JP2010014374A - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP2010014374A
JP2010014374A JP2008176612A JP2008176612A JP2010014374A JP 2010014374 A JP2010014374 A JP 2010014374A JP 2008176612 A JP2008176612 A JP 2008176612A JP 2008176612 A JP2008176612 A JP 2008176612A JP 2010014374 A JP2010014374 A JP 2010014374A
Authority
JP
Japan
Prior art keywords
refrigerant
heated
heated fluid
supercooling
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176612A
Other languages
Japanese (ja)
Inventor
Koichi Kinoshita
浩一 木下
Masaki Ikeuchi
正毅 池内
Shinji Shato
真二 社頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2008176612A priority Critical patent/JP2010014374A/en
Publication of JP2010014374A publication Critical patent/JP2010014374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type heating device can reduce pressure loss of fluid to be heated in a supercooling part. <P>SOLUTION: The heat pump type heating device 1 for heating fluid to be heated by a refrigerant is provided with a refrigerant circuit 10 for passing the refrigerant and a heated fluid circuit 20 for passing the fluid to be heated. The refrigerant circuit 10 is formed by sequentially and annularly interconnecting a compressor 2 for compressing the refrigerant, a condensation part 3 for condensing the refrigerant by heat exchange with the fluid to be heated, the supercooling part 4 for supercooling the refrigerant by further heat exchange with the fluid to be heated, an expansion valve 5 for decompressing the refrigerant and an evaporator 6 for evaporating the refrigerant. The heated fluid circuit 20 is provided with the supercooling part 4 for performing heat exchange between the fluid to be heated and the refrigerant, a condensation part 3 for further performing heat exchange between the fluid to be heated sent from the supercooling part 4 with the refrigerant, and a bypass flow passage 26 for making at least part of the fluid to be heated to be sent to the supercooling part 4 bypass the supercooling part 4 and flow to the condensation part 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍サイクルを利用して被加熱流体を加熱するヒートポンプ加熱装置に関するものである。   The present invention relates to a heat pump heating apparatus that heats a fluid to be heated using a refrigeration cycle.

従来、冷凍サイクルを利用して冷媒を高温にし、この高温の冷媒で被加熱流体(主に水が用いられる)を加熱して、加熱された被加熱流体を給湯や暖房に用いるヒートポンプ加熱装置が種々提案されている。この種のヒートポンプ加熱装置として、例えば、特許文献1には、冷媒と被加熱流体との熱交換を効率的に行うために、プレート式熱交換器を冷媒の状態に基づいて凝縮部と過冷却部とに分けたヒートポンプ加熱装置が開示されている。
特開2005−106385号公報
2. Description of the Related Art Conventionally, there is a heat pump heating device that uses a refrigeration cycle to heat a refrigerant, heats a fluid to be heated (mainly water is used) with the high-temperature refrigerant, and uses the heated fluid to be heated or heated. Various proposals have been made. As this type of heat pump heating device, for example, in Patent Document 1, in order to efficiently perform heat exchange between the refrigerant and the fluid to be heated, a plate-type heat exchanger is provided with a condensing unit and a supercooling unit based on the state of the refrigerant. A heat pump heating device divided into parts is disclosed.
JP 2005-106385 A

