevented.

さらに、本発明においては、主熱源側から補助熱源装置の給湯回路側に送られる湯の温度を調節する送湯温度調節手段を設け、温度調節情報設定手段によって設定される温度調節情報に基づく特徴的な制御を行うことにより、補助熱源装置の給湯熱交換器が潜熱回収用熱交換器を有する構成の本発明において、以下に述べるように、給湯温度のアンダーシュートを防いで給湯温度の安定化を図ることができる。   Furthermore, in the present invention, a hot water supply temperature adjusting means for adjusting the temperature of hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device is provided, and the feature is based on the temperature adjustment information set by the temperature adjustment information setting means In the present invention in which the hot water supply heat exchanger of the auxiliary heat source device has a latent heat recovery heat exchanger, the hot water temperature undershoot is prevented and the hot water temperature is stabilized as described below. Can be achieved.

つまり、本発明に適用されている補助熱源装置は、給湯熱交換器とバイパス通路とを備えた給湯回路を有しており、補助熱源装置に導入された湯水を給湯熱交換器側とバイパス通路側とに分けて流す(分岐して導入する)ことができるが、給湯熱交換器側に導入された湯水は、給湯熱交換器のうち上流側に設けられている潜熱回収用熱交換器を通った後に下流側のメインの熱交換器を通って導出され、前記バイパス通路側を通って導出される湯水と合流して給湯回路から出て給湯される。そのため、以下に述べるように、給湯熱交換器側を通る湯水とバイパス通路側を通る湯水の温度の時間的変化をそれぞれ考慮する必要があり、その考慮を行った上での制御を本発明は行うものである。   That is, the auxiliary heat source device applied to the present invention has a hot water supply circuit including a hot water supply heat exchanger and a bypass passage, and hot water introduced into the auxiliary heat source device is supplied to the hot water supply heat exchanger side and the bypass passage. The hot water introduced to the hot water supply heat exchanger side is connected to the latent heat recovery heat exchanger provided on the upstream side of the hot water heat exchanger. After passing through, it is led out through the main heat exchanger on the downstream side, merges with hot water led out through the bypass passage side, and then comes out of the hot water supply circuit to be supplied with hot water. Therefore, as described below, it is necessary to consider temporal changes in the temperature of hot water passing through the hot water supply heat exchanger side and hot water passing through the bypass passage side, respectively. Is what you do.

まず、本発明において、給湯開始時に燃焼開始した給湯バーナを、主熱源側から補助熱源装置側に送られる給湯設定温度の湯が補助熱源装置の給湯回路に導入されたと判断されたときに停止するが、このとき、バイパス通路内の湯水は加熱されていない低めの温度の湯水である。一方、給湯熱交換器のメインの熱交換器においては、出口側の湯の温度が例えばほぼ給湯設定温度であり、入口側の温度は、潜熱回収用熱交換器で加熱されてはいるが、潜熱回収用熱交換器とメインの熱交換器で上昇する温度の例えば14%位(=4/28位)しか加熱されていない低めの温度(ほぼ加熱されていない低めの温度)の湯水温度となっている。なお、本明細書において、ほぼ給湯設定温度とは、給湯設定温度またはその近傍の温度をいう。   First, in the present invention, a hot water supply burner that starts combustion at the start of hot water supply is stopped when it is determined that hot water at a hot water supply set temperature sent from the main heat source side to the auxiliary heat source device side is introduced into the hot water supply circuit of the auxiliary heat source device. However, at this time, the hot water in the bypass passage is a low temperature hot water that is not heated. On the other hand, in the main heat exchanger of the hot water supply heat exchanger, the temperature of the hot water on the outlet side is approximately the hot water supply set temperature, for example, and the temperature on the inlet side is heated by the heat exchanger for latent heat recovery, For example, a lower temperature (only a lower temperature that is not heated) that is heated by only about 14% (= 4/28) of the temperature rising in the heat exchanger for latent heat recovery and the main heat exchanger, It has become. In addition, in this specification, hot water supply preset temperature means the hot water supply preset temperature or the temperature of the vicinity.

そして、この給湯バーナの燃焼停止直後には給湯熱交換器のメインの熱交換器は熱いままであり(保有熱量が大きく)、例えば給湯バーナの燃焼停止時に、給湯回路に導入される湯水のうちバイパス通路側を通して給湯する流量をバイパス弁制御によるバイパス割合の変化範囲内で最大にする(例えば給湯熱交換器側とバイパス通路側とのバイパス比を1:3にする)といったように、給湯回路に導入される湯水のバイパス通路側への流量を増やすと、熱い状態のメインの熱交換器を通る湯の流量が給湯バーナの燃焼中よりは小さくなるが、メインの熱交換器から導出される湯の温度が給湯設定温度よりもまだ高く、その高めの温度の湯と前記バイパス通路から導出される加熱されていない低めの温度の湯水とがバイパス通路の出口側で合流することにより、ほぼ給湯設定温度として給湯回路から給湯することができる。   Immediately after the combustion of the hot water burner is stopped, the main heat exchanger of the hot water heat exchanger remains hot (having a large amount of heat). For example, when hot water burner is stopped burning, The hot water supply circuit is configured such that the flow rate of hot water supplied through the bypass passage side is maximized within the change range of the bypass ratio by the bypass valve control (for example, the bypass ratio between the hot water supply heat exchanger side and the bypass passage side is 1: 3). When the flow rate to the bypass passage side of hot water introduced into the hot water is increased, the hot water flow rate through the hot main heat exchanger is smaller than that during combustion of the hot water burner, but is derived from the main heat exchanger. The hot water temperature is still higher than the hot water supply set temperature, and the hot water at a higher temperature and the unheated lower temperature hot water drawn from the bypass passage merge at the outlet side of the bypass passage. The Rukoto, can be hot water from the hot water supply circuit substantially as hot water set temperature.

なお、通常、バイパス通路の容量は給湯熱交換器の容量に比べて小さく形成され、かつ、給湯バーナの燃焼停止後にバイパス通路側への流量が大きくされるので、給湯バーナの燃焼停止時にバイパス通路の中にあった低めの温度の湯水は直ぐに全てバイパス通路から導出される。   Normally, the capacity of the bypass passage is smaller than the capacity of the hot water supply heat exchanger, and the flow rate to the bypass passage is increased after the hot water supply burner stops combustion. The low temperature hot water that was in the inside is immediately led out from the bypass passage.

また、本発明においては、熱源装置の試運転を行う試運転モードの給湯動作時に、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を検出し、該検出情報に基づき、温度調節情報設定手段が送湯温度調節手段による温度調節用情報として設定するものであり、その情報の一つとして、前記給湯熱交出側温度検出手段の検出温度が前記給湯バーナの停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づいて第1設定容量が設定され、主熱源から補助熱源装置側に送る湯の温度を該湯の容量が該第1設定容量に達するまでは給湯設定温度とするので、前記バイパス通路の中にあった低めの温度の湯水が導出された後に、バイパス通路には主熱源側から給湯回路の湯水導入側に到達した給湯設定温度の湯が導入され、この湯がバイパス通路を通って導出される。   Further, in the present invention, during the hot water supply operation in the trial operation mode for performing the trial operation of the heat source device, detection information of the hot water supply heat outlet side temperature detection means after the hot water supply burner is stopped after the start of combustion of the hot water supply burner is detected. Then, based on the detection information, the temperature adjustment information setting means sets as information for temperature adjustment by the hot water supply temperature adjustment means, and as one of the information, the temperature detected by the hot water supply heat exchange side temperature detection means Is set based on the time required for the hot water supply burner to drop from the hot water supply set temperature and the hot water flow rate, and the temperature of the hot water sent from the main heat source to the auxiliary heat source device is set. Since the hot water supply set temperature is maintained until the capacity reaches the first set capacity, the hot water of the hot water supply circuit is introduced into the bypass passage from the main heat source side after the lower temperature hot water in the bypass passage is derived. Hot water hot water set temperature reached introduction side is introduced, the water is derived through the bypass passage.

一方、給湯熱交換器側では、給湯バーナの燃焼停止後に、メインの熱交換器の出口側にあった湯が導出された後、その湯よりはメインの熱交換器の入口側に近い位置にあった湯がメインの熱交換器から導出されていくといった如く、前記第1設定容量の湯が補助熱源装置に導入されるまでの間、メインの熱交換器の保有水量の湯が、順次、メインの熱交換器から導出されていく。このようにして、メインの熱交換器から導出される湯の温度は、(例えば給湯バーナの燃焼停止直後にメインの熱交換器を通って導出される湯によってメインの熱交換器の保有熱量が奪われていくこと等により)給湯バーナの燃焼停止直後にメインの熱交換器を通って導出される湯に比べると低くなっていくが、設定温度より高めの温度である。   On the other hand, on the hot water heat exchanger side, after the hot water burner stops burning, the hot water that was on the outlet side of the main heat exchanger is led out, and then closer to the inlet side of the main heat exchanger than that hot water. Until the hot water of the first set capacity is introduced into the auxiliary heat source device, such as hot water that has been extracted from the main heat exchanger, It is derived from the main heat exchanger. In this way, the temperature of the hot water derived from the main heat exchanger is such that the amount of heat held by the main heat exchanger is reduced by the hot water derived through the main heat exchanger immediately after the hot water burner stops burning (for example, Although it is lower than the hot water led out through the main heat exchanger immediately after the hot water burner stops combustion, it is a temperature higher than the set temperature.

そして、この給湯熱交換器側から導出される給湯設定温度よりも高めの温度の湯が、バイパス通路を通って導出される給湯設定温度の湯と合流することになるが、前記の如く、給湯バーナの燃焼停止後に給湯熱交換器側とバイパス通路側とのバイパス比を例えば1:3にする等、バイパス通路側を通る湯の流量を給湯熱交換器側を通る湯の流量よりも多くすることにより、合流されて給湯回路から出る湯の温度は給湯設定温度よりは高めであるものの、その温度差を小さくすることができ(例えば2℃以下といった許容範囲にすることができ)、給湯設定温度に近い湯を給湯回路から給湯することができる。   Then, hot water having a temperature higher than the hot water supply set temperature derived from the hot water supply heat exchanger side joins with the hot water set temperature hot water derived through the bypass passage. After the combustion of the burner is stopped, the flow rate of hot water passing through the bypass passage side is made larger than the flow rate of hot water passing through the hot water supply heat exchanger side, for example, the bypass ratio between the hot water supply heat exchanger side and the bypass passage side is set to 1: 3. Thus, although the temperature of the hot water that is joined and exits the hot water supply circuit is higher than the hot water supply set temperature, the temperature difference can be reduced (for example, it can be within an allowable range of 2 ° C. or less), and the hot water supply setting Hot water close to the temperature can be supplied from the hot water supply circuit.

また、第1設定容量の湯が導入された後には、給湯設定温度よりも予め定められる嵩上げ温度高い温度の湯がバイパス通路側と給湯熱交換器側にそれぞれ導入される。なお、この設定温度よりも嵩上げ温度高い温度の湯は、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づいて設定される第2設定容量だけ補助熱源装置に導入されることになる。   In addition, after the first set capacity of hot water is introduced, hot water having a temperature higher than the hot water set temperature is set in advance to the bypass passage side and the hot water heat exchanger side. Note that the hot water having a temperature higher than the set temperature is a time required for returning to the hot water supply set temperature after the detected temperature of the hot water heat exchange side temperature detecting means is lower than the hot water set temperature, and the hot water flow rate. Only the second set capacity that is set based on this is introduced into the auxiliary heat source device.

ここで、バイパス通路に導入された給湯設定温度よりも嵩上げ温度高い温度の湯は直ぐにバイパス通路を通って導出されるが、給湯熱交換器側おいては、このとき、給湯バーナの燃焼停止時に潜熱回収用熱交換器内にあった湯がメインの熱交換器を通って導出され、バイパス通路から導出される湯と合流する。   Here, hot water having a temperature higher than the hot water set temperature introduced into the bypass passage is immediately led out through the bypass passage, but on the hot water heat exchanger side, at this time, when the hot water supply burner is stopped. The hot water in the latent heat recovery heat exchanger is led out through the main heat exchanger and merges with the hot water led out from the bypass passage.

この給湯バーナの燃焼停止時に潜熱回収用熱交換器内にあった給湯設定温度よりも低めの温度の湯は、メインの熱交換器を通るときに、その残留熱量によって多少温められるものの給湯設定温度よりもだいぶ低い温度だが、このときにバイパス通路を通って導出される湯が給湯設定温度よりも前記嵩上げ温度高い温度の湯であるため、これらの湯が合流されて給湯回路を通って給湯される湯の温度が給湯設定温度よりも低くなることを防ぐことができ、ほぼ給湯設定温度の湯の給湯を可能とすることができる。   Hot water with a temperature lower than the hot water set temperature that was in the latent heat recovery heat exchanger when the hot water burner was stopped is heated somewhat by the amount of residual heat when passing through the main heat exchanger, but the hot water set temperature Although the temperature is much lower than that, the hot water led out through the bypass passage at this time is hot water whose temperature is higher than the preset hot water temperature, so that these hot waters are joined and supplied through the hot water supply circuit. It is possible to prevent the temperature of the hot water from becoming lower than the hot water supply set temperature, and it is possible to supply hot water at a hot water supply set temperature.

その後、第2設定容量の湯の導入が終了される頃には、給湯熱交換器側では、給湯バーナの燃焼停止時に給湯熱交換器側に保有されていた湯は全て給湯回路を通って給湯され、主熱源から補助熱源装置に送られた給湯設定温度の湯が給湯熱交換器を通って導出された後、給湯設定温度より前記嵩上げ温度高い温度の湯が給湯熱交換器を通って導出され、その後、給湯設定温度の湯が導出される。   Thereafter, when the introduction of the second set capacity of hot water is finished, on the hot water supply heat exchanger side, all of the hot water held on the hot water supply heat exchanger side when the hot water supply burner is stopped passes through the hot water supply circuit. After the hot water having a hot water supply set temperature sent from the main heat source to the auxiliary heat source device is led out through the hot water supply heat exchanger, the hot water having a temperature higher than the hot water set temperature is led out through the hot water heat exchanger. Then, hot water having a hot water supply set temperature is derived.

一方、バイパス通路側では、第2設定容量の湯の導入が終了される頃には、主熱源から補助熱源装置に送られる給湯設定温度の湯がバイパス通路側を通って導出されるので、前記給湯熱交換器側から導出される給湯設定温度または給湯設定温度より前記嵩上げ温度高い温度の湯とバイパス通路側から導出される給湯設定温度の湯とが例えば1:3の割合で合流して給湯されることになり、給湯回路から給湯される湯の温度(給湯温度)は、給湯設定温度または給湯設定温度よりやや高めであるものの給湯設定温度に近い温度の湯が給湯される。   On the other hand, on the bypass passage side, when the introduction of the second set capacity hot water is finished, the hot water at the hot water supply set temperature sent from the main heat source to the auxiliary heat source device is led out through the bypass passage side. The hot water supply temperature derived from the hot water supply heat exchanger side or the hot water having a temperature higher than the hot water supply set temperature and the hot water of the hot water supply temperature derived from the bypass passage side merge at a ratio of, for example, 1: 3. Therefore, although the temperature of hot water supplied from the hot water supply circuit (hot water supply temperature) is slightly higher than the hot water supply set temperature or the hot water supply set temperature, hot water having a temperature close to the hot water supply set temperature is supplied.

以上のことから、本発明は、給湯温度のオーバーシュートのみならずアンダーシュートも的確に抑制できる。   From the above, the present invention can accurately suppress not only overshooting of hot water supply temperature but also undershooting.

なお、補助熱源装置において、より詳細に述べれば、給湯回路には、湯水導入口からバイパス通路の入口までの通路や、バイパス通路の入口と潜熱回収用熱交換器の入口との間の通路、メインの熱交換器の出口とバイパス通路の出口との間の通路が形成されていることが一般的であり、各通路を湯水が通るが、通常、各通路の容量は給湯熱交換器の容量に比べて小さく、影響は小さい。   In the auxiliary heat source device, more specifically, the hot water supply circuit includes a passage from the hot water introduction port to the bypass passage entrance, a passage between the bypass passage entrance and the latent heat recovery heat exchanger entrance, Generally, a passage is formed between the outlet of the main heat exchanger and the outlet of the bypass passage, and hot water passes through each passage. Usually, the capacity of each passage is the capacity of the hot water heat exchanger. The impact is small.

また、熱源装置に導入される湯水の温度等は例えば季節の違いによる外気温度の違い等によって変動するものであるため、試運転時に、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の前記給湯熱交出側温度検出手段の検出情報を検出して、その検出情報に基づいて嵩上げ温度を設定しても、実際の給湯運転時には前記熱源装置への導入湯水温度の違い等によって、前記のように、送湯温度調節手段が第1設定容量の湯を送った後に、第2設定容量の湯を給湯設定温度よりも嵩上げ温度高い温度の湯として送るようにしても、前記のような給湯温度の安定化を十分に行えない可能性もある。   In addition, since the temperature of hot water introduced into the heat source device fluctuates due to, for example, a difference in the outside air temperature due to a difference in season, etc., after the combustion of the hot water burner is stopped after the start of combustion of the hot water burner during a trial operation Detecting the detection information of the hot water heat exchange side temperature detection means, and setting the raised temperature based on the detection information, due to the difference in the temperature of the hot water introduced into the heat source device during the actual hot water supply operation, etc. As described above, after the hot water supply temperature adjusting means has sent the first set capacity of hot water, the second set capacity of hot water is sent as hot water having a temperature higher than the hot water supply set temperature. There is a possibility that the hot water supply temperature cannot be sufficiently stabilized.

それに対し、温度調節情報設定手段は、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタし、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更することにより、より一層確実に給湯温度の安定化を図ることができる。   On the other hand, the temperature control information setting means uses the hot water supply heat exchange side temperature detection means after the combustion of the hot water burner is stopped after the start of combustion of the hot water burner for each hot water supply operation of the heat source device or a predetermined hot water supply. Monitoring is performed every predetermined number of times of operation or every predetermined monitoring timing for every predetermined setting period, and at the time of the monitoring, the temperature detected in the temperature drop region where the detected temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water supply set temperature. When the temperature difference from the hot water supply set temperature is different from a predetermined allowable range with respect to the temperature difference from the hot water set temperature in the temperature drop region during the test operation, the hot water supply operation after the hot water supply operation after the hot water supply operation is performed. By changing the raised temperature of the temperature adjustment information applied to the temperature difference according to a different degree beyond the allowable range of the temperature difference, Ri it is possible to further stabilize reliably hot water temperature.

なお、前記モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差よりも低下許容範囲を超えて大きかったとき(つまり温度差が大きかったとき)には、嵩上げ温度を大きくする方向に変更し、その逆に許容範囲を超えて小さかったとき(つまり温度差が小さかったとき)には小さくする方向に変更する。このようにすることで、例えば熱源装置への導入湯水温度の違い等に対応させて嵩上げ温度の変更ができるので、より一層確実に給湯温度の安定化を図ることができる。   The temperature difference from the hot water supply set temperature in the temperature drop region where the detected temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water supply set temperature at the time of monitoring is the hot water supply setting in the temperature drop region during trial operation. When the temperature difference from the temperature is larger than the allowable range (ie, when the temperature difference is large), change the direction to increase the raised temperature, and vice versa. In other words, when the temperature difference is small), the direction is reduced. By doing so, for example, the raised temperature can be changed in accordance with the difference in the temperature of the hot water introduced into the heat source device, for example, so that the hot water supply temperature can be more reliably stabilized.

また、モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、給湯器等の補助熱源装置の買い替えが行われたことや、隣家が建て替えて設置環境が変わったこと、補助熱源装置の移設により状況が変わった等が考えられるので、以下に述べるような試運転相当運転を行い、温度調節用情報を取得する。   In addition, a temperature difference from the hot water supply set temperature in a temperature drop region where the detected temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water set temperature during monitoring is the hot water set temperature in the temperature drop region during trial operation. When the temperature difference differs from the preset allowable range, the replacement of the auxiliary heat source device such as a water heater, the rebuilding of the neighboring house, the change of the installation environment, the transfer of the auxiliary heat source device Therefore, the operation corresponding to the trial operation as described below is performed, and the temperature adjustment information is acquired.

この試運転相当運転は、前記モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が、試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なった給湯運転の動作終了後において行われるもので、補助熱源装置に設けられる燃焼制御手段の制御に基づき、前回給湯後の再出湯までの時間が長い場合等、貯湯槽等の主熱源側と給湯器等の補助熱源装置側とを接続する接続配管内の湯が冷えていて補助熱源装置に導入される給水温度が低い場合の給湯開始時(コールドスタート時)に行われる運転であり、試運転時と同等の運転である。   This trial operation equivalent operation is performed when the temperature difference from the hot water supply set temperature in the temperature decrease region where the temperature detected by the hot water supply heat exchange side temperature detecting means is lower than the hot water set temperature during the monitoring is a temperature decrease region during the test operation. Is performed after the operation of the hot water supply operation that has exceeded a predetermined allowable range with respect to the temperature difference from the hot water supply set temperature in the above, and based on the control of the combustion control means provided in the auxiliary heat source device, The water supply temperature that is introduced into the auxiliary heat source device when the hot water in the connection pipe that connects the main heat source side such as a hot water tank and the auxiliary heat source device side such as a water heater is cooled, such as when the time until the subsequent re-draining is long This is an operation performed at the start of hot water supply when the temperature is low (cold start), and is equivalent to the test operation.

