JP6042195B2 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP6042195B2
JP6042195B2 JP2012266583A JP2012266583A JP6042195B2 JP 6042195 B2 JP6042195 B2 JP 6042195B2 JP 2012266583 A JP2012266583 A JP 2012266583A JP 2012266583 A JP2012266583 A JP 2012266583A JP 6042195 B2 JP6042195 B2 JP 6042195B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012266583A
Other languages
English (en)
Other versions
JP2014112496A (ja
Inventor
和昌 宮田
和昌 宮田
慎平 山上
慎平 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012266583A priority Critical patent/JP6042195B2/ja
Publication of JP2014112496A publication Critical patent/JP2014112496A/ja
Application granted granted Critical
Publication of JP6042195B2 publication Critical patent/JP6042195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池脹れが抑制された非水電解質二次電池に関する。
近年、携帯電話機、スマートフォン、デジタルカメラ等の携帯機器は、これらの機器の高機能化により、消費電力が増大している。そのため、これらの機器の電源として用いられている非水電解質二次電池も高容量化が要求されている。一方で、携帯機器の薄型化により、電池自体の薄型化に対しても要求が高く、初期状態においての薄型化はもちろん、高温保存後、充放電を繰り返した後においても電池の膨れを抑制することが要求されている。角形非水電解質二次電池は、円筒形非水電解質二次電池に比較して、長辺外装部において膨れが発生し易いために、この課題が顕著に現れる。
非水電解質二次電池の高容量化には、特にニッケル系の正極活物質を使用することで対応することができる。しかしながら、ニッケル系の正極活物質を用いた非水電解質二次電池は、正極活物質ないし負極活物質と非水電解液との反応性が高くなり、保存時やサイクル経過時において、ガス発生等による電池厚みの増加が課題となっている。このような課題に対処するため、例えば下記特許文献1にも開示されているように、非水電解液へ添加剤を加え、正極活物質ないし負極活物質と非水電解液との間の反応による非水電解液の分解反応を抑制して、ガス発生の抑制を行なっている。
特開2010−140737号公報
非水電解液に添加剤を加えると、初期の充電時に正極活物質ないし負極活物質の表面に保護被膜が形成されるため、正極活物質ないし負極活物質と非水電解液との反応による非水電解液の分解反応を抑制することができる。しかしながら、急速充電時には、リチウムが負極内に取り込まれずに負極外部に析出し、ガス発生による電池膨れが起こってしまうという課題があった。
本発明の一実施形態の非水電解質二次電池によれば、急速充電時においても、リチウムが負極外部に析出し難くなり、ガスが発生し難く、電池脹れが抑制された非水電解質二次電池を提供することができるようになる。
本発明の一実施形態の非水電解質二次電池は、
正極極板、負極極板、非水電解液及びセパレータを有し、
前記正極極板は、正極活物質として、下記一般式(1)で表されるリチウムニッケル複合酸化物を含んでおり、
LiNi1−y−zCo (1)
(ただし、0.95≦x≦1.1、0<y≦0.5、0≦z<0.5、0.055≦y+z≦0.5、Mは、Al、Mn、Mg、Ca、Fe、Ti、Zn、Sr、Ba、Zr、Y、BおよびTaよりなる群から選ばれる少なくとも1種)
前記負極極板は、負極活物質として炭素材料と金属又は金属化合物の少なくとも1種との混合物を含んでおり、
負極の負荷(電池容量/負極活物質質量)が372mAh/g以下、300mAh/g以上であり、
体積エネルギー密度が530Wh/L以下、250Wh/L以上とされている。
本発明の一実施形態の非水電解質二次電池によれば、負極活物質のリチウム取り込み性に余裕があるため、急速充電時においてもリチウムが負極活物質の表面に析出し難くなるので、ガスが発生し難く、電池脹れが抑制された非水電解質二次電池が得られる。
各実験例に共通する角形非水電解質二次電池の分解斜視図である。
以下、本願発明を実施するための形態を各種実験例を用いて詳細に説明する。ただし、以下に示す実験例は、本発明の技術思想を具体化するための角形非水電解質二次電池の一例を示すものであって、本発明をこれらの実験例のいずれかに限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