ところで、凝縮部は、その内部では冷媒が気体の状態で流れているため、液体の状態で冷媒が流れる過冷却部よりもプレート枚数を多くする必要がある。また、一般的に、圧縮機から吐出された高温ガスとなった冷媒が凝縮部において凝縮液となるまでの熱量(以下、凝縮部熱量という)は、過冷却部において過冷却される熱量(以下、過冷却部熱量)の約3〜5倍である。よって、凝縮部における冷媒と被加熱流体との交換熱量は、過冷却部における交換熱量の約3〜5倍であるため、凝縮部の伝熱面積は過冷却部の伝熱面積の約3〜5倍必要である。すなわち、過冷却部の伝熱面積は、凝縮部の伝熱面積の約1/3〜1/5にする必要があり、ひいては、過冷却部での冷媒及び被加熱流体の流路断面積を、凝縮部及び被加熱流体の流路断面積の約1/3〜1/5とする必要がある。しかしながら、被加熱流体の流量や流速は、凝縮部における流量や流速で設定されるため、凝縮部の流路断面積の約1/3〜1/5しか流路断面積を有していない過冷却部では圧力損失が大きくなり、その結果、全体を流れる被加熱流体の流量が減少してしまうという問題がある。   By the way, in the condensing part, since the refrigerant flows in a gas state therein, it is necessary to increase the number of plates as compared with the supercooling part in which the refrigerant flows in a liquid state. In general, the amount of heat until the refrigerant that has become high-temperature gas discharged from the compressor becomes a condensate in the condensing unit (hereinafter referred to as the condensing unit calorie) About 3 to 5 times the amount of heat of the supercooling section). Therefore, since the exchange heat amount of the refrigerant and the fluid to be heated in the condensing part is about 3 to 5 times the exchange heat amount in the supercooling part, the heat transfer area of the condensing part is about 3 to 3 times the heat transfer area of the supercooling part. 5 times required. That is, the heat transfer area of the supercooling part needs to be about 1/3 to 1/5 of the heat transfer area of the condensing part. As a result, the cross-sectional areas of the refrigerant and the heated fluid in the supercooling part are It is necessary to set the flow path cross-sectional area of the condensing part and the fluid to be heated to about 1/3 to 1/5. However, since the flow rate and flow rate of the fluid to be heated are set by the flow rate and flow rate in the condensing unit, the flow rate and flow rate of the condensing unit are only about 1/3 to 1/5 of the cross-sectional area of the condensing unit. There is a problem in that the pressure loss increases in the cooling section, and as a result, the flow rate of the heated fluid flowing through the whole decreases.

そこで、本発明は、過冷却部における被加熱流体の圧力損失を低減することのできるヒートポンプ加熱装置を提供することを課題とする。   Then, this invention makes it a subject to provide the heat pump heating apparatus which can reduce the pressure loss of the to-be-heated fluid in a supercooling part.

本発明に係るヒートポンプ加熱装置は、上記課題を解決するためになされたものであり、冷媒により被加熱流体を加熱するヒートポンプ加熱装置であって、内部を冷媒が流れる冷媒回路であって、冷媒を圧縮する圧縮機、被加熱流体と熱交換させて冷媒を凝縮する凝縮部、さらに被加熱流体と熱交換させて冷媒を過冷却する過冷却部、冷媒を減圧する膨張弁、及び冷媒を蒸発する蒸発器、を順次環状に接続した冷媒回路と、内部を被加熱流体が流れる被加熱流体回路であって、被加熱流体を冷媒と熱交換させる前記過冷却部、前記過冷却部から送られた被加熱流体をさらに冷媒と熱交換させる前記凝縮部、及び前記過冷却部へ送られる被加熱流体の少なくとも一部を前記過冷却部をバイパスさせて前記凝縮部に流すバイパス流路を有する被加熱流体回路と、を備えている。   A heat pump heating device according to the present invention is made to solve the above-described problem, and is a heat pump heating device that heats a fluid to be heated by a refrigerant, a refrigerant circuit in which the refrigerant flows, A compressor for compressing, a condensing unit for exchanging heat with the heated fluid to condense the refrigerant, a supercooling unit for exchanging heat with the heated fluid to subcool the refrigerant, an expansion valve for decompressing the refrigerant, and evaporating the refrigerant A refrigerant circuit in which an evaporator is sequentially connected in an annular manner, and a heated fluid circuit in which a fluid to be heated flows inside, the supercooling unit that exchanges heat between the heated fluid and the refrigerant, and is sent from the supercooling unit The condensing unit for further exchanging heat of the heated fluid with the refrigerant, and the adding unit having a bypass flow path for allowing at least a part of the heated fluid sent to the supercooling unit to bypass the supercooling unit and to flow to the condensing unit It includes a fluid circuit.