この試運転相当運転時に、給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する領域における前記給湯設定温度との温度差の検出を行い、該検出情報に基づき、温度調節情報設定手段が送湯温度調節手段による温度調節用情報として設定する。これにより、温度調節用情報を更新すると共に、第1設定容量、第2設定容量等も更新を行う。前記試運転相当運転も含めて試運転とすることが好ましい(つまり、試運転相当運転が行われたときには、このデータを試運転におけるデータとして更新していき、その更新データと前記モニタ時のデータとの比較を行うとよい)。   During this trial operation equivalent operation, a temperature difference from the hot water supply set temperature is detected in a region where the detection temperature of the hot water supply heat exchange side temperature detecting means is lower than the hot water supply set temperature, and temperature adjustment information setting is performed based on the detection information The means is set as temperature adjustment information by the hot water supply temperature adjustment means. Thus, the temperature adjustment information is updated, and the first set capacity, the second set capacity, and the like are also updated. It is preferable to perform a trial run including the trial run equivalent operation (that is, when a trial run equivalent run is performed, this data is updated as data in the trial run, and the updated data is compared with the data at the time of monitoring. Good to do).

また、給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を設け、温度調節情報設定手段は、給湯バーナの燃焼開始後に主熱源から給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に到達したと判断されて前記給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、前記給湯温度検出手段の検出温度が前記給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を変更設定する(給湯温度検出手段の検出温度が給湯設定温度より許容範囲を超えて高かったときには嵩上げ温度を小さくし、給湯温度検出手段の検出温度が給湯設定温度より許容範囲を超えて低かったときには嵩上げ温度を大きくする)ようにしても、前記と同様に、例えば熱源装置への導入湯水温度の違い等に対応させて嵩上げ温度の変更ができるので、より一層確実に給湯温度の安定化を図ることができる。   In addition, a hot water supply temperature detecting means for detecting the temperature of hot water supplied through the hot water supply circuit as hot water supply temperature is provided, and the temperature adjustment information setting means is configured such that hot water at a hot water supply set temperature is supplied from the main heat source to the auxiliary heat source device after the start of combustion of the hot water burner. The hot water supply temperature detected by the hot water supply temperature detecting means after the hot water supply burner is stopped after the hot water supply burner is determined to have reached the hot water introduction side of the hot water supply circuit is determined for each hot water supply operation of the heat source device or a predetermined number of hot water supply operations. The temperature detected by the hot water supply temperature detection means becomes a temperature that exceeds a predetermined allowable range with respect to the hot water supply set temperature. When the monitor is turned on, the temperature adjustment information applied after the next hot water supply operation after the hot water supply operation is changed and set (the hot water temperature detection). When the detected temperature of the means is higher than the hot water set temperature exceeding the permissible range, the raised temperature is decreased, and when the detected temperature of the hot water temperature detector is lower than the allowable hot water set temperature beyond the allowable range, the raised temperature is increased). However, similarly to the above, since the raised temperature can be changed in accordance with, for example, the difference in the temperature of hot water introduced into the heat source device, the hot water supply temperature can be more reliably stabilized.

さらに、例えばバイパス通路にバイパス開閉弁を設け、前記給湯回路に導入される湯水の前記給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが前記バイパス開閉弁の開閉により予め定められる割合変化範囲内で制御される構成として、給湯バーナを停止した以降はバイパス通路側への流通割合が前記割合変化範囲内において最大となるようにバイパス開閉弁を制御し、主熱源からの湯を主にバイパス通路側を通して給湯することにより、給湯熱交換器の熱の単位時間当たりの影響を受けにくい状態で給湯することができ、前記の如く給湯温度の安定化を適切に行うことができる。   Further, for example, a bypass opening / closing valve is provided in the bypass passage, and the distribution ratio of hot water introduced into the hot water supply circuit to the hot water supply heat exchanger side and the distribution ratio to the bypass passage side are previously set by opening / closing the bypass opening / closing valve. As a configuration controlled within a predetermined rate change range, after the hot water supply burner is stopped, the bypass on-off valve is controlled so that the flow rate to the bypass passage side becomes the maximum within the rate change range, and from the main heat source. By supplying hot water mainly through the bypass passage side, it is possible to supply hot water in a state where it is difficult to be affected by the heat per unit time of the hot water heat exchanger, and the hot water temperature can be appropriately stabilized as described above. it can.

さらに、補助熱源装置の湯水導入側には主熱源から出湯される湯の通路の他に給水通路を接続し、主熱源と補助熱源装置の給湯回路の湯水導入側とを接続する接続用配管の長さが予め与えられる設定長さより短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入することにより、以下のように、接続用配管が短い場合でも給湯温度の安定化をより一層的確に図ることができる。   In addition to the hot water passage from the main heat source, a water supply passage is connected to the hot water introduction side of the auxiliary heat source device, and a pipe for connecting the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device is provided. When the length is shorter than a preset length, water is introduced from the water supply passage to the auxiliary heat source device until a predetermined water introduction time elapses from the start of hot water supply, and the water introduction time By introducing hot water discharged from the main heat source through the hot water passage after the passage of time into the auxiliary heat source device, the stabilization of the hot water supply temperature can be further improved even when the connecting pipe is short as follows. Can be aimed at.

つまり、接続用配管の長さが予め与えられる設定長さ(例えば4m)より短い場合には、給湯開始時に補助熱源装置の給湯バーナの燃焼を開始しても、給湯バーナの燃焼により加熱される給湯熱交換器のメインの熱交換器内の湯が給湯設定温度まで加熱されるよりも主熱源から送られた給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に届く時間の方が早くなり、潜熱回収用熱交換器内の湯の温度がより低い状態のときに主熱源からの給湯設定温度の湯が届くことになる。そのため、主熱源から送られた給湯設定温度の湯を、給湯バーナを停止してから主にバイパス通路側に通しても、バイパス通路を通って導出される湯と給湯熱交換器側を通って導出される湯とが合流すると給湯設定温度よりも低くなってしまい、給湯温度の安定化を適切に図ることができなくなることがある。   That is, when the length of the connecting pipe is shorter than a preset length (for example, 4 m), even if combustion of the hot water supply burner of the auxiliary heat source device is started at the start of hot water supply, it is heated by the combustion of the hot water supply burner. The time when the hot water at the hot water set temperature sent from the main heat source reaches the hot water introduction side of the hot water supply circuit of the auxiliary heat source device, rather than the hot water in the main heat exchanger of the hot water heat exchanger being heated to the hot water set temperature. When the temperature of the hot water in the latent heat recovery heat exchanger is lower, hot water having a set hot water temperature from the main heat source arrives. Therefore, even if hot water at the hot water supply set temperature sent from the main heat source passes through the bypass passage side after stopping the hot water supply burner, it passes through the hot water and hot water supply heat exchanger side that are led out through the bypass passage. When the derived hot water joins, it may become lower than the hot water set temperature, and the hot water temperature may not be properly stabilized.

そこで、給湯バーナの燃焼により加熱される給湯熱交換器のメインの熱交換器内の湯が給湯設定温度あるいは、それより幾分高めの温度まで加熱されてから、主熱源から送られた給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に届くように、給湯熱交換器のメインの熱交換器内の湯が給湯設定温度まで加熱される時間と前記接続用配管の長さに応じて(つまり、接続用配管内を通る湯水量に応じて)前記水導入時間を設定し、その水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入することにより、接続用配管が短い場合でも給湯温度の安定化を確実に図ることができる。   Therefore, the hot water setting sent from the main heat source after the hot water in the main heat exchanger of the hot water heat exchanger heated by the combustion of the hot water burner is heated to the hot water set temperature or somewhat higher than that temperature. The hot water in the main heat exchanger of the hot water heat exchanger is heated to the set hot water temperature and the length of the connecting pipe so that the hot water of the temperature reaches the hot water introduction side of the hot water supply circuit of the auxiliary heat source device. In response to (that is, according to the amount of hot water passing through the connecting pipe), the water introduction time is set, and until the water introduction time elapses, water is introduced from the water supply passage to the auxiliary heat source device, By introducing hot water discharged from the main heat source through the hot water passage after the water introduction time has elapsed into the auxiliary heat source device, it is possible to reliably stabilize the hot water supply temperature even when the connection pipe is short. Can do.

さらに、貯湯槽を有する主熱源を設けることにより、例えば太陽熱や燃料電池等の廃熱を利用して形成される湯を貯湯槽に貯湯して効率的に利用することができる。そして、貯湯槽を有する主熱源の貯湯槽から出湯される湯の通路と給水通路とを合流部で合流し、合流部には合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路を設けて、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御することによって、合流部で形成されて補助熱源装置側に送られる湯の温度を適切に制御することができ、前記の効果によって、給湯温度の安定化を図ることができる。   Furthermore, by providing a main heat source having a hot water storage tank, hot water formed using, for example, solar heat or waste heat from a fuel cell can be stored in the hot water storage tank and efficiently used. And, the mixing means for joining the hot water passage and the water supply passage discharged from the hot water storage tank of the main heat source having the hot water storage tank at the joining portion, and mixing the hot water and the water to be joined at the joining portion, and the mixing means By providing a hot water introduction passage for introducing hot water formed by mixing into the auxiliary heat source device, and controlling the mixing means to control the flow rate of hot water and the flow rate of water flowing through the merge portion, The temperature of the hot water that is formed and sent to the auxiliary heat source device side can be appropriately controlled, and the hot water temperature can be stabilized by the effects described above.

さらに、補助熱源装置に設けられた給湯温度検出手段によって、給湯回路を通して給湯される湯の温度(給湯温度)を検出し、その給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて、給水温度演算値算出手段が補助熱源装置に導入される湯水の温度を演算により求めて給水温度演算値(給水温度認識値)とし、この給水温度演算値の温度上昇に基づき、主熱源から給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断して給湯バーナの燃焼を停止することにより、給湯設定温度の湯の補助熱源装置への導入タイミングを的確に判断でき、その的確なタイミングで給湯バーナの燃焼停止を行うことによって、給湯温度のオーバーシュートを防ぐことができる。   Further, the hot water temperature detecting means provided in the auxiliary heat source device detects the temperature of the hot water supplied through the hot water supply circuit (hot water temperature), the hot water temperature, the capacity of the hot water heat exchanger, and the heating of the hot water heat exchanger. Based on the amount, the water temperature calculation value calculation means calculates the temperature of the hot water introduced into the auxiliary heat source device by calculation to obtain a water temperature calculation value (water supply temperature recognition value), and based on the temperature rise of this water temperature calculation value Therefore, it is determined that hot water at the hot water supply set temperature has reached the auxiliary heat source device from the main heat source and has been introduced, and combustion of the hot water burner is stopped, thereby accurately introducing the hot water at the hot water set temperature into the auxiliary heat source device. It is possible to make a determination, and by stopping combustion of the hot water supply burner at the appropriate timing, overshooting of the hot water temperature can be prevented.

つまり、給水温度演算値算出手段を設けた構成においては、補助熱源装置に、該補助熱源装置に導入される湯水の入水温度(給水温度)を検出する手段を設けなくとも補助熱源装置内の給湯バーナの燃焼制御を行えるように、給水温度演算値算出手段が演算により給水温度を求める(給水温度演算値を算出する)が、この演算により求められる給水温度演算値が上昇して例えば以下に述べるように変化するタイミングを主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたタイミングであると判断することにより、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたタイミングを的確に判断できる。なお、このことは、本発明者が実験により見いだしたものである。   That is, in the configuration provided with the feed water temperature calculation value calculation means, the hot water supply in the auxiliary heat source device is not provided in the auxiliary heat source device without providing a means for detecting the incoming water temperature (feed water temperature) of the hot water introduced into the auxiliary heat source device. The feed water temperature calculation value calculation means obtains the feed water temperature by calculation (calculates the feed water temperature calculation value) so that the burner combustion control can be performed. By determining that the change timing is the timing when hot water at the hot water supply set temperature reaches the auxiliary heat source device from the main heat source and is introduced, the hot water at the hot water supply set temperature reaches the auxiliary heat source device from the main heat source. It is possible to accurately determine the timing of introduction. This has been found by the inventors through experiments.

具体的には、給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める。この制御用給水温度は例えば予め定められる例えば200ms(0.2秒)毎というサンプリングタイム毎に検出される給水温度演算値が上昇しているときには前回求めた制御用給水温度に予め定められる温度変化量を加算していき、前記サンプリングタイム毎に検出される給水温度演算値が下降しているときには前回求めた制御用給水温度から予め定められる温度変化量を減算していって求められるものである。すなわち、給水温度演算値が大きく変化しても制御用給水温度は予め定められる温度変化量しか変化しない。   Specifically, the control feed water temperature for hot water burner combustion control by the combustion control means is obtained based on the calculated feed water temperature value and a predetermined temperature change amount. This control water temperature is, for example, a temperature change that is predetermined to the previously determined control water temperature when the calculated feed water temperature value is detected every predetermined sampling time, for example, every 200 ms (0.2 seconds). The amount is calculated, and when the feed water temperature calculation value detected at each sampling time is decreasing, it is obtained by subtracting a predetermined temperature change amount from the previously obtained control feed water temperature. . That is, even if the feed water temperature calculation value changes greatly, the control feed water temperature changes only by a predetermined temperature change amount.

そして、前記給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき(給水温度演算値の微分値が所定値としての予め定められる設定値を超えた時と略同義)又は超えたときに主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断する。このような手法を用いて給湯設定温度の湯が補助熱源装置に導入された時の予兆(変動の初期状態)を捉えてバーナ燃焼を停止するようにすると、前記手法を用いずに温度検出手段等を用いて給湯設定温度の湯が補助熱源装置に導入されたことを給水温度の所定値上昇により確認した後に火を消した場合に発生するオーバーシュートを、防止することができる。なお、前記サンプリングタイムが1s(1秒)以上だと前記予兆を捉えることが遅れるため、前記サンプリングタイムは1s(1秒)より小さい値とするとよい。   When the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches a predetermined combustion stop reference temperature difference (the differential value of the feed water temperature calculation value exceeds a predetermined set value as a predetermined value) It is determined that hot water at a hot water supply set temperature has been introduced into the auxiliary heat source device from the main heat source. If such a technique is used to detect a sign (initial state of fluctuation) when hot water having a hot water supply set temperature is introduced into the auxiliary heat source device, the burner combustion is stopped. It is possible to prevent overshoot that occurs when the fire is extinguished after confirming that hot water at the hot water supply set temperature has been introduced into the auxiliary heat source device by a predetermined value increase in the water supply temperature. Note that if the sampling time is 1 s (1 second) or longer, it will be delayed to catch the sign, so the sampling time may be set to a value smaller than 1 s (1 second).

補助熱源装置に主熱源からの給湯設定温度の湯が到達して導入されたタイミングを判断する際に、前記のような予兆を捉えることは、例えば給湯器等の補助熱源装置として給湯能力の高い機種(消費ガス量が大きくなるだけでなく、通水抵抗が低く最大出湯能力が高い機種)を用いた場合に、より一層重要性を増す。その理由は、このような給湯能力の高い機種は、補助熱源装置内を流れる流速が速くなるので、この速さに追従させるためにより重要となり、この速さに追従させられるように前記予兆を捉えて給湯バーナの燃焼停止タイミングを制御する必要がある。   When judging the timing when hot water of the hot water supply set temperature from the main heat source arrives at the auxiliary heat source device and introduces it, it is possible to catch such a sign as described above, for example, as an auxiliary heat source device such as a water heater. It becomes even more important when using models (models that not only increase the amount of gas consumed but also have a low water flow resistance and a high maximum capacity). The reason for this is that a model with such a high hot water supply capacity has a higher flow velocity in the auxiliary heat source device, so it is more important to follow this speed. It is necessary to control the combustion stop timing of the hot water burner.

なお、前記燃焼停止基準温度差は、給湯設定温度から制御用給水温度を差し引いた差を、予め定められる失火係数で調整した値(例えば割った値)とすることができる。つまり、燃焼停止基準温度差をTinDiffとし、給湯設定温度(本体設定温度)をTs、制御用給水温度をTc、失火係数をKとすると、燃焼停止基準温度差TinDiffは、例えば以下の式(1)により求められる。   The combustion stop reference temperature difference may be a value (for example, a value obtained by dividing a difference obtained by subtracting the control water supply temperature from the hot water supply set temperature by a predetermined misfire coefficient. That is, assuming that the combustion stop reference temperature difference is TinDiff, the hot water supply set temperature (main body set temperature) is Ts, the control feed water temperature is Tc, and the misfire coefficient is K, the combustion stop reference temperature difference TinDiff is expressed by, for example, the following equation (1) ).

TinDiff=(Ts−Tc)/K・・・(1) TinDiff = (Ts−Tc) / K (1)

なお、失火係数は、失火タイミングを適正化するための補正値であり、例えば給湯温度にオーバーシュートやアンダーシュートが出ない、または出ても許容範囲内であるか否かといったことを、例えば給湯設定温度から制御用給水温度を引いた値(Ts−Tc)や湯水導入通路の長さ、湯水導入通路の材質(例えばポリエチレン等の樹脂製、銅、鉄等の金属製といったこと)、外気温、給湯流量等の様々なファクタを変えて予め実験等を行い(補助熱源装置の給湯能力等の他の条件もファクタとして加えて実験等を行ってもよく)、オーバーシュートやアンダーシュートが出ない、または出ても許容範囲内であるようにするための補正値として予め求められて与えられるものである。   The misfire coefficient is a correction value for optimizing misfire timing. For example, whether or not overshoot or undershoot occurs in the hot water supply temperature, or whether it is within an allowable range even if the hot water supply temperature occurs. The value obtained by subtracting the control water supply temperature from the set temperature (Ts-Tc), the length of the hot water introduction passage, the material of the hot water introduction passage (for example, resin such as polyethylene, metal such as copper or iron), outside temperature , Experiment in advance by changing various factors such as hot water flow rate (other conditions such as the hot water supply capacity of the auxiliary heat source device may be added as a factor), and overshoot and undershoot will not occur Or, it is obtained and given in advance as a correction value so as to be within the allowable range even if it comes out.

この失火係数は、例えば前記ファクタの少なくとも一つのファクタに応じて直線的に変化する値でもよいし、曲線的に変化する値でもよく、また、失火係数は、例えば前記ファクタや表等から求められる階段状の(前記ファクタの少なくとも一つのファクタに対して段階的に変化する)係数であってもかまわない。   The misfire coefficient may be, for example, a value that changes linearly according to at least one of the above factors, or may be a value that changes in a curved line, and the misfire coefficient is obtained from, for example, the above-described factor or table. It may be a stepped coefficient (which changes stepwise with respect to at least one of the factors).

なお、本発明者は以上のように、給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差になったときに、主熱源から補助熱源装置に給湯設定温度の湯が到達したと判断して給湯バーナの燃焼停止タイミングを決定することにより的確に給湯バーナの燃焼停止タイミングを判断できることを、様々な条件を変えて検討して確認している。   In addition, as described above, the present inventor has a hot water supply set temperature from the main heat source to the auxiliary heat source device when the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculated value becomes a predetermined combustion stop reference temperature difference. It is confirmed by changing various conditions that it is possible to accurately determine the combustion stop timing of the hot water burner by determining that the hot water has reached and determining the combustion stop timing of the hot water burner.

また、給湯設定温度の湯の補助熱源装置への導入タイミングを前記のように行う構成においては、主熱源側と補助熱源装置側との間で通信を行わずに給湯設定温度の湯の補助熱源装置への導入タイミングを判断することから、主熱源と補助熱源装置とを通信させるための手段(通信線等)が不要であり、その分だけコストダウンを図ることができる。   Further, in the configuration in which the introduction timing of hot water at the hot water supply set temperature to the auxiliary heat source device is performed as described above, the auxiliary heat source of the hot water at the hot water supply set temperature without performing communication between the main heat source side and the auxiliary heat source device side. Since the introduction timing to the apparatus is determined, means (communication line or the like) for communicating the main heat source and the auxiliary heat source apparatus is unnecessary, and the cost can be reduced accordingly.

なお、前記のように、補助熱源装置側では給湯設定温度の湯が補助熱源装置に導入された時の予兆を捉えて給湯バーナの燃焼を停止するようにして給湯温度にオーバーシュートが発生することを防ぎ、主熱源側では前記第1設定容量の給湯設定温度の湯を補助熱源装置に送った後に、給湯設定温度よりも予め定められた嵩上げ温度高い温度の第2設定容量の湯を補助熱源装置に導入するようにする代わりに、主熱源からの湯が補助熱源装置に到達する予兆をもう少し早めに感知するようにして、主熱源からは、給湯開始時から給湯設定温度よりも嵩上げ温度高い温度の湯を補助熱源装置に送ることも考えられる。   In addition, as described above, overshoot occurs in the hot water supply temperature on the auxiliary heat source device side so as to stop the combustion of the hot water supply burner by detecting the sign when hot water at the hot water supply set temperature is introduced into the auxiliary heat source device. On the main heat source side, after the hot water having the first set capacity of the hot water supply set temperature is sent to the auxiliary heat source device, the hot water of the second set capacity having a temperature higher than the hot water set temperature in advance is set as the auxiliary heat source. Instead of introducing it into the equipment, it detects the sign that hot water from the main heat source reaches the auxiliary heat source equipment a little earlier, and the main heat source raises the temperature higher than the set hot water temperature from the start of hot water supply. It is also conceivable to send hot water of temperature to the auxiliary heat source device.