なお、本発明における「角形」とは、完全な直方体のものだけでなく、幅方向の両側端面がラウンド形状となっているものや、両側端面の角が丸められているものも含む意味で用いられている。また、各実験例においては、幅方向の両側端面がラウンド形状となっている角形非水電解質二次電池に代表させて説明することとする。最初に実験例1に係る角形非水電解質二次電池の具体的な製造方法について説明する。
[実験例1]
[正極活物質の調製]
正極活物質としてのリチウムニッケルコバルトアルミニウム複合酸化物は以下のようにして得た。出発原料として、リチウム源には水酸化リチウム(LiOH・HO)を用いた。遷移金属源にはニッケル、コバルト及びアルミニウムの共沈水酸化物(Ni0.8Co0.15Al0.05(OH))を用いた。これらをリチウムと遷移金属(ニッケル、コバルトびアルミニウム)のモル比が1:1になるように秤量して混合した。得られた混合物を酸素雰囲気下において400℃で12時間焼成し、乳鉢で解砕した後、さらに酸素雰囲気下において900℃で24時間焼成し、LiNi0.8Co0.15Al0.05で表されるリチウムニッケルコバルトアルミニウム複合酸化物を得た。これを乳鉢で粉砕して、各実験例で用いる正極活物質とした。なお、リチウムニッケルコバルトアルミニウム複合酸化物の化学組成はICP(Inductively Coupled Plasma:誘導結合プラズマ発光分析)により測定した。
[正極合剤スラリーの調製]
上記のようにして得られた正極活物質としてのリチウムニッケルコバルトアルミニウム複合酸化物95質量部に対し、導電剤としての炭素粉末が2.5質量部、結着剤としてのポリフッ化ビニリデン粉末が2.5質量部となるよう混合し,これをN−メチルピロリドン(NMP)溶液と混合して正極合剤スラリーを調製した。
[正極極板の作製]
上記のようにして得られた正極合剤スラリーを厚さ15μmの正極芯体としてのアルミニウム箔の両面にドクターブレード法により塗布した後、乾燥させることにより、正極芯体の両面に正極合剤層を形成した。次いで、圧縮ローラーを用いて所定の厚さになるまで圧縮し、長さ約670mm、幅約58mmの正極極板を作製した。次いで、長手方向の一方側の端部において、正極芯体を露出させ、この部分に長さ30mm、幅3mm及び厚み0.1mmのアルミニウム製の正極リードの一端を超音波溶接により取り付けた。
[負極極板の作製]
負極活物質として、平均粒子径が20μmの人造黒鉛と平均粒子径が10μmのSiOx(x=1)に表面を炭素材料で被覆した化合物(複合体全体の10質量%が炭素材料である複合体)とを、質量比でSiOの含有割合が3質量%となるように混合した混合物を用いた。この負極活物質を100質量部と、結着剤としてスチレン−ブタジエン共重合体(日本ゼオン(株)製のBM−400B)を1質量部と、増粘剤としてカルボキシメチルセルロースを1質量部とを、適量の水とを混合して、負極合剤ペーストを調製した。
この負極合剤ペーストを、厚さ10μmの負極芯体としての銅箔の両面に塗布した後、乾燥させることにより、負極芯体の両面に負極合剤層を形成した。次いで、圧縮ローラーを用いて所定の厚さになるまで圧縮し、長さ約650mm、幅約60mmの負極極板を作製した。次いで、長手方向の一方側の端部において、負極芯体を露出させ、この部分に長さ30mm、幅3mm及び厚み0.1mmのニッケル製の負極リードの一端を超音波溶接により取り付けた。
[非水電解液の調製]
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、25℃において、体積比で1:4の割合で混合した溶媒に対し、ヘキサフルオロリン酸リチウム(LiPF)を濃度が1mol/Lとなるように溶解させて、各実験例に用いる非水電解液を調製した。
[非水電解質電池の作製]
上記のようにして作製した正極極板と負極極板とを、正極リードが巻き終わり端側となり、負極リードが巻き始め端側となるようにし、正極リード及び負極リードが互いに同一方向へ延出するように配置して、ポリエチレン製微多孔膜からなるセパレータを介して偏平状に巻回することで、実験例1で用いる偏平状巻回電極体を作製した。
上記のようにして作製した偏平状巻回電極体を用いて実験例1の非水電解質二次電池10を組み立てる工程を、図1を参照しながら、説明する。偏平状巻回電極体11は、巻回軸方向の一方側の端部に正極リード12及び負極リード13が設けられている。アルミニウム製の封口板14の上面にポリプロピレンサルファイド(PPS)製の上部絶縁ガスケット15を配置し、下面にPPS製の下部絶縁ガスケット16を介して集電板17を配置した。そして、封口板14の長手方向の中央に形成された端子用貫通孔18に、リベット端子19をかしめることにより、封口板14に上部絶縁ガスケット15、下部絶縁ガスケット16及び集電板17を固定し、組立封口体20を作製した。
