JP6054925B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6054925B2
JP6054925B2 JP2014189587A JP2014189587A JP6054925B2 JP 6054925 B2 JP6054925 B2 JP 6054925B2 JP 2014189587 A JP2014189587 A JP 2014189587A JP 2014189587 A JP2014189587 A JP 2014189587A JP 6054925 B2 JP6054925 B2 JP 6054925B2
Authority
JP
Japan
Prior art keywords
value
determination
internal combustion
combustion engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189587A
Other languages
English (en)
Other versions
JP2016061216A (ja
Inventor
伸行 藤岡
伸行 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014189587A priority Critical patent/JP6054925B2/ja
Priority to US14/852,627 priority patent/US10094271B2/en
Publication of JP2016061216A publication Critical patent/JP2016061216A/ja
Application granted granted Critical
Publication of JP6054925B2 publication Critical patent/JP6054925B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、ターボチャージャ及びウェイストゲート弁を備えた内燃機関の空燃比を制御しながら、内燃機関及びその付属機器の一方の動作状態を判定する内燃機関の制御装置に関する。
従来、内燃機関の制御装置として、特許文献1に記載されたものが知られている。この内燃機関は、排気通路に設けられたタービンを有するターボチャージャと、このタービンを迂回するためのバイパス通路を開閉するウェイストゲート弁と、排気通路を流れる排ガスを浄化する排ガス浄化触媒と、排ガス浄化触媒の上流側及び下流側にそれぞれ設けられた広域空燃比センサ及びO2センサなどを備えている。
この制御装置では、排ガス浄化触媒の劣化の有無を判定するための制御として、ウェイストゲート弁を全閉状態に保持する全閉制御と、劣化判定用の空燃比制御とが実行される。この劣化判定用の空燃比制御では、排ガス浄化触媒に供給される排ガスの空燃比(以下「触媒前空燃比」という)が所定のリーン値と所定のリッチ側値との間で反転を繰り返すように制御される。
そして、全閉制御及び劣化判定用の空燃比制御の実行中において、排ガス浄化触媒の酸素貯蔵能OSCを算出し、この酸素貯蔵能OSCの算出結果に基づいて、排ガス浄化触媒の劣化が判定される。この酸素貯蔵能OSCの算出は、単位時間ごとの酸素放出量を積分することによって算出される。この場合、上述した全閉制御は、ウェイストゲート弁が開いた状態では、触媒前空燃比の変化タイミングを広域空燃比センサで正確に検出できない関係上、酸素貯蔵能OSCの算出精度が低下してしまうので、それを回避するために実行される。
特許第4952847号公報
上記従来の内燃機関の制御装置によれば、判定精度を保持するために、ウェイストゲート弁が全閉状態のときにしか、排ガス浄化触媒の劣化判定を実行できない。それにより、判定可能領域が狭くなることで、判定頻度が低下してしまい、その結果、商品性の低下を招いてしまう。これに加えて、前述した判定手法を用いる関係上、排ガス流量が小さい条件下では、排ガス浄化触媒の劣化判定の精度が低下するおそれがあり、その結果、商品性がさらに低下してしまう。
本発明は、上記課題を解決するためになされたもので、内燃機関又はその付属機器の動作状態を判定する場合において、ウェイストゲート弁の開度が比較的、大きい領域でも、良好な判定精度を確保でき、判定頻度を高めることができ、商品性を向上させることができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明は、排気通路8に設けられたタービン10bを有するターボチャージャ10と、ターボチャージャ10のタービン10bを迂回するバイパス通路8aを開閉することにより、タービン10bが排ガスから受け取る運動エネルギを変更するウェイストゲート弁11aとを備えた内燃機関3の制御装置1であって、排気通路8のタービン10bよりも下流側に設けられ、排ガス中の酸素を含む所定成分の濃度を表す排ガス濃度パラメータ(検出当量比KACT)を検出する排ガス濃度パラメータセンサ(LAFセンサ23)と、内燃機関3の気筒3a内における筒内ガス量を表す筒内ガス量パラメータ(筒内ガス量GCYL)を取得する筒内ガス量パラメータ取得手段(ECU2、ステップ20〜25)と、内燃機関3の空燃比を、所定状態で変動するように制御する空燃比変動制御を実行する空燃比制御手段(ECU2、ステップ51〜53)と、取得された筒内ガス量パラメータ(筒内ガス量GCYL)が表す筒内ガス量が所定の判定値(ガス量判定値Gjud)以上であるという動作状態判定の実行条件が成立しているか否かを判定する実行条件判定手段(ECU2、ステップ5〜7)と、実行条件判定手段の判定結果に基づき、空燃比変動制御が実行中されている場合において、動作状態判定の実行条件が成立しているときに、検出された排ガス濃度パラメータを用いて、内燃機関又は内燃機関の付属機器における動作状態を判定する(ECU2、ステップ60〜71,80〜91)と、所定の判定値(ガス量判定値Gjud)を、ウェイストゲート弁11aの開度WGが大きいほど、より大きい値に設定する判定値設定手段(ECU2、ステップ4)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、内燃機関の空燃比が、所定状態で変動するように制御され、取得された筒内ガス量パラメータが表す筒内ガス量が所定の判定値以上であるという動作状態判定の実行条件が成立しているか否かが判定され、空燃比変動制御が実行されている場合において、動作状態判定の実行条件が成立しているときに、検出された排ガス濃度パラメータを用いて、内燃機関又は内燃機関の付属機器における動作状態が判定される。