しかしながら、補助熱源装置の入口より手前に温度センサ等の温度検出手段を取り付けないと、主熱源からの湯が補助熱源装置に到達する予兆をもっと早く感知して予兆を捉えるようにすることはできない。そのため、温度検出手段を設ける分だけコストアップにもつながる。それに対し、本発明では、まず、補助熱源装置の給湯バーナの燃焼停止のための信号としての意味合いを持つ湯(給湯設定温度の湯)を第1設定容量送り、その後、給湯設定温度よりも嵩上げ温度高い温度の第2設定容量の湯を補助熱源装置に導入することにより、前記の如く、給湯温度の安定化も行えるし、温度検出手段を新たに設ける必要もなく、コストアップも防ぐことができる。   However, if temperature detection means such as a temperature sensor is not installed before the entrance of the auxiliary heat source device, it is impossible to detect the sign that hot water from the main heat source reaches the auxiliary heat source device earlier and catch the sign. . Therefore, the cost is increased by providing the temperature detecting means. On the other hand, in the present invention, first, hot water having a meaning as a signal for stopping the combustion of the hot water supply burner of the auxiliary heat source device (hot water having a hot water supply set temperature) is fed to the first set capacity, and then raised above the hot water set temperature. By introducing the hot water of the second set capacity at a high temperature into the auxiliary heat source device, the hot water supply temperature can be stabilized as described above, and there is no need to newly provide a temperature detecting means, and an increase in cost can be prevented. it can.

さらに、給湯バーナを停止しても、その直後の給湯温度は給湯バーナの停止直前の給湯温度よりも高くなるものであるため、給湯バーナを停止した直後の給湯温度が給湯バーナ停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上(例えば3℃以上)低下したときには主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されるよりも早く給湯バーナの燃焼を停止してしまったと考えられる。そのため、給湯バーナを停止した直後の給湯温度が給湯バーナ停止直前の給湯設定温度よりも前記給湯再開基準温度以上(例えば3℃以上)低下したときには給湯バーナの燃焼を再開させることにより、誤って早めに給湯バーナの燃焼を停止した状態が長く続くことによる給湯温度のアンダーシュートを抑制でき、給湯温度をより一層安定化することができる。   Furthermore, even if the hot water burner is stopped, the hot water temperature immediately after the hot water burner is higher than the hot water temperature immediately before the hot water burner is stopped. When the temperature falls below a predetermined hot water resumption reference temperature (for example, 3 ° C. or more) lower than the temperature, combustion of the hot water burner is stopped earlier than hot water at the hot water supply set temperature reaches the auxiliary heat source device from the main heat source and is introduced. It is thought that it has stopped. Therefore, when the hot water supply temperature immediately after stopping the hot water supply burner is lower than the set hot water supply temperature immediately before stopping the hot water supply burner by more than the hot water supply restart reference temperature (for example, 3 ° C. or higher), the hot water burner is restarted by resuming combustion. In addition, it is possible to suppress the undershoot of the hot water temperature due to the state where the combustion of the hot water burner is stopped for a long time, and the hot water temperature can be further stabilized.

なお、湯水導入通路の一部が西日によって温まっているような場合にも、誤って早めに給湯バーナの燃焼を停止することが想定されるので、このような場合にも(例えば湯水導入通路のうち西日によって温められた水が導入された後に西日によって温められていない水が導入されたことによって給湯温度が低下したとき等には)給湯バーナの燃焼を再開させるようにしてもよい。   In addition, even when a part of the hot water introduction passage is warmed by the sun, it is assumed that the combustion of the hot water supply burner is mistakenly stopped earlier, so even in such a case (for example, the hot water introduction passage Of the hot water supply burner may be resumed (for example, when the hot water temperature decreases due to the introduction of water that has not been warmed by the western day after the water warmed by the western day is introduced). .

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat-source apparatus which concerns on this invention. 実施例の熱源装置の給湯時における給水温度演算値と制御用給水温度と給湯温度の時間的変化例および失火タイミング例を、実験用に求めた給水温度実測値と共に示すグラフである。It is a graph which shows the water supply temperature calculation value at the time of hot water supply of the heat source apparatus of an Example, the water supply temperature for control, the temporal change of hot water supply temperature, and the example of misfire timing with the water supply temperature actual value calculated | required for experiment. 実施例の熱源装置の給湯時における給湯バーナ燃焼停止後の給湯熱交換器出口温度と給湯回路入口温度と給湯温度の時間的変化例を示すグラフである。It is a graph which shows the time change example of the hot water supply heat exchanger exit temperature, hot water supply circuit inlet temperature, and hot water supply temperature after the hot water supply burner combustion stop at the time of hot water supply of the heat source device of the embodiment. 実施例の熱源装置の給湯時における給湯バーナ燃焼停止後の、バイパス通路に導入される湯の熱量と、給湯バーナの燃焼停止時に給湯熱交換器が保有していた湯が給湯バーナの燃焼後に導出されることによる給湯熱交換器の出側の熱量と、給湯バーナ燃焼停止後に主熱源からの湯が給湯熱交換器に導入されて給湯熱交換器を通って導出されることによる給湯熱交換器の出側の熱量および、これらの熱量の加算量の時間的変化例を説明するための模式的なグラフである。The amount of heat of hot water introduced into the bypass passage after the hot water supply burner combustion stop at the time of hot water supply of the heat source device of the embodiment, and the hot water held by the hot water heat exchanger at the time of hot water burner combustion stop are derived after the hot water burner burns The amount of heat on the outlet side of the hot water supply heat exchanger and the hot water supply heat exchanger by which the hot water from the main heat source is introduced into the hot water heat exchanger after the combustion of the hot water burner is stopped and led out through the hot water heat exchanger It is a typical graph for demonstrating the temporal change example of the calorie | heat amount of the exit side of this, and the addition amount of these calorie | heat amount. 図4に示した各熱量および熱量の加算量の時間的変化例を、開発中の熱源装置の給湯時において貯湯槽から給湯器に送る湯の温度を給湯設定温度として一定にして給湯した場合について説明するための模式的なグラフである。In the case of supplying hot water with the temperature of the hot water sent from the hot water storage tank to the water heater set constant as the hot water supply set temperature at the time of hot water supply of the heat source device under development, with respect to the time change example of each heat amount and the amount of heat addition shown in FIG. It is a typical graph for explaining. 実施例および開発中の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus in an Example and development. 図6に示す熱源装置に設けられている湯水循環通路と貯湯槽の出湯通路とを説明するために、図6の一部構成を簡略化して示すシステム構成図である。FIG. 7 is a system configuration diagram showing a partial configuration of FIG. 6 in a simplified manner in order to explain a hot water circulation passage and a hot water discharge passage of the hot water storage tank provided in the heat source device shown in FIG. 6. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of distribution of the temperature layer in a hot water storage tank. 熱源装置の給湯時における外気温の違いによる給水温度演算値と制御用給水温度の時間的変化例を示す模式的なグラフである。It is a typical graph which shows the temporal change example of the feed water temperature calculation value by the difference in the outside temperature at the time of hot water supply of a heat source device, and the feed water temperature for control.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されている。本実施例は、図6に示した熱源装置と同様のシステム構成を有し、さらに、図1に示されるように、給湯器16の制御装置46に、燃焼制御手段47、給水温度演算値算出手段71、制御用給水温算出手段72、メモリ部73、バイパス開閉弁制御手段74、給湯バーナ燃焼再開指令手段75を設けており、燃焼制御手段47は、給湯設定温度設定操作手段45を備えたリモコン装置43に接続されている。リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。   FIG. 1 is a block diagram showing a main part control configuration of an embodiment of a heat source device according to the present invention. This embodiment has a system configuration similar to that of the heat source device shown in FIG. 6, and further, as shown in FIG. 1, the control device 46 of the hot water heater 16 includes a combustion control means 47, and a water supply temperature calculation value calculation. Means 71, control feed water temperature calculation means 72, memory unit 73, bypass on-off valve control means 74, hot water supply burner combustion restart command means 75 are provided, and combustion control means 47 includes hot water supply set temperature setting operation means 45. The remote control device 43 is connected. The remote control device 43 is installed indoors at an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

また、本実施例において、タンクユニット4内の制御装置33には、ミキシング流量制御手段35、送湯温度調節手段36、メモリ部37、温度調節情報設定手段38が設けられており、制御装置33はリモコン装置43と制御装置46とに信号接続されている。   In the present embodiment, the control device 33 in the tank unit 4 is provided with a mixing flow rate control means 35, a hot water supply temperature adjustment means 36, a memory unit 37, and a temperature adjustment information setting means 38. Are connected to the remote control device 43 and the control device 46 in a signal manner.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、タンクユニット4の制御装置33の送湯温度調節手段36と温度調節情報設定手段38と給湯器16の制御装置46の燃焼制御手段47とに加えられる。   The hot water supply set temperature setting operation means 45 is an operation means for setting a hot water supply set temperature by a user or the like, and is formed by an operation button or the like provided on the surface side of the remote control device 43, for example. The value of the hot water supply set temperature set by the hot water supply set temperature setting operation means 45 is the combustion of the hot water supply temperature adjustment means 36, the temperature adjustment information setting means 38 of the controller 33 of the tank unit 4 and the control device 46 of the water heater 16. It is added to the control means 47.

流量検出手段42は、給湯通路19を通って給湯される給湯流量を検出し、制御装置46の燃焼制御手段47に給湯流量の検出流量(検出値)を加える。また、給水流量センサ29も給湯通路19を通って給湯される給湯流量を検出し、制御装置33のミキシング流量制御手段35に給湯流量の検出流量(検出値)を加える。   The flow rate detection means 42 detects the flow rate of hot water supplied through the hot water supply passage 19 and adds the detected flow rate (detected value) of the hot water supply flow rate to the combustion control means 47 of the controller 46. In addition, the hot water flow rate sensor 29 also detects the hot water flow rate supplied through the hot water supply passage 19 and adds the detected flow rate (detected value) of the hot water flow rate to the mixing flow rate control means 35 of the control device 33.

本実施例において、燃焼制御手段47は、熱源装置の初回運転時や、前回給湯後の再出湯までの時間が長い場合等、貯湯槽2側と給湯器16側とを接続する接続配管内の湯が冷えていて給湯器16に導入される給水温度が低い場合の給湯開始時(コールドスタート時)や、給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯の給湯開始時には、流量検出手段42により検出される給湯流量が給湯バーナ61の燃焼のための最低作動流量に達したときに給湯バーナ61を燃焼開始する構成を有している。そして、後述する判断タイミングにおいて給湯バーナ61の燃焼を停止させる。   In the present embodiment, the combustion control means 47 is provided in a connection pipe that connects the hot water tank 2 side and the hot water heater 16 side when the heat source device is operated for the first time or when the time until the re-hot water after the previous hot water supply is long. At the start of hot water supply when the hot water is cold and the temperature of the hot water introduced into the water heater 16 is low (at the time of cold start), or at the start of hot water supply for re-draining when the set hot water temperature is changed significantly after the hot water supply is stopped The hot water supply burner 61 starts to burn when the hot water supply flow rate detected by the flow rate detection means 42 reaches the minimum operating flow rate for combustion of the hot water supply burner 61. Then, combustion of the hot water supply burner 61 is stopped at a determination timing described later.

バイパス開閉弁制御手段74は、燃焼制御手段47の制御情報を取り込み、給湯バーナ61の燃焼中はバイパス電磁弁69を閉じ、給湯熱交換器17側への流通割合が予め定められている割合変化範囲内における最大値または最大値に近い値となるように、つまり、ほぼ100%給湯熱交換器17側に通すことができるようにし、給湯バーナ61を停止した以降はバイパス通路68側への流通割合が前記割合変化範囲内で最大となるように、つまり、ここでは、パイパス電磁弁69を完全に開いて、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3になるような割合で通すようにする。   The bypass opening / closing valve control means 74 takes in the control information of the combustion control means 47, closes the bypass electromagnetic valve 69 during combustion of the hot water supply burner 61, and changes the flow rate to the hot water supply heat exchanger 17 side in a predetermined ratio. The maximum value in the range or a value close to the maximum value, that is, almost 100% can be passed to the hot water supply heat exchanger 17 side, and after the hot water supply burner 61 is stopped, the flow to the bypass passage 68 side In order to maximize the ratio within the ratio change range, that is, here, the bypass solenoid valve 69 is completely opened, and for example, hot water introduced into the hot water supply circuit 62 is supplied to the hot water supply heat exchanger 17 side and the bypass passage 68 side. And pass through at a ratio of 1: 3.

制御装置33の温度調節情報設定手段38は、熱源装置の試運転を行う試運転モードの給湯動作時に、給湯バーナ61の燃焼開始後に該給湯バーナ61の燃焼が停止された以降の給湯熱交出側温度検出手段67の検出情報を検出し、該検出情報に基づき、送湯温度調節手段36による温度調節情報における以下に述べるファクタを設定し、設定した値をメモリ部37に格納する。   The temperature adjustment information setting means 38 of the control device 33 is used for the hot water supply heat exchange side temperature after the hot water supply burner 61 is stopped after the hot water supply burner 61 starts combustion during the hot water supply operation in the trial operation mode for performing the trial operation of the heat source device. Detection information of the detection means 67 is detected, based on the detection information, a factor described below in the temperature adjustment information by the hot water supply temperature adjustment means 36 is set, and the set value is stored in the memory unit 37.

つまり、温度調節情報設定手段38は、給湯器16の燃焼制御手段47を介して前記試運転モードの給湯動作時の給湯熱交出側温度検出手段67の検出情報を検出し、給湯熱交出側温度検出手段67の検出温度が給湯バーナ61の停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、給湯熱交出側温度検出手段67の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、メインの熱交換器17aの出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを、送湯温度調節手段36の温度調節用情報として設定し、メモリ部37に格納する。   In other words, the temperature adjustment information setting means 38 detects the detection information of the hot water supply heat exchange side temperature detection means 67 during the hot water supply operation in the trial operation mode via the combustion control means 47 of the hot water heater 16, and the hot water supply heat supply side The first set capacity based on the time required for the temperature detected by the temperature detecting means 67 to decrease from the hot water supply burner 61 to the temperature lower than the preset hot water temperature and the hot water supply flow rate, and the detected temperature of the hot water supply heat outlet side temperature detecting means 67 Is lower than the hot water set temperature, the second set capacity based on the time required to return to the hot water set temperature and the hot water flow rate, and the outlet temperature of the main heat exchanger 17a is lower than the hot water set temperature. The raised temperature based on the temperature characteristics until it returns to the hot water supply set temperature later is set as temperature adjustment information for the hot water supply temperature adjusting means 36 and stored in the memory unit 37.

一例を挙げると、熱源装置の試運転を行う試運転モードの給湯動作時に、給湯バーナ61の燃焼開始後に該給湯バーナ61の燃焼が停止された以降の給湯熱交出側温度検出手段67による検出温度が図3の特性線aに示される特性の場合、特性線aに示される温度が給湯バーナ61の停止時から給湯設定温度(ここでは40℃)より低下するまでに要する時間t1’と給湯流量とに基づいて求められる容量を補正した値により第1設定容量が例えば1リットルと設定される。なお、この第1設定容量の湯が給湯器16内を流れる時間がt1となる。なお、熱源装置の試運転を行う試運転モードの時に、ガス等の供給等が間に合わずに、給湯動作なしの試運転が行われる場合があるが、このような時には前記の試運転相当運転を用いて第1設定容量や以下に述べる第2設定容量等を設定する。   As an example, during the hot water supply operation in the trial operation mode in which the heat source apparatus performs a trial operation, the temperature detected by the hot water supply heat outlet side temperature detection means 67 after the combustion of the hot water supply burner 61 is stopped after the combustion of the hot water supply burner 61 is started. In the case of the characteristic indicated by the characteristic line a in FIG. 3, the time t1 ′ required for the temperature indicated by the characteristic line a to decrease from the hot water supply burner 61 to a temperature lower than the hot water supply set temperature (40 ° C. in this case), the hot water supply flow rate, The first set volume is set to 1 liter, for example, by a value obtained by correcting the volume obtained based on the above. In addition, the time for which the first set capacity of hot water flows through the water heater 16 is t1. In the trial operation mode for performing the trial operation of the heat source device, there is a case where a trial operation without a hot water supply operation is performed because the supply of gas or the like is not in time. In such a case, the first operation using the trial operation equivalent operation is performed. A set capacity, a second set capacity described below, and the like are set.

また、特性線aに示される温度が給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間t2’と給湯流量とに基づいて求められる容量を補正した値により第2設定容量が例えば6リットルと設定される。なお、この第2設定容量の湯が給湯器16内を流れる時間がt2となる。そして、特性線aに示される温度が給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づいて嵩上げ温度Tuは例えば4℃と設定される。   The second set capacity is, for example, a value obtained by correcting the capacity obtained based on the time t2 ′ required to return to the hot water supply set temperature after the temperature indicated by the characteristic line a is lower than the hot water supply set temperature and the hot water flow rate. Set to 6 liters. In addition, the time when the hot water having the second set capacity flows through the water heater 16 is t2. Then, the raised temperature Tu is set to 4 ° C., for example, based on the temperature characteristics until the temperature indicated by the characteristic line “a” falls below the hot water supply set temperature and then returns to the hot water supply set temperature.

ミキシング流量制御手段35は、タンク側電磁弁13とタンク湯水混合器12と水混合器14を制御することによって、合流部10側に出湯通路9から流れる湯の流量と給水通路8bから合流部10側に流れる水の流量を制御し、送湯温度調節手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。   The mixing flow rate control means 35 controls the tank side solenoid valve 13, the tank hot water / water mixer 12 and the water mixer 14 to thereby flow the hot water flowing from the outlet hot water passage 9 toward the merging portion 10 and the merging portion 10 from the water supply passage 8b. The flow rate of the water flowing to the side is controlled so that the mixed hot water having the set mixing temperature set by the hot water supply temperature adjusting means 36 is formed in the junction 10.

送湯温度調節手段36は、温度調節情報設定手段38によって設定される温度調節情報に基づき、貯湯槽2から出湯される湯と給水通路8bからの湯の混合により形成される混合湯水の設定温度(混合設定温度)を設定し、その設定した混合湯水温度の湯が形成されるようにミキシング流量制御手段35に指令を加えることにより、貯湯槽2側から給湯器16の給湯回路62側に送られる湯の温度を調節するものである。   The hot water supply temperature adjusting means 36 is based on the temperature adjustment information set by the temperature adjustment information setting means 38, and the set temperature of the mixed hot water formed by mixing hot water discharged from the hot water storage tank 2 and hot water from the water supply passage 8b. (Mixing set temperature) is set, and by sending a command to the mixing flow rate control means 35 so that hot water of the set mixed hot water temperature is formed, the hot water is supplied from the hot water storage tank 2 side to the hot water supply circuit 62 side of the hot water heater 16. It adjusts the temperature of the hot water.

本実施例における大きな特徴の一つは、前記コールドスタート時や給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯等の給湯開始時に、送湯温度調節手段36が、貯湯槽2側から給湯器16側に送る湯の温度を以下に述べるような特徴的な温度とすることである。   One of the major features of the present embodiment is that the hot water supply temperature adjusting means 36 is provided with a hot water storage tank at the start of hot water supply such as re-watering when the hot water supply set temperature is changed significantly high after the cold start or after the hot water supply is stopped. The temperature of hot water sent from the second side to the hot water heater 16 side is set to a characteristic temperature as described below.

つまり、本実施例においては、温度調節情報設定手段38によって前記第1設定容量と第2設定容量と嵩上げ温度の値が設定されてメモリ部37に格納されており、送湯温度調節手段36は、これらの値と給水流量センサ29による流量検出値とに基づき、貯湯槽2側から給湯器16の給湯回路62側に送る湯の温度を、給湯開始から該湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも予め定められる嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とする。   That is, in the present embodiment, the first set capacity, the second set capacity, and the raised temperature value are set by the temperature adjustment information setting means 38 and stored in the memory unit 37, and the hot water supply temperature adjustment means 36 is Based on these values and the flow rate detected by the feed water flow sensor 29, the temperature of the hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the hot water heater 16 is the capacity (integrated flow rate) of the hot water from the start of hot water supply. Until the first set capacity is reached, the hot water supply set temperature is set to a temperature that is higher than the hot water supply set temperature in advance until the second set capacity is reached after reaching the first set capacity, and the second set temperature is reached. After reaching the capacity, the hot water supply set temperature is set.

なお、以下に述べる説明において、特に断らない限り、給湯開始時とは、前記のような場合、すなわち、コールドスタート時や給湯停止以降に給湯設定温度が大幅に高く変更されたときの再出湯の給湯開始時のことをいうものであり、給湯停止から短時間後に給湯設定温度の大きな変更無しで再出湯される給湯開始時を除くものである。   In the following description, unless otherwise specified, when hot water supply is started, in the above case, that is, when the hot water supply set temperature is changed significantly higher after cold start or after hot water supply stop, This refers to the time when hot water supply is started, and excludes the time when hot water is started again without a large change in the hot water supply set temperature after a short time after hot water supply is stopped.

つまり、前回の給湯停止からの時間が短い場合で、給湯設定温度を大幅に高くする変更がない再出湯時の給湯開始時には、給湯器16の給湯回路62内の湯や貯湯槽2と給湯器16とを接続する接続管路内の湯が給湯設定温度または給湯設定温度近傍の温度であり、このような場合は、給湯器16の給湯バーナ61の燃焼も行われず、送湯温度調節手段36による貯湯槽2側から給湯器16側に送られる湯の温度設定も前記のように時間に応じて変化させずに、貯湯槽2内の湯温が閾値以上であれば、例えば給湯設定温度の値と同じ値または、それより0.5℃といった温度だけ高めとする。   That is, when the time from the previous hot water supply stop is short and there is no change that significantly increases the hot water supply set temperature, the hot water in the hot water supply circuit 62 of the hot water heater 16 and the hot water storage tank 2 and the hot water heater at the start of reheating The hot water in the connection pipe line connecting to the hot water 16 is a hot water supply set temperature or a temperature in the vicinity of the hot water supply set temperature. In such a case, the hot water supply burner 61 of the hot water heater 16 is not combusted, and the hot water supply temperature adjusting means 36 If the temperature setting of hot water sent from the hot water storage tank 2 side to the hot water heater 16 side is not changed according to time as described above, and the hot water temperature in the hot water storage tank 2 is equal to or higher than a threshold value, for example, The value is the same as the value or higher by 0.5 ° C.

