JP6047998B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6047998B2
JP6047998B2 JP2012188094A JP2012188094A JP6047998B2 JP 6047998 B2 JP6047998 B2 JP 6047998B2 JP 2012188094 A JP2012188094 A JP 2012188094A JP 2012188094 A JP2012188094 A JP 2012188094A JP 6047998 B2 JP6047998 B2 JP 6047998B2
Authority
JP
Japan
Prior art keywords
electrode
nitride
outer peripheral
compound semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188094A
Other languages
Japanese (ja)
Other versions
JP2014045154A (en
Inventor
宏憲 青木
宏憲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2012188094A priority Critical patent/JP6047998B2/en
Publication of JP2014045154A publication Critical patent/JP2014045154A/en
Application granted granted Critical
Publication of JP6047998B2 publication Critical patent/JP6047998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は基板上に窒化物系化合物半導体を形成した半導体装置に関する。   The present invention relates to a semiconductor device in which a nitride compound semiconductor is formed on a substrate.

窒化ガリウム系等の窒化物系化合物半導体は絶縁破壊電界が高いことから、低損失の高耐圧パワーデバイス等への応用が期待されている。そのために、特性が良好なだけでなく、安価にデバイスを作成することが望まれている。これらの点を鑑みて、窒化物系化合物半導体層の成長基板として、窒化物系単結晶基板ではなく、大口径基板の製造が容易で安価なシリコン(Si)基板等を用いることが望まれている。例えば、シリコン基板上に周知の有機金属気相成長(MOCVD)法などを用いて形成された窒化物系半導体装置が特許文献1等で開示されている。このような窒化物系半導体装置は窒化物半導体層を厚く形成すると、クラック等を生じ易くなり、あまり厚く形成することができない。その結果、窒化物半導体層の厚みがソース電極とドレイン電極との間隔に比べて十分に小さいと、例えば半導体装置のオフ(OFF)状態において、ドレイン電極からバッファ層やシリコン(Si)基板を経由してソース電極に流れ込むリーク電流が発生し易いという問題がある。   Since nitride-based compound semiconductors such as gallium nitride have a high dielectric breakdown electric field, they are expected to be applied to low-loss high-voltage power devices. Therefore, it is desired not only to have good characteristics but also to produce a device at low cost. In view of these points, it is desirable to use a silicon (Si) substrate or the like that is easy to manufacture a large-diameter substrate, not a nitride-based single crystal substrate, as a growth substrate for the nitride-based compound semiconductor layer. Yes. For example, Patent Document 1 discloses a nitride-based semiconductor device formed on a silicon substrate using a known metal organic chemical vapor deposition (MOCVD) method. In such a nitride semiconductor device, if the nitride semiconductor layer is formed thick, cracks and the like are likely to occur, and the nitride semiconductor device cannot be formed so thick. As a result, when the thickness of the nitride semiconductor layer is sufficiently smaller than the distance between the source electrode and the drain electrode, for example, in the off state of the semiconductor device, the drain electrode passes through the buffer layer and the silicon (Si) substrate. As a result, there is a problem that a leak current flowing into the source electrode is likely to occur.

また、窒化物半導体装置の端部は一般的にドライエッチングを用いて窒化物系化合物半導体層の上面にメサ形状を形成したり、トレンチ形状を形成したりして素子分離(外周分離)構造を形成しているが、ドライエッチングを用いて外周分離構造を形成しているために、窒化物系化合物半導体層の側壁に結晶欠陥等が生じる。その結果、窒化物系化合物半導体層に形成した外周分離構造近傍は、窒化物半導体層の他の部分に比べて低抵抗となることでリーク電流が流れる通路となり、窒化物半導体装置の耐圧の低下や破壊の原因となっていた。このような問題を解決する手段として、例えば、特許文献2の方法がある。特許文献2の窒化物半導体装置は、ソース電極よりも窒化物系化合物半導体層の端部側に外周電極を配置し、半導体装置がオフ時に外周電極によってチャネル領域に達する空乏層を生じさせ、窒化物系化合物半導体層の端部からソース電極へ流れるリーク電流を抑制する構造が開示されている。   In addition, the edge portion of the nitride semiconductor device is generally formed by using dry etching to form a mesa shape or a trench shape on the upper surface of the nitride-based compound semiconductor layer to form an element isolation (peripheral isolation) structure. However, since the outer peripheral isolation structure is formed using dry etching, crystal defects or the like are generated on the side wall of the nitride-based compound semiconductor layer. As a result, the vicinity of the outer peripheral isolation structure formed in the nitride-based compound semiconductor layer becomes a passage through which a leak current flows due to a lower resistance than other portions of the nitride semiconductor layer, and the breakdown voltage of the nitride semiconductor device is reduced. Or cause destruction. As a means for solving such a problem, for example, there is a method of Patent Document 2. In the nitride semiconductor device of Patent Document 2, the outer peripheral electrode is disposed on the end side of the nitride-based compound semiconductor layer with respect to the source electrode, and a depletion layer reaching the channel region is generated by the outer peripheral electrode when the semiconductor device is turned off. A structure for suppressing a leakage current flowing from an end portion of a physical compound semiconductor layer to a source electrode is disclosed.

特開2006−5005号公報JP 2006-5005 A 特開2009−60049号公報JP 2009-60049 A

しかしながら、特許文献2の半導体装置は、外周電極で空乏化させることによってリーク電流を低減することは考慮されているが、ドレイン電極から基板又はバッファ層を経由して窒化物半導体層の端部に至る経路が低インピーダンスである場合、窒化物半導体層の側壁部はドレイン電極に近い数値まで電位が高くなり、窒化物半導体層の側壁部に高電界が発生してしまう。その結果、リーク電流を十分に抑制することができないという問題がある。   However, in the semiconductor device of Patent Document 2, it is considered that the leakage current is reduced by depletion at the outer peripheral electrode, but the drain electrode is connected to the end of the nitride semiconductor layer via the substrate or the buffer layer. When the route to reach has a low impedance, the potential of the side wall portion of the nitride semiconductor layer increases to a value close to the drain electrode, and a high electric field is generated at the side wall portion of the nitride semiconductor layer. As a result, there is a problem that the leakage current cannot be sufficiently suppressed.

本発明は、上記従来技術の状況に鑑み、リーク電流を十分に抑制することができる半導体装置を提供する。   The present invention provides a semiconductor device capable of sufficiently suppressing leakage current in view of the above-described state of the prior art.