偏平状巻回電極体11を角形電池外装缶21(アルミニウム製、厚み300μm)内に収容した後、作製した組立封口体20を載積した。そのとき、正極リード12及び負極リード13は絶縁ケース22に形成された各貫通孔に押通させ、組立封口体20を角形電池外装缶21の開口側に配置した。続いて正極リード12の他端を封口板14の内面にレーザー溶接し、負極リード13の他端を集電板17にレーザー溶接した。その後、角形電池外装缶21の開口部に封口板14を配置し、封口板14の周縁を角形電池外装缶21にレーザー溶接することで角形電池外装缶21の開口部を封止した。
次いで、封口板14の注液口23から5.0gの非水電解液を角形電池外装缶21内に注入し、封栓24で注液口23を嵌合し、レーザー溶接で封栓24と封口板14を溶接して注液口23を封止した。このようにして、電池サイズが、厚み:約6.5mm、幅:約38mm、高さ:64mmであり、理論容量が2050mAhであり、体積エネルギー密度450Wh/L、負極の負荷(電池容量/負極活物質質量)300mAh/gの実験例1の角形非水電解質二次電池10を作製した。
なお、負極活物質としての黒鉛の理論容量は372mAh/gであり、SiOの理論容量は黒鉛の理論容量よりも大きい。そのため、実施形態1の角形非水電解質二次電池10にける負極の負荷が300mAh/gであるということは、角形非水電解質二次電池10で用いられている負極活物質の量が多く、正極活物質が満充電状態となった場合でも、未充電状態の負極活物質が多く存在しているということを意味する。
[実験例2]
理論容量を2050mAh(体積エネルギー密度450Wh/L)とし、負極塗布質量を調整して負極の負荷を330mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。なお、実験例2の角形非水電解質二次電池の具体的構成は、図1に示した実験例1の角形非水電解質二次電池10の場合と同様であるので、図示及びその詳細な説明は省略する(以下、実験例3〜12においても同様)。
[実験例3]
理論容量を2050mAh(体積エネルギー密度450Wh/L)とし、負極塗布質量を調整し、負極の負荷を372mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。
[実験例4]
正極の塗布質量を調整して理論容量を2350mAh(体積エネルギー密度530Wh/L)とし、負極塗布質量を調整して負極の負荷を330mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。
[実験例5]
負極活物質の混合比率を、人造黒鉛を98質量%、SiOに表面を炭素材料で被覆した化合物を2質量%とした負極活物質を用いたことを除いては、上記実験例2と同様にして角形非水電解質二次電池を作製した。
[実験例6]
負極活物質の混合比率を、人造黒鉛を96質量%、SiOに表面を炭素材料で被覆した化合物4質量%とした負極活物質を用いたことを除いては、上記実験例2と同様にして角形非水電解質二次電池を作製した。
[実験例7]
負極活物質の混合比率を、人造黒鉛を99質量%、SiOに表面を炭素材料で被覆した化合物1質量%とした負極活物質を用いたことを除いては、上記実験例2と同様にして角形非水電解質二次電池を作製した。
[実験例8]
負極活物質の混合比率を、人造黒鉛を95質量%、SiOに表面を炭素材料で被覆した化合物5質量%とした負極活物質を用いたことを除いては、上記実験例2と同様にして角形非水電解質二次電池を作製した。
[実験例9]
負極活物質として、平均粒子径が20μmである人造黒鉛のみを負極活物質としたことを除いては、上記実験例2と同様にして角形非水電解質二次電池を作製した。
[実験例10]
理論容量を2050mAh(体積エネルギー密度450Wh/L)とし、負極塗布質量を調整し、負極の負荷を250mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。
[実験例11]
理論容量を2050mAh(体積エネルギー密度450Wh/L)とし、負極塗布質量を調整し、負極の負荷を390mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。
[実験例12]
正極の塗布質量を調整し、理論容量を2550mAh(体積エネルギー密度580Wh/L)とし、負極塗布質量を調整し、負極の負荷を330mAh/gとしたことを除いては、上記実験例1と同様にして角形非水電解質二次電池を作製した。
[サイクル試験]
上記実験例1〜12のそれぞれの角形非水電解質二次電池について、それぞれ5個ずつ用意し、以下のようにしてサイクル特性の評価を行った。25℃に維持された恒温槽中で、0.7Itで電池電圧が4.2Vになるまで定電流充電した後、4.2Vで電流が0.05Itに低下するまで定電圧充電し、その後、1.0Itで電池電圧が2.5Vになるまで定電流放電させた。この充放電を1サイクルとし、500サイクル繰り返した。そして、1サイクル目の放電容量と500サイクル目の放電容量とを測定することにより、以下の計算式によってサイクル特性としての容量維持率を求めた。