また、送湯温度調節手段36は、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の時には、混合設定温度を給湯設定温度よりも低い適宜の温度に設定して、その低い温度の湯水を給湯器16で追い加熱したり、貯湯槽2側からは湯を送らずに、給水通路8bからの水を給湯器16で加熱したりするといった適宜の制御によって、給湯設定温度の湯が給湯されるようにする。   Further, the hot water supply temperature adjusting means 36 sets the mixing set temperature to an appropriate temperature lower than the hot water supply set temperature when the detected temperature of the hot water tank internal hot water temperature detecting means 5a is equal to or lower than the threshold value, and the hot water at the low temperature. The hot water at the set temperature of the hot water supply is appropriately controlled by heating the hot water at the hot water heater 16 or by heating the water from the water supply passage 8b with the hot water heater 16 without sending hot water from the hot water storage tank 2 side. To be.

ミキシング流量制御手段35は、給水流量センサ29によって給湯通路19を通って給湯される給湯流量が検出されたときにタンク側電磁弁13を開き、タンク湯水混合器12および水混合器14の制御による湯の流量と水の流量との制御により、合流部10で形成される混合湯水の温度が送湯温度調節手段36により設定される混合設定温度となるように制御する。この制御によって形成された混合設定温度の湯は湯水導入通路15を通って給湯器16の給湯回路62に導入される。   The mixing flow rate control means 35 opens the tank side electromagnetic valve 13 when the hot water flow rate to be supplied through the hot water supply passage 19 is detected by the water supply flow rate sensor 29, and controls the tank hot water mixer 12 and the water mixer 14. By controlling the flow rate of the hot water and the flow rate of the water, the temperature of the mixed hot water formed in the merging portion 10 is controlled to be the mixing set temperature set by the hot water supply temperature adjusting means 36. Hot water having a set mixing temperature formed by this control is introduced into the hot water supply circuit 62 of the hot water heater 16 through the hot water introduction passage 15.

給湯器16の制御装置46に設けられている給水温度演算値算出手段71は、給湯温度検出手段76により検出される給湯温度と、給湯熱交換器17の加熱量と、給湯熱交換器17の容量と、給湯熱交換器17側の分岐率とに基づいて、給湯器16に導入される湯水の温度を給水温度演算値(認識値)として演算により求めるものである。この演算の仕方は特に限定されるものではないが、例えば0.5秒といった単位時間毎に移動平均を取って求められる。   The water supply temperature calculation value calculation means 71 provided in the control device 46 of the water heater 16 includes a hot water supply temperature detected by the hot water supply temperature detection means 76, a heating amount of the hot water supply heat exchanger 17, and a hot water supply heat exchanger 17. Based on the capacity and the branching rate on the hot water supply heat exchanger 17 side, the temperature of the hot water introduced into the hot water heater 16 is calculated as a supply water temperature calculation value (recognition value). The method of this calculation is not particularly limited, but it is obtained by taking a moving average every unit time such as 0.5 seconds.

例えばサンプリングタイムにおける給水温度演算値をTin、給湯温度をTout、給湯熱交換器17の容量をQ、給湯熱交換器17の加熱量をH、給湯熱交換器17側の分岐率をBrとし、各サンプリングタイムにおける給水温度Tinを以下の式(2)により算出する。   For example, the water supply temperature calculation value at the sampling time is Tin, the hot water supply temperature is Tout, the capacity of the hot water supply heat exchanger 17 is Q, the heating amount of the hot water supply heat exchanger 17 is H, the branching rate on the hot water supply heat exchanger 17 side is Br, The feed water temperature Tin at each sampling time is calculated by the following equation (2).

Tin=Tout−H/(Q・Br)・・・(2) Tin = Tout−H / (Q ・ Br) (2)

なお、式(2)におけるバイパス比Brは、給湯器16に導入される湯水が給湯熱交換器17側とバイパス通路68側とに分かれて流れる際の、給湯熱交換器17側への分岐比(分岐率)であり(給湯熱交換器17側のバイパス比であり)、給湯熱交換器17側にほぼ100%流れる場合はBr=1となる。また、例えば給湯熱交換器17とバイパス通路68とに1:3の割合で流れる場合はBr=0.25となる。   In addition, the bypass ratio Br in the formula (2) is a branching ratio to the hot water supply heat exchanger 17 side when hot water introduced into the water heater 16 flows separately on the hot water supply heat exchanger 17 side and the bypass passage 68 side. (Branch rate) (the bypass ratio on the hot water supply heat exchanger 17 side), and Br = 1 when flowing almost 100% to the hot water supply heat exchanger 17 side. Further, for example, when flowing in the hot water supply heat exchanger 17 and the bypass passage 68 at a ratio of 1: 3, Br = 0.25.

そして、初回のサンプリングタイムにおいて式(2)で求めた値と2回目のサンプリングタイムにおいて式(2)で求めた値との平均(相加平均)をとって、2回目のサンプリングタイムにおける給水温度演算値(認識値)とする。3回目のサンプリングタイム以降においては、前回のサンプリングタイムにおいて求めた給水温度演算値と今回のサンプリングタイムにおいて式(2)により算出した値との平均(相加平均)をとって、その値を今回の給水温度演算値(認識値)とするものであり、本実施例における給水温度演算値の時系列データの一例が、図2の特性線aに示されている。   And the average (arithmetic mean) of the value calculated | required by Formula (2) in the first sampling time and the value calculated | required by Formula (2) in the 2nd sampling time is taken, and the feed water temperature in the 2nd sampling time Calculated value (recognized value). After the third sampling time, take the average (arithmetic mean) of the water supply temperature calculation value obtained at the previous sampling time and the value calculated by Equation (2) at the current sampling time, and use that value as the current value. An example of the time series data of the water supply temperature calculation value in this embodiment is shown by the characteristic line a in FIG.

なお、給湯停止後の再出湯時における初回のサンプリングタイムにおける値は、式(2)により求められる値の代わりに、例えば給湯停止前の最後のサンプリングタイムで求めた給水温度演算値としてもよいし、例えば給湯停止から再出湯までの時間に応じて最後のサンプリングタイムで求めた給水温度演算値を補正した値としてもよい。   In addition, the value at the first sampling time at the time of re-watering after stopping hot water supply may be, for example, a water supply temperature calculation value obtained at the last sampling time before hot water supply stop, instead of the value obtained by Equation (2). For example, it is good also as a value which correct | amended the water supply temperature calculation value calculated | required by the last sampling time according to the time from hot water supply stop to re-watering.

給水温度演算値算出手段71により求めた給水温度演算値は、逐次、制御用給水温度算出手段72と燃焼制御手段47とに加えられる。   The feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 is sequentially added to the control feed water temperature calculation means 72 and the combustion control means 47.

制御用給水温度算出手段72は、給水温度演算値算出手段71により求められる給水温度演算値と予め定められる温度変化量(温度上昇量や温度下降量)とに基づき、燃焼制御手段47による給湯バーナ61の燃焼制御用の制御用給水温度を求める手段である。なお、前記温度変化量の値はメモリ部73に格納されている。   The control feed water temperature calculation means 72 is based on the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 and a predetermined temperature change amount (temperature increase amount or temperature decrease amount), and a hot water supply burner by the combustion control means 47. 61 is a means for obtaining a control feed water temperature for 61 combustion control. Note that the value of the temperature change amount is stored in the memory unit 73.

この制御用給水温度の算出に際し、制御用給水温度算出手段72は、例えば初回のサンプリングタイムに式(2)により算出した給水温度演算値を初期値とし、その値と2回目のサンプリングタイムにおいて給水温度演算値算出手段71により求めた給水温度演算値とを比較する。そして、初回のサンプリングタイムにおける給水温度演算値よりも2回目の給水温度演算値の方が大きい場合には、予め与えられている温度上昇分(例えば0.5秒ごとに0.1℃)を初回のサンプリングタイムにおける給水温度演算値に加算して2回目のサンプリングタイムにおける制御用給水温度とし、初回のサンプリングタイムにおける給水温度演算値よりも2回目の給水温度演算値の方が小さい場合には、予め与えられている温度上昇分(例えば0.5秒ごとに0.1℃)を初回のサンプリングタイムにおける給水温度演算値から減算して2回目のサンプリングタイムにおける制御用給水温度とする。   In calculating the control water temperature, the control water temperature calculation means 72 uses, for example, a water temperature calculation value calculated by the equation (2) at the first sampling time as an initial value, and supplies water at that value and the second sampling time. The water supply temperature calculation value obtained by the temperature calculation value calculation means 71 is compared. When the second water supply temperature calculation value is larger than the water supply temperature calculation value at the first sampling time, a temperature increase given in advance (for example, 0.1 ° C. every 0.5 seconds) is calculated. When the feed water temperature calculation value at the first sampling time is added to the control feed water temperature at the second sampling time, and the second feed water temperature calculation value is smaller than the feed water temperature calculation value at the first sampling time Then, a temperature increase given in advance (for example, 0.1 ° C. every 0.5 seconds) is subtracted from the feed water temperature calculation value at the first sampling time to obtain the control feed water temperature at the second sampling time.

その後、制御用給水温度算出手段72は、前記サンプリングタイム毎に、給水温度演算値算出手段71により求めた前回の給水温度演算値と今回の給水温度演算値とを比較し、前回の給水温度演算値よりも今回の給水温度演算値の方が大きい場合には、前記温度上昇分を前回の制御用給水温度に加算して今回の制御用給水温度とし、前回の給水温度演算値よりも今回の給水温度演算値の方が小さい場合には、前回の制御用給水温度から前記温度下降分を減算して今回の制御用給水温度とする。図2の特性線bには、本実施例における制御用給水温度の時系列データの一例が示されている。制御用給水温度算出手段72が求めた制御用給水温度の値は逐次、燃焼制御手段47に加えられる。   Thereafter, the control feed water temperature calculation means 72 compares the previous feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 with the current feed water temperature calculation value at each sampling time, and calculates the previous feed water temperature calculation. If the current water supply temperature calculation value is larger than the current value, the temperature increase is added to the previous control water supply temperature to obtain the current control water temperature, which is greater than the previous water supply temperature calculation value. When the calculated feed water temperature is smaller, the temperature drop is subtracted from the previous control feed water temperature to obtain the current control feed water temperature. The characteristic line b in FIG. 2 shows an example of time-series data of the control feed water temperature in this embodiment. The value of the control feed water temperature obtained by the control feed water temperature calculation means 72 is sequentially added to the combustion control means 47.

なお、給湯停止後の再出湯時における初回のサンプリングタイムにおける値は、式(2)により求められる値の代わりに、例えば給湯停止前の最後のサンプリングタイムで求めた制御用給水温度としてもよいし、例えば給湯停止から再出湯までの時間に応じて最後のサンプリングタイムで求めた制御用給水温度を補正した値としてもよい。   Note that the value at the first sampling time at the time of re-watering after the hot water supply stop may be, for example, the control water supply temperature obtained at the last sampling time before the hot water supply stop, instead of the value obtained by the equation (2). For example, it may be a value obtained by correcting the control feed water temperature obtained at the last sampling time in accordance with the time from hot water supply stop to re-draining.

燃焼制御手段47は、給湯バーナ61の燃焼を開始させた後には、制御用給水温度算出手段72により求められる制御用給水温度に基づいて給湯バーナ61のフィードフォワード燃焼制御を行うようにしており、このように、制御用給水温度を用いることにより的確なフィードフォワード燃焼制御を行うことができる。また、本実施例においては、給湯器16は入水温度(給水温度)の検出センサを設けないことによりコストダウンを図ることができている。   After starting combustion of the hot water supply burner 61, the combustion control means 47 performs feed forward combustion control of the hot water supply burner 61 based on the control water temperature calculated by the control water temperature calculation means 72. Thus, accurate feedforward combustion control can be performed by using the control feed water temperature. Further, in the present embodiment, the water heater 16 can reduce the cost by not providing a detection sensor for the incoming water temperature (water supply temperature).

なお、制御用給水温度と給湯設定温度との差が予め定められる燃焼不要温度範囲(例えば3℃)以下の場合には、給湯が開始されても前記の如く給湯バーナ61の燃焼を行わない。また、給湯開始以降に制御用給水温度と給湯設定温度との差が前記燃焼不要温度範囲以下となった場合には、それまでの間に給湯バーナ61を燃焼していたときには給湯バーナ61の燃焼を停止する。   When the difference between the control water supply temperature and the hot water supply set temperature is equal to or lower than a predetermined temperature range (for example, 3 ° C.) that is not required for combustion, the hot water supply burner 61 is not combusted as described above even when hot water supply is started. In addition, when the difference between the control water supply temperature and the hot water supply set temperature is equal to or less than the combustion unnecessary temperature range after the start of hot water supply, the hot water supply burner 61 is combusted when the hot water supply burner 61 has been combusted until then. To stop.

また、タンクユニット4側の制御装置33では、前記の如く、給水流量センサ29によって給湯通路19を通って給湯される給湯流量が検出されたときに、ミキシング流量制御手段35がタンク側電磁弁13を開き、貯湯槽内湯水温検出手段5aの検出温度が前記閾値よりも高い温度のときには給湯設定温度(または給湯設定温度より0.5℃といった温度だけ高めの温度)の湯を合流部10で形成して給湯器16側に送る。そのため、この湯を給湯器16側で追い加熱する必要はないが、この湯が給湯器16側に到達するまでには時間がかかり、その間は給湯器16の給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する必要があるので、前記の如く、給湯バーナ61の燃焼により給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する。   Further, in the control device 33 on the tank unit 4 side, as described above, when the hot water flow rate to be supplied through the hot water supply passage 19 is detected by the water supply flow rate sensor 29, the mixing flow rate control means 35 is connected to the tank side electromagnetic valve 13. When the detected temperature of the hot water temperature detecting means 5a in the hot water storage tank is higher than the threshold value, hot water having a hot water supply set temperature (or a temperature higher by 0.5 ° C. than the hot water set temperature) is formed in the junction 10. Then send it to the water heater 16 side. Therefore, it is not necessary to additionally heat the hot water on the hot water heater 16 side, but it takes time until the hot water reaches the hot water heater 16 side, and during that time, the passage in the hot water supply circuit 62 of the hot water heater 16 and the introduction of hot water are introduced. Since the water in the passage 15 needs to be heated by the hot water supply heat exchanger 17, the water in the hot water supply circuit 62 and the water in the hot water introduction passage 15 are heated by the hot water supply heat exchanger 17 by the combustion of the hot water supply burner 61 as described above. Heat.

そして、燃焼制御手段47は、給湯バーナ61の燃焼制御中に、給水温度演算値算出手段71により求められる前記給水温度演算値をモニタし、該給水温度演算値の温度上昇に基づき、主熱源である貯湯槽2から給湯設定温度の湯が給湯器16に到達して導入されたと判断されたときに、給湯バーナ61の燃焼を停止する。この給湯バーナ61の燃焼停止により、給湯設定温度の湯が給湯回路62に到達した以降に余分な追い加熱が行われることを防ぐ。   The combustion control means 47 monitors the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 during the combustion control of the hot water supply burner 61, and based on the temperature rise of the feed water temperature calculation value, When it is determined that hot water at a hot water supply set temperature has reached the hot water heater 16 and has been introduced from a hot water tank 2, the combustion of the hot water burner 61 is stopped. By stopping the combustion of the hot water supply burner 61, it is possible to prevent excessive additional heating from being performed after the hot water at the hot water supply set temperature reaches the hot water supply circuit 62.

具体的には、燃焼制御手段47は、給水温度演算値算出手段71により求めた前記給水温度演算値Tbから制御用給水温度算出手段72により求めた前記制御用給水温度Tcを差し引いた温度差(Tb−Tc)が、予め定められる燃焼停止基準温度差TinDiffに達したとき又は超えたときに、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断するものであり、本実施例において、燃焼停止基準温度差TinDiffは、前記式(1)により求められるものである。なお、失火係数は、予め実験等により求めてメモリ部73に格納されており、一例を挙げると、失火係数K=5である。   Specifically, the combustion control unit 47 subtracts the control feed water temperature Tc obtained by the control feed water temperature calculation unit 72 from the feed water temperature computation value Tb obtained by the feed water temperature computation value calculation unit 71 ( When Tb−Tc) reaches or exceeds a predetermined combustion stop reference temperature difference TinDiff, it is determined that hot water at a hot water supply set temperature has been introduced from the hot water storage tank 2 into the water heater 16. In the example, the combustion stop reference temperature difference TinDiff is obtained by the equation (1). Note that the misfire coefficient is obtained in advance through experiments or the like and stored in the memory unit 73. For example, the misfire coefficient K = 5.

例えば、図2において、給湯設定温度は40℃であり、失火係数K=5のときには、燃焼停止基準温度差TinDiffは、式(1)より、TinDiff=(40−Tc)÷5 となり、制御用給水温度であるTcが22℃のときには燃焼停止基準温度差TinDiffは3.6℃、制御用給水温度Tcが20℃のときには燃焼停止基準温度差TinDiffは4℃、制御用給水温度Tcが18℃のときには燃焼停止基準温度差TinDiffは4.4℃になり変化するが、この例では、制御用給水温度Tcが20℃のときに、給水温度演算値から制御用給水温度を差し引いた温度差が4℃となり、Tc=20℃のときの燃焼停止基準温度差TinDiff=4℃と一致したので、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断し、給湯バーナ61の燃焼を停止している。   For example, in FIG. 2, when the hot water supply set temperature is 40 ° C. and the misfire coefficient K = 5, the combustion stop reference temperature difference TinDiff is TinDiff = (40−Tc) ÷ 5 from the equation (1). When the feed water temperature Tc is 22 ° C, the combustion stop reference temperature difference TinDiff is 3.6 ° C. When the control feed water temperature Tc is 20 ° C, the combustion stop reference temperature difference TinDiff is 4 ° C and the control feed water temperature Tc is 18 ° C. In this example, the combustion stop reference temperature difference TinDiff changes to 4.4 ° C., but in this example, when the control feed water temperature Tc is 20 ° C., the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value is Since it became 4 ° C. and coincided with the combustion stop reference temperature difference TinDiff = 4 ° C. when Tc = 20 ° C., it was determined that hot water at the hot water supply set temperature was introduced from the hot water tank 2 into the hot water heater 16, and the hot water burner 61 burned. Has stopped.

なお、図2には、実験用に検出した給水温度実測値が特性線dに示されており、前記給湯バーナ61の燃焼停止タイミングと実際の給水温度が給湯設定温度である40℃に到達したタイミングとが一致している。つまり、前記給湯バーナ61の燃焼停止タイミングは適切であることが立証されており、また、このとき、特性線cで示されている給湯温度のオーバーシュートも2℃程度であり、利用者の利用において許容できる範囲であることが分かった。   In FIG. 2, the measured value of the feed water temperature detected for the experiment is shown in the characteristic line d, and the combustion stop timing of the hot water supply burner 61 and the actual feed water temperature have reached 40 ° C., which is the preset hot water temperature. The timing matches. That is, it is proved that the combustion stop timing of the hot water supply burner 61 is appropriate, and at this time, the overshoot of the hot water supply temperature indicated by the characteristic line c is also about 2 ° C. It was found to be an acceptable range.

また、本実施例では、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断するための、給湯バーナ61の燃焼停止基準となる燃焼基準温度差を前記の如く給湯設定温度に対応させて変化させることにより、以下に述べるように、給湯バーナ61の停止タイミングをより一層適切に決定することができる。   Further, in the present embodiment, the difference in the combustion reference temperature, which is the reference for stopping the combustion of the hot water supply burner 61, for determining that the hot water at the hot water supply temperature from the hot water storage tank 2 has been introduced into the hot water heater 16 is set to the hot water supply set temperature as described above. By changing correspondingly, the stop timing of the hot water supply burner 61 can be determined more appropriately as described below.

例えば給水温度演算値の上昇幅は、実際の給水温度と給湯設定温度との温度差に応じて異なるものであり、そのため、給水温度演算値と制御用給水温度との差は給湯設定温度によっても変動する。すなわち、例えば実際の給水温度が一定の場合に、給湯設定温度が高く設定されて給水温度と給湯設定温度との温度差が大きければ給水温度演算値の上昇幅が大きくなり、給水温度演算値と制御用給水温度との差が大きくなる。ここで燃焼停止基準温度差を小さく設定すると、給湯バーナ61の停止タイミングが早めに判断されることになり、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達する前に給湯バーナ61を停止してしまうといった誤動作が生じる可能性があるが、前記の如く、燃焼停止基準温度差を給湯設定温度に応じた値とすることにより給湯バーナ61の停止タイミングが早めに判断されることを防止できる。   For example, the range of increase in the water supply temperature calculation value varies depending on the temperature difference between the actual water supply temperature and the hot water supply set temperature.Therefore, the difference between the water supply temperature calculation value and the control water supply temperature also depends on the hot water supply set temperature. fluctuate. That is, for example, when the actual water supply temperature is constant, if the hot water supply set temperature is set high and the temperature difference between the water supply temperature and the hot water supply set temperature is large, the increase range of the water supply temperature calculation value increases, and the water supply temperature calculation value The difference from the control water temperature increases. If the combustion stop reference temperature difference is set to be small, the stop timing of the hot water supply burner 61 is determined earlier, and the hot water supply burner is reached before hot water at the hot water supply set temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side. However, as described above, the stop timing of the hot water supply burner 61 is determined earlier by setting the combustion stop reference temperature difference to a value corresponding to the set hot water temperature. Can be prevented.