さらに、この所定の判定値が、ウェイストゲート弁の開度が大きいほど、より大きい値に設定されるので、ウェイストゲート弁の開度が大きい領域では、筒内ガス量が大きく、排ガス流量が大きい状態でのみ、動作状態の判定が実行されることになる。それにより、ウェイストゲート弁の開度が大きいことに起因して、排ガス濃度パラメータセンサに供給される排ガス量が減少するような場合でも、排ガス濃度パラメータを、筒内ガス量が大きいことで、排ガス量の減少の影響を回避しながら精度よく検出することができる。したがって、特許文献1と異なり、ウェイストゲート弁の開度が大きい領域でも、良好な精度で検出された排ガス濃度パラメータを用いて、内燃機関又は内燃機関の付属機器における動作状態を精度よく判定することができる。以上により、商品性を向上させることができる。
請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、排ガス濃度パラメータセンサ(LAFセンサ23)は、バイパス通路8aの下流側端部が排気通路8に合流する合流位置付近又は合流位置よりも上流側に設けられていることを特徴とする。
この内燃機関の制御装置によれば、排ガス濃度パラメータセンサは、バイパス通路の下流側端部が排気通路に合流する合流位置付近又は合流位置よりも上流側に設けられているので、ウェイストゲート弁の開度が変化したときでも、その影響をより受けにくい状態となる。その結果、内燃機関又は内燃機関の付属機器における動作状態の判定精度をさらに向上させることができ、それにより、商品性をさらに向上させることができる。
本発明の一実施形態に係る制御装置及びこれを適用した内燃機関の構成を模式的に示す図である。 排気通路におけるLAFセンサ周辺の構成を示す断面図である。 実行条件判定処理を示すフローチャートである。 筒内ガス量GCYLの算出処理を示すフローチャートである。 開度関数KTHの算出に用いるマップの一例を示す図である。 流量関数Ψの算出に用いるマップの一例を示す図である。 ガス量判定値Gjudの算出に用いるマップの一例を示す図である。 加振値KCMD_iの算出処理を示すフローチャートである。 図8の算出処理による加振値KCMD_iの算出結果を示す図である。 燃料制御処理を示すフローチャートである。 第1インバランス判定処理を示すフローチャートである。 第2インバランス判定処理を示すフローチャートである。
以下、図面を参照しながら、本発明の一実施形態に係る内燃機関の制御装置について説明する。図1に示すように、この制御装置1は、内燃機関(以下「エンジン」という)3に適用されたものであり、ECU2を備えている。このECU2は、後述するように、各種の制御処理を実行する。
この内燃機関(以下「エンジン」という)3は、4組の気筒3a及びピストン3b(1組のみ図示)を有する直列4気筒タイプのものであり、図示しない車両に動力源として搭載されている。このエンジン3には、燃料噴射弁4及び点火プラグ5が気筒3aごとに設けられており(いずれも1つのみ図示)、これらの燃料噴射弁4は、ECU2に電気的に接続されており、ECU2によって、その開弁時間及び開弁タイミングすなわち燃料噴射量及び噴射時期が制御される。また、点火プラグ5も、ECU2に電気的に接続されており、ECU2によって、その点火タイミングが制御される。
また、エンジン3には、クランク角センサ20が設けられている。このクランク角センサ20は、クランクシャフト3cの回転に伴い、いずれもパルス信号であるCRK信号及びTDC信号をECU2に出力する。このCRK信号は、所定クランク角(例えば2゜)ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、各気筒3aのピストン3bが吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、所定クランク角ごとに1パルスが出力される。
一方、エンジン3の吸気通路7には、上流側から順に、吸気温センサ21、ターボチャージャ10及びスロットル弁機構12がそれぞれ設けられている。吸気温センサ21は、吸気通路7内の空気の温度(以下「吸気温」という)TAを検出して、それを表す検出信号をECU2に出力する。
ターボチャージャ10は、吸気通路7の途中に設けられたコンプレッサ10aと、排気通路8の途中に設けられたタービン10bと、コンプレッサ10a及びタービン10bを一体に連結する軸10cと、ウェイストゲート弁機構11などを備えている。
このターボチャージャ10では、排気通路8内の排ガスによってタービンブ10bが回転駆動されると、コンプレッサ10aもこれと一体に回転することにより、吸気通路7内の吸入空気が加圧される。すなわち、過給動作が実行される。
また、ウェイストゲート弁機構11は、ウェイストゲート弁11aと、これを駆動するWGアクチュエータ11bなどで構成されている。このウェイストゲート弁11aは、排気通路8のタービン10bをバイパスするバイパス路8aを開閉するものであり、バイパス通路8aの下流側端部が排気通路8と合流する開口部に設けられている。ウェイストゲート弁11aは、その開度が変化することによって、タービン10bを迂回してバイパス路8aを流れる排ガスの流量、言い換えればタービン10bを駆動する排ガスの流量を変化させる。それにより、過給圧を変化させる。