上記課題を解決するために、本発明に係る半導体装置は、
シリコン、シリコンカーバイト、或いは窒化ガリウム系半導体から成る基板と、
前記基板上に形成され、主電流の電流通路となる窒化物系化合物半導体層と、
前記窒化物系化合物半導体層上に配置され、前記主電流通路に電流を流す第1及び第2の主電極と、
前記第1及び第2の主電極を囲むように前記窒化物系化合物半導体層上に配置された外周電極の基部と、
前記窒化物系化合物半導体層上に絶縁層を介して設けられ、且つ平面的に見て前記外周電極から外側に延伸した外周電極の延伸部と、
前記窒化物系化合物半導体層を平面的に見て、前記外周電極の延伸部よりも外側に、前記窒化物系化合物半導体層をドライエッチングすることによって設けられた、メサ構造の外周分離構造又はトレンチ構造と、を有し、
前記窒化物系化合物半導体層の厚みは、前記第1の主電極と前記第2の主電極との間の距離よりも小さく、
前記外周電極は、前記外周電極の基部から前記第2の電極側に延伸し、且つ前記窒化物系化合物半導体層上に絶縁層を介して設けられた外周電極の前記第2の主電極側に延伸する延伸部を更に有し、
前記第2の主電極側に延伸する延伸部は前記外側に延伸した外周電極の延伸部より短いことを特徴とする。
In order to solve the above problems, a semiconductor device according to the present invention provides:
A substrate made of silicon, silicon carbide, or gallium nitride semiconductor;
A nitride-based compound semiconductor layer formed on the substrate and serving as a main current path;
A first main electrode and a second main electrode that are disposed on the nitride-based compound semiconductor layer and cause a current to flow through the main current path;
A base portion of an outer peripheral electrode disposed on the nitride-based compound semiconductor layer so as to surround the first and second main electrodes;
An extended portion of the outer peripheral electrode provided on the nitride-based compound semiconductor layer via an insulating layer and extended outward from the outer peripheral electrode in plan view;
A mesa structure outer peripheral isolation structure or trench provided by dry-etching the nitride compound semiconductor layer outside the extending portion of the outer peripheral electrode when the nitride compound semiconductor layer is viewed in a plan view And having a structure
The nitride-based compound semiconductor layer has a thickness smaller than a distance between the first main electrode and the second main electrode,
The outer peripheral electrode extends from the base of the outer peripheral electrode to the second electrode side, and on the second main electrode side of the outer peripheral electrode provided on the nitride compound semiconductor layer via an insulating layer It further has a stretched part to be stretched,
The extending portion extending toward the second main electrode is shorter than the extending portion of the outer peripheral electrode extending outward.

本発明に係る半導体装置によれば、第1の外周電極の基部から外周分離溝側に向かって延伸する外周電極の第1の延伸部が絶縁層上に形成されていることによって、窒化物系化合物半導体層の第1の外周電極の基部から外周分離溝側に向かう電界集中を緩和し、第1の外周電極と外周分離溝との間に流れるリーク電流を抑制することができる。
According to the semiconductor device of the present invention, the first extended portion of the outer peripheral electrode extending from the base portion of the first outer peripheral electrode toward the outer peripheral separation groove side is formed on the insulating layer, so that the nitride system The concentration of the electric field from the base portion of the first outer peripheral electrode of the compound semiconductor layer toward the outer peripheral separation groove can be reduced, and the leakage current flowing between the first outer peripheral electrode and the outer peripheral separation groove can be suppressed.

本発明の第1の実施の形態に係る半導体装置の模式的な断面構造図である。1 is a schematic cross-sectional structure diagram of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る半導体装置の構成を示す平面図である。1 is a plan view showing a configuration of a semiconductor device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る半導体装置の模式的な断面構造図である。FIG. 6 is a schematic cross-sectional structure diagram of a semiconductor device according to a second embodiment of the present invention.

以下、本発明の実施の形態の半導体装置を、図面を参照しながら詳細に説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。また、以下に示す第1及び第2の実施例は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、様々な変更を加えることができる。   Hereinafter, a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. The following first and second embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material of the component parts. The shape, structure, arrangement, etc. are not specified as follows. The technical idea of the present invention can be modified in various ways within the scope of the claims.

図1は、本発明に係る実施例1を説明する半導体装置30である。
図1に示す半導体装置30は、基板1と、基板1の上に形成された緩衝層2と、GaN等の窒化ガリウム系半導体から成る電子走行層(チャネル層)3と、AlGaN等の窒化ガリウム系半導体から成る電子供給層(バリア層)4と、電子供給層4と電子走行層3との界面近傍に生じる2次元電子ガス層20と、半導体装置の外周を規定するためのトレンチ分離から成る外周分離構造13と、半導体装置30を平面的に見て外周分離構造13の内側に外周電極8とを備える。
FIG. 1 shows a semiconductor device 30 for explaining a first embodiment according to the present invention.
A semiconductor device 30 shown in FIG. 1 includes a substrate 1, a buffer layer 2 formed on the substrate 1, an electron transit layer (channel layer) 3 made of a gallium nitride semiconductor such as GaN, and a gallium nitride such as AlGaN. An electron supply layer (barrier layer) 4 made of a semiconductor, a two-dimensional electron gas layer 20 formed in the vicinity of the interface between the electron supply layer 4 and the electron transit layer 3, and a trench isolation for defining the outer periphery of the semiconductor device The outer peripheral separation structure 13 and the outer peripheral electrode 8 are provided inside the outer peripheral separation structure 13 when the semiconductor device 30 is viewed in plan.

半導体装置30を平面的に見て外周電極8の内側には、2次元電子ガス層20と電気的に接続されている第1の主電極12と、2次元電子ガス層20と電気的に接続され且つ第1の主電極12を外側から囲むように配置された第2の主電極9と、半導体装置の第1の主電極9と第2の主電極12との間に流れる主電流を制御するために第1の主電極12と第2の主電極9との間に配置された制御電極10とを備える。 The first main electrode 12 electrically connected to the two-dimensional electron gas layer 20 and the two-dimensional electron gas layer 20 are electrically connected to the inside of the outer peripheral electrode 8 when the semiconductor device 30 is viewed in plan view. And a main current flowing between the first main electrode 9 and the second main electrode 12 of the semiconductor device, and the second main electrode 9 disposed so as to surround the first main electrode 12 from the outside. For this purpose, a control electrode 10 is provided between the first main electrode 12 and the second main electrode 9.

以下、第1の主電極12がドレイン電極、第2の主電極9がソース電極、制御電極10がゲート電極の場合について例示的に説明するが、第1の主電極12がソース電極、第2の主電極9がドレイン電極、制御電極10がゲート電極であっても良い。 Hereinafter, the case where the first main electrode 12 is a drain electrode, the second main electrode 9 is a source electrode, and the control electrode 10 is a gate electrode will be described as an example. The first main electrode 12 is a source electrode, The main electrode 9 may be a drain electrode, and the control electrode 10 may be a gate electrode.

以下に、図1に示した半導体装置30の構成について説明する。基板1は、シリコン、シリコンカーバイト(SiC)、GaN等の窒化ガリウム系半導体から成る。例えば、シリコン基板はp型不純物を添加した基板が使用される。 Hereinafter, the configuration of the semiconductor device 30 illustrated in FIG. 1 will be described. The substrate 1 is made of a gallium nitride semiconductor such as silicon, silicon carbide (SiC), or GaN. For example, a silicon substrate to which a p-type impurity is added is used.

