JP6036939B1 - Operation method of refrigeration equipment - Google Patents

Operation method of refrigeration equipment Download PDF

Info

Publication number
JP6036939B1
JP6036939B1 JP2015157850A JP2015157850A JP6036939B1 JP 6036939 B1 JP6036939 B1 JP 6036939B1 JP 2015157850 A JP2015157850 A JP 2015157850A JP 2015157850 A JP2015157850 A JP 2015157850A JP 6036939 B1 JP6036939 B1 JP 6036939B1
Authority
JP
Japan
Prior art keywords
refrigerant
heat medium
heat
condenser
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015157850A
Other languages
Japanese (ja)
Other versions
JP2017036876A (en
Inventor
達 二宮
達 二宮
Original Assignee
三菱重工冷熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工冷熱株式会社 filed Critical 三菱重工冷熱株式会社
Priority to JP2015157850A priority Critical patent/JP6036939B1/en
Priority to KR1020160036118A priority patent/KR101871788B1/en
Application granted granted Critical
Publication of JP6036939B1 publication Critical patent/JP6036939B1/en
Publication of JP2017036876A publication Critical patent/JP2017036876A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】蒸気圧縮式の冷凍サイクルを給水加熱の温水利用式ヒートポンプとして活用する場合において、冷凍サイクルの安定性を損なうことなく、冷媒サイクルの効率および出力(能力)を向上可能な冷凍装置の運転方法を提供する。【解決手段】蒸気圧縮式の冷凍サイクルを構成する冷凍装置において、凝縮器4は、温水発生器であり、受液器5と膨張弁7との間の冷媒配管に、受液器5からの冷媒凝縮液と熱媒との間で顕熱交換を行う過冷却器6を設置するとともに、過冷却器6へ熱媒を流入させる第1熱媒配管16と、熱媒を凝縮器4まで液送する第2熱媒配管18と、熱媒を温水として凝縮器4から流出させる第3熱媒配管とを設ける段階を有し、それにより、第2熱媒配管18を流れる熱媒の温度を調整することなしに、冷媒側における顕熱交換と潜熱交換とを分離し、過冷却器6による顕熱交換の後に、凝縮器4による潜熱交換を行う、ことを特徴とする冷凍装置の運転方法。【選択図】図1[PROBLEMS] To operate a refrigeration system capable of improving the efficiency and output (capacity) of a refrigerant cycle without impairing the stability of the refrigeration cycle when the vapor compression refrigeration cycle is used as a heat pump using hot water for heating feed water. Provide a method. In a refrigeration apparatus constituting a vapor compression refrigeration cycle, a condenser 4 is a hot water generator, and is connected to a refrigerant pipe between the liquid receiver 5 and an expansion valve 7 from the liquid receiver 5. A supercooler 6 that exchanges sensible heat between the refrigerant condensate and the heat medium is installed, a first heat medium pipe 16 that allows the heat medium to flow into the subcooler 6, and the heat medium to the condenser 4. A step of providing a second heat medium pipe 18 to be sent and a third heat medium pipe for allowing the heat medium to flow out of the condenser 4 as hot water, whereby the temperature of the heat medium flowing through the second heat medium pipe 18 is adjusted. A method of operating a refrigeration apparatus, wherein sensible heat exchange and latent heat exchange on the refrigerant side are separated without adjustment, and latent heat exchange by the condenser 4 is performed after sensible heat exchange by the subcooler 6. . [Selection] Figure 1

Description

本発明は、冷凍装置の運転方法に関し、より詳細には、蒸気圧縮式の冷凍サイクルを給水加熱のヒートポンプとして活用する場合において、冷凍サイクルの効率および出力(能力)を向上可能な冷凍装置の運転方法に関する。   The present invention relates to a method for operating a refrigeration apparatus, and more particularly, operation of a refrigeration apparatus capable of improving the efficiency and output (capacity) of a refrigeration cycle when a vapor compression refrigeration cycle is used as a heat pump for heating feed water. Regarding the method.

従来から、圧縮機、凝縮器、受液器、膨張機構、蒸発器がこの順に、冷媒配管により順次接続されて、蒸気圧縮式の冷凍サイクルを構成する冷凍装置が多用途に用いられてきた。
このような冷凍サイクルにおいて、受液器は、通常、冷凍機の凝縮器の下流側に設置され、負荷変動による蒸発器内冷媒量の変動を吸収する容器として用いられる。
たとえば、ヒートポンプとして活用するのに、特に、凝縮器において、冷媒の凝縮潜熱により、凝縮器に流入する給水を加熱して温水あるいは蒸気として流出させる場合、給水の流量を制御しない限り、温水温度は成り行きである。
一方、給水入口温度は、給水供給側の状況により影響を受けるところ、凝縮器の凝縮温度との差が大きい場合(冷媒入口温度は、圧縮機吐出温度であるから、冷媒凝縮温度よりも10ないし20℃位以上高いケースもある)、たとえば、10K以上低い場合にあって、温水あるいは蒸気の要求温度、要求流量を達成するのに、以下のような技術的問題点が存する。
Conventionally, a refrigeration apparatus that constitutes a vapor compression refrigeration cycle in which a compressor, a condenser, a liquid receiver, an expansion mechanism, and an evaporator are sequentially connected in this order by a refrigerant pipe has been widely used.
In such a refrigeration cycle, the receiver is usually installed on the downstream side of the condenser of the refrigerator, and is used as a container that absorbs fluctuations in the amount of refrigerant in the evaporator due to load fluctuations.
For example, in the case of using as a heat pump, especially in a condenser, when the feed water flowing into the condenser is heated and discharged as warm water or steam by the latent heat of condensation of the refrigerant, the hot water temperature is It's going to happen.
On the other hand, the feed water inlet temperature is affected by the situation on the feed water supply side, and when the difference from the condensation temperature of the condenser is large (the refrigerant inlet temperature is the compressor discharge temperature, it is 10 to 10 There are cases where the temperature is higher than 20 ° C). For example, when the temperature is lower than 10K, there are the following technical problems to achieve the required temperature and flow rate of hot water or steam.