さらに、WGアクチュエータ11bは、ECU2に電気的に接続された電動タイプのものであり、ECU2からの制御入力信号が供給されることにより、ウェイストゲート弁11aの開度を変化させる。その結果、過給圧が制御される。
一方、ウェイストゲート弁11aの近傍には、ウェイストゲート弁開度センサ(以下「WGV開度センサ」という)22が設けられている。このWGV開度センサ22は、ウェイストゲート弁11aの開度(以下「ウェイストゲート弁開度」という)WGを検出して、それを表す検出信号をECU2に出力する。
また、図1及び図2に示すように、排気通路8のタービン10bよりも下流側の、ウェイストゲート弁11aの近傍には、LAFセンサ23が設けられている。LAFセンサ23は、ジルコニア及び白金電極などで構成され、理論空燃比よりもリッチなリッチ領域から極リーン領域までの広範囲な空燃比の領域において、排気通路内を流れる排ガス中の酸素濃度をリニアに検出し、それを表す検出信号をECU2に出力する。
ECU2は、このLAFセンサ23の検出信号の値に基づき、排ガスの当量比を表す検出当量比KACTを算出する。なお、本実施形態では、LAFセンサ23が排ガス濃度パラメータ検出手段に相当し、検出当量比KACTが排ガス濃度パラメータに相当する。
また、このエンジン3の場合、LAFセンサ23は、ウェイストゲート弁11aの近傍に配置されているものの、LAFセンサ23とタービン10bは、互いの中心軸が図2の破断面に沿って延びる平面上に位置するように設けられているのに対して、ウェイストゲート弁11a及びバイパス通路8aの開口部の中心軸は、図2の奥側にずれた状態で設けられている。以上の構成により、タービン10bを通過した排ガスは、LAFセンサ23にダイレクトに接触しながら流下するのに対して、ウェイストゲート弁11aを通過した排ガスは、LAFセンサ23にほとんど接触することなく、流下した後、タービン10bを通過した排ガスと合流するようになっている。
さらに、排気通路8のLAFセンサ23よりも下流側には、排ガス浄化触媒9が設けられている。この排ガス浄化触媒9は、三元触媒タイプのもので構成されている。
一方、前述したスロットル弁機構12は、スロットル弁12a及びこれを開閉駆動するTHアクチュエータ12bなどを備えている。スロットル弁12aは、吸気通路7の途中に回動自在に設けられており、当該回動に伴う開度の変化によりスロットル弁12aを通過する空気の流量を変化させる。
THアクチュエータ12bは、ECU2に接続されたモータにギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2からの制御入力信号によって制御されることにより、スロットル弁12aの開度を変化させる。
また、スロットル弁12aの近傍には、例えばポテンショメータなどで構成されたスロットル弁開度センサ24が設けられている。このスロットル弁開度センサ24は、スロットル弁12aの開度(以下「スロットル弁開度」という)THを検出して、それを表す検出信号を、ECU2に出力する。
さらに、吸気通路7のスロットル弁12aよりも下流には、吸気圧センサ25が設けられている。この吸気圧センサ25は、吸気通路7内の圧力(以下「吸気圧」という)PBを検出して、それを表す検出信号をECU2に出力する。この吸気圧PBは、絶対圧として検出される。
これに加えて、このエンジン3には、図示しないEGR装置が設けられており、このEGR装置によって、排気通路8内の排ガスの一部が吸気通路7に還流される。
また、ECU2には、大気圧センサ26が接続されている。この大気圧センサ26は、半導体圧力センサで構成されており、大気圧PAを検出して、それを表す検出信号をECU2に出力する。
一方、ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されており、前述した各種のセンサ20〜26の検出信号に応じて、以下に述べるように、各種の制御処理を実行する。
なお、本実施形態では、ECU2が、筒内ガス量パラメータ取得手段、空燃比制御手段、実行条件判定手段、動作状態判定手段及び判定値設定手段に相当する。
以下、ECU2によって実行される第1及び第2インバランス判定処理及びその実行条件判定処理について説明する。これらの第1及び第2インバランス判定処理は、本出願人が特開2013−253606号公報(以下「先願公報」という)で提案済みの判定手法を用いて、4つの気筒3a間での空燃比のばらつきが発生しているか否かを判定するものである。
なお、以下の説明では、4つの気筒3a間での空燃比のばらつきが発生している状態を「空燃比のインバランス状態」というとともに、第1及び第2インバランス判定処理をまとめて適宜「インバランス判定処理」という。また、以下の説明において算出/設定される各種の値は、ECU2のRAM内に記憶されるものとする。
まず、図3を参照しながら、実行条件判定処理について説明する。この実行条件判定処理は、インバランス判定処理の実行条件が成立しているか否かを判定するものであり、ECU2によって所定の制御周期ΔTで実行される。この制御周期ΔTは、エンジン回転数NEの1次周波数を時間換算した値に設定されている。なお、以下の説明において算出/設定される各種の値は、ECU2のRAM内に記憶されるものとする。
同図に示すように、まず、ステップ1(図では「S1」と略す。以下同じ)で、各種条件フラグF_CONDの設定処理を実行する。この各種条件フラグF_CONDは、後述するステップ5以外の、インバランス判定処理の実行条件が成立しているか否かを表すものである。この設定処理において、各種条件フラグF_CONDは、以下の(C1)〜(C3)の条件がいずれも成立しているときには「1」に設定され、それ以外のときには「0」に設定される。