緩衝層2は、格子定数及び熱膨張係数が互いに異なる複数の窒化物系化合物半導体が積層された構造を採用することができる。例えば、緩衝層2として、組成比が互いに異なるAlGaN層を1つの組として積層した多層膜の緩衝層やAlN層とGaN層を1つの組として複数回積層された多層膜の緩衝層などを使用する。また、AlN層とGaN層が交互に複数回積層形成された第1の多層膜と第2の多層膜との間に第1及び第2の多層膜よりも厚い窒化物系化合物半導体層を配置した間欠バッファ構造を採用することも可能である。 The buffer layer 2 can employ a structure in which a plurality of nitride compound semiconductors having different lattice constants and thermal expansion coefficients are stacked. For example, as the buffer layer 2, a multi-layer buffer layer in which AlGaN layers having different composition ratios are stacked as one set, or a multi-layer buffer layer in which an AlN layer and a GaN layer are stacked as a set is used. To do. In addition, a nitride compound semiconductor layer thicker than the first and second multilayer films is disposed between the first multilayer film and the second multilayer film in which the AlN layer and the GaN layer are alternately stacked several times. It is also possible to adopt the intermittent buffer structure.

緩衝層2上の電子走行層3はノンドープのAlXGa1−XN(0≦X≦1)等の窒化物系化合物半導体から構成され、電子供給層4はn型またはノンドープのAlYGa1−YN(X<Y≦1)等の電子走行層3とは異なる組成から構成され、電子走行層3よりもバンドギャップが大きく、且つ電子走行層3と格子定数の異なる窒化物系化合物半導体から構成される。なお、電子走行層10と電子供給層11との界面近傍に二次元電子ガス(2DEG)層20が発生する。また、図1では電子供給層4の上にn型AlzGa1−zN(0≦z≦1、zはYと異なる)等から構成されるキャップ層5を配置している。キャリア供給層4の膜厚は、キャリア走行層3よりも薄い例えば5〜50nm程度、より好ましくは5〜30nm程度である。キャップ層5は数nm程度である。 The electron transit layer 3 on the buffer layer 2 is made of a nitride compound semiconductor such as non-doped AlXGa1-XN (0 ≦ X ≦ 1), and the electron supply layer 4 is an n-type or non-doped AlYGa1-YN (X <Y It is composed of a nitride-based compound semiconductor having a composition different from that of the electron transit layer 3 such as ≦ 1), having a band gap larger than that of the electron transit layer 3 and having a lattice constant different from that of the electron transit layer 3. Note that a two-dimensional electron gas (2DEG) layer 20 is generated near the interface between the electron transit layer 10 and the electron supply layer 11. In FIG. 1, a cap layer 5 made of n-type AlzGa1-zN (0 ≦ z ≦ 1, z is different from Y) or the like is disposed on the electron supply layer 4. The film thickness of the carrier supply layer 4 is thinner than the carrier traveling layer 3, for example, about 5 to 50 nm, and more preferably about 5 to 30 nm. The cap layer 5 is about several nm.

なお、電子供給層4とGaNからなる電子走行層3との間にアンドープAlNからなるスペーサ層を配置してもよい。また、ソース電極9とドレイン電極12と電子供給層4との間に、図1では図示していないが、例えばn型AlGaNからなるコンタクト層を配置してもよい。スペーサ層は、二次元電子ガス層20と電子供給層4に残されたイオン化ドナーによる正電荷との間に働くクーロン相互作用を低減する効果や、電子供給層4の不純物が電子走行層3に拡散することを防ぐ効果がある。コンタクト層は、ソース電極9とドレイン電極12と電子供給層4との接触抵抗の低減に寄与する。図1において、ソース電極9とドレイン電極12は二次元電子ガス層20と接するように、キャップ層5及び電子供給層4を貫通して電子走行層3に達する彫り込み溝が形成されており、この彫り込み溝内にソース電極9とドレイン電極12が埋め込まれている。   A spacer layer made of undoped AlN may be arranged between the electron supply layer 4 and the electron transit layer 3 made of GaN. Although not shown in FIG. 1, a contact layer made of n-type AlGaN, for example, may be disposed between the source electrode 9, the drain electrode 12, and the electron supply layer 4. The spacer layer has the effect of reducing the Coulomb interaction acting between the two-dimensional electron gas layer 20 and the positive charge caused by the ionized donors left in the electron supply layer 4, and the impurities in the electron supply layer 4 are added to the electron transit layer 3. It has the effect of preventing diffusion. The contact layer contributes to a reduction in contact resistance between the source electrode 9, the drain electrode 12, and the electron supply layer 4. In FIG. 1, the source electrode 9 and the drain electrode 12 are formed with engraved grooves reaching the electron transit layer 3 through the cap layer 5 and the electron supply layer 4 so as to contact the two-dimensional electron gas layer 20. A source electrode 9 and a drain electrode 12 are embedded in the engraved groove.

半導体装置30は、ソース電極9とドレイン電極12との間で電子供給層4上に配置され、Ni/Au等の材料で構成される制御電極(ゲート電極)10を更に備える。制御電極10の基部10Aは、電子走行層3を通ってソース電極9とドレイン電極12間に流れる主電流を制御する。制御電極10の基部10Aと電子供給層4との間にはp型AlPGa1−PN(0≦P<1)、p型金属酸化物等のp型材料膜、又はAl2O3等の絶縁膜からなる下地膜11を設けているが、下地膜11を設けなくても良い。例えば、半導体装置30をノーマリオフ型の半導体装置とする場合、制御電極10の基部10A下の電子供給層4は傾斜した側面と傾斜した側面との間に挟まれた底部からなる凹部が形成されており、凹部の底部に相当する電子供給層4の厚みは薄くなっている。これよって、制御電極10の基部10A下の下地膜11と合わせることによって、制御電極10の基部10A下の2次元電子ガス層20が遮断され、半導体装置30はノーマリオフを実現することができる。なお、このとき、キャップ層5の側面も傾斜した側面を有し、その上にも制御電極10及び下地膜11を設けても良い。   The semiconductor device 30 further includes a control electrode (gate electrode) 10 that is disposed on the electron supply layer 4 between the source electrode 9 and the drain electrode 12 and is made of a material such as Ni / Au. The base 10 </ b> A of the control electrode 10 controls the main current that flows between the source electrode 9 and the drain electrode 12 through the electron transit layer 3. Between the base portion 10A of the control electrode 10 and the electron supply layer 4, a p-type material film such as p-type AlPGa1-PN (0 ≦ P <1), a p-type metal oxide, or an insulating film such as Al2O3 is used. Although the base film 11 is provided, the base film 11 may not be provided. For example, when the semiconductor device 30 is a normally-off type semiconductor device, the electron supply layer 4 below the base portion 10A of the control electrode 10 has a concave portion formed by a bottom sandwiched between an inclined side surface and an inclined side surface. In addition, the thickness of the electron supply layer 4 corresponding to the bottom of the recess is thin. Accordingly, by combining with the base film 11 under the base 10A of the control electrode 10, the two-dimensional electron gas layer 20 under the base 10A of the control electrode 10 is blocked, and the semiconductor device 30 can realize normally-off. At this time, the side surface of the cap layer 5 also has an inclined side surface, and the control electrode 10 and the base film 11 may be provided thereon.