すなわち、冷媒出口側の温度が給水側の温度に十分近づかず、1ないし5K程度の過冷却状態で凝縮器から排出されてしまうため、冷媒側の加熱(放熱)エンタルピ差を活用しきれない点である。
この場合、たとえば、受液器の上流側に凝縮器を直列に複数基設置するとしても、潜熱交換において、冷媒温度は一定保持されることから、複数基設置の効果は、単にその分、熱交換面積が増大したに過ぎず、凝縮温度を低下させる効果は期待できるものの冷媒側の加熱(放熱) エンタルピ差の拡大への寄与は小さいことから、温水あるいは蒸気の要求温度および要求流量を達成するためには、ヒートポンプ装置そのものの大型化により、冷媒循環量を増大させなければならず、限られた設置スペース内に設置困難ということにもなりかねない。
In other words, the temperature on the refrigerant outlet side does not sufficiently approach the temperature on the water supply side, and is discharged from the condenser in a supercooled state of about 1 to 5K, so it is not possible to fully utilize the heating (heat radiation) enthalpy difference on the refrigerant side It is.
In this case, for example, even if a plurality of condensers are installed in series on the upstream side of the liquid receiver, the refrigerant temperature is kept constant in the latent heat exchange. Although the exchange area has only increased, the effect of lowering the condensation temperature can be expected, but the heating on the refrigerant side (heat dissipation) contributes little to the expansion of the enthalpy difference, so the required temperature and required flow rate of hot water or steam are achieved. For this purpose, the refrigerant circulation amount must be increased by increasing the size of the heat pump device itself, which may be difficult to install in a limited installation space.

一方、受液器と熱交換器とを統合して、受液器内に熱交換器の給水管を配置して、受液器内において、冷媒液面より露出する給水管の部分とガス冷媒との間で潜熱交換を行う一方、冷媒液内に浸漬する給水管の部分と液体冷媒との間で顕熱交換を行うとすれば、冷媒と給水との間で、顕熱交換と潜熱交換とにより熱交換を行うことは可能であるが、冷凍サイクルの運転状況に応じて、受液器内の冷媒液面が上下することから、それにより、顕熱交換と潜熱交換との割合が変動し、冷凍サイクルの安定性が損なわれる。   On the other hand, the liquid receiver and the heat exchanger are integrated, the water supply pipe of the heat exchanger is arranged in the liquid receiver, and the portion of the water supply pipe exposed from the refrigerant liquid surface and the gas refrigerant in the liquid receiver If the sensible heat exchange is performed between the liquid refrigerant and the portion of the water supply pipe that is immersed in the refrigerant liquid, the sensible heat exchange and the latent heat exchange are performed between the refrigerant and the water supply. It is possible to perform heat exchange, but the ratio of sensible heat exchange and latent heat exchange fluctuates because the liquid level in the receiver rises and falls according to the operating condition of the refrigeration cycle. However, the stability of the refrigeration cycle is impaired.

この点、特許文献1においては、ヒートポンプ式蒸気発生方法として、受液器の上流側に凝縮器である蒸気発生器を設置する一方、受液器の下流側に過冷却器を設置する技術が開示されている。
より詳細には、圧縮機と蒸気発生器と冷媒用受液器と第1熱交換器と膨張弁と熱回収器を順に通って冷媒が流れる冷媒回路と、第1熱交換器を通して蒸気発生器に補給水が供給される給水管路を備え、補給水を第1熱交換器内で冷媒過冷却の顕熱により温めた後、蒸気発生器内に供給し、蒸気発生器内で冷媒の凝縮潜熱により蒸気を生成するようにしてなるヒートポンプ式蒸気発生方法において、蒸気発生器で凝縮した直後の飽和に近い液冷媒を冷媒用受液器内に液面を設けた状態で貯留するとともに、冷媒用受液器内に貯留されている液冷媒を第1熱交換器に供給し、第1熱交換器内で液冷媒の過冷却顕熱のみを利用して補給水を飽和温度近くまで加熱し、かつ蒸気発生器内に供給するようにしている。
In this regard, in Patent Document 1, as a heat pump type steam generation method, there is a technique in which a steam generator that is a condenser is installed on the upstream side of the receiver and a supercooler is installed on the downstream side of the receiver. It is disclosed.
More specifically, a compressor, a steam generator, a refrigerant receiver, a first heat exchanger, an expansion valve, a refrigerant circuit through which a refrigerant flows through a heat recovery device, and a steam generator through the first heat exchanger Is provided with a water supply pipe to which makeup water is supplied, and after the makeup water is warmed in the first heat exchanger by sensible heat of refrigerant supercooling, it is fed into the steam generator and the refrigerant is condensed in the steam generator. In a heat pump steam generation method configured to generate steam by latent heat, liquid refrigerant close to saturation immediately after being condensed by the steam generator is stored in a liquid receiver in a state where the liquid level is provided, and the refrigerant The liquid refrigerant stored in the liquid receiver is supplied to the first heat exchanger, and the makeup water is heated to near the saturation temperature using only the supercooled sensible heat of the liquid refrigerant in the first heat exchanger. And is supplied into the steam generator.

この方法によれば、冷媒用受液器内に液面を設けて貯留されている液冷媒を第1熱交換器に供給するので、第1熱交換器内には液冷媒のみが流され、冷媒ガスは流れることがない。したがって、第1熱交換器内では、液冷媒の過冷却顕熱のみを利用して、補給水を飽和温度近くまで安定的に加熱し、この加熱した補給水を蒸気発生器内に供給することができる。また、蒸気発生器内では、飽和温度近くまで安定的に加熱された補給水が補給されて来ることにより、この補給水を冷媒の凝縮潜熱(冷媒加熱域の顕熱も含む)でさらに加熱して蒸気に変え、多量の蒸気を安定的に生成することができる。   According to this method, since the liquid refrigerant stored with the liquid level in the refrigerant receiver is supplied to the first heat exchanger, only the liquid refrigerant is caused to flow in the first heat exchanger, The refrigerant gas does not flow. Accordingly, in the first heat exchanger, only the supercooled sensible heat of the liquid refrigerant is used to stably heat the make-up water to near the saturation temperature, and supply the heated make-up water into the steam generator. Can do. In addition, in the steam generator, makeup water that has been stably heated to near the saturation temperature is replenished, so that the makeup water is further heated by the latent heat of condensation of the refrigerant (including sensible heat in the refrigerant heating zone). Therefore, a large amount of steam can be stably generated.