すなわち、前記式(1)から明らかなように、給湯設定温度が高いときには、燃焼停止基準温度差TinDiffが大きく設定されるために、その大きく設定される燃焼停止基準温度差以上に給水温度演算値と制御用給水温度との差が大きくならなければ貯湯槽2側から給湯回路62側に給湯設定温度(給湯設定温度の近傍温度を含む)の湯が到達したと判断されないため、この給湯設定温度の湯が到達するタイミングを適切に判断して適切なタイミングで給湯バーナ61を停止することができる。   That is, as apparent from the equation (1), when the hot water supply set temperature is high, the combustion stop reference temperature difference TinDiff is set to be large. If the difference between the hot water temperature and the control water temperature does not increase, it is not determined that the hot water at the hot water set temperature (including the temperature close to the hot water set temperature) has reached the hot water supply circuit 62 side from the hot water tank 2 side. The hot water supply burner 61 can be stopped at an appropriate timing by appropriately determining the timing at which the hot water reaches.

また、その逆に、例えば実際の給水温度が一定の場合に、給湯設定温度が低く設定されて実際の給水温度と給湯設定温度との温度差が小さければ給水温度演算値の上昇幅が小さくなり、給水温度演算値と制御用給水温度との差が小さくなる。ここで燃焼停止基準温度差を大きく設定すると給湯バーナ61の停止タイミングの判断が遅くなり、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達しても給湯バーナ61の燃焼を継続してしまうことによりオーバーシュートが大きく発生してしまう可能性があるが、前記の如く、前記式(1)から明らかなように、給湯設定温度が低いときには、燃焼停止基準温度差が小さく設定されるために、給水温度演算値と制御用給水温度との差が、その小さく設定される燃焼停止基準温度差以上になったら貯湯槽2側から給湯回路62側に給湯設定温度(給湯設定温度の近傍温度を含む)の湯が到達したと判断され、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達するタイミングを適切に判断して適切なタイミングで給湯バーナ61を停止することができる。   Conversely, for example, when the actual feed water temperature is constant, if the hot water set temperature is set low and the temperature difference between the actual feed water temperature and the hot water set temperature is small, the increase in the feed water temperature calculation value will be small. The difference between the feed water temperature calculation value and the control feed water temperature becomes small. Here, if the combustion stop reference temperature difference is set large, the judgment of the stop timing of the hot water supply burner 61 is delayed, and the hot water supply burner 61 continues to burn even when hot water at the hot water supply set temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side. However, as described above, when the hot water supply set temperature is low, the combustion stop reference temperature difference is set to a small value as described above. Therefore, when the difference between the calculated value of the feed water temperature and the control feed water temperature becomes equal to or larger than the small combustion stop reference temperature difference, the hot water set temperature (the hot water set temperature) It is determined that the hot water at the hot water supply temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side, and the hot water supply burner is appropriately determined. It is possible to stop the 1.

例えば再出湯の場合に、前回給湯時の給湯設定温度が40℃であったとし、今回給湯時の給湯設定温度を60℃とする場合を考える。この場合、前回の給湯停止から再出湯までの時間が短い場合には、貯湯槽2側と給湯器16との接続配管内の湯の温度は40℃近傍の温度となっており、その40℃の湯が給湯器16の給湯回路62に導入されるが、その時点では給湯バーナ61の燃焼は行われている。   For example, in the case of re-watering, let us consider a case where the hot water supply set temperature at the previous hot water supply is 40 ° C. and the hot water supply set temperature at the current hot water supply is 60 ° C. In this case, when the time from the previous hot water supply stop to the re-heated hot water is short, the temperature of the hot water in the connecting pipe between the hot water tank 2 side and the hot water heater 16 is around 40 ° C., and 40 ° C. The hot water is introduced into the hot water supply circuit 62 of the hot water heater 16, but at that time, the hot water supply burner 61 is combusted.

そして、給湯設定温度を40℃から60℃に変更したことによって、導入される湯の温度である実際の給水温度と給湯設定温度との温度差が大きくなることから給水温度演算値の上昇幅が大きくなり、また、燃焼停止基準温度差も給湯設定温度に対応させて大きく設定されるため、給湯設定温度の変化に応じて大きくなる給水温度演算値の上昇幅と給湯設定温度の変化に応じて大きく設定される燃焼停止基準温度差との対応が図れることから、貯湯槽2側から送られてくる60℃の湯が給湯器16の給湯回路62に導入されたときに60℃の湯の到達を適切に判断でき、給湯バーナ61の停止タイミングを適切に決定することができる。   And by changing the hot water supply set temperature from 40 ° C. to 60 ° C., the temperature difference between the actual hot water temperature and the hot water set temperature, which is the temperature of the hot water to be introduced, increases. In addition, the combustion stop reference temperature difference is set to a large value corresponding to the hot water supply set temperature, so that the increase in the water supply temperature calculation value that increases according to the change in the hot water set temperature and the change in the hot water set temperature Since correspondence with a large combustion stop reference temperature difference can be achieved, when hot water of 60 ° C. sent from the hot water storage tank 2 side is introduced into the hot water supply circuit 62 of the hot water heater 16, the arrival of hot water of 60 ° C. Can be appropriately determined, and the stop timing of the hot water supply burner 61 can be appropriately determined.

また、熱源装置の初回運転時や、前回給湯後の再出湯までの時間が長い場合等、貯湯槽2側と給湯器16側とを接続する接続配管内の湯が冷えていて給湯器16に導入される給水温度が低い場合の給湯時(コールドスタート時)等、実際の給水温度(入水温度)が低い場合には、前記制御用給水温度も低い値となり、また、前記式(1)から明らかなように、燃焼停止基準温度差が大きく設定されることから、燃焼停止基準温度差が小さい場合に比べると給湯バーナ61の燃焼停止のタイミングが遅めとなる。言い換えると、給湯バーナ61の燃焼停止タイミングの判断が慎重に行われて貯湯槽2側から給湯設定温度の湯が確実に届いたときに給湯バーナ61の燃焼停止のタイミングが判断され、適切なタイミングで給湯バーナ61の燃焼停止が行われる。   In addition, when the heat source device is operated for the first time, or when the time until the re-heating of the hot water after the previous hot water supply is long, the hot water in the connecting pipe connecting the hot water storage tank 2 side and the hot water heater 16 side is cooled down, and the hot water heater 16 When the actual feed water temperature (incoming water temperature) is low, such as during hot water supply when the feed water temperature is low (during cold start), the control feed water temperature also becomes a low value, and from the equation (1) Obviously, since the combustion stop reference temperature difference is set large, the combustion stop timing of the hot water supply burner 61 is delayed as compared with the case where the combustion stop reference temperature difference is small. In other words, when the combustion stop timing of the hot water supply burner 61 is carefully determined and hot water of the hot water supply set temperature reaches from the hot water storage tank 2 side reliably, the combustion stop timing of the hot water supply burner 61 is determined and an appropriate timing is reached. Thus, the combustion of the hot water supply burner 61 is stopped.

一方、実際の給水温度(入水温度)が高い場合には、前記給水温度演算値も高い値となって制御用給水温度も高い値となり、また、前記式(1)から明らかなように、燃焼停止基準温度差が小さく設定されることから、燃焼停止基準温度差が大きい場合に比べると給湯バーナ61の燃焼停止のタイミングが早めとなる。つまり、入水温度が高い場合には給湯バーナ61の燃焼停止タイミングの判断が遅くなった場合に生じるオーバーシュートが大きくなるため、その大きなオーバーシュートが発生しないような適切なタイミングで給湯バーナ61の燃焼停止が行われる。   On the other hand, when the actual feed water temperature (inlet water temperature) is high, the feed water temperature calculation value is also high and the control feed water temperature is also high, and as is clear from the equation (1), combustion Since the stop reference temperature difference is set to be small, the combustion stop timing of the hot water supply burner 61 is earlier than in the case where the combustion stop reference temperature difference is large. That is, when the incoming water temperature is high, the overshoot that occurs when the determination of the combustion stop timing of the hot water supply burner 61 is delayed increases, so the hot water supply burner 61 is combusted at an appropriate timing so that the large overshoot does not occur. A stop is made.

さらに、熱源装置の配置されている外気温が低いと給水温度の温度変動が大きく、図9(a)の特性線aに示されるように、給水温度演算値の変動も大きい(同図のCに示す温度の落ち込みが大きい)。また、外気温が低いときには、例えば同図の特性線bに示されるように、制御用給水温度も低めとなって燃焼停止基準温度差が大きめに設定されることになり、仮に燃焼停止基準温度差を小さめとした場合のように給湯設定温度の湯が給湯器16に到達する前に給湯バーナ61の燃焼を停止してしまうことを防ぐことができ、給湯温度の大きなアンダーシュートが発生することを防止できるため、利用者が不快な思いをすることを防止する。   Further, when the outside air temperature at which the heat source device is arranged is low, the temperature fluctuation of the feed water temperature is large, and the fluctuation of the feed water temperature calculation value is also large as indicated by the characteristic line a in FIG. 9A (C in the figure). The drop in temperature shown in is large.) Further, when the outside air temperature is low, for example, as shown by the characteristic line b in the figure, the control feed water temperature becomes lower and the combustion stop reference temperature difference is set to be larger, so that the combustion stop reference temperature is temporarily set. It is possible to prevent the hot water supply burner 61 from being stopped before the hot water at the hot water supply set temperature reaches the water heater 16, as in the case where the difference is made small, and an undershoot with a large hot water temperature occurs. Can prevent the user from feeling uncomfortable.

一方、図9(b)に示されるように、外気温が高いときには給水温度の温度変動も小さいため、特性線aに示されるような給水温度演算値の変動も小さく(同図のCに示す温度の落ち込みが小さく)、同図の特性線bに示されるように、制御用給水温度も高めとなる。そして、この場合は燃焼停止基準温度差が小さめに設定されることから、給湯バーナ61の燃焼停止タイミングが遅めに判断されることはなく、給湯温度の大きなオーバーシュートが発生することが抑制される。なお、入水温度が高めのときには、燃焼停止基準温度差を小さくしたことによって、たとえ誤って早めに消火したとしても給湯温度が急激に下がることはない。   On the other hand, as shown in FIG. 9B, since the temperature fluctuation of the feed water temperature is small when the outside air temperature is high, the fluctuation of the feed water temperature calculation value as shown by the characteristic line a is also small (shown in C of FIG. 9). The temperature drop is small), and as shown by the characteristic line b in FIG. In this case, since the combustion stop reference temperature difference is set to be small, the combustion stop timing of the hot water supply burner 61 is not judged late, and the occurrence of a large overshoot of the hot water supply temperature is suppressed. The When the incoming water temperature is high, the hot water supply temperature does not drop rapidly even if the fire is accidentally extinguished by reducing the combustion stop reference temperature difference.

以上のように、本実施例では、給湯設定温度が高い場合でも低い場合でも、また、実際の給水温度が低い場合でも高い場合でも、外気温が低い場合でも高い場合でも、いずれの場合も、給湯設定温度の湯が給湯器16の給湯回路62に到達するタイミングを適切に判断して給湯バーナ61の燃焼停止を適切なタイミングで行うことができる。   As described above, in this embodiment, whether or not the hot water supply set temperature is high or low, whether the actual water supply temperature is low or high, whether the outside air temperature is low or high, in any case, It is possible to appropriately determine the timing at which hot water at the hot water supply set temperature reaches the hot water supply circuit 62 of the water heater 16, and to stop the combustion of the hot water supply burner 61 at an appropriate timing.

なお、本実施例では、万が一、給湯バーナ61の燃焼停止が誤ったタイミングで行われてしまう場合のことも考慮して制御構成を形成しており、給湯バーナ燃焼再開指令手段75がその役割を果たす。つまり、給湯バーナ燃焼再開指令手段75は、燃焼制御手段47の制御情報と給湯温度検出手段76の検出温度とを取り込み、給湯バーナ61を停止した直後の給湯温度が給湯バーナ61の停止直前の給湯温度よりも低下したときには、給湯バーナ61の燃焼停止が誤って早く行われてしまったと判断し、燃焼制御手段47により給湯バーナ61の燃焼を再開させる。   In the present embodiment, the control configuration is formed in consideration of the case where the combustion stop of the hot water supply burner 61 is performed at an incorrect timing, and the hot water supply burner combustion restart command means 75 plays the role. Fulfill. That is, the hot water supply burner combustion restart command means 75 takes in the control information of the combustion control means 47 and the detected temperature of the hot water supply temperature detection means 76, and the hot water temperature immediately after the hot water supply burner 61 is stopped is the hot water supply immediately before the hot water supply burner 61 is stopped. When the temperature falls below the temperature, it is determined that the combustion stop of the hot water supply burner 61 has been mistakenly performed early, and the combustion control means 47 restarts the combustion of the hot water supply burner 61.

通常、給湯バーナ61を停止しても、その直後の給湯温度は給湯バーナ61の停止直前の給湯温度よりも高くなるものであるので、給湯バーナ61を停止した直後の給湯温度が給湯バーナ61の停止直前の給湯設定温度よりも前記給湯再開基準温度(例えば3℃)以上低下したときには貯湯槽2側から給湯設定温度の湯が給湯器16に到達して導入されるよりも早く給湯バーナ61の燃焼を停止してしまったと考えられるため、このようなときに給湯バーナ燃焼再開指令手段75の指令によって燃焼制御手段47が給湯バーナ61の燃焼を再開させることにより、給湯温度の安定化を図ることができる。   Normally, even if the hot water supply burner 61 is stopped, the hot water supply temperature immediately after the hot water supply burner 61 is higher than the hot water supply temperature immediately before the hot water supply burner 61 is stopped. When the hot water supply resumption reference temperature (for example, 3 ° C.) is lower than the hot water supply resumption reference temperature just before the stop, the hot water supply burner 61 is turned on earlier than hot water at the hot water supply set temperature reaches the water heater 16 and is introduced from the hot water storage tank 2 side. Since it is considered that the combustion has been stopped, the combustion control means 47 restarts the combustion of the hot water supply burner 61 in response to a command from the hot water supply burner combustion restart command means 75 at this time, thereby stabilizing the hot water temperature. Can do.

ところで、本実施例において、給湯器16の給湯熱交換器17は、メインの熱交換器17aと潜熱回収用熱交換器17bとを有しており、貯湯槽2側から給湯器16側に送られる給湯設定温度の湯が給湯器16の給湯回路62に導入されたと判断されて給湯バーナ61の燃焼停止が行われたとき、潜熱回収用熱交換器17b内の湯は、給湯バーナ61の燃焼中に給湯バーナ61の燃焼ガスの潜熱を吸収することにより多少は加熱されているものの、給湯設定温度よりはかなり低い温度である。   By the way, in the present embodiment, the hot water supply heat exchanger 17 of the hot water heater 16 has a main heat exchanger 17a and a latent heat recovery heat exchanger 17b, and is sent from the hot water tank 2 side to the hot water heater 16 side. When the hot water supply burner 61 is determined to have been introduced into the hot water supply circuit 62 of the hot water heater 16 and the hot water supply burner 61 is stopped from burning, the hot water in the latent heat recovery heat exchanger 17 b is burned by the hot water supply burner 61. Although it is heated somewhat by absorbing the latent heat of the combustion gas in the hot water supply burner 61, it is considerably lower than the hot water supply set temperature.

そのため、前記開発中の熱源装置潜熱回収用熱交換器17bを備えた給湯器16を適用した場合に、潜熱回収用熱交換器17b内の湯が給湯バーナ61の燃焼停止後に給湯されることにより生じる給湯温度のアンダーシュートを防ぐために、本実施例では、前記の如く送湯温度調節手段36による特徴的な温度調節を行うようにしている。以下、この特徴的な温度調節に伴う、給湯バーナ61の燃焼停止後の給湯温度の安定化について、図3〜図5を参照しながら説明する。   Therefore, when the water heater 16 provided with the heat source device latent heat recovery heat exchanger 17 b under development is applied, the hot water in the latent heat recovery heat exchanger 17 b is supplied after the combustion of the hot water burner 61 is stopped. In this embodiment, the characteristic temperature adjustment by the hot water supply temperature adjusting means 36 is performed as described above in order to prevent an undershoot of the hot water supply temperature that occurs. Hereinafter, stabilization of the hot water supply temperature after the combustion of the hot water supply burner 61 accompanying this characteristic temperature adjustment will be described with reference to FIGS.

なお、図3〜図5は、給湯設定温度を40℃とし、給湯流量を8リットル/分として、給湯開始時に給湯バーナ61を燃焼させた後、貯湯槽2からの給湯設定温度の湯が給湯回路62の湯水導入側に到達したと判断されて給湯バーナ61を燃焼停止させた後の温度変化等について求めた実験データおよび、その解析データを示す。   3 to 5, the hot water supply temperature is set to 40 ° C., the hot water supply flow rate is set to 8 liters / minute, the hot water supply burner 61 is burned at the start of hot water supply, and hot water of the hot water supply set temperature from the hot water tank 2 is supplied. Experimental data obtained for the temperature change after it is determined that the hot water supply burner 61 is stopped from combustion after it is determined that the hot water supply side of the circuit 62 has been reached, and analysis data thereof are shown.

図3の特性線aは、前記の如く、給湯熱交出側温度検出手段67の検出温度を示し、特性線bは貯湯槽2から給湯器16に導入される湯の温度、特性線cは本実施例の熱源装置の給湯温度(給湯器16を通って給湯される湯の給湯温度)をそれぞれ示しており、特性線dは給湯流量を示している。なお、給湯バーナ61の燃焼中も給湯流量は8リットル/分としているが、図3の特性線dは貯湯槽2から送られた湯の給湯流量(給湯回路62に導入される湯の流量)を示しており、貯湯槽2からの湯が到達する前の給湯バーナ61燃焼中の給湯流量は0と記している。給湯流量が0から立ち上がっている時点が貯湯槽2から給湯設定温度で送られた湯が給湯器16に導入されたタイミングを示す。   The characteristic line a in FIG. 3 indicates the detected temperature of the hot water supply heat outlet side temperature detecting means 67 as described above, the characteristic line b is the temperature of hot water introduced from the hot water tank 2 to the hot water heater 16, and the characteristic line c is The hot water supply temperature of the heat source device of this embodiment (the hot water supply temperature of hot water supplied through the water heater 16) is shown, and the characteristic line d shows the hot water supply flow rate. While the hot water supply burner 61 is burning, the hot water supply flow rate is 8 liters / minute, but the characteristic line d in FIG. 3 is the hot water supply flow rate of hot water sent from the hot water tank 2 (the flow rate of hot water introduced into the hot water supply circuit 62). The hot water flow rate during combustion of the hot water supply burner 61 before the hot water from the hot water storage tank 2 arrives is indicated as 0. The point in time when the hot water flow rate rises from 0 indicates the timing at which hot water sent from the hot water storage tank 2 at the hot water set temperature is introduced into the water heater 16.

また、図4において、特性線aは給湯温度を示しており、図4(b)の特性線bおよび図4(a)の領域bはバイパス通路68の入側における熱量、図4(b)の特性線cおよび図4(a)の領域cは給湯バーナ61の燃焼停止時に給湯熱交換器17(メインの熱交換器17aおよび潜熱回収用熱交換器17b)内にあった湯が給湯バーナ61の燃焼停止後に、メインの熱交換器17aと潜熱回収用熱交換器17bの順に給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量、図4(b)の特性線dおよび図4(a)の領域dは、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量をそれぞれ示している。   Further, in FIG. 4, a characteristic line a indicates a hot water supply temperature, a characteristic line b in FIG. 4B and a region b in FIG. 4A indicate the amount of heat on the inlet side of the bypass passage 68, and FIG. The characteristic line c of FIG. 4 and the area c of FIG. 4A indicate that the hot water in the hot water supply heat exchanger 17 (the main heat exchanger 17a and the latent heat recovery heat exchanger 17b) when the hot water supply burner 61 stops burning is the hot water supply burner. After the combustion of 61 is stopped, the amount of heat on the outlet side of the hot water supply heat exchanger 17 is derived from the hot water supply heat exchanger 17 in the order of the main heat exchanger 17a and the latent heat recovery heat exchanger 17b, as shown in FIG. Characteristic line d and area d in FIG. 4A indicate that hot water from hot water storage tank 2 introduced into hot water supply heat exchanger 17 after combustion of hot water supply burner 61 stops passing hot water supply heat exchanger 17 and hot water supply heat exchanger 17. The amount of heat on the outlet side of the hot water supply heat exchanger 17 derived from Each shows.

図4(b)の特性線b〜cは、各熱量を個別に示し、図4(a)においては、その熱量を領域として加算した図を示しており、その詳細については後述するが、いずれも、熱量を示す一般的な単位ではなく湯の温度に相当する値として計算したものであり、図4(a)、(b)のAで示した点が給湯設定温度に対応する。   Characteristic lines b to c in FIG. 4 (b) individually show each amount of heat, and FIG. 4 (a) shows a diagram in which the amount of heat is added as a region, the details of which will be described later. Also, it is calculated as a value corresponding to the temperature of hot water, not a general unit indicating the amount of heat, and the point indicated by A in FIGS. 4A and 4B corresponds to the hot water supply set temperature.

本実施例においては、前記の如く給湯開始時に給湯バーナ61を燃焼させた後、貯湯槽2からの給湯設定温度の湯が給湯回路62の湯水導入側に到達したと判断されて給湯バーナ61の燃焼を停止するが、この時、バイパス通路68内の湯水は加熱されていない低めの温度の湯水である。一方、給湯熱交換器17のメインの熱交換器17aにおいては、出口側の湯の温度が例えばほぼ給湯設定温度であり、入口側の温度は出口側の温度よりもやや低めの温度となっており、潜熱回収用熱交換器17b内の湯の温度は給湯設定温度よりもかなり低い温度となっている。   In this embodiment, after the hot water supply burner 61 is combusted at the start of hot water supply as described above, it is determined that the hot water at the hot water supply set temperature from the hot water storage tank 2 has reached the hot water introduction side of the hot water supply circuit 62. Although the combustion is stopped, at this time, the hot water in the bypass passage 68 is not heated and has a low temperature. On the other hand, in the main heat exchanger 17a of the hot water supply heat exchanger 17, the temperature of the hot water on the outlet side is, for example, approximately the hot water supply set temperature, and the temperature on the inlet side is slightly lower than the temperature on the outlet side. Thus, the temperature of the hot water in the latent heat recovery heat exchanger 17b is considerably lower than the hot water supply set temperature.