キャップ層5上には絶縁膜6が配置されている。なお、図1で示すように、制御電極10の基部10Aから段差を有するように、制御電極10の延伸部10Bが絶縁膜6上にも延伸して配置されており、周知のゲート・フィールド・プレートを構成している。ゲート・フィールド・プレートは制御電極10のドレイン電極12側だけではなくソース電極9側にも延伸部10Bが絶縁膜6上に延伸して配置されていても良い。なお、ソース・ゲート間電圧よりもドレイン・ゲート間電圧の方が大きいので、ゲート・フィールド・プレートについて、ドレイン電極12側の延伸部10Bがソース電極9側の延伸部10Bよりも緩やかであり、且つソース電極9側の延伸部10Bよりもドレイン電極12側の延伸部10Bが長く延びていることが望ましい。よって、ドレイン電極12側の制御電極10の延伸部10Bはキャップ層5上面から絶縁膜6の傾斜面、そして絶縁膜6の上面へと段々に延伸していることが望ましい。 An insulating film 6 is disposed on the cap layer 5. As shown in FIG. 1, the extending portion 10B of the control electrode 10 is also extended on the insulating film 6 so as to have a step from the base portion 10A of the control electrode 10. Make up plate. In the gate field plate, not only the drain electrode 12 side of the control electrode 10 but also the source electrode 9 side, the extending portion 10 </ b> B may be extended on the insulating film 6. Since the drain-gate voltage is larger than the source-gate voltage, the extended portion 10B on the drain electrode 12 side is more gradual than the extended portion 10B on the source electrode 9 side in the gate field plate. In addition, it is desirable that the extended portion 10B on the drain electrode 12 side extends longer than the extended portion 10B on the source electrode 9 side. Therefore, it is desirable that the extending portion 10 </ b> B of the control electrode 10 on the drain electrode 12 side extends stepwise from the upper surface of the cap layer 5 to the inclined surface of the insulating film 6 and the upper surface of the insulating film 6.

半導体装置30には、図1で示すように、電子供給層4上のソース電極9と外周分離構造13との間に、制御電極10と同じNi/Au等の材料で構成される外周電極7を更に備える。リーク電流を良好に抑制するため、外周電極7の基部7Aと電子供給層4との間にはp型AlPGa1−PN(0≦P<1)、p型金属酸化物等のp型材料膜、又はAl2O3等の絶縁膜からなる下地膜8を設けているが、下地膜8を設けなくても良い。
外周電極7は、リーク電流を抑制するため、ソース電極9と同電位、又はソース電極9よりも低い電位(例えば負電位)が印加できるようにしても良い。さらに、外周電極7の延伸部7Bが外周電極7の基部7Aから外周分離構造13側の絶縁膜6上へと延伸して配置されており、外周電極7近傍の電界を緩和している。外周電極7の延伸部7Bは外周電極7の外周分離構造13側だけではなくソース電極9側にも延伸部が絶縁膜6上に延伸して配置されていても良い。なお、ソース・ゲート間電圧よりも外周分離構造13・ソース間電圧の方が大きいので、外周分離構造13側の延伸部7Bがソース電極9側の延伸部7Bよりも緩やかであり、且つソース電極9側の延伸部7Bよりも外周分離構造13側の延伸部7Bが長く延びていることが望ましい。よって、外周分離構造13側の外周電極7の延伸部7Bはキャップ層5の上面から絶縁膜6の傾斜面、絶縁膜6の上面へと段々に延伸しており、外周分離構造13側の外周電極7の延伸部7Bは、階段状に形成されていることが望ましい。また、制御電極10の基部10Aと外周電極7の基部7Aにおける断面形状、制御電極10の延伸部10Bと外周電極7の延伸部7Bにおける断面形状の少なくとも何れか一方を同じとしても良い。また、制御電極10と同様に、外周電極7の基部7A下の電子供給層4は傾斜した側面と傾斜した側面との間に挟まれた底部からなる凹部が形成されており、外周電極7の基部7A下の凹部の底部に相当する電子供給層4の厚みは薄くなっている。上記リーク電流を良好に抑制することができる。ちなみに、外周電極7の基部7A下の凹部は2次元電子ガス層20を遮断するために2次元電子ガス層20を貫通し、外周電極7の基部7A下の凹部の底部は、外周電極7の基部7A下の凹部の周囲の2次元電子ガス層20よりも下にあっても良い。
As shown in FIG. 1, the semiconductor device 30 includes an outer peripheral electrode 7 made of the same material such as Ni / Au as the control electrode 10 between the source electrode 9 on the electron supply layer 4 and the outer peripheral isolation structure 13. Is further provided. In order to suppress the leakage current satisfactorily, a p-type material film such as p-type AlPGa1-PN (0 ≦ P <1) or p-type metal oxide is provided between the base portion 7A of the outer peripheral electrode 7 and the electron supply layer 4; Alternatively, the base film 8 made of an insulating film such as Al 2 O 3 is provided, but the base film 8 may not be provided.
The outer peripheral electrode 7 may be applied with the same potential as the source electrode 9 or a lower potential (for example, a negative potential) than the source electrode 9 in order to suppress the leakage current. Further, the extending portion 7B of the outer peripheral electrode 7 extends from the base portion 7A of the outer peripheral electrode 7 to the insulating film 6 on the outer peripheral separation structure 13 side, and the electric field in the vicinity of the outer peripheral electrode 7 is relaxed. The extending portion 7B of the outer peripheral electrode 7 may be arranged to extend on the insulating film 6 not only on the outer peripheral separation structure 13 side of the outer peripheral electrode 7 but also on the source electrode 9 side. Since the peripheral isolation structure 13 and the source-to-source voltage are larger than the source-gate voltage, the extending part 7B on the outer peripheral isolation structure 13 side is more gradual than the extending part 7B on the source electrode 9 side, and the source electrode It is desirable that the extending portion 7B on the outer peripheral separation structure 13 side extends longer than the extending portion 7B on the 9 side. Therefore, the extending portion 7B of the outer peripheral electrode 7 on the outer peripheral separation structure 13 side extends step by step from the upper surface of the cap layer 5 to the inclined surface of the insulating film 6 and the upper surface of the insulating film 6. The extending portion 7B of the electrode 7 is desirably formed in a step shape. Further, at least one of the cross-sectional shape at the base portion 10A of the control electrode 10 and the base portion 7A of the outer peripheral electrode 7 and the cross-sectional shape at the extended portion 10B of the control electrode 10 and the extended portion 7B of the outer peripheral electrode 7 may be the same. Similarly to the control electrode 10, the electron supply layer 4 below the base portion 7 </ b> A of the outer peripheral electrode 7 has a concave portion formed by a bottom sandwiched between the inclined side surface and the inclined side surface. The thickness of the electron supply layer 4 corresponding to the bottom of the recess under the base 7A is thin. The leakage current can be suppressed satisfactorily. Incidentally, the concave portion under the base portion 7A of the outer peripheral electrode 7 penetrates the two-dimensional electron gas layer 20 in order to block the two-dimensional electron gas layer 20, and the bottom portion of the concave portion under the base portion 7A of the outer peripheral electrode 7 It may be below the two-dimensional electron gas layer 20 around the recess under the base 7A.