しかしながら、この技術は、ヒートポンプ式蒸気発生方法であることに起因して、以下のような技術的問題点を有する。 すなわち、形式的には、過冷却器において顕熱交換をし、蒸気発生器において潜熱交換を行うとしても、過冷却器において十分な顕熱交換を行うことが困難である。 より具体的には、蒸気発生器において効率的に蒸気を発生するために、蒸気発生器に流入するまでに温水を飽和温度まで加熱しており、そのために、蒸気発生器に流入するまでの温水の流量を調整することを前提に、蒸気発生器に流入するまでの温水の流量を制限する必要があり、それにより、過冷却器において十分な顕熱交換を確保することが困難である。 そもそも、水の蒸発潜熱は、非常に大きいことから、対冷媒流量比で見た補給水量は、格段に少なく、冷媒液の過冷却も補給水が25℃程度の場合には、過冷却度が10K前後にしかならない。
特開2012−247156号
However, this technique has the following technical problems due to the heat pump steam generation method. That is, formally, even if sensible heat exchange is performed in the supercooler and latent heat exchange is performed in the steam generator, it is difficult to perform sufficient sensible heat exchange in the subcooler. More specifically, in order to efficiently generate steam in the steam generator, the hot water is heated to the saturation temperature before flowing into the steam generator, and therefore the hot water until flowing into the steam generator. It is necessary to limit the flow rate of hot water until it flows into the steam generator on the premise of adjusting the flow rate of the steam generator, and thus it is difficult to ensure sufficient sensible heat exchange in the subcooler. In the first place, since the latent heat of vaporization of water is very large, the amount of make-up water as seen from the ratio of the refrigerant flow rate is remarkably small. It will only be around 10K.
JP 2012-247156 A

以上の技術的問題点に鑑み、本発明の目的は、蒸気圧縮式の冷凍サイクルを給水加熱の温水利用式ヒートポンプとして活用する場合において、冷凍サイクルの安定性を損なうことなく、冷媒サイクルの効率および出力(能力)を向上可能な冷凍装置の運転方法を提供することにある。   In view of the above technical problems, the object of the present invention is to improve the efficiency of the refrigerant cycle without impairing the stability of the refrigeration cycle when the vapor compression refrigeration cycle is used as a hot water utilization heat pump for feed water heating. An object of the present invention is to provide a method of operating a refrigeration apparatus that can improve output (capacity).

上記課題を達成するために、本発明の冷凍装置の運転方法は、圧縮機、凝縮器、受液器、膨張機構、蒸発器がこの順に、冷媒配管により順次接続されて、蒸気圧縮式の冷凍サイクルを構成する冷凍装置の運転方法において、前記凝縮器は、温水発生器であり、前記受液器と前記膨張弁との間の冷媒配管に、前記受液器からの冷媒凝縮液と熱媒との間で顕熱交換を行う過冷却器を設置するとともに、前記過冷却器へ熱媒を流入させる第1熱媒配管と、前記過冷却器において、前記受液器からの冷媒凝縮液により加熱される熱媒を前記凝縮器まで液送する第2熱媒配管と、前記凝縮器において冷媒ガスにより加熱される熱媒を温水として前記凝縮器から流出させる第3熱媒配管とを設ける段階を有し、それにより、熱媒と冷媒との間の熱交換において、前記第2熱媒配管を流れる熱媒の温度を調整することなしに、冷媒側における顕熱交換と潜熱交換とを分離し、前記過冷却器による顕熱交換の後に、前記凝縮器による潜熱交換を行う、構成としている。 In order to achieve the above object, the operation method of the refrigeration apparatus according to the present invention is such that a compressor, a condenser, a liquid receiver, an expansion mechanism, and an evaporator are sequentially connected by a refrigerant pipe in this order, and a vapor compression refrigeration In the operation method of the refrigeration apparatus constituting the cycle, the condenser is a hot water generator, and a refrigerant condensate and a heat medium from the liquid receiver are connected to a refrigerant pipe between the liquid receiver and the expansion valve. A supercooler that exchanges sensible heat with the first heat medium pipe through which the heat medium flows into the supercooler, and in the supercooler, the refrigerant condensate from the receiver Providing a second heat medium pipe for liquid-feeding the heated heat medium to the condenser, and a third heat medium pipe for allowing the heat medium heated by the refrigerant gas in the condenser to flow out of the condenser as hot water So that the heat exchange between the heat medium and the refrigerant is possible. Then, the sensible heat exchange and the latent heat exchange on the refrigerant side are separated without adjusting the temperature of the heat medium flowing through the second heat medium pipe, and after the sensible heat exchange by the subcooler, It is configured to perform latent heat exchange.