上記構成によれば、被加熱流体の少なくとも一部が過冷却部をバイパスするようにバイパス流路を有しているため、過冷却部へ流れる被加熱流体の流量を減らして過冷却部での被加熱流体の圧力損失を低減することができ、ひいては、被加熱流体回路全体を流れる被加熱流体の流量の減少を低減することができる。   According to the above configuration, since at least a part of the heated fluid has the bypass flow path so as to bypass the supercooling portion, the flow rate of the heated fluid flowing to the supercooling portion is reduced and the The pressure loss of the fluid to be heated can be reduced, and consequently the decrease in the flow rate of the fluid to be heated flowing through the entire fluid to be heated circuit can be reduced.

上記ヒートポンプ加熱装置は種々の構成をとることができるが、例えば、上記凝縮部及び過冷却部をプレート式熱交換器として構成することができる。   Although the said heat pump heating apparatus can take a various structure, the said condensation part and a supercooling part can be comprised as a plate-type heat exchanger, for example.

また、上記被加熱流体回路は、過冷却部へ流れる被加熱流体の流量を調整する流量調節装置をさらに有していることが好ましい。この構成によれば、流量調節装置を調節して過冷却部へ流す被加熱流体の流量を調節することにより、過冷却部での被加熱流体の圧力損失をより低減することができ、ひいては、被加熱流体回路全体を流れる被加熱流体の流量が減少することをより抑制することができる。   The heated fluid circuit preferably further includes a flow rate adjusting device for adjusting the flow rate of the heated fluid flowing to the subcooling section. According to this configuration, the pressure loss of the heated fluid in the supercooling portion can be further reduced by adjusting the flow rate adjusting device to adjust the flow rate of the heated fluid flowing to the supercooling portion, and thus It can suppress more that the flow volume of the to-be-heated fluid which flows the whole to-be-heated fluid circuit reduces.

また、上記被加熱流体回路は、過冷却部の出口において被加熱流体の温度を測定する被加熱流体温度センサと、被加熱流体温度センサの測定値に基づいて流量調節装置を制御する制御装置とをさらに有していることが好ましい。この構成によれば、被加熱流体温度センサによって測定された被加熱流体の温度が所定の温度よりも低ければ、流量調節装置を調節して過冷却部へ流す被加熱流体の流量を減らし、また逆に被加熱流体の温度が所定の温度よりも高ければ、流量調節装置を調節して過冷却部へ流す被加熱流体の流量を増やすなどというように、過冷却部へ流す被加熱流体の流量をより適切に調節することができる。   The heated fluid circuit includes a heated fluid temperature sensor that measures the temperature of the heated fluid at the outlet of the supercooling unit, and a control device that controls the flow rate adjusting device based on the measured value of the heated fluid temperature sensor; It is preferable to further have. According to this configuration, if the temperature of the heated fluid measured by the heated fluid temperature sensor is lower than the predetermined temperature, the flow rate adjustment device is adjusted to reduce the flow rate of the heated fluid flowing to the subcooling section, and Conversely, if the temperature of the fluid to be heated is higher than a predetermined temperature, the flow rate of the fluid to be heated flowing to the subcooling part is adjusted, for example, by adjusting the flow rate adjusting device to increase the flow rate of the fluid to be heated flowing to the supercooling part. Can be adjusted more appropriately.

また、上記冷媒回路が、凝縮部を出て過冷却部へ送られる冷媒の温度を測定する冷媒温度センサをさらに備えており、上記制御装置が、被加熱流体温度センサの測定値及び冷媒温度センサの測定値に基づいて、流量調節装置を制御するように構成されていることが好ましい。この構成によれば、凝縮部を出て過冷却部へ送られる冷媒の温度と、過冷却部出口における被加熱流体の温度との差を算出して、この温度差が所定の温度差より大きければ、流量調節装置を調節して過冷却部へ流す被加熱流体の流量を減らし、逆に上記温度差が所定の温度差よりも小さければ、流量調節装置を調節して過冷却部へ流す被加熱流体の流量を増やすというように、過冷却部へ流す被加熱流体の流量をより適切に調節することができる。   The refrigerant circuit further includes a refrigerant temperature sensor that measures the temperature of the refrigerant that leaves the condensing unit and is sent to the supercooling unit, and the control device includes a measurement value of the heated fluid temperature sensor and a refrigerant temperature sensor. It is preferable that the flow control device is controlled based on the measured value. According to this configuration, the difference between the temperature of the refrigerant leaving the condensing unit and being sent to the supercooling unit and the temperature of the heated fluid at the subcooling unit outlet is calculated, and this temperature difference is larger than the predetermined temperature difference. If the temperature difference is smaller than a predetermined temperature difference, the flow regulator is adjusted to flow to the subcooling section. It is possible to more appropriately adjust the flow rate of the heated fluid that flows to the supercooling unit, such as increasing the flow rate of the heated fluid.