外周分離構造13は、半導体装置の外周を規定するためのトレンチ分離から成る。外周分離構造13は、2次元電子ガス層20が形成される位置よりも深くなるように、少なくとも電子供給層4より位置までエッチングされた溝である。少なくとも電子供給層4より位置までエッチングされた溝とすることで、外周分離構造13の領域には2次元電子ガス層20が形成されず、半導体装置の端部と外周分離構造13の内側とを良好に遮断することができる。更に、2次元電子ガス層20が遮断されていることによって、複数の素子領域を形成することができ、複数の窒化物系化合物半導体素子から成る半導体装置とすることができる。ただし、外周分離構造13は、2次元電子ガス層20の形成される位置よりも深くしなくても良い。
また、半導体装置が1つの特性を有する窒化物系化合物半導体素子で構成されている場合、外周分離構造13は無くても良い。なお、窒化物半導体層の最も外側の側壁は半導体装置を形成する際にダイシングによって切断されるため、窒化物半導体層の最も外側の側壁に結晶欠陥が生じ易く、リーク電流が生じる原因ともなる。そこで、半導体装置が1つの特性を有する窒化物系化合物半導体素子で構成されている場合においても、外周分離構造13を設けることが好ましい。
また、半導体装置が複数の特性を有する窒化物系化合物半導体素子で構成されている場合、外周分離構造13が素子分離領域として機能する。
The outer periphery isolation structure 13 includes trench isolation for defining the outer periphery of the semiconductor device. The outer peripheral separation structure 13 is a groove etched to at least a position from the electron supply layer 4 so as to be deeper than a position where the two-dimensional electron gas layer 20 is formed. By forming the groove etched at least from the electron supply layer 4 to the position, the two-dimensional electron gas layer 20 is not formed in the region of the outer peripheral isolation structure 13, and the end of the semiconductor device and the inner side of the outer peripheral isolation structure 13 are formed. It can block well. Further, since the two-dimensional electron gas layer 20 is blocked, a plurality of element regions can be formed, and a semiconductor device composed of a plurality of nitride-based compound semiconductor elements can be obtained. However, the outer peripheral separation structure 13 may not be deeper than the position where the two-dimensional electron gas layer 20 is formed.
Further, when the semiconductor device is composed of a nitride compound semiconductor element having one characteristic, the outer peripheral separation structure 13 may not be provided. Since the outermost side wall of the nitride semiconductor layer is cut by dicing when forming the semiconductor device, crystal defects are likely to occur on the outermost side wall of the nitride semiconductor layer, which also causes a leak current. Therefore, it is preferable to provide the outer peripheral isolation structure 13 even when the semiconductor device is composed of a nitride compound semiconductor element having one characteristic.
Further, when the semiconductor device is composed of a nitride compound semiconductor element having a plurality of characteristics, the outer peripheral isolation structure 13 functions as an element isolation region.

図2で示すように、半導体装置30を平面的に見て、ドレイン電極12は、ドレインパッド電極120から櫛形状に複数枝分かれしている。ドレインパッド電極120と反対側にソースパッド電極90を有する。ソース電極9はドレインパッド電極120及びドレイン電極12をソース電極パッド90とで囲むように形成された部分と、隣接したドレイン電極12の枝分かれした部分間に延在するように、ソースパッド電極90から櫛形状に枝分かれした部分とを有する。ソース電極9よりも内側には、ドレインパッド電極と同じ側に制御パッド電極100を有する。制御電極10はソース電極9よりも内側であって、ソース電極9とドレイン電極12との間に制御パッド電極100から延びるように有する。更に、ソース電極9、ソースパッド電極90を囲むように外周電極7を有する。つまり、外周電極7は、ソースパッド電極90・ソース電極9・制御電極10・制御パッド電極100・ドレイン電極12・ドレインパッド電極120よりも外側に設けられている。外周分離構造13が外周電極7を囲むように更にその外側に配置されている。 As shown in FIG. 2, when the semiconductor device 30 is viewed in a plan view, the drain electrode 12 is branched from the drain pad electrode 120 into a comb shape. A source pad electrode 90 is provided on the side opposite to the drain pad electrode 120. The source electrode 9 extends from the source pad electrode 90 so as to extend between a portion formed so as to surround the drain pad electrode 120 and the drain electrode 12 with the source electrode pad 90 and a branched portion of the adjacent drain electrode 12. And a portion branched into a comb shape. Inside the source electrode 9, a control pad electrode 100 is provided on the same side as the drain pad electrode. The control electrode 10 is provided inside the source electrode 9 and extends from the control pad electrode 100 between the source electrode 9 and the drain electrode 12. Further, an outer peripheral electrode 7 is provided so as to surround the source electrode 9 and the source pad electrode 90. That is, the outer peripheral electrode 7 is provided outside the source pad electrode 90, the source electrode 9, the control electrode 10, the control pad electrode 100, the drain electrode 12, and the drain pad electrode 120. The outer peripheral separation structure 13 is further arranged outside the outer peripheral electrode 7 so as to surround it.

次に、本発明の第1の実施形態の半導体装置30の効果について説明する。
窒化物系化合物半導体装置が逆バイアスされた状態(即ち、FETがオフの状態)において、特許文献2と同様に、半導体装置30の外周電極7にソース電極9と同電位又はソース電極9よりも低い電位を印加する。半導体装置30の外周電極7は、外周電極7直下の2次元電子ガス層20が空乏化して遮断することによって、ドレイン電極12から緩衝層2や基板1、外周分離構造13、そして2次元電子ガス層20を経由してソース電極9に流れるリーク電流を抑制する。しかし、特許文献2の場合、高電圧が印加されると、リーク電流が流れる経路が低インピーダンスの場合、外周分離構造13もドレイン電極11と同様に高電位となり、ドレイン電極11端だけではなく外周分離構造13との界面近傍にも電界集中が生じ、半導体装置30のリーク電流が増加してしまうことが発明者によって発見された。
Next, effects of the semiconductor device 30 according to the first embodiment of the present invention will be described.
In the state in which the nitride compound semiconductor device is reverse-biased (that is, in the state in which the FET is off), the outer electrode 7 of the semiconductor device 30 has the same potential as that of the source electrode 9 or higher than that of the source electrode 9, as in Patent Document 2. Apply a low potential. The outer peripheral electrode 7 of the semiconductor device 30 has the two-dimensional electron gas layer 20 immediately below the outer peripheral electrode 7 depleted and blocked, so that the buffer layer 2, the substrate 1, the outer peripheral separation structure 13, and the two-dimensional electron gas are removed from the drain electrode 12. Leakage current flowing through the source electrode 9 via the layer 20 is suppressed. However, in the case of Patent Document 2, when a high voltage is applied and the path through which the leakage current flows is low impedance, the outer peripheral isolation structure 13 also has a high potential like the drain electrode 11, and not only the end of the drain electrode 11 but also the outer periphery. It has been discovered by the inventors that electric field concentration also occurs in the vicinity of the interface with the separation structure 13 and the leakage current of the semiconductor device 30 increases.