以上の構成を有する冷凍装置の運転方法によれば、蒸気圧縮式の冷凍サイクルにおいて、熱媒加熱のヒートポンプとして活用する場合に、受液器の下流側の過冷却器における冷媒による顕熱交換と、受液器の上流側の温水発生器における冷媒側による潜熱交換とにより、この順に、熱媒加熱を行うことにより、冷凍サイクルの安定性を損なうことなく、冷凍サイクルの効率および出力(能力)を格段に向上させることが可能である。
より詳細には、まず、過冷却器において、第1熱媒配管により流入する熱媒と、受液器からの冷媒凝縮液との間で顕熱交換を行い、次いで、第2熱媒配管を流れる熱媒の温度を調整することなしに、温水発生器において、第2熱媒配管により凝縮器まで液送された、受液器からの冷媒凝縮液により加熱された熱媒と、圧縮機からの冷媒ガスとの間で潜熱交換を行うことにより温水を生成し、冷媒と熱媒との間における顕熱交換と潜熱交換とを分離し、この順に、熱交換することにより、冷媒側の加熱(放熱)エンタルピ差を十分に活用することが可能となり、たとえば、単に顕熱交換を増大するために凝縮器を並列式または直列式に増設する場合に比して、熱交換器を格段に縮小させることが可能である。
According to the operation method of the refrigeration apparatus having the above configuration, in the vapor compression refrigeration cycle, when used as a heat pump for heating the medium, sensible heat exchange with the refrigerant in the subcooler on the downstream side of the receiver is performed. In this order, heat medium heating is performed in this order by latent heat exchange on the refrigerant side in the hot water generator upstream of the liquid receiver, thereby reducing the efficiency and output (capacity) of the refrigeration cycle without impairing the stability of the refrigeration cycle. Can be significantly improved.
More specifically, first, in the subcooler, sensible heat exchange is performed between the heat medium flowing in through the first heat medium pipe and the refrigerant condensate from the liquid receiver, and then the second heat medium pipe is connected. Without adjusting the temperature of the flowing heat medium, in the hot water generator, the heat medium fed to the condenser by the second heat medium pipe and heated by the refrigerant condensate from the liquid receiver, and from the compressor Heat water is generated by exchanging latent heat with the refrigerant gas, and sensible heat exchange and latent heat exchange between the refrigerant and the heat medium are separated, and in this order, heat exchange is performed to heat the refrigerant side. (Heat dissipation) It becomes possible to fully utilize the enthalpy difference, for example, the heat exchanger is greatly reduced compared with the case where condensers are simply added in parallel or in series to increase sensible heat exchange It is possible to make it.

また、前記冷凍装置の運転中において、前記受液器内の冷媒凝縮液の液位を所定レベル以上に維持する段階を有するのがよい。 Moreover, it is good to have the step which maintains the liquid level of the refrigerant condensate in the said liquid receiver more than a predetermined level during the driving | operation of the said freezing apparatus.

以下、本発明に係る冷凍装置の運転方法の実施形態を添付図面に示す具体例に基づいて詳細に説明する。
まず、図1に示すように、冷凍装置について、説明すれば、圧縮機1の吐出側に一端が接続された冷媒往管2の他端は、油分離器3、第1熱交換器である温水発生器4、冷媒用気液分離器である受液器5、第2熱交換器である過冷却器6、膨張弁7を経て熱回収器8の1次側入口に接続され同出口に一端が接続された冷媒復管9の他端が圧縮機1の吸入側に接続され、これらにより冷媒回路を構成している。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for operating a refrigeration apparatus according to the present invention will be described in detail based on specific examples shown in the accompanying drawings.
First, as shown in FIG. 1, the refrigeration apparatus will be described. The other end of the refrigerant forward pipe 2 whose one end is connected to the discharge side of the compressor 1 is an oil separator 3 and a first heat exchanger. A hot water generator 4, a liquid receiver 5 that is a gas-liquid separator for refrigerant, a supercooler 6 that is a second heat exchanger, and an expansion valve 7 are connected to the primary side inlet of the heat recovery unit 8 and are connected to the outlet. The other end of the refrigerant return pipe 9 to which one end is connected is connected to the suction side of the compressor 1, thereby constituting a refrigerant circuit.

温水発生器4は、プレート式熱交換器で構成され、1次側流路を流れる冷媒ガスから2次側流路を流れる水(温水)に温熱を移動させており、それにより温水を発生させている。   The hot water generator 4 is composed of a plate heat exchanger, and moves the hot heat from the refrigerant gas flowing in the primary flow path to the water (hot water) flowing in the secondary flow path, thereby generating hot water. ing.

受液器5の上流側には、温水発生器4が配置され、一方、受液器5の下流側には、過冷却器6が配置され、過冷却器6においては、受液器5からの凝縮液冷媒と給水との間で顕熱交換が行なわれ、温水発生器4においては、冷媒ガスと、過冷却器6により加熱された給水との間で潜熱交換が行われるように構成しており、冷媒の流れと給水の流れとを対向させて、顕熱交換および潜熱交換を分離したうえで、この順に熱交換することにより、以下に説明するように、冷凍サイクルの効率および出力(能力)の向上を達成している。
なお、冷凍装置の運転中において、冷媒側から見て受液器5より下流への冷媒ガスの流入を防止するのに十分なように、受液器5内の冷媒凝縮液の液位を所定レベル以上に維持している。
On the upstream side of the liquid receiver 5, the hot water generator 4 is disposed. On the other hand, on the downstream side of the liquid receiver 5, a supercooler 6 is disposed. Sensible heat exchange is performed between the condensate refrigerant and the feed water, and the hot water generator 4 is configured such that latent heat exchange is performed between the refrigerant gas and the feed water heated by the subcooler 6. The refrigerant flow and the feed water flow are opposed to each other to separate the sensible heat exchange and latent heat exchange, and then heat exchange in this order, so that the efficiency and output of the refrigeration cycle (as will be described below) Ability) has been improved.
During the operation of the refrigeration system, the liquid level of the refrigerant condensate in the liquid receiver 5 is set to a predetermined level so as to prevent the refrigerant gas from flowing downstream from the liquid receiver 5 when viewed from the refrigerant side. Maintained above level.

過冷却器6の2次側入口には、外部からの給水管16がポンプ17を介して接続されていて、同2次側出口に一端が接続された温水供給管18の他端は、温水発生器4の2次側入口に接続してある。   A water supply pipe 16 from the outside is connected to the secondary side inlet of the subcooler 6 via a pump 17, and the other end of the hot water supply pipe 18 whose one end is connected to the secondary side outlet is hot water. Connected to the secondary inlet of the generator 4.