(C1)エンジン回転数NE及び吸気圧PBがインバランス判定処理に適した所定領域にあること。
(C2)LAFセンサ23が正常であって、活性化していること。
(C3)エンジン回転数NE及び吸気圧PBの変動量が所定値よりも小さく、安定した運転状態にあること。
次に、ステップ2で、各種条件フラグF_CONDが「1」であるか否かを判別する。この判別結果がYESのときには、ステップ3に進み、筒内ガス量パラメータとしての筒内ガス量GCYLの算出処理を実行する。この筒内ガス量GCYLは、気筒3a内に吸入される総ガス量に相当する値であり、具体的には、図4に示す演算手法によって算出される。この演算手法は、スロットル弁12aを通過する空気を圧縮性流体かつ断熱流と見なすとともに、スロットル弁12aをノズルと見なす手法によって導出される。
なお、以下の説明において、記号(k)付きの各離散データは、制御周期ΔTに同期してサンプリング又は算出されたデータであることを示しており、記号k(kは正の整数)は各離散データのサンプリング又は算出サイクルの順番を表している。例えば、記号kは今回の制御タイミングでサンプリング又は算出された値(以下「今回値」という)であることを、記号k−1は前回の制御タイミングでサンプリング又は算出された値(以下「前回値」という)であることをそれぞれ示している。また、以下の説明では、各離散データにおける記号(k)を適宜省略する。
図4に示すように、まず、ステップ20で、スロットル弁開度THに応じて、図5に示すマップを検索することにより、開度関数KTHを算出する。
次いで、ステップ21に進み、圧力比R_P(=PB/PA)に応じて、図6のマップを検索することにより、流量関数Ψを算出する。
ステップ21に続くステップ22で、下式(1)により、通過空気量Gthを算出する。
Figure 0006054925
この通過空気量Gthは、スロットル弁12aを通過した空気量に相当する値であり、式(1)のRは、気体定数である。
次いで、ステップ23に進み、下式(2)により、理論筒内ガス量Gstdを算出する。
Figure 0006054925
この理論筒内ガス量Gstdは、筒内ガス量GCYLの理論値に相当する値であり、上式(2)は、気体の状態方程式に基づいて導出される。また、式(2)のVcylは筒内容積である。
次に、ステップ24で、下式(3)により、充填効率ηvを算出する。
Figure 0006054925
ステップ24に続くステップ25で、下式(4)に示す加重平均演算により、筒内ガス量GCYLを算出した後、本処理を終了する。
Figure 0006054925
上式(4)のVinは、吸気通路7におけるスロットル弁12aから吸気弁までの空間の容積に相当する通路容積である。
図3に戻り、ステップ3で、以上のように筒内ガス量GCYLを算出した後、ステップ4に進み、ウェイストゲート弁開度WGに応じて、図7に示すマップを検索することにより、ガス量判定値Gjud(所定の判定値)を算出する。同図に示すように、このマップでは、ガス量判定値Gjudは、ウェイストゲート弁開度WGが大きいほど、より大きい値に設定されている。これは、ウェイストゲート弁開度WGが大きいほど、タービン10bを介してLAFセンサ23に供給される排ガス量がより少なくなるので、それに対応するためである。
次に、ステップ5で、筒内ガス量GCYLがガス量判定値Gjud以上であるか否かを判別する。この判別結果がYESのときには、インバランス判定処理の実行条件が成立したと判定して、それを表すために、ステップ6に進み、インバランス判定フラグF_IMB_JUDを「1」に設定する。
一方、前述したステップ2又は5の判別結果がNOのとき、すなわち前述した(C1)〜(C3)の条件のいずれかが不成立のとき、又は筒内ガス量GCYLがガス量判定値Gjud未満であるときには、インバランス判定処理の実行条件が不成立であると判定して、それを表すために、ステップ7に進み、インバランス判定フラグF_IMB_JUDを「0」に設定する。
以上のステップ6又は7に続くステップ8で、インバランス判定フラグF_IMB_JUDが「1」であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ8の判別結果がYESのときには、ステップ9に進み、インバランス判定フラグの前回値F_IMB_JUDzが「1」であるか否かを判別する。この判別結果がNOで、今回の制御タイミングがインバランス判定処理の実行条件が成立したタイミングであるときには、ステップ10に進み、変動制御カウンタの計数値の前回値CTzを値0に設定する。
一方、ステップ9の判別結果がYESで、前回以前の制御タイミングにおいてインバランス判定処理の実行条件が成立済みであったときには、ステップ11に進み、変動制御カウンタの計数値の前回値CTzを、RAM内に記憶されている変動制御カウンタの計数値CTに設定する。
以上のステップ10又は11に続くステップ12で、変動制御カウンタの計数値CTを、その前回値CTzと値1の和CTz+1に設定した後、本処理を終了する。
以上のように、図3の実行条件判定処理を実行した場合、インバランス判定フラグF_IMB_JUD=1が成立している期間中、変動制御カウンタの計数値CTが値1ずつインクリメントされることになる。この場合、後述するように、インバランス判定フラグF_IMB_JUD=1が成立しているときに、空燃比変動制御処理が実行されるので、値ΔT・CTは、空燃比変動制御処理の継続実行時間を表すことになる。
次に、図8を参照しながら、加振値算出処理について説明する。この処理は、後述する空燃比変動制御処理を実行する際、検出当量比KACTの目標となる加振値KCMD_iを算出するものであり、ECU2によって前述した所定の制御周期ΔTで実行される。