そこで、図1及び図2に示した本発明の窒化物系化合物半導体装置において、フィールド・プレートとして機能する外周電極7の延伸部7Bを外周分離構造13側の絶縁層上に形成し、外周電極7直下から外周分離構造13方向に延びる空乏層の広がりを緩やかにし、外周電極7近傍の電界集中を抑制することができる。また、図1及び図2に示した半導体装置30の外周電極7においては、ソース電極7側に比べて外周分離構造13側の延伸部7Bが緩やかであり、且つ長い。外周電極7の延伸部7Bをこのように形成することによって、半導体装置30のチップサイズを出来る限り大きくすることなく、より良好にリーク電流を抑制することができる。   Therefore, in the nitride-based compound semiconductor device of the present invention shown in FIGS. 1 and 2, the extending portion 7B of the outer peripheral electrode 7 functioning as a field plate is formed on the insulating layer on the outer peripheral separation structure 13 side, and the outer peripheral electrode Thus, the depletion layer extending in the direction of the outer peripheral separation structure 13 from just below 7 can be moderated to suppress electric field concentration near the outer peripheral electrode 7. Further, in the outer peripheral electrode 7 of the semiconductor device 30 shown in FIGS. 1 and 2, the extending portion 7 </ b> B on the outer peripheral isolation structure 13 side is gentler and longer than the source electrode 7 side. By forming the extending portion 7B of the outer peripheral electrode 7 in this way, the leakage current can be suppressed more favorably without increasing the chip size of the semiconductor device 30 as much as possible.

また、図1及び図2に示した半導体装置30においては、いわゆる電流コラプス現象によるオン抵抗の増大を抑制できる。電流コラプス現象は、制御電極10とドレイン電極12間への逆バイアス印加(オフ)後にオン抵抗が増大する現象である。このオン抵抗の増大は、逆バイアス(オフ)時に窒化物半導体層内部の欠陥にトラップされた電子が2次元電子ガス層20や窒化物半導体層に蓄えられる電荷を減少させることにより生じるといわれている。図1及び図2に示した半導体装置30では、窒化物半導体層内部の欠陥にトラップされた電子が、オン状態時に、ダメージを受けたことで比較的低抵抗となっている窒化物半導体層の端面である外周分離構造13近傍の電界集中を緩和できるので、逆バイアス印加(オフ)後のオン抵抗の増大も抑制できる。   Further, in the semiconductor device 30 shown in FIGS. 1 and 2, an increase in on-resistance due to a so-called current collapse phenomenon can be suppressed. The current collapse phenomenon is a phenomenon in which the on-resistance increases after reverse bias application (off) between the control electrode 10 and the drain electrode 12. This increase in on-resistance is said to occur when electrons trapped in defects inside the nitride semiconductor layer during reverse bias (off) reduce the charge stored in the two-dimensional electron gas layer 20 and the nitride semiconductor layer. Yes. In the semiconductor device 30 shown in FIGS. 1 and 2, the electrons trapped in the defects inside the nitride semiconductor layer are relatively low resistance due to damage in the on state. Since the electric field concentration in the vicinity of the outer peripheral separation structure 13 that is the end face can be relaxed, an increase in on-resistance after reverse bias application (off) can also be suppressed.

また、制御電極11と同様に、外周電極7の基部7A下の電子供給層4の上面は傾斜した側面と傾斜した側面との間に挟まれた底部からなる凹部が形成されており、外周電極7の基部7A下の凹部の底部に相当する電子供給層4の厚みは薄くすることによって、リーク電流を良好に抑制することができる。
また、ソース・ゲート間電圧よりも外周分離構造13・ソース間電圧の方が大きいので、外周分離構造13側の延伸部7Bがソース電極9側の延伸部7Bよりも緩やかであり、且つソース電極9側の延伸部7Bよりも外周分離構造13側の延伸部7Bが長く延びている。これによって、できる限りチップサイズを小さくし、良好にリーク電流を抑制することができる。
Similarly to the control electrode 11, the upper surface of the electron supply layer 4 below the base portion 7 </ b> A of the outer peripheral electrode 7 is formed with a recess composed of a bottom portion sandwiched between the inclined side surface and the inclined side surface. By reducing the thickness of the electron supply layer 4 corresponding to the bottom of the concave portion below the base portion 7A, the leakage current can be satisfactorily suppressed.
Further, since the voltage between the outer peripheral isolation structure 13 and the source is larger than the source-gate voltage, the extension part 7B on the outer peripheral isolation structure 13 side is more gradual than the extension part 7B on the source electrode 9 side, and the source electrode The extending portion 7B on the outer peripheral separation structure 13 side extends longer than the extending portion 7B on the 9 side. As a result, the chip size can be reduced as much as possible, and the leakage current can be suppressed satisfactorily.

(第2の実施の形態)
図3に本発明の第2の実施の形態に係る窒化物系化合物半導体装置を示す。図3に示した半導体装置において、外周分離構造13とソース電極9との間の距離がソース電極9とドレイン電極12との間の距離以上の長さとすることが、図2で示した本発明の第1の実施の形態と異なる。その他の構成については、図1及び図2で示した本発明の第1の実施の形態に係る窒化物系化合物半導体装置と同様である。
(Second Embodiment)
FIG. 3 shows a nitride-based compound semiconductor device according to the second embodiment of the present invention. In the semiconductor device shown in FIG. 3, the distance between the outer peripheral isolation structure 13 and the source electrode 9 is longer than the distance between the source electrode 9 and the drain electrode 12. This is different from the first embodiment. Other configurations are the same as those of the nitride-based compound semiconductor device according to the first embodiment of the present invention shown in FIGS.

ドライエッチングを用いて外周分離構造13を形成しているために、従来構造では、外周分離構造13近傍の窒化物系化合物半導体層には、結晶欠陥等が生じ易い。結晶欠陥が生じた外周分離構造13近傍は、窒化物半導体層の他の部分に比べて低抵抗領域となってしまうので、例えばドレイン電極12から外周分離構造13までのリーク電流通路が低インピーダンスの場合、ドレイン電極12に所定の電位を印加すると、外周分離構造13の電位がドレイン電極12と同程度の高電位にまで持ち上がってしまう。そこで、外周分離構造13とソース電極9との間の距離がソース電極9とドレイン電極12との間の距離以上の長さとすることで、例えばドレイン電極12から外周分離構造13までのリーク電流通路が低インピーダンスの場合においても、外周分離構造13とソース電極9との間の耐圧を良好に確保し、リーク電流をより抑制することができる。     Since the outer peripheral isolation structure 13 is formed using dry etching, in the conventional structure, a crystal defect or the like is likely to occur in the nitride-based compound semiconductor layer near the outer peripheral isolation structure 13. Since the vicinity of the outer peripheral isolation structure 13 where the crystal defect has occurred becomes a low resistance region compared to other portions of the nitride semiconductor layer, for example, the leakage current path from the drain electrode 12 to the outer peripheral isolation structure 13 has a low impedance. In this case, when a predetermined potential is applied to the drain electrode 12, the potential of the outer peripheral separation structure 13 is raised to a high potential similar to that of the drain electrode 12. Therefore, by setting the distance between the outer peripheral isolation structure 13 and the source electrode 9 to be longer than the distance between the source electrode 9 and the drain electrode 12, for example, a leakage current path from the drain electrode 12 to the outer peripheral isolation structure 13 Even in the case of a low impedance, the breakdown voltage between the outer peripheral separation structure 13 and the source electrode 9 can be secured satisfactorily, and the leakage current can be further suppressed.