熱回収器8の2次側には、排温水の供給管22と排水管23が接続されていて、排温水の残留熱が熱回収器の1次側を流通する冷媒に回収される。   The secondary side of the heat recovery unit 8 is connected to a supply pipe 22 and a drain pipe 23 of the exhaust hot water, and the residual heat of the exhaust hot water is recovered by the refrigerant flowing through the primary side of the heat recovery unit.

次に、上述した構成による冷凍装置の運転方法について、図2を参照しながら、以下に詳細に説明する。
まず、圧縮機1から吐出された高温ガス冷媒(図2中、符号aの状態)は油分離器3を経て温水発生器4に送られ、同温水発生器においてプレート式熱交換器の2次側流路を流通する温水と熱交換して凝縮して送出され、温水は冷媒の潜熱によって加熱させられる。
Next, the operation method of the refrigeration apparatus having the above-described configuration will be described in detail below with reference to FIG.
First, the high-temperature gas refrigerant discharged from the compressor 1 (state a in FIG. 2) is sent to the hot water generator 4 through the oil separator 3, and the secondary heat of the plate heat exchanger in the hot water generator. Heat exchange with the hot water flowing through the side channel is condensed and sent out, and the hot water is heated by the latent heat of the refrigerant.

次いで、温水発生器4にて凝縮した冷媒(図2中、符号bの状態)は受液器5に貯留され、この受液器内の液相から液冷媒だけが過冷却器6に送られ、同過冷却器6内にて、ポンプ17の駆動により外部から供給される水と顕熱交換し、過冷却される(図2中、符号c´の状態)。   Next, the refrigerant condensed in the hot water generator 4 (state of symbol b in FIG. 2) is stored in the liquid receiver 5, and only the liquid refrigerant is sent to the subcooler 6 from the liquid phase in the liquid receiver. In the same supercooler 6, the pump 17 is driven to exchange sensible heat with water supplied from the outside, and is supercooled (in the state indicated by symbol c 'in FIG. 2).

次いで、上述のように過冷却された冷媒は膨張弁7を経て熱回収器8に送られ(図2中、符号d´の状態)、同熱回収器内にて排温水などの外部熱源からの熱を回収してこの排温水を冷却するとともに冷媒自身は気化し(図2中、符号eの状態)、冷媒復管9によって圧縮機1の吸入側に戻される。   Next, the supercooled refrigerant as described above is sent to the heat recovery unit 8 through the expansion valve 7 (in the state indicated by reference numeral d ′ in FIG. 2), and from an external heat source such as exhaust hot water in the heat recovery unit. The exhausted water is cooled and the exhausted water is cooled, and the refrigerant itself is vaporized (in the state of symbol e in FIG. 2), and returned to the suction side of the compressor 1 by the refrigerant return pipe 9.

なお、膨張弁7の開度は、冷媒復管9における熱回収器8の出口近傍に設けた温度センサー26と圧力センサー27とにより、演算器28を用いて算出した過熱度が10℃以上となるように制御され、それにより、圧縮機1への液バックを防止できるようにしてある。   The opening degree of the expansion valve 7 is such that the degree of superheat calculated using the calculator 28 by the temperature sensor 26 and the pressure sensor 27 provided near the outlet of the heat recovery unit 8 in the refrigerant return pipe 9 is 10 ° C. or more. So that the liquid back to the compressor 1 can be prevented.

一方、温水発生器4から送出される温水は、温度センサー31により温度が検出され、検出された温度に応じて、給水管16に設置した調節弁33の開度を調節することにより、温水供給管18の給水流量を調整するようにしている。なお、この場合、温水発生器4と過冷却器6との間を接続する温水供給管18内の給水温度は成り行きであり、温水供給管18内の給水温度を調整するのに、温水供給管18の給水流量を調整することはなく、調節弁33の開度を完全に絞り、流量をオンオフ調整することもしない。   On the other hand, the temperature of the hot water delivered from the hot water generator 4 is detected by the temperature sensor 31 and the opening of the control valve 33 installed in the water supply pipe 16 is adjusted according to the detected temperature, thereby supplying hot water. The feed water flow rate of the pipe 18 is adjusted. In this case, the water supply temperature in the hot water supply pipe 18 connecting the hot water generator 4 and the subcooler 6 is appropriate, and the hot water supply pipe is used to adjust the water supply temperature in the hot water supply pipe 18. The feed water flow rate of 18 is not adjusted, the opening of the control valve 33 is completely throttled, and the flow rate is not adjusted on and off.