また、給湯バーナ61の燃焼停止直後には給湯熱交換器17のメインの熱交換器17aは熱いままであり、給湯バーナ61の燃焼停止時に、給湯回路62に導入される湯水のバイパス通路68側への分岐割合(バイパス比に対応)を増やすと、熱い状態のメインの熱交換器17aを通る湯の流量が給湯バーナ61の燃焼中より小さくなることから、図3の特性線aに示されるように、メインの熱交換器17aから導出される湯の温度が給湯バーナ61の燃焼停止後には給湯設定温度よりも高くなり、その高めの温度の湯がメインの熱交換器17aを通って導出され、その後、メインの熱交換器17aから導出される湯の温度は、給湯バーナ61の燃焼停止直後に比べて少しずつ低下していく。   Further, the main heat exchanger 17a of the hot water supply heat exchanger 17 remains hot immediately after the hot water supply burner 61 stops burning, and the hot water bypass passage 68 side introduced into the hot water supply circuit 62 when the hot water supply burner 61 stops burning. When the branching ratio (corresponding to the bypass ratio) is increased, the flow rate of hot water passing through the hot main heat exchanger 17a becomes smaller than that during combustion of the hot water supply burner 61, so that it is shown by the characteristic line a in FIG. As described above, the temperature of the hot water led out from the main heat exchanger 17a becomes higher than the hot water set temperature after the hot water supply burner 61 stops burning, and the hot water at the higher temperature is led out through the main heat exchanger 17a. Thereafter, the temperature of the hot water led out from the main heat exchanger 17a gradually decreases as compared with immediately after the hot water supply burner 61 stops combustion.

その後、給湯バーナ61の燃焼停止時にメインの熱交換器17aが保有していた水量の湯が全て導出されると、給湯バーナ61の燃焼停止時に潜熱回収用熱交換器17b内にあった湯が導出されることから、湯の温度は給湯設定温度よりもかなり低くなる。図4(b)の特性線cは、このように、給湯バーナ61の燃焼停止時に給湯熱交換器17が保有していた湯が給湯熱交換器17側から導出されることによる湯の熱量が温度に相当する値により示されており、この値は、図3の特性線aに示した給湯熱交換出口温度に基づき、給湯熱交換出口温度×給湯熱交換器17側の前記分岐率(ここでは0.25)により求めている。   After that, when all of the amount of hot water held in the main heat exchanger 17a when the combustion of the hot water supply burner 61 is derived is derived, the hot water in the latent heat recovery heat exchanger 17b when the combustion of the hot water supply burner 61 is stopped. Therefore, the hot water temperature is considerably lower than the hot water supply set temperature. The characteristic line c in FIG. 4 (b) shows the amount of hot water generated by the hot water held in the hot water supply heat exchanger 17 being derived from the hot water supply heat exchanger 17 side when the combustion of the hot water supply burner 61 is stopped. This value is indicated by a value corresponding to the temperature, and this value is based on the hot water supply heat exchange outlet temperature indicated by the characteristic line a in FIG. 3 and the branching rate on the hot water supply heat exchanger 17 side (here Then, it is obtained by 0.25).

一方、給湯バーナ61の燃焼停止時に、バイパス通路68内の湯水は加熱されていない低めの温度の湯水であるが、バイパス通路68の容量は例えば0.06リットルで給湯熱交換器17の容量に比べて小さく、かつ、給湯バーナ61の燃焼停止後に給湯器16の給湯回路62に導入されて給湯熱交換器17側とバイパス通路68側とに分岐される分岐比(バイパス比)が1:3とされるので、給湯バーナ61の燃焼停止時にバイパス通路68の中にあった低めの温度の湯水は直ぐにバイパス通路68を通過し、バイパス通路68から導出される。その後、バイパス通路68には貯湯槽2から給湯器16に到達した湯が導入されて、その湯がバイパス通路68を通り導出されるが、バイパス通路68を通過する時間は前記の如く短い。   On the other hand, when the combustion of the hot water supply burner 61 is stopped, the hot water in the bypass passage 68 is not heated and has a low temperature, but the bypass passage 68 has a capacity of, for example, 0.06 liters and is equivalent to the capacity of the hot water heat exchanger 17. The branching ratio (bypass ratio) which is smaller than that of the hot water supply burner 61 and is introduced into the hot water supply circuit 62 of the hot water heater 16 and branched into the hot water supply heat exchanger 17 side and the bypass passage 68 side is 1: 3. Therefore, the hot water having a lower temperature in the bypass passage 68 when the combustion of the hot water supply burner 61 is stopped immediately passes through the bypass passage 68 and is led out from the bypass passage 68. Thereafter, hot water reaching the water heater 16 from the hot water storage tank 2 is introduced into the bypass passage 68, and the hot water is led out through the bypass passage 68. However, the time for passing through the bypass passage 68 is short as described above.

つまり、図4(b)の特性線bには、バイパス通路68に導入される湯の熱量が湯の温度に相当する値により示されており、この値は、貯湯槽2側から給湯器16の給湯回路62に導入される湯の温度×バイパス通路68側の分岐率(ここでは0.75)により求めているが、この熱量はバイパス通路68の出側における熱量とほぼ同様となる。なお、厳密に言えば、バイパス通路68を通って導出される湯の熱量は、バイパス通路68の容量÷給湯流量÷バイパス通路68側の分岐率で求められる遅延時間だけ遅れる値となるが、バイパス通路68の容量が0.06リットルの場合は、0.06リットル÷8(リットル/分)÷0.75=0.01分=0.6秒)遅れる値(0.6秒右にずれたデータ)であるので、特性線bとほぼ同様となる。   That is, in the characteristic line b of FIG. 4B, the amount of heat of hot water introduced into the bypass passage 68 is indicated by a value corresponding to the temperature of the hot water, and this value is from the hot water tank 2 side to the hot water heater 16. The amount of heat is substantially the same as the amount of heat on the outlet side of the bypass passage 68, which is obtained by the temperature of hot water introduced into the hot water supply circuit 62 x the branching rate on the bypass passage 68 side (here, 0.75). Strictly speaking, the amount of heat of hot water led out through the bypass passage 68 is delayed by a delay time determined by the capacity of the bypass passage 68 ÷ the flow rate of hot water supply ÷ the branching rate on the bypass passage 68 side. When the capacity of the passage 68 is 0.06 liters, 0.06 liters ÷ 8 (liters / minute) ÷ 0.75 = 0.01 minutes = 0.6 seconds) delayed value (0.6 seconds shifted to the right) Data), it is almost the same as the characteristic line b.

また、図4(b)の特性線dには、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量が示されており、この値は、給湯器16の給湯回路62に導入される湯の温度×給湯熱交換器17側の分岐率(ここでは0.25)により求めた値を、湯が潜熱回収用熱交換器17bとメインの熱交換器17aとを通って導出されてバイパス通路68から導出される湯と合流するまでに要する時間だけ遅延させた(右にずらした)ものである。この遅延時間tdは、(潜熱回収用熱交換器17bの保有水量+メインの熱交換器17aの保有水量)÷給湯流量÷給湯熱交換器17側の分岐率であり、(0.7リットル+0.6リットル)÷(8リットル/分)÷0.25=0.65分=39秒である。   Also, the characteristic line d in FIG. 4B shows that hot water from the hot water storage tank 2 introduced into the hot water supply heat exchanger 17 after the hot water supply burner 61 stops burning passes through the hot water supply heat exchanger 17. , The amount of heat on the outlet side of the hot water supply heat exchanger 17 is shown, and this value is the temperature of hot water introduced into the hot water supply circuit 62 of the hot water heater 16 x the branching rate on the hot water supply heat exchanger 17 side. The value obtained by (0.25 here) is required until the hot water is led out through the latent heat recovery heat exchanger 17b and the main heat exchanger 17a and joined with the hot water led out from the bypass passage 68. Delayed by time (shifted to the right). This delay time td is (the amount of retained water in the latent heat recovery heat exchanger 17b + the amount of retained water in the main heat exchanger 17a) / the hot water flow rate / the branching rate on the hot water heat exchanger 17 side (0.7 liter + 0) .6 liters) / (8 liters / minute) /0.25=0.65 minutes = 39 seconds.

本実施例においては、給湯器16の給湯回路62において、バイパス通路68側から導出される湯と給湯熱交換器17側から導出される湯とが合流して給湯回路62から出て給湯されるので、給湯温度は、バイパス通路68の出側の熱量と給湯熱交換器側17の出側の熱量との合計の熱量に対応する値となる。つまり、図4(b)の特性線b〜cにそれぞれ示されている熱量を加算することによって図4(a)に示されるようになるが、図4に示されている各熱量は、前記の如く、湯の温度に相当する値として求めたものであるので、図4(b)の特性線b〜cにそれぞれ示されている熱量を、図4(a)の領域b〜dに示されるように加算した値が、図4(a)、(b)の特性線aに示されるように給湯温度となる。   In the present embodiment, in the hot water supply circuit 62 of the hot water heater 16, the hot water derived from the bypass passage 68 side and the hot water derived from the hot water heat exchanger 17 side merge to exit the hot water supply circuit 62 and supply hot water. Therefore, the hot water supply temperature is a value corresponding to the total heat amount of the heat amount on the outlet side of the bypass passage 68 and the heat amount on the outlet side of the hot water supply heat exchanger side 17. That is, by adding the amounts of heat shown in the characteristic lines b to c of FIG. 4B, it becomes as shown in FIG. 4A, but each amount of heat shown in FIG. As shown in FIG. 4B, the calorific values shown in the characteristic lines b to c in FIG. 4B are shown in regions b to d in FIG. The added value is the hot water supply temperature as shown by the characteristic line a in FIGS. 4 (a) and 4 (b).

そして、これらの図からも明らかなように、本実施例において、給湯バーナ61の燃焼停止直後には、給湯熱交換器17側から導出される給湯設定温度よりも高めの温度の湯とバイパス通路68を通って導出される加熱されていない湯水とが合流して給湯回路62から出るため、ほぼ給湯設定温度となり、その後、給湯熱交換器17側から導出される給湯設定温度よりも高めの温度の湯が、バイパス通路68を通って導出される給湯設定温度の湯と1:3の割合(バイパス比に対応する割合)で合流することになるため、給湯バーナ61の燃焼停止から前記第1設定容量の湯が給湯器16に導入されるまでの時間(t1)が経過するまでの間は、給湯設定温度よりもやや高めだが、ほぼ給湯設定温度の湯が給湯され、徐々に湯の温度が下がってほぼ給湯設定温度の湯が給湯回路から給湯される。   As is apparent from these drawings, in this embodiment, immediately after the hot water supply burner 61 stops combustion, hot water having a temperature higher than the hot water supply set temperature derived from the hot water supply heat exchanger 17 side and the bypass passage are used. Since the unheated hot water drawn through 68 joins and comes out of the hot water supply circuit 62, the hot water supply set temperature is substantially reached, and then a temperature higher than the hot water set temperature derived from the hot water heat exchanger 17 side. The hot water of the hot water supply set temperature derived through the bypass passage 68 joins at a ratio of 1: 3 (a ratio corresponding to the bypass ratio). Until the time (t1) until the set capacity of hot water is introduced into the water heater 16, the hot water set temperature is slightly higher than the hot water set temperature, but the hot water set temperature is gradually increased. Go down Almost hot water hot water set temperature is hot water from the hot water supply circuit.

そして、時間t1の経過後には、前記第2設定容量の湯が給湯器16に導入されるまでの時間(t2)が経過するまでの間、バイパス通路68と給湯熱交換器17には、それぞれ、給湯設定温度よりも前記嵩上げ温度高い温度の湯が導入され、ここで、バイパス通路68に導入された湯は直ぐにバイパス通路68を通って導出されるが、このときには、まだ、給湯熱交換器17側おいては、給湯バーナ61の燃焼停止時に潜熱回収用熱交換器17b内にあった給湯設定温度よりも低い温度の湯がメインの熱交換器17aを通って導出される。そのため、この低い温度の湯とバイパス通路68から導出される給湯設定温度より嵩上げ温度高い温度の湯と1:3の割合で合流することにより、給湯設定温度よりは高めであるが給湯設定温度に近い温度の湯が給湯される(図4(b)の特性線b、cおよび、図4(a)の領域b、c参照)。   After the elapse of time t1, the bypass passage 68 and the hot water supply heat exchanger 17 are respectively connected until the time (t2) until the second set capacity of hot water is introduced into the water heater 16 has elapsed. The hot water having a temperature higher than the hot water supply set temperature is introduced, and the hot water introduced into the bypass passage 68 is immediately led out through the bypass passage 68. At this time, the hot water supply heat exchanger is still present. On the 17th side, hot water having a temperature lower than the hot water supply set temperature that was in the latent heat recovery heat exchanger 17b when the hot water supply burner 61 stopped burning is led out through the main heat exchanger 17a. Therefore, the hot water having a temperature higher than the hot water set temperature derived from the bypass passage 68 and the hot water having a temperature higher than the hot water set temperature are combined at a ratio of 1: 3, so that the hot water set temperature is higher than the hot water set temperature. Hot water having a near temperature is supplied (see characteristic lines b and c in FIG. 4B and regions b and c in FIG. 4A).

さらに、時間t2が経過する頃には、給湯バーナ61の燃焼停止時に給湯熱交換器17側に保有されていた湯は全て給湯回路62を通って給湯され、貯湯槽2から給湯器16に送られる給湯設定温度の湯が給湯熱交換器17を通って導出された後、給湯設定温度より前記嵩上げ温度高い温度の湯が給湯熱交換器17を通って導出され、その後、給湯設定温度の湯が導出される(図4(b)の特性線d、参照)。   Furthermore, when the time t2 elapses, all the hot water stored on the hot water supply heat exchanger 17 side when the hot water supply burner 61 stops burning is supplied through the hot water supply circuit 62 and sent from the hot water tank 2 to the hot water heater 16. After the hot water having a hot water set temperature is derived through the hot water supply heat exchanger 17, the hot water having a temperature higher than the hot water set temperature is derived through the hot water heat exchanger 17, and then the hot water having the hot water set temperature is obtained. Is derived (see the characteristic line d in FIG. 4B).

また、バイパス通路68側では、時間t2が経過する頃には、貯湯槽2から給湯器16に送られる給湯設定温度の湯がバイパス通路68側を通って導出されるので(図4(b)の特性線b、参照)、給湯熱交換器17側から導出される給湯設定温度または給湯設定温度より前記嵩上げ温度高い温度の湯と、バイパス通路68側から導出される給湯設定温度の湯とが例えば1:3の割合で合流して給湯されることになり、給湯設定温度または給湯設定温度よりやや高めであるもののほぼ給湯設定温度の湯が給湯される(図4(b)の特性線b〜dおよび、図4(a)の領域b〜dの加算領域、参照)。   On the bypass passage 68 side, when the time t2 elapses, hot water having a hot water supply set temperature sent from the hot water storage tank 2 to the water heater 16 is led out through the bypass passage 68 side (FIG. 4B). Characteristic line b), hot water set temperature derived from the hot water supply heat exchanger 17 side or hot water at a temperature higher than the hot water set temperature and hot water set temperature derived from the bypass passage 68 side. For example, the hot water is supplied at a ratio of 1: 3, and hot water at a hot water set temperature is supplied although it is slightly higher than the hot water set temperature or the hot water set temperature (characteristic line b in FIG. 4B). -D and the addition area | region of area | region b-d of Fig.4 (a)).

以上のように、本実施例では、給湯温度は、人が不快と感じにくい例えば2℃以下といった範囲の僅かなオーバーシュートが発生するものの、不快なアンダーシュートの発生は的確に抑制されるものであり、非常に快適に利用することができる。   As described above, in this embodiment, the hot water supply temperature is less likely to be uncomfortable for humans, for example, a slight overshoot in a range of 2 ° C. or less occurs, but the occurrence of an unpleasant undershoot is accurately suppressed. Yes, it can be used very comfortably.

なお、図5には、本実施例の比較例として、開発中の熱源装置において、本実施例の特徴的な送湯温度調節手段36の制御構成を設けずに、給湯開始後に貯湯槽2から給湯器16側に送る湯の温度を常に給湯設定温度とした場合の給湯温度特性(図5(a)、(b)の特性線a)と熱量特性(図5(a)の領域b〜dと図(b)の特性線b〜d)がそれぞれ示されている。   In FIG. 5, as a comparative example of the present embodiment, in the heat source device under development, the control structure of the hot water supply temperature adjusting means 36 of the present embodiment is not provided, and the hot water storage tank 2 is started after the start of hot water supply. Hot water supply temperature characteristics (characteristic line a in FIGS. 5A and 5B) and heat quantity characteristics (regions b to d in FIG. 5A) when the temperature of hot water sent to the hot water heater 16 side is always the hot water supply set temperature. And characteristic lines b to d) of FIG.

具体的には、図5(b)の特性線bおよび図5(a)の領域bはバイパス通路68の入側における熱量、図5(b)の特性線cおよび図5(a)の領域cは給湯バーナ61の燃焼停止時に給湯熱交換器17内にあった湯が給湯バーナ61の燃焼停止後に給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量、図5(b)の特性線dおよび図5(a)の領域dは、給湯バーナ61の燃焼停止後に貯湯槽2からの湯が給湯熱交換器17に導入されて給湯熱交換器17を通り、給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量をそれぞれ示している。   Specifically, the characteristic line b in FIG. 5B and the region b in FIG. 5A are the amount of heat on the entry side of the bypass passage 68, the characteristic line c in FIG. 5B and the region in FIG. 5A. c is the amount of heat on the outlet side of the hot water supply heat exchanger 17 when hot water in the hot water supply heat exchanger 17 when the hot water supply burner 61 stops combustion is led out from the hot water supply heat exchanger 17 after the hot water supply burner 61 stops burning. 5 (b) and the region d in FIG. 5 (a) indicate that hot water from the hot water storage tank 2 is introduced into the hot water supply heat exchanger 17 after passing through the hot water supply burner 61, and passes through the hot water supply heat exchanger 17. The amounts of heat on the outlet side of the hot water supply heat exchanger 17 derived from the hot water supply heat exchanger 17 are shown.

これらの図から明らかなように、開発中の熱源装置において、本実施例の特徴的な送湯温度調節手段36の制御構成を設けずに、給湯開始後に貯湯槽2から給湯器16側に送る湯の温度を常に給湯設定温度とした場合には、給湯温度に大きなアンダーシュートが発生するものであり、本実施例は送湯温度調節手段36の特徴的な制御構成によって、このようなアンダーシュートの発生を抑制することができ、非常に快適に利用することができる。   As is apparent from these drawings, in the heat source device under development, the hot water supply temperature adjusting means 36 of the present embodiment is not provided with the control structure of the hot water supply temperature adjusting means 36, and is sent from the hot water tank 2 to the hot water heater 16 side after the start of hot water supply. When the hot water temperature is always set to the hot water supply set temperature, a large undershoot occurs in the hot water supply temperature. In this embodiment, such an undershoot is caused by the characteristic control configuration of the hot water supply temperature adjusting means 36. Can be suppressed and can be used very comfortably.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば前記実施例では、温度調節情報設定手段38をタンクユニット4の制御装置33に設けたが、温度調節情報設定手段38は給湯器16の制御装置46に設けてもよい。   In addition, this invention is not limited to the said Example, It sets suitably. For example, in the embodiment, the temperature adjustment information setting means 38 is provided in the control device 33 of the tank unit 4, but the temperature adjustment information setting means 38 may be provided in the control device 46 of the water heater 16.

また、温度調節情報設定手段38は、給湯バーナ61の燃焼開始後に該給湯バーナ61の燃焼が停止された以降の給湯熱交出側温度検出手段67の検出情報を、熱源装置の運転毎または、予め定められる給湯運転回数毎、あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において給湯熱交出側温度検出手段67の検出温度が給湯設定温度よりも低下する温度低下領域における給湯設定温度との温度差が、試運転時における温度低下領域における給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を、前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定するようにしてもよい。   Further, the temperature adjustment information setting means 38 obtains detection information of the hot water supply heat exchange side temperature detection means 67 after the combustion of the hot water supply burner 61 is stopped after the start of combustion of the hot water supply burner 61 for each operation of the heat source device or Monitoring is performed every predetermined number of hot water supply operations or every predetermined monitor timing for each predetermined set period, and at the time of monitoring, the temperature detected by the hot water supply heat exchange side temperature detecting means 67 is lower than the set temperature for hot water supply. When the temperature difference with the hot water supply set temperature in the temperature drop region is different from a predetermined allowable range with respect to the temperature difference with the hot water set temperature in the temperature drop region during the trial operation, The raised temperature of the temperature adjustment information applied after the next hot water supply operation is changed and set according to the degree of difference exceeding the allowable range of the temperature difference. It may be so.