容量維持率(%)
=(500サイクル目の放電容量/1サイクル目の放電容量)×100
また、最初の充電後の電池厚みAと、500サイクル後の充電後の厚みBの測定を行い、以下の計算式によって電池の膨れ量(%)を算出した。結果を纏めて表1に示した。
電池の膨れ量(%)=((B−A)/A))×100
Figure 0006042195
表1に示した結果から以下のことがわかる。すなわち、負極活物質中にSiOを含む実験例1〜8の結果は、負極活物質中にSiOを含まない実験例9の結果と比較すると、500サイクル後の容量維持率は高く、電池膨れは小さくなっている。これは、負極活物質中に黒鉛よりも理論容量が大きいSiOを添加することにより、負極活物質の受け入れ可能なリチウム量が増大するが、受け入れ可能なリチウム量を最大限に利用しない設計のため、充放電に伴う負極活物質の膨張収縮による崩壊が抑制され、サイクル特性が良好となったためと考えられる。加えて、負極活物質がリチウムを受け入れきれなくなることによるリチウムの析出が抑制されるため、ガスの発生が抑制され、電池の膨れも小さくなったものと考えられる。
また、負極活物質中のSiO含有量が3質量%及び電池のエネルギー密度が450Wh/Lであるが、負極の負荷のみが相違する実験例1〜3の結果と実験例10及び11の結果を対比すると、負極の負荷の設計は、372mAh/g以下、300mAh/g以上が望ましいことがわかる。これは、負極の負荷を炭素材料の理論容量である372mAh/gを超えるように設計すると、負極活物質がリチウムを受け入れきれず、リチウムが析出してしまい、サイクル特性が悪化し、ガスの発生量も増えて電池の膨れも大きくなってしまうためであると考えられる。
負極の負荷を下げるには、負極活物質の含有量を増加させる必要がある。この場合、電池の内部空間が決められているため、負極の密度を上げることで負極の負荷を下げることが可能となるが、負極の密度を上げると、非水電解液が巻回電極体の内部まで浸透し難くなり、非水電解液が周囲に存在していない不活性な負極活物質が多くなる。そのため、負極の負荷を下げて300mAh/g未満に設計した場合でも、リチウムを受け入れできずにリチウムが析出しまうため、サイクル特性が悪化し、ガスの発生量も増えて電池の膨れも大きくなってしまうものと考えられる。
次に、負極活物質中のSiO含有量が3質量%及び負極負荷が330mAh/gであるが、エネルギー密度のみ相違する実験例2、4の結果と実験例12の結果を対比すると、電池のエネルギー密度は530Wh/L以下とすることが望ましいことがわかる。なお、電池のエネルギー密度は、250Wh/L未満では、電池の膨れは負極活物質として黒鉛のみからなるものを用いた実験例9の場合と同等であるが、現在携帯機器に求められている高エネルギー密度という要求を満たすことができなくなる。
エネルギー密度を高めるには、正極活物質の含有量を増加させる必要がある。この場合、電池の内部空間が決められているため、正極の密度を上げることでエネルギー密度を上昇させることが可能となるが、正極密度を上げると、巻回電極体の内部で負極側に非水電解液が回るようになる。そのため、体積エネルギー密度を530Wh/Lを超えるようにすると、正極活物質の劣化が加速され、サイクル特性が悪化し、非水電解液の分解も促進され、ガス発生が増大し、電池の膨れも増大してしまうと考えられる。
そして、負極の負荷が330mAh/g及びエネルギー密度が450Wh/Lであるが負極活物質中のSiO含有量のみが相違する実験例2、5〜8の結果を対比すると、負極活物質中のSiO含有量は2質量%以上4質量%以下が好ましいことがわかる。この結果は、SiO量が2質量%未満では負極活物質中にSiOを添加することの効果が小さく、また、SiO量が4質量%を超えると不活性なSiOが存在してしまうことにより、SiO添加の効果が小さくなってしまうためと考えられる。
上記実験例1〜12では、正極活物質として、リチウムニッケルコバルトアルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)を用いた例を示したが、本発明においては、他の組成のリチウムニッケルコバルトアルミニウム複合酸化物も、リチウムニッケルコバルトアルミニウム複合酸化物のコバルトの一部を他の元素で置換したものも使用し得る。このコバルトの置換元素としては、Al、Mn、Mg、Ca、Fe、Ti、Zn、Sr、Ba、Zr、Y、BおよびTaよりなる群から選ばれる少なくとも1種を用いることができる。正極活物質としてのリチウムニッケルコバルトアルミニウム複合酸化物は、式LiNi1−y−zCo(ただし、0.95≦x≦1.1、0<y≦0.5、0≦z<0.5、0.055≦y+z≦0.5、Mは、Al、Mn、Mg、Ca、Fe、Ti、Zn、Sr、Ba、Zr、Y、BおよびTaよりなる群から選ばれる少なくとも1種)が好ましい。