以下、受液器5の上下流側それぞれに、温水発生器4および過冷却器6を配置して、冷媒と給水との間の熱交換について、顕熱交換と潜熱交換とに分離し、この順に熱交換をする技術的効果について、説明する。
受液器5の上流側にのみ熱交換器(凝縮器)を配置した場合のモリエル線図を実線abcdeで示し、受液器5の上流側に複数の熱交換器(凝縮器)を直列に配置した場合、および受液器5の上下流側それぞれに熱交換器(凝縮器)および熱交換器(過冷却器)を配置した場合それぞれを、一点鎖線(abc´´d´´e)および点線(abc´d´e)で示す。
たとえば、受液器5の上流側に、2基の熱交換器を直列に配置した場合には、単にその分、潜熱交換のための伝熱面積が増大したに過ぎず、図2のモリエル線図によれば、冷媒凝縮温度がその分低下し、若干過冷却も増大する(一点鎖線)。
それに対して、受液器5の上流側に温水発生器4(凝縮器)を配置することを前提に、受液器5の下流側に、過冷却器6(過冷却器)を配置したうえで、給水と冷媒とを対向流とした場合には、まず、過冷却器により、受液器5の液体冷媒と給水との間で、顕熱交換が行われ、それにより、給水は加熱される一方、液体冷媒は冷却され、次いで、凝縮器により、ガス冷媒と給水との間で、主に潜熱交換が行われ、それにより、給水はさらに加熱される一方、ガス冷媒は凝縮される。この場合、凝縮器において、厳密には、ガス冷媒は給水により吸熱されて、顕熱交換によりガス冷媒として温度低下し、ガス冷媒が液体冷媒となる過程で潜熱交換をし、さらに液体冷媒が給水により吸熱されて、顕熱交換により液体冷媒として温度低下するが、潜熱交換前後の顕熱交換はいずれもその割合は非常に小さいので無視する。
Hereinafter, the hot water generator 4 and the supercooler 6 are arranged on the upstream and downstream sides of the liquid receiver 5 to separate heat exchange between the refrigerant and the feed water into sensible heat exchange and latent heat exchange. The technical effect of heat exchange in order will be described.
The Mollier diagram in the case where the heat exchanger (condenser) is arranged only on the upstream side of the liquid receiver 5 is indicated by a solid line abcde, and a plurality of heat exchangers (condensers) are connected in series on the upstream side of the liquid receiver 5. When arranged, and when a heat exchanger (condenser) and a heat exchanger (supercooler) are arranged on the upstream and downstream sides of the liquid receiver 5 respectively, the respective one-dot chain lines (abc′′d′′e) and Indicated by a dotted line (abc'd'e).
For example, when two heat exchangers are arranged in series on the upstream side of the liquid receiver 5, the heat transfer area for latent heat exchange is simply increased correspondingly, and the Mollier wire of FIG. 2 is increased. According to the figure, the refrigerant condensing temperature is lowered by that amount, and the supercooling is slightly increased (one-dot chain line).
On the other hand, on the assumption that the hot water generator 4 (condenser) is arranged upstream of the liquid receiver 5, a supercooler 6 (supercooler) is arranged downstream of the liquid receiver 5. In the case where the feed water and the refrigerant are counterflowed, first, the sensible heat exchange is performed between the liquid refrigerant of the liquid receiver 5 and the feed water by the supercooler, whereby the feed water is heated. On the other hand, the liquid refrigerant is cooled, and then, the latent heat exchange is mainly performed between the gas refrigerant and the feed water by the condenser, whereby the feed water is further heated, while the gas refrigerant is condensed. In this case, strictly speaking, in the condenser, the gas refrigerant is absorbed by the water supply, the temperature is lowered as the gas refrigerant by the sensible heat exchange, the latent heat exchange is performed in the process where the gas refrigerant becomes the liquid refrigerant, and the liquid refrigerant is further supplied by the water supply. The temperature is reduced as a liquid refrigerant by sensible heat exchange, but the ratio of sensible heat exchange before and after latent heat exchange is negligibly small.

この場合には、図2のモリエル線図によれば、点線のように凝縮温度が保持されたまま過冷却だけが増大し、冷媒側の加熱(放熱)エンタルピ差をより活用することが可能となり、以て冷凍サイクルの効率および出力(能力)を格段に向上させることが可能である。
たとえば、受液器5内に給水管を配置して、冷媒と給水との間で熱交換をするとすれば、負荷変動に伴う液面変動により、顕熱交換と潜熱交換との割合が直接的に影響を受け、冷凍サイクルの安定化が損なわれるところ、このような直接的な影響を回避することも可能である。
なお、付随的効果として、冷媒側の加熱(放熱)エンタルピ差をより活用することにより、凝縮器に流入する水温を安定化させるとともに、凝縮器での加熱ΔTを縮小させることが可能となることから、圧縮機の吐出圧力を安定化させることにも寄与する。
In this case, according to the Mollier diagram of FIG. 2, only the supercooling increases while the condensation temperature is maintained as indicated by the dotted line, and it becomes possible to further utilize the heating (heat radiation) enthalpy difference on the refrigerant side. Thus, the efficiency and output (capacity) of the refrigeration cycle can be remarkably improved.
For example, if a water supply pipe is arranged in the liquid receiver 5 and heat exchange is performed between the refrigerant and the water supply, the ratio between the sensible heat exchange and the latent heat exchange is directly caused by the liquid level fluctuation accompanying the load fluctuation. It is also possible to avoid such a direct influence where the stability of the refrigeration cycle is impaired.
As an incidental effect, it is possible to stabilize the water temperature flowing into the condenser and to reduce the heating ΔT in the condenser by making more use of the heating (heat radiation) enthalpy difference on the refrigerant side. Therefore, it also contributes to stabilizing the discharge pressure of the compressor.

過冷却器6への熱媒入口温度と、受液器5からの冷媒凝縮液出口温度との差を5K以上とする技術的意義は、以下の通りである。一般的に、熱交換器のアプローチである過冷却器6からの冷媒出口温度と過冷却器6への熱媒入口温度との差は、熱効率と経済性との両立の観点から、3ないし7Kに設定される。たとえば、アプローチがその平均の5Kとした場合、アプローチが5Kである以上、過冷却器6への冷媒入口温度と過冷却器6への熱媒入口温度との差が5K未満となることはなく、一方、過冷却器6への冷媒入口温度が低いほど、過冷却器6への冷媒入口温度と過冷却器6からの冷媒出口温度との差、すなわち熱交換量が小さくなり、過冷却器6を設ける技術的意義が乏しくなる。この点から、実用的な観点から、過冷却器6への熱媒入口温度と、受液器5からの冷媒凝縮液出口温度との差を5K以上とするものである。   The technical significance of setting the difference between the heat medium inlet temperature to the subcooler 6 and the refrigerant condensate outlet temperature from the liquid receiver 5 to be 5K or more is as follows. In general, the difference between the refrigerant outlet temperature from the supercooler 6 and the heat medium inlet temperature to the supercooler 6, which is a heat exchanger approach, is 3 to 7 K from the viewpoint of achieving both thermal efficiency and economy. Set to For example, when the approach is 5K on the average, the difference between the refrigerant inlet temperature to the subcooler 6 and the heat medium inlet temperature to the subcooler 6 is not less than 5K as long as the approach is 5K. On the other hand, the lower the refrigerant inlet temperature to the supercooler 6, the smaller the difference between the refrigerant inlet temperature to the supercooler 6 and the refrigerant outlet temperature from the supercooler 6, that is, the heat exchange amount. The technical significance of providing 6 becomes poor. From this point of view, the difference between the heat medium inlet temperature to the supercooler 6 and the refrigerant condensate outlet temperature from the liquid receiver 5 is set to 5K or more from a practical viewpoint.