さらに、温度調節情報設定手段は、給湯バーナ61の燃焼開始後に貯湯槽2から給湯設定温度の湯が給湯器16の給湯回路62の湯水導入側に到達したと判断されて前記給湯バーナの燃焼が停止された以降に給湯温度検出手段76によって検出される給湯温度を熱源装置の給湯運転毎、または予め定められる給湯運転回数毎、あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の給湯温度検出手段76の検出温度が給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を、給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定するようにしてもよい。   Further, the temperature adjustment information setting means determines that hot water at the hot water supply set temperature has reached the hot water introduction side of the hot water supply circuit 62 of the hot water heater 16 from the hot water storage tank 2 after the hot water supply burner 61 starts combustion, and combustion of the hot water supply burner is performed. The hot water supply temperature detected by the hot water supply temperature detecting means 76 after being stopped is monitored every hot water supply operation of the heat source device, every predetermined number of hot water supply operations, or every predetermined monitor timing every predetermined set period. When the detected temperature of the hot water supply temperature detecting means 76 at the time of monitoring exceeds a predetermined allowable range with respect to the hot water supply set temperature and becomes a different temperature, the hot water supply operation next to the hot water supply operation after the monitoring is performed. You may make it change and set the raising temperature of the information for temperature control applied after that according to a different grade beyond the said allowable range of hot-water supply temperature.

これらの学習機能を設けると、試運転モードの給湯動作時と実際の給湯時とで外気温等の様々な条件が異なることにより給水温度等が異なる場合でも、より一層適切に給湯温度の安定化を図ることができる。   By providing these learning functions, even when the water supply temperature is different due to different conditions such as the outside air temperature during the hot water supply operation in the trial operation mode and the actual hot water supply, the hot water supply temperature is more appropriately stabilized. You can plan.

さらに、前記第1設定容量は、給湯回路62に導入されて給湯熱交換器17側とバイパス通路68側とに分岐して流れる湯水の、給湯熱交換器17側への分岐率とメインの熱交換器の保有水量とに対応する値に設定してもよく、この場合、例えば、式(3)により求められる。   Further, the first set capacity is introduced into the hot water supply circuit 62 and branched into the hot water supply heat exchanger 17 side and the bypass passage 68 side, and the branch rate to the hot water supply heat exchanger 17 side and the main heat flow. It may be set to a value corresponding to the amount of water held in the exchanger, and in this case, for example, it can be obtained by Equation (3).

第1設定容量=(メインの熱交換器17aの保有水量÷給湯熱交換器17側の分岐率−補正水量)・・・(3) First set capacity = (Retained water amount of main heat exchanger 17a / branch rate on hot water heat exchanger 17 side−corrected water amount) (3)

例えば、前記実施例に当てはめた場合、給湯開始後の給湯バーナ61の燃焼停止以降は、給湯回路62に導入される湯水を給湯熱交換器17側とバイパス通路68側との比(バイパス比)を1:3とすることから、給湯熱交換器17側への分岐率は0.25となり、メインの熱交換器17aの保有水量が0.6リットルであるから、補正水量を0.4リットルとした場合には、第1設定容量は、式(3)により、(0.6リットル÷0.25−0.4リットル)=2.0リットルとなる。   For example, when applied to the embodiment, after the hot water supply burner 61 stops burning after the hot water supply is started, the ratio of hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the bypass passage 68 side (bypass ratio). Is 1: 3, the branching rate to the hot water heat exchanger 17 side is 0.25, and the amount of water held in the main heat exchanger 17a is 0.6 liters. In this case, the first set capacity is (0.6 liters / 0.25-0.4 liters) = 2.0 liters according to the equation (3).

なお、式(3)における補正水量とは、メインの熱交換器17a内全てが高温の湯で満たされてはいない為の補正(メインの熱交換器17a入口側の温度はほぼ加熱されていない低めの温度(仮に加熱程度14%)であり、出口側の湯の温度が例えばほぼ給湯設定温度(仮に加熱程度100%)とした時に、平均加熱程度が100%とならないので、減算補正するための補正値)であり、予め実験等により求められて設定されるものである。ここで、給湯流量を8リットル/分とした場合、第1設定容量の湯を流すのに要する時間t1は、2リットル÷8リットル/分=0.25分=15秒とすることができる。   In addition, the correction | amendment water amount in Formula (3) is correction | amendment for all the main heat exchangers 17a not being filled with high temperature hot water (The temperature of the main heat exchanger 17a inlet side is not heated substantially. In order to correct the subtraction, the average temperature does not become 100% when the temperature of the hot water on the outlet side is, for example, approximately the hot water supply set temperature (assuming that the degree of heating is 100%). Correction value), which is obtained and set in advance by experiments or the like. Here, when the hot water supply flow rate is 8 liters / minute, the time t1 required for flowing the first set capacity of hot water can be 2 liters / 8 liters / minute = 0.25 minutes = 15 seconds.

なお、式(3)では減算補正を行ったが、平均加熱程度を用いて除積算で補正を行ってもよい。   In addition, although subtraction correction was performed in Formula (3), you may correct | amend by a subtraction using the average heating grade.

また、第2設定容量は前記分岐率と潜熱回収用熱交換器17bの保有水量に対応する値に設定されており、第2設定容量は、式(4)により求められる値としてもよい。   Further, the second set capacity is set to a value corresponding to the branching rate and the amount of water retained in the latent heat recovery heat exchanger 17b, and the second set capacity may be a value obtained by Expression (4).

第2設定容量=(潜熱回収用熱交換器17bの保有水量÷給湯熱交換器17側の分岐率+第1補正値+第2補正値)・・・(4) Second set capacity = (Retained water amount of the latent heat recovery heat exchanger 17b / branch ratio on the hot water supply heat exchanger 17 side + first correction value + second correction value) (4)

前記実施例に当てはめた場合、潜熱回収用熱交換器17bの保有水量は0.7リットルであり、第1補正値は0.4リットル、第2補正値は1.3リットルであり、第2設定容量は、式(4)により、(0.7ットル÷0.25+0.4リットル+1.3リットル)=4.5リットルとなる。   When applied to the embodiment, the amount of water retained in the latent heat recovery heat exchanger 17b is 0.7 liter, the first correction value is 0.4 liter, the second correction value is 1.3 liter, The set capacity is (0.7 torr / 0.25 + 0.4 liter + 1.3 liter) = 4.5 liter according to the equation (4).

また、式(4)における第1補正値は、式(3)の補正水量である。第2補正値は、給湯バーナ61の燃焼停止後に給湯熱交換器17に導入された貯湯槽2からの湯が給湯熱交換器17を通って給湯熱交換器17から導出されることによる給湯熱交換器17の出側の熱量が給湯器16の給湯回路62に導入される湯の温度×給湯熱交換器17側の分岐率(本実施例では0.25)により求めた値と全く等しくはならずに、潜熱回収用熱交換器17bに熱を奪われる(ので、なだらかにしか温度が上昇せず、その上昇遅れ)分を補償する補正値であり、それぞれ予め実験等により求められて設定されるものである。ここで、給湯流量を8リットル/分とした場合、第2設定容量の湯を流すのに要する時間t2は、4.5リットル÷8リットル/分=0.56分=34秒とすることができる。   Moreover, the 1st correction value in Formula (4) is the correction | amendment water amount of Formula (3). The second correction value is the hot water heat generated by the hot water from the hot water storage tank 2 introduced into the hot water supply heat exchanger 17 after the hot water supply burner 61 stops being burned out from the hot water supply heat exchanger 17 through the hot water supply heat exchanger 17. The amount of heat on the outlet side of the exchanger 17 is exactly equal to the value obtained by the temperature of hot water introduced into the hot water supply circuit 62 of the water heater 16 x the branching rate on the hot water heat exchanger 17 side (0.25 in this embodiment). Rather, it is a correction value that compensates for the amount of heat lost to the latent heat recovery heat exchanger 17b (so the temperature only rises gently, and its rise delay), each set in advance by experiments and the like. It is what is done. Here, if the hot water supply flow rate is 8 liters / minute, the time t2 required to flow the second set capacity of hot water may be 4.5 liters / 8 liters / minute = 0.56 minutes = 34 seconds. it can.

さらに、前記実施例では、貯湯槽2側から給湯器16の給湯回路62側に送る湯の温度を、給湯開始から該湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも予め定められる嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度としたが、貯湯槽2側から給湯器16側に湯が届く間に外気温等に応じて湯が冷めることを考慮して例えば0.5℃といった割り増し温度を設定し、給湯開始から湯の容量(積算流量)が前記第1設定容量に達するまでは前記給湯設定温度に割り増し温度を加算した値として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度に割り増し温度を加算した値に嵩上げ温度を加えた温度とし、前記第2設定容量に達した以降は前記給湯設定温度に割り増し温度を加算した値としてもよい。   Furthermore, in the said Example, the temperature of the hot water sent from the hot water storage tank 2 side to the hot water supply circuit 62 side of the hot water heater 16 is changed from the start of hot water supply until the capacity (integrated flow rate) of the hot water reaches the first set capacity. From reaching the first set capacity as the set temperature to the second set capacity, the hot water set temperature is set higher than the hot water set temperature, and after reaching the second set capacity, the hot water set temperature is reached. However, considering that the hot water cools according to the outside air temperature while the hot water reaches from the hot water storage tank 2 side to the hot water heater 16 side, an extra temperature such as 0.5 ° C. is set, Until the capacity (integrated flow rate) reaches the first set capacity, the hot water set temperature is increased to the hot water set temperature and the temperature is added to the first set capacity until the second set capacity is reached. Extra temperature Was a temperature obtained by adding a raised temperature to a value obtained by adding, after reaching the second predetermined capacity may be a value obtained by adding the extra temperature to the hot water supply set temperature.

さらに、前記実施例では、送湯温度調節手段36は、貯湯槽2側から給湯器16側に送る湯の容量が前記第1設定容量に達してから、湯の温度を給湯設定温度よりも予め定められる嵩上げ温度高い温度とする際、例えば図3の特性線bに示したように湯の温度を一気に嵩上げ温度分高くなるようにした(温度変化が階段状になるようにした)が、このようにするのではなく、緩やかに温度を上昇させていって(例えば図3の特性線aの給湯バーナの燃焼を停止した後の温度降下のなだらかな曲線を補完できるように、例えば嵩上げする湯の温度の温度上昇勾配が図3の特性線aの温度下降勾配の絶対値と略同等となるように)湯の温度が給湯設定温度よりも嵩上げ温度高い温度となるようにしてもよい。   Furthermore, in the said Example, after the capacity | capacitance of the hot water sent from the hot water storage tank 2 side to the hot water heater 16 side reaches the said 1st setting capacity | capacitance, the hot water supply temperature adjustment means 36 makes the temperature of hot water beforehand from the hot water supply preset temperature. For example, as shown in the characteristic line b in FIG. 3, the temperature of the hot water is increased at a stretch by the amount of the raised temperature (the temperature change is stepped). Rather than doing so, for example, the hot water is raised so that the temperature gradually rises (for example, so as to complement the gentle curve of the temperature drop after the combustion of the hot water burner of the characteristic line a in FIG. 3 is stopped). The temperature of the hot water may be raised to a temperature higher than the preset hot water supply temperature (so that the temperature rise gradient of the temperature is substantially equal to the absolute value of the temperature fall gradient of the characteristic line a in FIG. 3).

さらに、湯温度調節手段36は、貯湯槽2側から給湯器16側に送る湯の容量が前記第2設定容量に達してから、湯の温度を給湯設定温度とする際にも、同様に、緩やかに温度を下降させていって給湯設定温度に戻してもよい。すなわち、前記実施例では、温度変化特性線が図3の特性線bに示したような矩形状になるように嵩上げしたが、これにとらわれず、台形状に嵩上げするようにしてもかまわない。   Furthermore, the hot water temperature adjusting means 36 similarly applies the hot water temperature to the hot water supply set temperature after the hot water volume sent from the hot water storage tank 2 side to the hot water heater 16 side reaches the second set capacity. The temperature may be gradually lowered to return to the hot water supply set temperature. That is, in the above embodiment, the temperature change characteristic line is raised so as to have a rectangular shape as shown by the characteristic line b in FIG. 3, but it is not limited thereto and may be raised in a trapezoidal shape.

さらに、前記実施例では、温度調節情報設定手段38は、第1設定容量と第2設定容量と嵩上げ温度とを設定したが、第1設定容量や第2設定容量の代わりに、第1設定容量や第2設定容量と給湯流量とから、第1設定容量の湯を流すのに要する時間を求める演算式や第2設定容量の湯を流すのに要する時間を求める演算式等を与えてもよい。   Further, in the embodiment, the temperature adjustment information setting unit 38 sets the first set capacity, the second set capacity, and the raised temperature, but instead of the first set capacity and the second set capacity, the first set capacity is set. Alternatively, from the second set capacity and the hot water supply flow rate, an arithmetic expression for obtaining the time required to flow the first set capacity hot water, an arithmetic expression for obtaining the time required to flow the second set capacity hot water, or the like may be given. .

さらに、燃焼制御手段47によって給湯バーナ61の燃焼停止タイミングを決定する際、燃焼制御手段47は、給湯バーナ61の燃焼制御中に給水温度演算値算出手段71により求められる前記給水温度演算値をモニタし、該給水温度演算値の温度上昇に基づき、例えば給水温度演算値の上昇勾配が予め定められる基準勾配以上になったときに、主熱源である貯湯槽2から給湯設定温度の湯が給湯器16に到達して導入されたと判断し、給湯バーナ61の燃焼を停止するようにしてもよい。   Further, when the combustion control means 47 determines the combustion stop timing of the hot water supply burner 61, the combustion control means 47 monitors the water supply temperature calculation value obtained by the water supply temperature calculation value calculation means 71 during the combustion control of the hot water supply burner 61. Then, based on the temperature rise of the water supply temperature calculation value, for example, when the rising gradient of the water supply temperature calculation value is equal to or higher than a predetermined reference gradient, hot water having a hot water supply set temperature is supplied from the hot water storage tank 2 as the main heat source. 16 may be determined to have been introduced and the combustion of the hot water supply burner 61 may be stopped.

さらに、前記実施例においては、前記給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したときに、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断したが、このタイミングは、給水温度演算値の微分値が所定値(予め定められる設定値)を超えた時と略同義であり、したがって、給水温度演算値の微分値が予め定められる設定値を超えたときに主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断してもよい。   Further, in the embodiment, when the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches a predetermined combustion stop reference temperature difference, the hot water at the hot water supply set temperature is supplied from the main heat source to the auxiliary heat source device. However, this timing is almost the same as when the differential value of the feed water temperature calculated value exceeds a predetermined value (predetermined set value). When the value exceeds a preset value, it may be determined that hot water at a hot water supply set temperature has reached the auxiliary heat source device from the main heat source and has been introduced.

さらに、前記実施例では、給湯器16は、給水サーミスタを用いないものについて記載したが給湯器16に給水サーミスタを設けてもよい。この場合にも、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断する判断方法として、前記実施例のような方法を適用してもよいし、給水サーミスタの検出温度の微分値に基づいて、この検出温度の微分値が予め定められる判断基準微分値に達したとき又は超えたときに、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断することもできる。これらのように、給湯バーナ61の燃焼停止の判断方法は特に限定されるものでなく、適宜設定されるものである。   Furthermore, in the said Example, although the hot water heater 16 described what does not use a water supply thermistor, you may provide a water supply thermistor in the water heater 16. Also in this case, as a determination method for determining that hot water at a hot water supply set temperature has reached the auxiliary heat source device from the main heat source, the method as in the above embodiment may be applied, or the detected temperature of the water supply thermistor When the differential value of the detected temperature reaches or exceeds a predetermined criterion differential value based on the differential value, the hot water at the hot water supply set temperature reaches the auxiliary heat source device and is introduced from the main heat source. It can also be judged. As described above, the method for determining the combustion stop of the hot water supply burner 61 is not particularly limited, and is set as appropriate.

なお、開発中の熱源装置において、タンクユニット4と給湯器16が個別に設置され、湯水導入通路15で結ばれている熱源装置においては、(ガスバーナの燃焼熱により加熱する加熱手段を持つが故に寿命が比較的短い)給湯器16が先に壊れても、給湯器16のみ交換すればシステムを維持できるという利点があるが、新しい給湯器16を設置する業者は、例えば12年前に発売されたタンクユニット4に関する施工マニュアルを持ち合わせていない場合が多い。   In the heat source device under development, in the heat source device in which the tank unit 4 and the water heater 16 are individually installed and connected by the hot water introduction passage 15 (because it has a heating means for heating by the combustion heat of the gas burner). Even if the hot water heater 16 breaks first, the system can be maintained if only the hot water heater 16 is replaced. However, a supplier who installs a new hot water heater 16 was released, for example, 12 years ago. In many cases, the construction manual for the tank unit 4 is not available.

それに対し、前記のような各判断方法によって、貯湯槽2等の主熱源側から給湯設定温度の湯が給湯器16等の補助熱源装置に到達して導入されたと判断するようにすると、このタイミングを補助熱源装置側で独自に判断できるため、そのためにタンクユニット4側の設定を変更する必要がなく、支障が生じないようにすることができる。   On the other hand, if it is determined that the hot water at the hot water supply set temperature reaches the auxiliary heat source device such as the water heater 16 and is introduced from the main heat source side such as the hot water tank 2 by the determination methods as described above, this timing. Therefore, it is not necessary to change the setting on the tank unit 4 side, and it is possible to prevent troubles.

また、前記のような学習機能を設けると、給湯器16等の補助熱源装置の買い替えが行われたことや、隣家が建て替えて設置環境が変わったこと、補助熱源装置の移設により状況が変わった等を迅速、かつ、的確に判断でき、その場合に、嵩上げ温度等の温度調節用情報を試運転時ではなく、前記試運転相当運転時に取得することができるため、給湯器16等の買い換えなどに対しても的確な対応をとることができる。   Moreover, when the learning function as described above is provided, the situation has changed due to the replacement of the auxiliary heat source device such as the water heater 16, the change of the installation environment due to the rebuilding of the neighbor, and the transfer of the auxiliary heat source device. In such a case, the temperature adjustment information such as the raised temperature can be acquired not during the trial run but during the trial run equivalent operation. However, it is possible to take an appropriate response.

さらに、例えば給湯器16等の補助熱源装置の交換が行われた際に、補助熱源装置をリモコン装置43に信号接続することによりリモコン装置43側で補助熱源装置の号数等の情報を得られるようにし、主熱源側(例えばタンクユニット4側)の制御装置33が、リモコン装置43側からの情報を得て、その情報に基づき、予め複数設定しておいた前記第1設定容量や第2設定容量や嵩上げ温度等の情報値から適宜の値を自動的に選択できるようにしてもよい。   Furthermore, for example, when the auxiliary heat source device such as the water heater 16 is exchanged, information such as the number of the auxiliary heat source device can be obtained on the remote control device 43 side by signal-connecting the auxiliary heat source device to the remote control device 43. Thus, the control device 33 on the main heat source side (for example, the tank unit 4 side) obtains information from the remote control device 43 side, and a plurality of the first set capacity and the second set in advance based on the information. An appropriate value may be automatically selected from information values such as a set capacity and a raised temperature.

さらに、貯湯槽2と給湯器16の給湯回路62の湯水導入側とを接続する接続用配管(図6における湯水導入通路15)の長さが予め与えられる設定長さ(例えば4m)より短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は、貯湯槽2から出湯される湯の代わりに給水通路8bから給湯器15に水を導入し、前記水導入時間が経過した以降に貯湯槽2から出湯される湯を湯の通路9を通して給湯器15に導入するようにする給湯開始時導入湯水可変手段を設けてもよい。   Furthermore, when the length of the connecting pipe (hot water introduction passage 15 in FIG. 6) connecting the hot water tank 2 and the hot water introduction side of the hot water supply circuit 62 of the hot water heater 16 is shorter than a preset length (for example, 4 m). In the period from the start of hot water supply until a predetermined water introduction time elapses, water is introduced from the water supply passage 8b into the hot water heater 15 instead of the hot water discharged from the hot water tank 2, and the water introduction time. After the elapse of time, hot water starting introduction hot water variable means for introducing hot water discharged from the hot water tank 2 into the hot water heater 15 through the hot water passage 9 may be provided.

なお、前記水導入時間は、給水通路8bから給湯器16に導入される水が給湯バーナ61の燃焼により加熱されてメインの熱交換器17a内の湯が給湯設定温度あるいは給湯設定温度より予め定められる温度高めの温度まで加熱されるまでの時間とする、または、この時間から湯水導入通路15の容量分差し引いた時間とする等、適宜の時間に設定される。   The water introduction time is determined in advance from the hot water supply set temperature or the hot water set temperature because the water introduced into the water heater 16 from the water supply passage 8b is heated by the combustion of the hot water burner 61 and the hot water in the main heat exchanger 17a is set. It is set to an appropriate time such as a time until heating to a higher temperature or a time obtained by subtracting the capacity of the hot water introduction passage 15 from this time.

さらに、本発明の熱源装置の詳細なシステム構成は適宜設定されるものであり、例えば前記実施例ではタンク湯水混合器12と水混合器14も共に2方弁として、これらの混合器12,14で2カ所で混合比を調整したが、例えば2方弁を用いる代わりに、1カ所に3方弁を設けて混合比を調整するようにしてもよい。   Furthermore, the detailed system configuration of the heat source device of the present invention is set as appropriate. For example, in the above-described embodiment, the tank hot water mixer 12 and the water mixer 14 are both two-way valves, and these mixers 12, 14 are used. However, instead of using a two-way valve, for example, a three-way valve may be provided at one place to adjust the mixture ratio.

さらに、図6、図7において、接続通路21,22を省略したシステム(循環ポンプ23、電磁弁24もなし)においても本発明は有効である。   Furthermore, the present invention is also effective in a system (without the circulation pump 23 and the electromagnetic valve 24) in which the connection passages 21 and 22 are omitted in FIGS.