同様に、外周分離構造13と外周電極7の基部7Aとの間の距離が制御電極の基部10Aとドレイン電極12との間の距離以上の長さとすることが望ましい。 Similarly, it is desirable that the distance between the outer peripheral separation structure 13 and the base portion 7A of the outer peripheral electrode 7 is longer than the distance between the base portion 10A of the control electrode and the drain electrode 12.

上記のように、本発明は第1乃至第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   As described above, the present invention has been described according to the first to second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、キャリア走行層3及びキャリア供給層4には、GaN、AlGaN以外のInGaN、AlInGaN、AlN、AlP、GaP、AlInP、GaInP、AlGaP、AlGaAs、GaAs、AlAs、InAs、InP、InN、GaAsP等のIII−V属化合物半導体、または酸化亜鉛(ZnO)等のII−VI化合物半導体、若しくは更に別の化合物半導体を採用可能である。   For example, the carrier running layer 3 and the carrier supply layer 4 include GaN, InGaN other than AlGaN, AlInGaN, AlN, AlP, GaP, AlInP, GaInP, AlGaP, AlGaAs, GaAs, AlAs, InAs, InP, InN, and GaAsP. III-V compound semiconductors, II-VI compound semiconductors such as zinc oxide (ZnO), or other compound semiconductors can be employed.

また、キャリア供給層4をp型半導体からなる正孔(ホール)供給層に置き換えることができる。この場合、2次元電子ガス層20に対応する領域に2次元キャリアガス層として2次元正孔ガス層20´が生じる。   The carrier supply layer 4 can be replaced with a hole supply layer made of a p-type semiconductor. In this case, a two-dimensional hole gas layer 20 ′ is generated as a two-dimensional carrier gas layer in a region corresponding to the two-dimensional electron gas layer 20.

更に、基板1がシリコン基板以外の導電性基板である場合や、窒化ガリウム系化合物半導体の下に絶縁性の低い層がある場合等にも、本発明は適用可能である。更に、基板1の下面に背面電極を設けてもよい。
また、外周分離構造13と外周電極7との間に、2次元電子ガス層20に到達しない程度の外周分離構造13よりも浅い溝13aを別途形成しても良い。溝13aを形成することによって、溝13a直下の2次元電子ガス層20の濃度が低下するので、外周分離構造13と外周電極7との間のリーク電流を抑制することができる。
Furthermore, the present invention can also be applied when the substrate 1 is a conductive substrate other than a silicon substrate, or when a low-insulating layer is present under the gallium nitride compound semiconductor. Further, a back electrode may be provided on the lower surface of the substrate 1.
Further, a groove 13 a shallower than the outer periphery separation structure 13 that does not reach the two-dimensional electron gas layer 20 may be separately formed between the outer periphery separation structure 13 and the outer periphery electrode 7. By forming the groove 13a, the concentration of the two-dimensional electron gas layer 20 immediately below the groove 13a is reduced, so that the leakage current between the outer peripheral separation structure 13 and the outer peripheral electrode 7 can be suppressed.

また、第1乃至第2の実施の形態はHEMTを例に説明したが、ショットキーバリアダイオード(SBD)の場合にも、本発明は適用可能である。   In the first and second embodiments, the HEMT has been described as an example. However, the present invention can also be applied to a Schottky barrier diode (SBD).

また、第1乃至第2の実施の形態の外周分離構造13をトレンチ構造で説明したが、メサ構造の場合にも、本発明は適用可能である。   In addition, although the outer peripheral isolation structure 13 of the first to second embodiments has been described as a trench structure, the present invention can also be applied to a mesa structure.

また、第1乃至第2の実施の形態の外周電極7と制御電極10、外周電極7直下の下地層8と制御電極10直下の下地層11の両方は同じ材料で形成した例で説明したが、少なくともどれか一方を異なる材料で形成しても良い。また、下地層8、11の少なくとも何れか一方を削除しても良い。   In the first and second embodiments, the outer peripheral electrode 7 and the control electrode 10, the base layer 8 immediately below the outer peripheral electrode 7, and the base layer 11 immediately below the control electrode 10 have been described as being formed of the same material. , At least one of them may be formed of a different material. Further, at least one of the base layers 8 and 11 may be deleted.

また、1つの半導体装置30は外周分離構造13及び外周電極7を1つ備えても良いが、半導体装置30が複数の素子構造から構成されている場合、外周分離構造13及び外周電極7を各々の素子を囲むように備えても良い。 In addition, one semiconductor device 30 may include one outer peripheral isolation structure 13 and one outer peripheral electrode 7, but when the semiconductor device 30 includes a plurality of element structures, the outer peripheral isolation structure 13 and the outer peripheral electrode 7 are respectively provided. It may be provided so as to surround the element.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…基板
2…緩衝層
3…電子走行層
4…電子供給層
5…キャップ層
6…絶縁層
7…外周電極
8…(外周電極の)下地層
9…ソース電極
10…制御電極
11…(制御電極の)下地層
12…ドレイン電極
13…外周分離構造
20…2次元電子ガス層
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Buffer layer 3 ... Electron travel layer 4 ... Electron supply layer 5 ... Cap layer 6 ... Insulating layer 7 ... Outer electrode 8 ... Underlayer (of outer electrode) 9 ... Source electrode 10 ... Control electrode 11 ... (Control) Electrode base layer 12 ... Drain electrode 13 ... Peripheral separation structure 20 ... Two-dimensional electron gas layer

Claims (6)