同図に示すように、まず、ステップ40で、前述したインバランス判定フラグF_IMB_JUDが「1」であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ40の判別結果がYESで、インバランス判定の実行条件が成立しているときには、ステップ41に進み、加振値KCMD_iを算出した後、本処理を終了する。この加振値KCMD_iは、当量比として算出され、具体的には、図9に示すように、値1+Cを中心とし、周期ΔTa及び振幅Aで変動する正弦波信号値として算出される。この場合、値C,Aは正の所定値に設定され、周期Taは、後述する0.5次周波数F0.5を時間換算した値よりも大きい値に設定される。言い換えれば、この周期Taを周波数に換算した値である加振値周波数Faは、0.5次周波数F0.5よりも低い値に設定される。
次に、図10を参照しながら、燃料制御処理について説明する。この制御処理は、燃料噴射弁4による燃料噴射量TOUT及び噴射時期θINJを算出するものであり、ECU2によってTDC信号の発生に同期するタイミングで実行される。
同図に示すように、まず、ステップ50で、前述したインバランス判定フラグF_IMB_JUDが「1」であるか否かを判別する。この判別結果がYESのときには、インバランス判定処理の実行準備として、空燃比変動制御処理を実行すべきであると判定して、ステップ51に進み、RAM内に記憶されている加振値KCMD_iを読み込む。すなわち、加振値KCMD_iをサンプリングする。
次いで、ステップ52に進み、検出当量比KACTが加振値KCMD_iになるように、所定のフィードバック制御アルゴリズムにより、燃料噴射量TOUTを算出する。
次に、ステップ53で、エンジン回転数NE及び燃料噴射量TOUTに応じて、図示しないマップを検索することにより、噴射時期θINJを算出した後、本処理を終了する。
一方、前述したステップ50の判別結果がNOのときには、ステップ54に進み、通常燃料制御処理を実行。この通常燃料制御処理の場合、その内容は図示しないが、エンジン回転数NEやアクセルペダルの踏み込み量などに応じて、目標当量比KCMDを算出し、検出当量比KACTが目標当量比KCMDになるように、燃料噴射量TOUT及び噴射時期θINJが算出される。ステップ54で、以上のように通常燃料制御処理を実行した後、本処理を終了する。
本実施形態の場合、以上のステップ51〜53の制御処理が空燃比変動制御処理に相当し、この空燃比変動制御処理を実行することにより、排ガスの当量比が加振値KCMD_iに追従するように制御される。その結果、検出当量比KACTが加振値周波数Faの正弦波信号成分を含む状態となる。
次に、図11を参照しながら、第1インバランス判定処理について説明する。この第1インバランス判定処理は、バンドパスフィルタ・アルゴリズムを用いて、検出当量比KACTに含まれるエンジン回転数NEの1次周波数成分と加振値周波数成分とをサンプリングし、これらのサンプリング結果を用いて、空燃比のインバランス状態が発生しているか否かを判定するものであり、ECU2によって前述した制御周期ΔTで実行される。
同図に示すように、まず、ステップ60で、前述したインバランス判定フラグF_IMB_JUDが「1」であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ60の判別結果がYESで、インバランス判定処理の実行条件が成立しているときには、ステップ61に進み、下式(5)に示すバンドパスフィルタ・アルゴリズムより、第1フィルタ値KACT_f1を算出する。
Figure 0006054925
この式(5)において、α1〜αm及びβ1〜βnは、所定のフィルタ係数であり、m,nは、所定の整数である。この式(5)のバンドパスフィルタ・アルゴリズムの場合、その通過帯域がエンジン回転数NEの1次周波数F1を中心とする周波数域に設定されており、それにより、第1フィルタ値KACT_f1は、エンジン回転数NEの1次周波数成分をサンプリングした値として算出される。
次いで、ステップ62に進み、第1積算値の前回値S_KACT_f1zを、RAM内に記憶されている第1積算値S_KACT_f1に設定する。
次に、ステップ63で、第1積算値S_KACT_f1を、その前回値S_KACT_f1zと第1フィルタ値KACT_f1との和(S_KACT_f1z+KACT_f1)に設定する。
ステップ63に続くステップ64で前述した式(5)と同様のバンドパスフィルタ・アルゴリズムにより、第2フィルタ値KACT_f2を算出する。このステップ64で用いるバンドパスフィルタ・アルゴリズムの場合、その通過帯域が加振値周波数Faを中心とする周波数域に設定されており、それにより、第2フィルタ値KACT_f2は、加振値周波数成分をサンプリングした値として算出される。
次いで、ステップ65に進み、第2積算値の前回値S_KACT_f2zを、RAM内に記憶されている第2積算値S_KACT_f2に設定する。
次に、ステップ66で、第2積算値S_KACT_f2を、その前回値S_KACT_f2zと第2フィルタ値KACT_f2との和(S_KACT_f2z+KACT_f2)に設定する。
ステップ66に続くステップ67で、前述した変動制御カウンタの計数値CTが所定値CTref以上であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ67の判別結果がYESで、空燃比変動制御処理の継続実行時間が値ΔT・CTrefに達したときには、インバランス判定を実行すべきであると判定して、ステップ68に進み、第1正規化値RT1を、第1積算値S_KACT_f1を第2積算値S_KACT_f2で除算した値(S_KACT_f1/S_KACT_f2)に設定する。
次いで、ステップ69に進み、第1正規化値RT1が所定の第1判定値RT1judよりも大きいか否かを判別する。この判別結果がYESのときには、空燃比のインバランス状態が発生していると判定して、それを表すために、ステップ70に進み、インバランス発生フラグF_IMB_NGを「1」に設定した後、本処理を終了する。