以上の構成を有する冷凍装置の運転方法によれば、蒸気圧縮式の冷凍サイクルにおいて、熱媒加熱のヒートポンプとして活用する場合に、受液器の下流側の過冷却器6における冷媒による顕熱交換と、受液器の上流側の温水発生器4における冷媒側による潜熱交換とにより、この順に、熱媒加熱を行うことにより、冷凍サイクルの安定性を損なうことなく、冷凍サイクルの効率および出力(能力)を格段に向上させることが可能である。
より詳細には、まず、過冷却器6において、第1熱媒配管により流入する熱媒と、受液器5からの冷媒凝縮液との間で顕熱交換を行い、次いで、第2熱媒配管を流れる熱媒の温度を調整することなしに、温水発生器4において、第2熱媒配管により凝縮器まで液送された、受液器5からの冷媒凝縮液により加熱された熱媒と、圧縮機1からの冷媒ガスとの間で潜熱交換を行うことにより温水を生成し、冷媒と熱媒との間における顕熱交換と潜熱交換とを分離し、この順に、熱交換することにより、冷媒側の加熱(放熱)エンタルピ差を十分に活用することが可能となり、たとえば、単に顕熱交換を増大するために凝縮器を並列式または直列式に増設する場合に比して、熱交換器を格段に縮小させることが可能である。
この場合、特に、過冷却器6への熱媒入口温度と、受液器5からの冷媒凝縮液出口温度との差が5K以上である場合に、冷凍サイクルの効率および出力(能力)の向上効果が顕著である。
According to the operation method of the refrigeration apparatus having the above configuration, in the vapor compression refrigeration cycle, when used as a heat pump for heating the medium, sensible heat exchange with the refrigerant in the subcooler 6 on the downstream side of the liquid receiver. And the latent heat exchange on the refrigerant side in the hot water generator 4 on the upstream side of the receiver, in this order, heat medium heating is performed, so that the efficiency and output of the refrigeration cycle (without sacrificing the stability of the refrigeration cycle) Ability) can be significantly improved.
More specifically, first, in the supercooler 6, sensible heat exchange is performed between the heat medium flowing in through the first heat medium pipe and the refrigerant condensate from the liquid receiver 5, and then the second heat medium. Without adjusting the temperature of the heat medium flowing through the pipe, in the hot water generator 4, the heat medium heated by the refrigerant condensate from the liquid receiver 5 sent to the condenser through the second heat medium pipe By performing latent heat exchange with the refrigerant gas from the compressor 1, hot water is generated, sensible heat exchange and latent heat exchange between the refrigerant and the heat medium are separated, and heat exchange is performed in this order. This makes it possible to make full use of the enthalpy difference on the refrigerant side (heat dissipation), for example, heat exchange compared to simply adding condensers in parallel or in series to increase sensible heat exchange. It is possible to remarkably reduce the vessel.
In this case, particularly when the difference between the heat medium inlet temperature to the subcooler 6 and the refrigerant condensate outlet temperature from the receiver 5 is 5K or more, the efficiency and output (capacity) of the refrigeration cycle are improved. The effect is remarkable.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。 The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.

上述した実施形態のものは、いずれも単段構成の冷媒回路としてあるが、二段等の多段冷凍サイクルや二元等の多元冷凍サイクルで構成する場合もある。   Although the thing of embodiment mentioned above is all as a refrigerant | coolant circuit of a single stage structure, it may be comprised by multistage refrigeration cycles, such as a two-stage | paragraph multistage refrigeration cycle and a binary.

本発明に係る冷凍装置の運転方法における冷凍装置の実施形態を示す構成図である。It is a block diagram which shows embodiment of the freezing apparatus in the operating method of the freezing apparatus which concerns on this invention. 本発明の冷凍装置の運転方法における冷凍装置の実施形態による作用の一例を示すモリエル線図である。It is a Mollier diagram which shows an example of the effect | action by embodiment of the freezing apparatus in the operating method of the freezing apparatus of this invention.

1 圧縮機
2 冷媒往管
3 油分離器
4 温水発生器
5 受液器
6 過冷却器
7 膨張弁
8 熱回収器
8 熱回収器
9 冷媒復管
10 蒸気送出管
11 給水用気液分離器
12 蒸気供給管
13 弁
14 温水戻し管
15 逆止弁
16 給水管
17 ポンプ
18 温水供給管
21 逆止弁
22 排温水供給管
23 排水管
24 ヒータ
25 液位検出器
26 感温筒
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant outbound pipe 3 Oil separator 4 Hot water generator 5 Receiver 6 Subcooler 7 Expansion valve 8 Heat recovery device 8 Heat recovery device 9 Refrigerant return pipe 10 Steam delivery pipe 11 Gas-liquid separator 12 for water supply Steam supply pipe 13 Valve 14 Hot water return pipe 15 Check valve 16 Water supply pipe 17 Pump 18 Hot water supply pipe 21 Check valve 22 Waste water supply pipe 23 Drain pipe 24 Heater 25 Liquid level detector 26 Temperature sensing cylinder

Claims (1)