本発明によれば、過冷却部における被加熱流体の圧力損失を低減することのできるヒートポンプ加熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump heating apparatus which can reduce the pressure loss of the to-be-heated fluid in a supercooling part can be provided.

以下、本発明に係るヒートポンプ加熱装置の実施形態について図面を参照しつつ説明する。図1は、ヒートポンプ加熱装置の全体を示す構成図、図2は凝縮部の斜視図、図3は図2のA−A線断面図、図4は図2のB−B線断面図、図5は過冷却部の斜視図、図6は図5のA−A線断面図、図7は図5のB−B線断面図である。   Hereinafter, an embodiment of a heat pump heating apparatus according to the present invention will be described with reference to the drawings. 1 is a block diagram showing the entire heat pump heating apparatus, FIG. 2 is a perspective view of a condensing part, FIG. 3 is a cross-sectional view taken along line AA in FIG. 2, and FIG. 4 is a cross-sectional view taken along line BB in FIG. 5 is a perspective view of the supercooling section, FIG. 6 is a sectional view taken along line AA in FIG. 5, and FIG. 7 is a sectional view taken along line BB in FIG.

図1に示すように、ヒートポンプ加熱装置1は、内部を冷媒が循環する冷媒回路10と、内部を水(被加熱流体)が流れる被加熱流体回路20とを備えている。冷媒回路10は、圧縮機2、凝縮部3、過冷却部4、膨張弁5、蒸発器6が、この順で環状に接続されている。一方、被加熱流体回路20は、貯湯タンク7、循環ポンプ8、流量調節装置9,過冷却部4,凝縮部3がこの順で接続されている。なお、凝縮部3及び過冷却部4は、冷媒回路10と被加熱流体回路20に共有されているが、凝縮部3及び過冷却部4に形成された冷媒が流れる流路と水が流れる流路とは互いに独立している。   As shown in FIG. 1, the heat pump heating device 1 includes a refrigerant circuit 10 in which a refrigerant circulates and a heated fluid circuit 20 in which water (a heated fluid) flows. In the refrigerant circuit 10, the compressor 2, the condensing unit 3, the supercooling unit 4, the expansion valve 5, and the evaporator 6 are annularly connected in this order. On the other hand, in the heated fluid circuit 20, the hot water storage tank 7, the circulation pump 8, the flow rate adjusting device 9, the supercooling unit 4, and the condensing unit 3 are connected in this order. In addition, although the condensation part 3 and the supercooling part 4 are shared by the refrigerant circuit 10 and the to-be-heated fluid circuit 20, the flow path through which the refrigerant formed in the condensation part 3 and the supercooling part 4 flows, and the flow through which water flows The roads are independent of each other.

次にヒートポンプ加熱装置1を構成する各機器について説明する。まず、冷媒回路10に設置された各機器について説明する。圧縮機2は、駆動装置(図示省略)によって駆動され、吸引した冷媒を内部で圧縮して高圧・高温とし凝縮部3に吐出する。   Next, each apparatus which comprises the heat pump heating apparatus 1 is demonstrated. First, each device installed in the refrigerant circuit 10 will be described. The compressor 2 is driven by a driving device (not shown), compresses the sucked refrigerant inside to a high pressure / high temperature, and discharges it to the condensing unit 3.