上記実験例1〜12では、負極活物質として人造黒鉛及びSiOx(x=1)の粒子の混合物を用いた例を示した。しかしながら、本発明においては、人造黒鉛に換えて天然黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維等、あるいはこれらの焼成体の一種又は複数種混合したものを用いることができる。また、SiOx(x=1)の粒子に換えて、炭素よりも多量のリチウムと反応し得る、ケイ素(Si)、酸化ケイ素(SiO、0.5≦x<1.6)、スズ(Sn)、アルミニウム(Al)、Sb(アンチモン)などの金属又は金属化合物から選択された少なくとも1種を使用し得る。
上記実験例1〜12では、非水電解液の非水溶媒として、EC及びEMCを用いた例を示したが、他に、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステル;フッ素化された環状炭酸エステル;γ−ブチロラクトン(γ−BL)やγ−バレロラクトン(γ−VL)等の環状カルボン酸エステル;ジメチルカーボネート(DMC)やジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)等の鎖状炭酸エステル;フッ素化された鎖状炭酸エステル;ピバリン酸メチルやピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等の鎖状カルボン酸エステル;N,N'−ジメチルホルムアミドやN−メチルオキサゾリジノン等のアミド化合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウム等の常温溶融塩;等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。
非水電解質における非水溶媒中に溶解させる電解質塩としては、ヘキサフルオロリン酸リチウム(LiPF)を用いた例を示したが、他にも非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、例えば、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12等を一種単独又はこれらから複数種を混合したものを用いることができる。なお、非水溶媒に対する電解質塩の溶解量は、0.8〜1.5mol/Lとするのが好ましい。
非水電解質における電解質中には、電極の安定化用化合物として、例えば、ビニレンカーボネート(VC)や、ビニルエチレンカーボネート(VEC)、無水コハク酸(SUCAH)、無水マレイン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)等を添加するようにしてもよい。これらの化合物は、2種以上を適宜に混合して用いるようにしてもよい。
セパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンからなるセパレータのみならず、ポリエチレン層の表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いてもよい。
また、上記実験例1〜12では、角形非水電解質二次電池の場合について述べたが、本発明は円筒形非水電解質二次電池に対しても適用することができる。ただし、電池の膨れは、円筒形非水電解質二次電池の場合よりも角形非水電解質二次電池の方が大きくなるので、本発明を角形非水電解質二次電池に対して適用すると特に効果が顕著に現れる。
10…非水電解質二次電池
11…偏平状巻回電極体
12…正極リード
13…負極リード
14…封口板
15…上部絶縁ガスケット
16…下部絶縁ガスケット
17…集電板
18…端子用貫通孔
19…リベット端子
20…組立封口体
21…角形電池外装缶
22…絶縁ケース
23…注液口
24…封栓

Claims (3)

  1. 正極極板、負極極板、非水電解液及びセパレータを有し、
    前記正極極板は、正極活物質として、下記一般式(1)で表されるリチウムニッケル複合酸化物を含んでおり、
    LiNi1−y−zCo (1)
    (ただし、0.95≦x≦1.1、0<y≦0.5、0≦z<0.5、0.055≦y+z≦0.5、Mは、Al、Mn、Mg、Ca、Fe、Ti、Zn、Sr、Ba、Zr、Y、BおよびTaよりなる群から選ばれる少なくとも1種)
    前記負極極板は、負極活物質として炭素材料とSiO (0.5≦x<1.6)の混合物を含んでおり、
    負極の負荷(電池容量/負極活物質質量)が372mAh/g以下、300mAh/g以上であり、
    体積エネルギー密度が530Wh/L以下、250Wh/L以上である、
    非水電解質二次電池。
  2. 角形である、請求項1に記載の非水電解質二次電池。
  3. 前記負極活物質は、SiO(0.5≦x<1.6)を全負極活物質質量に対して2質量%以上4質量%以下含んでいる、請求項に記載の非水電解質二次電池。