圧縮機、凝縮器、受液器、膨張機構、蒸発器がこの順に、冷媒配管により順次接続されて、蒸気圧縮式の冷凍サイクルを構成する冷凍装置の運転方法において、前記凝縮器は、所望温度の温水を発生する温水発生器であり、前記受液器と前記膨張機構との間の冷媒配管に、前記受液器からの冷媒凝縮液と熱媒との間で顕熱交換を行う過冷却器を設置するとともに、前記過冷却器へ熱媒を流入させる第1熱媒配管と、前記過冷却器において、前記受液器からの冷媒凝縮液により加熱される熱媒を前記凝縮器まで液送する第2熱媒配管と、前記凝縮器において冷媒ガスにより加熱される熱媒を温水として前記凝縮器から流出させる第3熱媒配管とを設ける段階と、
前記冷凍装置の運転中において、運転条件の変動に係わらず前記受液器内の冷媒凝縮液の液位を所定レベル以上に維持しつつ、前記凝縮器の出口側の温水温度に応じて、前記第1熱媒配管を流れる熱媒の流量を調整する段階とを有し、
それにより、熱媒と冷媒との間の熱交換において、前記第2熱媒配管を流れる熱媒の温度を調整することなしに、冷媒側における顕熱交換と潜熱交換とを常時分離し、前記過冷却器による顕熱交換と、その後の前記凝縮器による潜熱交換とからなる、冷媒との熱交換のみにより熱媒を加熱する、ことを特徴とする冷凍装置の運転方法。
In the operating method of the refrigerating apparatus in which the compressor, the condenser, the liquid receiver, the expansion mechanism, and the evaporator are sequentially connected in this order by the refrigerant pipe to constitute a vapor compression refrigeration cycle, the condenser has a desired temperature. Is a hot water generator that generates hot water, and is configured to supercool the sensible heat exchange between the refrigerant condensate from the liquid receiver and the heat medium in the refrigerant pipe between the liquid receiver and the expansion mechanism And a first heat medium pipe for introducing a heat medium into the supercooler and a heat medium heated by the refrigerant condensate from the liquid receiver in the supercooler to the condenser. Providing a second heat medium pipe to be sent and a third heat medium pipe for letting out the heat medium heated by the refrigerant gas in the condenser as hot water from the condenser;
During operation of the refrigeration apparatus, the liquid level of the refrigerant condensate in the receiver is maintained at a predetermined level or higher regardless of fluctuations in operating conditions, and according to the hot water temperature on the outlet side of the condenser, Adjusting the flow rate of the heat medium flowing through the first heat medium pipe ,
Thereby, the heat exchange between the heat medium and the refrigerant, without adjusting the temperature of the heat medium flowing through the second heat medium pipe, always separate the sensible heat exchange and latent exchange in the refrigerant, the A method for operating a refrigeration apparatus, comprising heating a heat medium only by heat exchange with a refrigerant, comprising sensible heat exchange by a subcooler and subsequent latent heat exchange by the condenser .
JP2015157850A 2015-08-10 2015-08-10 Operation method of refrigeration equipment Active JP6036939B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015157850A JP6036939B1 (en) 2015-08-10 2015-08-10 Operation method of refrigeration equipment
KR1020160036118A KR101871788B1 (en) 2015-08-10 2016-03-25 Method of operating refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157850A JP6036939B1 (en) 2015-08-10 2015-08-10 Operation method of refrigeration equipment

Publications (2)

Publication Number Publication Date
JP6036939B1 true JP6036939B1 (en) 2016-11-30
JP2017036876A JP2017036876A (en) 2017-02-16

Family

ID=57419941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157850A Active JP6036939B1 (en) 2015-08-10 2015-08-10 Operation method of refrigeration equipment

Country Status (2)

Country Link
JP (1) JP6036939B1 (en)
KR (1) KR101871788B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JP2007120914A (en) * 2005-10-31 2007-05-17 Tokyo Electric Power Co Inc:The Vapor generation system
JP2010038391A (en) * 2008-07-31 2010-02-18 Toyo Eng Works Ltd Heat pump type steam generating device
JP2012042205A (en) * 2010-05-14 2012-03-01 Miura Co Ltd Heat pump steam generating device
JP2012247156A (en) * 2011-05-30 2012-12-13 Toyo Eng Works Ltd Steam generating method using heat pump
JP2014169818A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014374A (en) * 2008-07-07 2010-01-21 Kansai Electric Power Co Inc:The Heat pump type heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JP2007120914A (en) * 2005-10-31 2007-05-17 Tokyo Electric Power Co Inc:The Vapor generation system
JP2010038391A (en) * 2008-07-31 2010-02-18 Toyo Eng Works Ltd Heat pump type steam generating device
JP2012042205A (en) * 2010-05-14 2012-03-01 Miura Co Ltd Heat pump steam generating device
JP2012247156A (en) * 2011-05-30 2012-12-13 Toyo Eng Works Ltd Steam generating method using heat pump
JP2014169818A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system

Also Published As

Publication number Publication date
JP2017036876A (en) 2017-02-16
KR101871788B1 (en) 2018-06-28
KR20170018759A (en) 2017-02-20

Similar Documents

Publication Publication Date Title
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP6111157B2 (en) Gas vaporizer with cold energy recovery function and cold energy recovery device
JP4915680B2 (en) Multi-source heat pump steam / hot water generator
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP2008298406A (en) Multiple heat pump-type steam-hot water generation device
JP2014169854A (en) Refrigeration cycle device and hot water generation device including the same
JP2015218939A (en) Refrigeration cycle device
JP2008256281A (en) Heat pump type water heater
JP6036939B1 (en) Operation method of refrigeration equipment
JP2011185571A (en) Heat pump system
BRPI0915033B1 (en) reversible system for recovering heat energy by removing and transferring calories from one or more media to another or several other media
JP5239613B2 (en) Steam generation system
CN110234941B (en) Absorption refrigerator
KR100838368B1 (en) Heat pump system of air heat source
JP6978242B2 (en) Refrigerant circuit equipment
JP4315854B2 (en) Absorption refrigerator
JP2009287805A (en) Absorption refrigerator
JP2016080179A (en) Air conditioner
JP2015148429A (en) Operational method of refrigerator
KR20150133966A (en) Cooling system
JP6698297B2 (en) Absorption refrigerator
KR100862021B1 (en) Energy saving type hot water boiler
JP6103203B2 (en) Water heating system
WO2017164201A1 (en) Cooling system, and method for controlling cooling system
JP2010216715A (en) Heat pump device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250