凝縮部3は、図2に示すように、複数の伝熱プレートを積層した、いわゆるプレート式熱交換器として形成されている。このプレート式熱交換器として構成された凝縮部3は、公知のプレート式熱交換器を用いることができ、具体的には、複数の伝熱プレートを積層して隣接する伝熱プレート間に流路を形成し、水を下方から上方へと流す(図3参照)とともに、冷媒を上方から下方へ流す(図4参照)ことで、その流路に冷媒と水とを交互に対向させて流し、各伝熱プレートを介して冷媒と水とを熱交換させている。この凝集部3では、高温ガス状態の冷媒を凝縮させて水を加熱している。なお、図2及び図4に示すように凝縮部3は、冷媒の入口よりも冷媒の出口の方が配管が細くなっている。   As shown in FIG. 2, the condensing unit 3 is formed as a so-called plate heat exchanger in which a plurality of heat transfer plates are stacked. As the condensing unit 3 configured as the plate heat exchanger, a known plate heat exchanger can be used. Specifically, a plurality of heat transfer plates are stacked and flow between adjacent heat transfer plates. A channel is formed and water flows from the bottom to the top (see FIG. 3), and the coolant flows from the top to the bottom (see FIG. 4), thereby allowing the coolant and water to alternately flow in the flow path. The refrigerant and water exchange heat through the heat transfer plates. In this agglomeration part 3, water is heated by condensing the refrigerant in a high-temperature gas state. As shown in FIGS. 2 and 4, in the condensing unit 3, the outlet of the refrigerant is narrower than the inlet of the refrigerant.

図5に示すように、過冷却部4も、上記凝縮部3と同様に、複数のプレートを積層した、いわゆるプレート式熱交換器として形成されている。なお、過冷却部4における冷媒と水との交換熱量は、伝熱面積を同一とすると、通常、凝縮部3における交換熱量の約1/3〜1/5であるため、この過冷却部4を構成するプレート式熱交換器の伝熱プレートの枚数は、凝縮部3を構成するプレート式熱交換器の伝熱プレートの枚数の約1/3〜1/5となっている。この過冷却部4では、水を下方から上方へ流す(図6参照)とともに、冷媒を上方から下方へと流す(図7参照)ことで、冷媒と水とを交互に対向させて流し、各伝熱プレートを介して冷媒と水とを熱交換させ、上記凝縮部3において凝縮されて液体となった冷媒を過冷却することで、水を加熱している。なお、過冷却部4は、冷媒の入口及び出口の配管は、上記凝縮部3の冷媒の出口の配管とほぼ同じ太さとなっている。   As shown in FIG. 5, the supercooling unit 4 is also formed as a so-called plate heat exchanger in which a plurality of plates are stacked, similarly to the condensing unit 3. Note that the amount of heat exchanged between the refrigerant and water in the supercooling unit 4 is usually about 1/3 to 1/5 of the amount of heat exchanged in the condensing unit 3 when the heat transfer area is the same. The number of heat transfer plates of the plate heat exchanger constituting the heat exchanger plate is about 1/3 to 1/5 of the number of heat transfer plates of the plate heat exchanger constituting the condensing unit 3. In this supercooling section 4, water flows from the lower side to the upper side (see FIG. 6), and the refrigerant flows from the upper side to the lower side (see FIG. 7), thereby allowing the refrigerant and water to flow alternately facing each other. Water is heated by exchanging heat between the refrigerant and water via the heat transfer plate, and by supercooling the refrigerant condensed in the condensing unit 3 into a liquid. In the supercooling unit 4, the refrigerant inlet and outlet pipes have substantially the same thickness as the refrigerant outlet pipe of the condensing unit 3.

膨張弁5は、冷媒を急激に減圧して低温低圧にする弁である。また、蒸発器6は、室外に設置されており、その内部を流れる冷媒を外気と熱交換させるものであり、冷媒を蒸発させて圧縮機2へと送る。   The expansion valve 5 is a valve that rapidly reduces the pressure of the refrigerant to lower the temperature and pressure. Further, the evaporator 6 is installed outdoors, and exchanges heat between the refrigerant flowing through the inside and the outside air, evaporates the refrigerant and sends it to the compressor 2.