一方、ステップ69の判別結果がNOのときには、空燃比のインバランス状態が発生していないと判定して、それを表すために、ステップ71に進み、インバランス発生フラグF_IMB_NGを「0」に設定した後、本処理を終了する。
次に、図12を参照しながら、第2インバランス判定処理について説明する。この第2インバランス判定処理は、前述した第1インバランス判定処理と同様のバンドパスフィルタ・アルゴリズムを用いて、検出当量比KACTに含まれるエンジン回転数NEの0.5次周波数成分と加振値周波数成分とをサンプリングし、これらのサンプリング結果を用いて、空燃比のインバランス状態が発生しているか否かを判定するものである。この第2インバランス判定処理は、ECU2によって、エンジン回転数NEの0.5次周波数F0.5を時間換算した制御周期、すなわち第1インバランス判定処理の2倍の制御周期2・ΔTで実行される。
同図に示すように、まず、ステップ80で、前述したインバランス判定フラグF_IMB_JUDが「1」であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ80の判別結果がYESで、インバランス判定処理の実行条件が成立しているときには、ステップ81に進み、前述した式(5)と同様のバンドパスフィルタ・アルゴリズムより、第3フィルタ値KACT_f3を算出する。このステップ81で用いるバンドパスフィルタ・アルゴリズムの場合、その通過帯域がエンジン回転数NEの0.5次周波数F0.5を中心とする周波数域に設定されており、それにより、第3フィルタ値KACT_f3は、エンジン回転数NEの0.5次周波数成分をサンプリングした値として算出される。
次いで、ステップ82に進み、第3積算値の前回値S_KACT_f3zを、RAM内に記憶されている第3積算値S_KACT_f3に設定する。
次に、ステップ83で、第3積算値S_KACT_f3を、その前回値S_KACT_f3zと第3フィルタ値KACT_f3との和(S_KACT_f3z+KACT_f3)に設定する。
ステップ83に続くステップ84で、前述した式(5)と同様のバンドパスフィルタ・アルゴリズムにより、第4フィルタ値KACT_f4を算出する。このステップ84で用いるバンドパスフィルタ・アルゴリズムの場合、その通過帯域が加振値周波数Faを中心とする周波数域に設定されており、それにより、第4フィルタ値KACT_f4は、加振値周波数成分をサンプリングした値として算出される。
次いで、ステップ85に進み、第4積算値の前回値S_KACT_f4zを、RAM内に記憶されている第4積算値S_KACT_f4に設定する。
次に、ステップ86で、第4積算値S_KACT_f4を、その前回値S_KACT_f4zと第4フィルタ値KACT_f4との和(S_KACT_f4z+KACT_f4)に設定する。
ステップ86に続くステップ87で、前述した変動制御カウンタの計数値CTが所定値CTref以上であるか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。
一方、ステップ87の判別結果がYESで、空燃比変動制御処理の継続実行時間が値ΔT・CTrefに達したときには、インバランス判定を実行すべきであると判定して、ステップ88に進み、第2正規化値RT2を、第3積算値S_KACT_f3を第4積算値S_KACT_f4で除算した値(S_KACT_f3/S_KACT_f4)に設定する。
次いで、ステップ89に進み、第2正規化値RT2が所定の第2判定値RT2judよりも大きいか否かを判別する。この判別結果がYESのときには、空燃比のインバランス状態が発生していると判定して、それを表すために、ステップ90に進み、インバランス発生フラグF_IMB_NGを「1」に設定した後、本処理を終了する。
一方、ステップ89の判別結果がNOのときには、空燃比のインバランス状態が発生していないと判定して、それを表すために、ステップ91に進み、インバランス発生フラグF_IMB_NGを「0」に設定した後、本処理を終了する。
このように、第1インバランス判定処理又は第2インバランス判定処理において、インバランス発生フラグF_IMB_NGが「1」に設定された場合、インバランス状態が発生していることを運転者に報知するために、車両の図示しないインストルメント・パネル内の警告ランプが点灯される。
以上のように、本実施形態の制御装置1によれば、排ガスの当量比が加振値KCMD_iに追従して変動するように、空燃比変動制御処理が実行され、この空燃比変動制御の実行中、LAFセンサ23の検出信号から算出した検出当量比KACTを用いて、空燃比のインバランス判定処理が実行される。
この場合、インバランス判定処理は、筒内ガス量GCYLがガス量判定値Gjud以上であるときに実行されるとともに、このガス量判定値Gjudは、ウェイストゲート弁開度WGが大きいほど、より大きい値に設定される。すなわち、ウェイストゲート弁開度WGが大きいことで、タービン10bを通過してLAFセンサ23に供給される排ガス量が減少するような場合でも、筒内ガス量GCYLが大きく、LAFセンサ23に供給される排ガス量が大きいことで、ウェイストゲート弁開度WGの増大による排ガス量の減少の影響を受けることないような条件下でのみ、インバランス判定処理が実行されることになる。すなわち、LAFセンサ23に供給される排ガス流量が小さい条件下でのインバランス判定処理を禁止することができ、それにより、インバランス判定処理において、良好な判定精度を確保することができる。