シリコン、シリコンカーバイト、或いは窒化ガリウム系半導体から成る基板と、
前記基板上に形成され、主電流の電流通路となる窒化物系化合物半導体層と、
前記窒化物系化合物半導体層上に配置され、前記主電流通路に電流を流す第1及び第2の主電極と、
前記第1及び第2の主電極を囲むように前記窒化物系化合物半導体層上に配置された外周電極の基部と、
前記窒化物系化合物半導体層上に絶縁層を介して設けられ、且つ平面的に見て前記外周電極から外側に延伸した外周電極の延伸部と、
前記窒化物系化合物半導体層を平面的に見て、前記外周電極の延伸部よりも外側に、前記窒化物系化合物半導体層をドライエッチングすることによって設けられた、メサ構造の外周分離構造又はトレンチ構造と、を有し、
前記窒化物系化合物半導体層の厚みは、前記第1の主電極と前記第2の主電極との間の距離よりも小さく、
前記外周電極は、前記外周電極の基部から前記第2の電極側に延伸し、且つ前記窒化物系化合物半導体層上に絶縁層を介して設けられた外周電極の前記第2の主電極側に延伸する延伸部を更に有し、
前記第2の主電極側に延伸する延伸部は前記外側に延伸した外周電極の延伸部より短いことを特徴とする半導体装置。
A substrate made of silicon, silicon carbide, or gallium nitride semiconductor;
A nitride-based compound semiconductor layer formed on the substrate and serving as a main current path;
A first main electrode and a second main electrode that are disposed on the nitride-based compound semiconductor layer and cause a current to flow through the main current path;
A base portion of an outer peripheral electrode disposed on the nitride-based compound semiconductor layer so as to surround the first and second main electrodes;
An extended portion of the outer peripheral electrode provided on the nitride-based compound semiconductor layer via an insulating layer and extended outward from the outer peripheral electrode in plan view;
A mesa structure outer peripheral isolation structure or trench provided by dry-etching the nitride compound semiconductor layer outside the extending portion of the outer peripheral electrode when the nitride compound semiconductor layer is viewed in a plan view And having a structure
The nitride-based compound semiconductor layer has a thickness smaller than a distance between the first main electrode and the second main electrode,
The outer peripheral electrode extends from the base of the outer peripheral electrode to the second electrode side, and on the second main electrode side of the outer peripheral electrode provided on the nitride compound semiconductor layer via an insulating layer It further has a stretched part to be stretched,
2. A semiconductor device according to claim 1, wherein an extending portion extending toward the second main electrode is shorter than an extending portion of the outer peripheral electrode extending outward.
前記第1の主電極と第2の主電極との間の距離は、前記第2の主電極と前記メサ構造の外周分離構造又は前記トレンチ構造との間の距離以下であり、前記第1の主電極は前記第2の主電極よりも高電位であることを特徴とする請求項の半導体装置。 The distance between the first main electrode and the second main electrode is equal to or less than the distance between the second main electrode and the outer peripheral isolation structure of the mesa structure or the trench structure . The semiconductor device according to claim 1 , wherein the main electrode has a higher potential than the second main electrode. 前記第1の主電極と前記第2の主電極との間の、前記窒化物系化合物半導体層上に配置された制御電極を更に備え、
前記第1の主電極と前記制御電極との間の距離は、前記外周電極と前記メサ構造の外周分離構造又は前記トレンチ構造との間の距離以下であることを特徴とする請求項の半導体装置。
A control electrode disposed on the nitride-based compound semiconductor layer between the first main electrode and the second main electrode;
The distance between the first main electrode and the control electrode, a semiconductor according to claim 1, wherein the outer circumference electrode and the or less distance between the outer isolation structure or the trench structure of the mesa structure apparatus.
前記窒化物系化合物半導体層は
第1の窒化物系化合物半導体層と、
前記第1の窒化物系化合物半導体層上に形成され、前記第1の窒化物系化合物半導体層と異なる組成を有する第2の窒化物系化合物半導体層と、
前記第1の窒化物系化合物半導体層と前記第2の窒化物系化合物半導体層との界面近傍の2次元電子ガス層とを有し、
前記メサ構造の外周分離構造又は前記トレンチ構造は、前記2次元電子ガス層よりも深いことを特徴とする請求項2又は3を満足する半導体装置。
The nitride-based compound semiconductor layer includes a first nitride-based compound semiconductor layer,
A second nitride-based compound semiconductor layer formed on the first nitride-based compound semiconductor layer and having a composition different from that of the first nitride-based compound semiconductor layer;
A two-dimensional electron gas layer in the vicinity of the interface between the first nitride-based compound semiconductor layer and the second nitride-based compound semiconductor layer;
Periphery isolation structure or the trench structure of the mesa structure, a semiconductor device which satisfies the claims 2 or 3, characterized in that deeper than the two-dimensional electron gas layer.
前記第1の主電極は前記第2の主電極よりも高電位が印加される電極であって、
前記外周電極は前記第2の主電極と同電位以下の電位が印加されることを特徴とする請求項1〜何れか1項を満足する半導体装置。
The first main electrode is an electrode to which a higher potential is applied than the second main electrode,
The peripheral electrode is a semiconductor device that satisfies the claims 1-4 any one, wherein a potential of less than or equal to the second main electrode and the same potential is applied.
前記外周電極の下の窒化物系化合物半導体層の上面領域には、凹部が形成されており、
前記凹部の底部に前記外周電極の基部が配置されていることを特徴とする請求項1〜何れか1項を満足する半導体装置。
A recess is formed in the upper surface region of the nitride-based compound semiconductor layer under the outer peripheral electrode,
The semiconductor device satisfying any one of claims 1 to 5 , wherein a base portion of the outer peripheral electrode is disposed at a bottom portion of the concave portion.
JP2012188094A 2012-08-28 2012-08-28 Semiconductor device Active JP6047998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188094A JP6047998B2 (en) 2012-08-28 2012-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188094A JP6047998B2 (en) 2012-08-28 2012-08-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014045154A JP2014045154A (en) 2014-03-13
JP6047998B2 true JP6047998B2 (en) 2016-12-21

Family

ID=50396201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188094A Active JP6047998B2 (en) 2012-08-28 2012-08-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6047998B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526470B2 (en) * 2007-09-03 2014-06-18 サンケン電気株式会社 Nitride compound semiconductor devices
JP2011124385A (en) * 2009-12-10 2011-06-23 Sanken Electric Co Ltd Compound semiconductor device and method for manufacturing the same
JP2013197315A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2014045154A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5071377B2 (en) Compound semiconductor device and manufacturing method thereof
US7750369B2 (en) Nitride semiconductor device
KR101773259B1 (en) A STRUCTURE FOR A GALLIUM NITRIDE (GaN) HIGH ELECTRON MOBILITY TRANSISTOR
JP5348364B2 (en) Heterojunction field effect semiconductor device
JP4737471B2 (en) Semiconductor device and manufacturing method thereof
US10833159B1 (en) Semiconductor device and method for manufacturing the same
JP5526470B2 (en) Nitride compound semiconductor devices
JP5190923B2 (en) Nitride semiconductor transistor having GaN as channel layer and manufacturing method thereof
US8258544B2 (en) Field-effect transistor
US20110156050A1 (en) Semiconductor device and method for producing the same
US11462635B2 (en) Nitride semiconductor device and method of manufacturing the same
US20150263155A1 (en) Semiconductor device
JP2008016588A (en) GaN-BASED SEMICONDUCTOR ELEMENT
JPWO2010016564A1 (en) Semiconductor device
JP6496149B2 (en) Semiconductor device and manufacturing method of semiconductor device
US10373833B2 (en) Semiconductor device and method for manufacturing the same
US11652145B2 (en) Nitride semiconductor device comprising layered structure of active region and method for manufacturing the same
US20190035922A1 (en) Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device
JP2015119028A (en) Semiconductor device, field effect transistor and diode
JP6047998B2 (en) Semiconductor device
JP2016086108A (en) Compound semiconductor device
JP2014241379A (en) Semiconductor device
US11437473B2 (en) Nitride semiconductor device and method of manufacturing the same
JP6689424B2 (en) Semiconductor device
JP2022130685A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6047998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250