さらに、図6の破線で示されるようなバイパス路79とバイパス電磁弁80を設けて熱源装置を形成してもよい。このような構成においては、バイパス路79と通路28との合流部で合流した後の温度が給湯設定温度となるように、必要に応じてバイパス電磁弁80の開閉制御やミキシング流量制御手段35等による温度制御、燃焼制御手段47による燃焼制御等が適宜行われる。   Furthermore, a heat source device may be formed by providing a bypass passage 79 and a bypass electromagnetic valve 80 as shown by a broken line in FIG. In such a configuration, the opening / closing control of the bypass solenoid valve 80, the mixing flow rate control means 35, and the like are performed as necessary so that the temperature after joining at the joining portion of the bypass passage 79 and the passage 28 becomes the hot water supply set temperature. The temperature control by the combustion control, the combustion control by the combustion control means 47, etc. are appropriately performed.

また、このようにバイパス路79を設ける場合は、貯湯槽2側から湯水導入通路15を通って流れてきた湯水が給湯回路62の湯水導入側とバイパス路79側とに分岐した後に通路18で合流することになるため、給湯通路62側とバイパス路79側との分岐比(バイパス比)(例えば8:2としたり5:5としたり適宜設定される値)を考慮して前記第1設定容量、前記第2設定容量、前記嵩上げ温度が適宜定められることになる。   Further, when the bypass passage 79 is provided in this way, the hot water flowing through the hot water introduction passage 15 from the hot water tank 2 side branches into the hot water introduction side and the bypass passage 79 side of the hot water supply circuit 62 and then in the passage 18. Therefore, the first setting in consideration of the branching ratio (bypass ratio) between the hot water supply passage 62 side and the bypass passage 79 side (for example, 8: 2 or 5: 5 is set as appropriate). The capacity, the second set capacity, and the raising temperature are appropriately determined.

さらに、前記実施例では、給水流量センサ29と流量検出手段42を別々のものとして両方を熱源装置に設けたが、どちらか1つで兼用してもよい。例えば流量検出手段42のみ設ける場合には、流量検出手段42の検出信号を、流量割合検出手段38とミキシング流量制御手段35にも加えるようにする。なお、給水流量センサ29と流量検出手段42の両方を設ける場合にも、流量検出手段42の検出信号をミキシング流量制御手段35等に加えてもよいが、ミキシング流量制御手段35等には給水流量センサ29の検出信号を加えるようにする方が、給湯器16等の補助熱源装置とタンクユニット4間の情報融通を行わずにすみ、制御構成を簡略化できる。   Furthermore, in the said Example, although the water supply flow rate sensor 29 and the flow rate detection means 42 were provided separately, and both were provided in the heat-source apparatus, you may share in any one. For example, when only the flow rate detection means 42 is provided, the detection signal of the flow rate detection means 42 is also applied to the flow rate ratio detection means 38 and the mixing flow rate control means 35. Even when both the water supply flow rate sensor 29 and the flow rate detection unit 42 are provided, the detection signal of the flow rate detection unit 42 may be applied to the mixing flow rate control unit 35 and the like. Adding the detection signal from the sensor 29 eliminates the need for information interchange between the auxiliary heat source device such as the water heater 16 and the tank unit 4, and can simplify the control configuration.

さらに、給湯器16も、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよい。   Further, the hot water heater 16 may be a hot water heater of a type in which the hot water heat exchanger 17 is heated by, for example, an oil combustion type burner device.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。   Furthermore, in the said Example, although the hot water tank 2 was thermally connected to the fuel cell 1, you may connect a solar heat collector, a heat pump, etc. instead of the fuel cell 1. FIG.

本発明の熱源装置は、給湯温度の安定化を図ることができ、使い勝手が良好であるので、例えば家庭用の熱源装置として利用できる。   The heat source device of the present invention can stabilize the hot water supply temperature and is easy to use, and can be used as, for example, a household heat source device.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
8,8a,8b 給水通路
9 出湯通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
13 タンク電磁弁
14 水混合器
15 湯水導入通路
16 給湯器
17 給湯熱交換器
17a メインの熱交換器
17b 潜熱回収用熱交換器
28 混合サーミスタ
29 給水流量センサ
33 制御装置
35 ミキシング流量制御手段
36 送湯温度調節手段
38 温度調節情報設定手段
42 流量検出手段
45 給湯設定温度設定操作手段
47 燃焼制御手段
61 給湯バーナ
62 給湯回路
66 燃焼室
67 給湯熱交出側温度検出手段
68 バイパス通路
69 バイパス電磁弁
71 給水温度演算値算出手段
72 制御用給水温算出手段
73 メモリ部
74 バイパス開閉弁制御手段
75 給湯バーナ燃焼再開指令手段
76 給湯温度検出手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means 8 in hot water storage tank 8, 8a, 8b Water supply passage 9 Hot water supply passage 10 Junction part 11 Hot water storage hot water temperature detection means 12 Tank hot water mixer 13 Tank solenoid valve DESCRIPTION OF SYMBOLS 14 Water mixer 15 Hot water introduction path 16 Water heater 17 Hot water heat exchanger 17a Main heat exchanger 17b Heat exchanger for latent heat recovery 28 Mixing thermistor 29 Feed water flow sensor 33 Controller 35 Mixing flow rate control means 36 Hot water supply temperature adjustment means 38 Temperature control information setting means 42 Flow rate detection means 45 Hot water supply set temperature setting operation means 47 Combustion control means 61 Hot water supply burner 62 Hot water supply circuit 66 Combustion chamber 67 Hot water supply heat exchange side temperature detection means 68 Bypass passage 69 Bypass solenoid valve 71 Supply water temperature calculation Value calculation means 72 Control feed water temperature calculation means 73 Memory unit 74 Bypass closing valve control means 75 hot water supply burner combustion resuming instruction means 76 hot water supply temperature detecting means

Claims (10)

給湯設定温度の湯を出湯する機能を有する主熱源を有し、該主熱源から出湯される湯の通路の下流側には給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されており、前記主熱源側には該主熱源側から前記補助熱源装置の給湯回路側に送られる湯の温度を調節する送湯温度調節手段が設けられ、前記補助熱源装置には、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯熱交換器の出側の温度を検出する給湯熱交出側温度検出手段と、前記給湯回路に導入される湯水を前記給湯熱交換器に通さずに前記給湯回路から導出するためのバイパス通路とが設けられ、前記給湯熱交換器は前記給湯バーナの燃焼ガスの顕熱を吸収するメインの熱交換器と該メインの熱交換器の上流側に設けられて前記燃焼ガスの潜熱を回収する潜熱回収用熱交換器とを有し、前記主熱源から前記補助熱源装置に送られる湯を前記潜熱回収用熱交換器と前記メインの熱交換器に順に通して給湯先に給湯する機能を有しており、給湯が開始されたときに前記燃焼制御手段によって前記給湯バーナの燃焼を開始させて前記給湯回路を通る湯水を前記給湯熱交換器により加熱して給湯した後、前記主熱源から送られた前記給湯設定温度の湯が前記補助熱源装置の前記給湯回路の前記湯水導入側に到達したと判断されたときに前記給湯バーナの燃焼を停止して給湯を継続する構成を有し、熱源装置の試運転時の給湯動作における前記給湯バーナの燃焼開始後の該給湯バーナの燃焼停止以降に検出される前記給湯熱交出側温度検出手段の検出温度に基づいて、前記給湯バーナの停止時から前記給湯設定温度より低下するまでに要する時間と給湯流量とに基づく第1設定容量と、前記給湯熱交出側温度検出手段の検出温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでに要する時間と給湯流量とに基づく第2設定容量と、前記メインの熱交換器の出側の温度が前記給湯設定温度より低下した後に該給湯設定温度に戻るまでの温度特性に基づく嵩上げ温度とを前記送湯温度調節手段の温度調節用情報として設定する温度調節情報設定手段を有し、該温度調節用情報に基づいて前記送湯温度調節手段が前記主熱源側から前記補助熱源装置の給湯回路側に送る湯の温度を給湯開始から該湯の容量が前記第1設定容量に達するまでは前記給湯設定温度として前記第1設定容量に達してから前記第2設定容量に達するまでは前記給湯設定温度よりも前記嵩上げ温度高い温度とし、前記第2設定容量に達した以降は前記給湯設定温度とすることを特徴とする熱源装置。   A main heat source having a function of discharging hot water at a hot water supply set temperature is provided, and a hot water introduction side of a hot water supply circuit of an auxiliary heat source device having a hot water supply heat exchanger is connected to a downstream side of a hot water passage discharged from the main heat source. The main heat source side is provided with a hot water supply temperature adjusting means for adjusting the temperature of hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device, and the auxiliary heat source device includes the hot water supply A hot water supply burner for heating the heat exchanger, combustion control means for performing combustion control of the hot water supply burner, hot water supply heat exchange side temperature detection means for detecting the temperature on the outlet side of the hot water heat exchanger, and the hot water supply circuit A bypass passage for introducing hot water to be introduced from the hot water supply circuit without passing through the hot water heat exchanger, and the hot water heat exchanger absorbs sensible heat of combustion gas of the hot water burner. Upstream of the exchanger and the main heat exchanger A latent heat recovery heat exchanger that recovers the latent heat of the combustion gas, and hot water sent from the main heat source to the auxiliary heat source device is supplied to the latent heat recovery heat exchanger and the main heat exchanger. It has a function of supplying hot water to the hot water supply in order, and when the hot water supply is started, combustion of the hot water burner is started by the combustion control means, and hot water passing through the hot water supply circuit is heated by the hot water supply heat exchanger. Then, when it is determined that the hot water of the hot water set temperature sent from the main heat source has reached the hot water introduction side of the hot water supply circuit of the auxiliary heat source device, the combustion of the hot water burner is stopped. The temperature detected by the hot water supply heat exchange side temperature detection means detected after the hot water supply burner is stopped after the start of combustion of the hot water supply burner in the hot water supply operation during the trial operation of the heat source device. Based on The first set capacity based on the time required for the hot water supply burner to be lowered from the hot water supply set temperature and the hot water flow rate, and the detected temperature of the hot water heat exchange side temperature detecting means are more than the hot water set temperature. The second set capacity based on the time required to return to the hot water supply set temperature after the temperature drop and the hot water supply flow rate, and the hot water supply set temperature after the outlet temperature of the main heat exchanger falls below the hot water set temperature There is temperature adjustment information setting means for setting the raised temperature based on the temperature characteristics until the return as temperature adjustment information of the hot water supply temperature adjustment means, and the hot water supply temperature adjustment means is based on the temperature adjustment information. The temperature of hot water sent from the main heat source side to the hot water supply circuit side of the auxiliary heat source device reaches the first set capacity as the hot water set temperature from the start of hot water supply until the capacity of the hot water reaches the first set capacity. The heat source device is characterized in that the temperature is set higher than the hot water supply set temperature until the second set capacity is reached, and the hot water supply set temperature is set after reaching the second set capacity. 温度調節情報設定手段は、給湯バーナの燃焼開始後に該給湯バーナの燃焼が停止された以降の給湯熱交出側温度検出手段の検出情報を熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時において前記給湯熱交出側温度検出手段の検出温度が給湯設定温度よりも低下する温度低下領域における前記給湯設定温度との温度差が試運転時における温度低下領域における前記給湯設定温度との温度差に対して予め定められる許容範囲を超えて異なるときには、前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記温度差の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする請求項1記載の熱源装置。   The temperature adjustment information setting means obtains detection information of the hot water supply heat exchange side temperature detection means after the hot water supply burner is stopped after the start of combustion of the hot water supply burner for each hot water supply operation of the heat source device or for each predetermined number of hot water supply operations. Alternatively, the hot water supply setting is monitored at a predetermined monitor timing for each predetermined setting period, and the hot water supply setting in a temperature lowering region where the temperature detected by the hot water supply heat exchanging temperature detecting means is lower than the hot water supply set temperature at the time of monitoring. When the temperature difference from the temperature is different from a predetermined allowable range with respect to the temperature difference from the hot water supply set temperature in the temperature drop region during the trial operation, it is applied after the hot water supply operation after the hot water supply operation after the monitoring. The raised temperature of the temperature adjustment information is changed and set in accordance with the degree of difference exceeding the allowable range of the temperature difference. Heat source apparatus of claim 1, wherein. 給湯回路を通して給湯される湯の温度を給湯温度として検出する給湯温度検出手段を有し、温度調節情報設定手段は、給湯バーナの燃焼開始後に主熱源から給湯設定温度の湯が補助熱源装置の給湯回路の湯水導入側に到達したと判断されて前記給湯バーナの燃焼が停止された以降に前記給湯温度検出手段によって検出される給湯温度を、熱源装置の給湯運転毎または予め定められる給湯運転回数毎あるいは予め定められる設定期間毎の予め定められるモニタタイミング毎にモニタして、該モニタ時の前記給湯温度検出手段の検出温度が前記給湯設定温度に対して予め定められている許容範囲を超えて異なる温度となったときには前記モニタを行った給湯運転の次の給湯運転以降に適用される温度調節用情報の嵩上げ温度を前記給湯温度の前記許容範囲を超えて異なる程度に応じて変更設定することを特徴とする請求項1記載の熱源装置。   The hot water supply temperature detection means detects the temperature of hot water supplied through the hot water supply circuit as the hot water supply temperature, and the temperature adjustment information setting means supplies hot water of the hot water supply set temperature from the main heat source after the start of combustion of the hot water burner. The hot water supply temperature detected by the hot water supply temperature detecting means after the hot water supply burner is stopped after being determined to have reached the hot water introduction side of the circuit is determined for each hot water supply operation of the heat source device or for each predetermined number of hot water supply operations. Alternatively, monitoring is performed at a predetermined monitoring timing for each predetermined setting period, and the detected temperature of the hot water supply temperature detecting means at the time of monitoring differs beyond a predetermined allowable range with respect to the hot water supply set temperature. When the temperature is reached, the raised temperature of the temperature adjustment information applied after the hot water supply operation following the hot water supply operation in which the monitor is performed is set to the temperature of the hot water supply temperature. Heat source apparatus according to claim 1, wherein the change set according to different degrees beyond the capacity range. バイパス通路にはバイパス開閉弁が設けられて、給湯回路に導入される湯水の給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが前記バイパス開閉弁の開閉により予め定められる割合変化範囲内で制御される構成と成し、給湯バーナを停止した以降は前記バイパス通路側への流通割合が前記割合変化範囲内で最大となるように前記バイパス開閉弁を制御するバイパス開閉弁制御手段を有することを特徴とする請求項1または請求項2または請求項3記載の熱源装置。   A bypass opening / closing valve is provided in the bypass passage, and a distribution ratio of hot water introduced into the hot water supply circuit to the hot water supply heat exchanger side and a distribution ratio to the bypass passage side are determined in advance by opening and closing the bypass opening / closing valve. A bypass on-off valve configured to be controlled within a rate change range and controlling the bypass on-off valve so that a flow rate to the bypass passage side becomes maximum within the rate change range after the hot water supply burner is stopped. 4. The heat source apparatus according to claim 1, further comprising a control unit. 補助熱源装置の湯水導入側には主熱源から出湯される湯の通路の他に給水通路が接続されており、主熱源と補助熱源装置の給湯回路の湯水導入側とが接続用配管を介して接続されていて該接続用配管の長さが予め与えられる設定長さより短い場合には、給湯開始から予め定められている水導入時間が経過するまでの間は前記給水通路から前記補助熱源装置に水を導入し、前記水導入時間が経過した以降に前記湯の通路を通して前記主熱源から出湯される湯を前記補助熱源装置に導入する給湯開始時導入湯水可変手段を有することを特徴とする請求項1乃至請求項4のいずれか一つに記載の熱源装置。   A water supply passage is connected to the hot water introduction side of the auxiliary heat source device in addition to the hot water passage from the main heat source, and the main heat source and the hot water introduction side of the hot water supply circuit of the auxiliary heat source device are connected via a connection pipe. When connected and the length of the pipe for connection is shorter than a preset length given in advance, from the start of hot water supply until a predetermined water introduction time elapses, the water supply passage to the auxiliary heat source device A hot water supply start introduction water variable means for introducing hot water discharged from the main heat source through the hot water passage after the water introduction time has passed into the auxiliary heat source device is introduced. The heat source device according to any one of claims 1 to 4. 主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、該ミキシング流量制御手段に送湯温度調節手段が指令を加えて前記主熱源から前記補助熱源装置側に送られる湯の温度を調節することを特徴とする請求項1乃至請求項5のいずれか一つに記載の熱源装置。   The main heat source has a hot water storage tank, and is provided with a merging portion where the passage of hot water discharged from the hot water tub and the water supply passage merge, and mixing means for mixing hot water and water merged in the merging portion; A hot water introduction passage for introducing hot water mixed and formed by the mixing means into the auxiliary heat source device, and a mixing flow rate control means for controlling the flow rate of hot water flowing through the junction and the flow rate of water by controlling the mixing means. The hot water supply temperature adjusting means applies a command to the mixing flow rate control means to adjust the temperature of hot water sent from the main heat source to the auxiliary heat source device. The heat source device according to any one of 5. 補助熱源装置は給湯温度検出手段により検出される給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を給水温度演算値として演算により求める給水温度演算値算出手段を有し、該給水温度演算値算出手段により求められる前記給水温度演算値を燃焼制御手段が給湯中にモニタして該給水温度演算値の温度上昇に基づき主熱源から給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断することを特徴とする請求項1乃至請求項6のいずれか一つに記載の熱源装置。   The auxiliary heat source device uses the temperature of hot water introduced into the auxiliary heat source device based on the hot water temperature detected by the hot water temperature detecting means, the capacity of the hot water heat exchanger, and the heating amount of the hot water heat exchanger as a water supply temperature calculation value. A water supply temperature calculation value calculation means obtained by calculation, and the combustion control means monitors the water supply temperature calculation value obtained by the water supply temperature calculation value calculation means during hot water supply, and based on the temperature rise of the water supply temperature calculation value. The heat source device according to any one of claims 1 to 6, wherein it is determined that hot water having a hot water supply set temperature reaches the auxiliary heat source device and is introduced from a heat source. 給水温度演算値算出手段により求められる給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める制御用給水温度算出手段を有し、燃焼制御手段は、前記給水温度演算値から前記制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき又は超えたときに主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断することを特徴とする請求項7記載の熱源装置。   There is a control water temperature calculation means for determining a control water temperature for hot water burner combustion control by the combustion control means based on a feed water temperature calculation value obtained by the feed water temperature calculation value calculation means and a predetermined temperature change amount, and combustion When the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches or exceeds a predetermined combustion stop reference temperature difference, the control means supplies hot water at a set hot water temperature from the main heat source to the auxiliary heat source device. The heat source device according to claim 7, wherein the heat source device is determined to have been introduced into the heat source device. 燃焼停止基準温度差は給湯設定温度から制御用給水温度を差し引いた差を予め定められる失火係数で調整した値としたことを特徴とする請求項8記載の熱源装置。   9. The heat source device according to claim 8, wherein the combustion stop reference temperature difference is a value obtained by adjusting a difference obtained by subtracting the control feed water temperature from the hot water supply set temperature with a predetermined misfire coefficient. 給湯バーナを停止した直後の給湯温度が前記給湯バーナの停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上低下したときには燃焼制御手段により前記給湯バーナの燃焼を再開させる給湯バーナ燃焼再開指令手段が設けられていることを特徴とする請求項1乃至請求項9のいずれか一つに記載の熱源装置。   Hot water supply burner combustion resumption command for resuming combustion of the hot water supply burner by combustion control means when the hot water supply temperature immediately after stopping the hot water supply burner is lower than a predetermined hot water supply restart temperature than the hot water supply set temperature immediately before stopping the hot water supply burner The heat source apparatus according to any one of claims 1 to 9, wherein means are provided.
JP2014070190A 2014-03-28 2014-03-28 Heat source equipment Active JP6228881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070190A JP6228881B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070190A JP6228881B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2015190739A JP2015190739A (en) 2015-11-02
JP6228881B2 true JP6228881B2 (en) 2017-11-08

Family

ID=54425365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070190A Active JP6228881B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Country Status (1)

Country Link
JP (1) JP6228881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031522A (en) * 2016-08-24 2018-03-01 株式会社ノーリツ Storage water heater
JP6800795B2 (en) * 2017-03-31 2020-12-16 株式会社ガスター Heat source device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820113B2 (en) * 1993-03-08 1996-03-04 リンナイ株式会社 Water heater
JP4613459B2 (en) * 2001-07-26 2011-01-19 株式会社ノーリツ Hot water system
JP2005249340A (en) * 2004-03-05 2005-09-15 Rinnai Corp Hot-water supply system
JP5537971B2 (en) * 2010-01-25 2014-07-02 リンナイ株式会社 Solar water heating system
JP5432108B2 (en) * 2010-10-28 2014-03-05 リンナイ株式会社 Heating system
JP5814643B2 (en) * 2011-06-14 2015-11-17 株式会社ガスター Hot water storage system
JP5923369B2 (en) * 2012-04-02 2016-05-24 リンナイ株式会社 Water heater

Also Published As

Publication number Publication date
JP2015190739A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP2010210182A (en) Hot water supply system
JP6858621B2 (en) Heat source device
JP6228881B2 (en) Heat source equipment
JP6055356B2 (en) Heat source equipment
JP5708975B2 (en) Water heater
JP6607375B2 (en) Auxiliary heat source machine
JP6209117B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP6320118B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
JP6800795B2 (en) Heat source device
JP5816226B2 (en) Hot water storage water heater
JP6088771B2 (en) Heat source equipment
JP2018031523A (en) Storage water heater
JP4095046B2 (en) Hot water system
JP2013002666A (en) Hot water storage system
JP6125877B2 (en) Heat source equipment
JP2016191512A (en) Water heating device
JP6320117B2 (en) Heat source equipment
JP6133661B2 (en) Heat source equipment
JP2005249340A (en) Hot-water supply system
JP6843679B2 (en) Heat source device
JP2017122535A (en) Bath water heater
KR101588538B1 (en) Storage type hot water supply device
JP6475982B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6228881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250