これに加えて、LAFセンサ23とウェイストゲート弁11aは、前述したような位置関係で排気通路8に配置されているので、タービン10bを通過した排ガスは、LAFセンサ23にダイレクトに接触するのに対して、ウェイストゲート弁11aを通過した排ガスは、LAFセンサ23にほとんど接触することなく、流下する。それにより、特許文献1のような、LAFセンサ23がウェイストゲート弁11aの下流側に配置されているレイアウトと異なり、ウェイストゲート弁11aを通過した排ガスの影響を回避できることで、ウェイストゲート弁開度WGが比較的、大きい領域でも、1次周波数成分、加振値周波数成分及び0.5次周波数成分を、検出当量比KACTから精度よくサンプリングすることができ、インバランス判定処理の判定精度をさらに向上させることができる。以上により、商品性を向上させることができる。
なお、実施形態は、排ガス濃度パラメータセンサとして、LAFセンサ23を用いた例であるが、本発明の排ガス濃度パラメータセンサはこれに限らず、排ガス中の酸素を含む所定成分の濃度を表す排ガス濃度パラメータを検出するものであればよい。例えば、排ガス濃度パラメータセンサとして、出力信号が反転する一般的な酸素濃度センサやNOxセンサを用いてよい。
また、実施形態は、排ガス濃度パラメータセンサとしてのLAFセンサ23を、ウェイストゲート弁11aの付近すなわちバイパス通路8aの下流側端部が排気通路8に合流する合流位置付近に配置した例であるが、LAFセンサ23を、排気通路8の合流部よりも上流側すなわちタービン10b寄りの位置に設けてもよい。このように構成した場合、特許文献1のレイアウトと異なり、LAFセンサ23がウェイストゲート弁11aを通過した排ガスの影響をより確実に回避できることで、実施形態の作用効果をより確実に得ることができる。
さらに、実施形態は、筒内ガス量パラメータ取得手段として、筒内ガス量GCYLを算出する算出プログラムを用いた例であるが、本発明の筒内ガス量パラメータ取得手段はこれに限らず、筒内ガス量を表す筒内ガス量パラメータを取得できるものであればよい。例えば、筒内ガス量取得手段として、本出願人が特開2012−2184号公報に開示したような、物理モデルを用いて筒内ガス量を算出する算出プログラムや、ニューラルネットワークモデルを用いて筒内ガス量を算出する算出プログラムを採用してもよい。また、エアフローセンサなどの各種センサの検出信号を用いて、筒内ガス量を算出してもよい。
一方、実施形態は、内燃機関又はその付属機器における動作状態の判定として、エンジン3のインバランス判定を実行した例であるが、本発明の内燃機関又はその付属機器における動作状態の判定はこれに限らず、これらの動作状態を判定するものであればよい。
例えば、LAFセンサ23の検出信号に基づき、その応答遅れを判定することで、付属機器の動作状態の判定として、LAFセンサ23の劣化状態の判定を実行してもよい。さらに、排ガス浄化触媒9の下流側に酸素濃度センサを設け、LAFセンサ23及び酸素濃度センサの検出信号を用いて、排ガス浄化触媒9の酸素貯蔵能OSCを算出することによって、付属機器の動作状態の判定として、排ガス浄化触媒9の劣化状態の判定を実行してもよい。
また、本発明の制御装置を車両用の内燃機関に適用した例であるが、本発明の制御装置は、これに限らず、船舶用の内燃機関や、他の産業機器用の内燃機関にも適用可能である。
1 制御装置
2 ECU(筒内ガス量パラメータ取得手段、空燃比制御手段、実行条件判定手段、 動作状態判定手段、判定値設定手段)
3 内燃機関
3a 気筒
8 排気通路
8a バイパス通路
10 ターボチャージャ
10b タービン
11a ウェイストゲート弁
23 LAFセンサ(排ガス濃度パラメータセンサ)
KACT 検出当量比(排ガス濃度パラメータ)
GCYL 筒内ガス量(筒内ガス量パラメータ)
Gjud ガス量判定値(所定の判定値)

Claims (2)

  1. 排気通路に設けられたタービンを有するターボチャージャと、当該ターボチャージャのタービンを迂回するバイパス通路を開閉することにより、当該タービンが排ガスから受け取る運動エネルギを変更するウェイストゲート弁とを備えた内燃機関の制御装置であって、
    前記排気通路の前記タービンよりも下流側に設けられ、排ガス中の酸素を含む所定成分の濃度を表す排ガス濃度パラメータを検出する排ガス濃度パラメータセンサと、
    前記内燃機関の気筒内における筒内ガス量を表す筒内ガス量パラメータを取得する筒内ガス量パラメータ取得手段と、
    前記内燃機関の空燃比を、所定状態で変動するように制御する空燃比変動制御を実行する空燃比制御手段と、
    前記取得された筒内ガス量パラメータが表す筒内ガス量が所定の判定値以上であるという動作状態判定の実行条件が成立しているか否かを判定する実行条件判定手段と、
    当該実行条件判定手段の判定結果に基づき、前記空燃比変動制御が実行中されている場合において、前記動作状態判定の実行条件が成立しているときに、前記検出された排ガス濃度パラメータを用いて、前記内燃機関又は当該内燃機関の付属機器における動作状態を判定する動作状態判定手段と、
    前記所定の判定値を、前記ウェイストゲート弁の開度が大きいほど、より大きい値に設定する判定値設定手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記排ガス濃度パラメータセンサは、前記バイパス通路の下流側端部が前記排気通路に合流する合流位置付近又は当該合流位置よりも上流側に設けられていることを特徴とする請求項1に記載の内燃機関の制御装置。
JP2014189587A 2014-09-18 2014-09-18 内燃機関の制御装置 Active JP6054925B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014189587A JP6054925B2 (ja) 2014-09-18 2014-09-18 内燃機関の制御装置
US14/852,627 US10094271B2 (en) 2014-09-18 2015-09-14 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189587A JP6054925B2 (ja) 2014-09-18 2014-09-18 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2016061216A JP2016061216A (ja) 2016-04-25