JP2012266583A 2012-12-05 2012-12-05 非水電解質二次電池 Active JP6042195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266583A JP6042195B2 (ja) 2012-12-05 2012-12-05 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266583A JP6042195B2 (ja) 2012-12-05 2012-12-05 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2014112496A JP2014112496A (ja) 2014-06-19
JP6042195B2 true JP6042195B2 (ja) 2016-12-14

Family

ID=51169500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266583A Active JP6042195B2 (ja) 2012-12-05 2012-12-05 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP6042195B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081742A (ja) * 2015-03-24 2018-05-24 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP7185838B2 (ja) * 2018-03-26 2022-12-08 住友金属鉱山株式会社 高強度リチウムイオン二次電池用正極活物質の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293536A (ja) * 1996-04-25 1997-11-11 Seiko Instr Kk 非水電解質二次電池
JP2003308880A (ja) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd リチウム二次電池の製造方法
JP2005019096A (ja) * 2003-06-24 2005-01-20 Electric Power Dev Co Ltd 非水系2次電池
JP2007073212A (ja) * 2005-09-05 2007-03-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
WO2011105126A1 (ja) * 2010-02-24 2011-09-01 日立マクセルエナジー株式会社 正極材料、その製造方法、非水二次電池用正極および非水二次電池

Also Published As

Publication number Publication date
JP2014112496A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
JP6030070B2 (ja) 非水電解質二次電池
JP3844733B2 (ja) 非水電解質二次電池
JP7469434B2 (ja) 非水電解液電池及びその製造方法
JP5224081B2 (ja) 非水電解質二次電池
JP2008210573A (ja) 非水電解質二次電池
CN108808098B (zh) 锂离子二次电池的制造方法
JP5357517B2 (ja) リチウムイオン二次電池
JP6275694B2 (ja) 非水電解質二次電池
JP2009129721A (ja) 非水電解質二次電池
JP2015170542A (ja) 非水電解質二次電池
JPWO2018173476A1 (ja) 非水電解質二次電池
WO2015079893A1 (ja) リチウム二次電池
JP6932723B2 (ja) 非水電解質二次電池
WO2013146512A1 (ja) 非水電解質二次電池
JP2011181386A (ja) 非水電解質二次電池
JP3831550B2 (ja) 非水電解質電池
JP4867161B2 (ja) 非水電解質二次電池
CN111052486B (zh) 非水电解质二次电池
JP6042195B2 (ja) 非水電解質二次電池
US20210013489A1 (en) Non-aqueous electrolyte secondary battery
JP6072689B2 (ja) 非水電解質二次電池
JP2014067625A (ja) 非水電解質二次電池
US20140011068A1 (en) Non-aqueous electrolyte secondary battery
WO2014050025A1 (ja) 非水電解質二次電池
WO2013141243A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161109

R150 Certificate of patent or registration of utility model

Ref document number: 6042195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350