JP6054925B2 true JP6054925B2 (ja) 2016-12-27

Family

ID=55525331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189587A Active JP6054925B2 (ja) 2014-09-18 2014-09-18 内燃機関の制御装置

Country Status (2)

Country Link
US (1) US10094271B2 (ja)
JP (1) JP6054925B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765350B2 (ja) * 2013-02-04 2015-08-19 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP6607236B2 (ja) * 2017-07-04 2019-11-20 トヨタ自動車株式会社 内燃機関の排気システム
JP6919576B2 (ja) * 2018-01-16 2021-08-18 トヨタ自動車株式会社 内燃機関の排気構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569725A (en) * 1978-11-18 1980-05-26 Nissan Motor Co Ltd Exhaust gas by-passing valve mechanism for use with exhaust turbo-supercharger
JPH0543240Y2 (ja) * 1985-02-25 1993-10-29
JP2579936B2 (ja) * 1987-04-02 1997-02-12 マツダ株式会社 過給機付エンジンの空燃比制御装置
JP4253339B2 (ja) * 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
JP4952847B2 (ja) 2008-11-19 2012-06-13 トヨタ自動車株式会社 内燃機関の制御装置
WO2012086078A1 (ja) 2010-12-24 2012-06-28 トヨタ自動車株式会社 内燃機関の制御装置
JP2013221428A (ja) * 2012-04-13 2013-10-28 Toyota Motor Corp 内燃機関の制御装置
JP5765350B2 (ja) * 2013-02-04 2015-08-19 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置

Also Published As

Publication number Publication date
US20160084152A1 (en) 2016-03-24
JP2016061216A (ja) 2016-04-25
US10094271B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
EP2348213B1 (en) Control device for internal combustion engine
JP4130800B2 (ja) エンジンの制御装置
JP4700079B2 (ja) 気筒間の空燃比の不均衡を判断するための装置
JP3960339B2 (ja) 吸入空気量ばらつき検出装置
US9027535B2 (en) Control apparatus for internal combustion engine
JP5754446B2 (ja) 内燃機関の制御装置
JP2011185159A (ja) 過給機付き内燃機関の異常診断装置
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5304862B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5844227B2 (ja) 内燃機関の掃気ガス量算出装置および内部egr量算出装置
US10221794B1 (en) Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
JP6054925B2 (ja) 内燃機関の制御装置
JP4129221B2 (ja) エンジンの制御装置
JP2008185035A (ja) エンジンの制御装置
JP5999008B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP5640967B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP2008180225A (ja) エンジンの制御装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009007940A (ja) 内燃機関の筒内充填空気量演算装置
JP5553928B2 (ja) 気筒間の空燃比の不均衡を判断するための装置
JP5543852B2 (ja) 内燃機関の空燃比制御装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JP6020499B2 (ja) 内燃機関の制御装置
JP2013083186A (ja) 空燃比インバランス気筒決定装置
JP5138712B2 (ja) 過給機付きエンジンの制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250