被加熱流体回路20は、凝縮部3及び過冷却部4で加熱された水(湯)を貯めておくための貯湯タンク7を備えている。この貯湯タンク7の下部には、給水源(図示省略)から貯湯タンク7の下部に給水する給水管21や、貯湯タンク7の下部に貯められた水を過冷却部4へと供給する供給管22が接続されている。また、貯湯タンク7の上部には、凝縮部3及び過冷却部4で加熱された水(湯)を貯湯タンク7の上部に戻す戻り管23や、貯湯タンク7の上部に貯められた高温の水(湯)を給湯する給湯管24が接続されている。また、被加熱流体回路20は、過冷却部4を流れた水を凝縮部3へと送るように連結管25が凝縮部3の水の流路と過冷却部4の水の流路とを連結している。そして、供給管22を流れる水の一部が過冷却部4をバイパスするように、供給管22から分岐して連結管25へと接続されたバイパス管(バイパス流路)26が設置されている(図5参照)。供給管22には、水を過冷却部4や凝縮部3へ送るために循環ポンプ8が設置されるとともに、バイパス管26の分岐点より下流側に過冷却部4へ送られる水の流量を調節するための流量調節装置9が設置されている。なお、本実施形態においてはこの流量調節装置9は開度を調節することにより過冷却部4へ流れる水の流量を調節することのできる弁として構成されている。   The heated fluid circuit 20 includes a hot water storage tank 7 for storing water (hot water) heated by the condensing unit 3 and the supercooling unit 4. Below the hot water storage tank 7, a water supply pipe 21 for supplying water from a water supply source (not shown) to the lower part of the hot water storage tank 7 and a supply pipe for supplying water stored in the lower part of the hot water storage tank 7 to the supercooling unit 4. 22 is connected. Further, in the upper part of the hot water storage tank 7, there is a return pipe 23 for returning the water (hot water) heated in the condensing unit 3 and the supercooling unit 4 to the upper part of the hot water storage tank 7, and a high temperature stored in the upper part of the hot water storage tank 7. A hot water supply pipe 24 for supplying hot water is connected. In addition, the heated fluid circuit 20 is configured so that the connecting pipe 25 connects the water flow path of the condensing unit 3 and the water flow path of the supercooling unit 4 so that the water flowing through the supercooling unit 4 is sent to the condensing unit 3. It is connected. A bypass pipe (bypass flow path) 26 branched from the supply pipe 22 and connected to the connecting pipe 25 is installed so that a part of the water flowing through the supply pipe 22 bypasses the supercooling unit 4. (See FIG. 5). The supply pipe 22 is provided with a circulation pump 8 for sending water to the supercooling unit 4 and the condensing unit 3, and the flow rate of water sent to the supercooling unit 4 downstream from the branch point of the bypass pipe 26. A flow rate adjusting device 9 for adjusting is installed. In this embodiment, the flow rate adjusting device 9 is configured as a valve that can adjust the flow rate of water flowing to the subcooling unit 4 by adjusting the opening degree.

以上のように構成されたヒートポンプ加熱装置1の動作について説明する。   Operation | movement of the heat pump heating apparatus 1 comprised as mentioned above is demonstrated.

まず、冷媒回路10内を流れる冷媒を中心に説明すると、圧縮機2により圧縮されて高温高圧のガスとなった冷媒は、凝縮部3へと送られる。凝縮部3において、冷媒用流路を流れる冷媒は、被加熱流体用流路を流れる被加熱媒体と熱交換を行って被加熱媒体を加熱するとともに、冷媒自体は凝縮されて液化し、過冷却部4へと送られる。過冷却部4において、冷媒用流路を流れる冷媒は、被加熱流体用流路を流れる水とさらに熱交換を行って水を加熱し、冷媒自体は過冷却されて膨張弁5へと送られる。膨張弁5に送られた冷媒は減圧されて低温低圧となり、続いて蒸発器6によって外気と熱交換して蒸発して再度圧縮機2へと送られる。以上のサイクルを繰り返すことで水を加熱する。   First, the refrigerant flowing in the refrigerant circuit 10 will be mainly described. The refrigerant compressed into the high-temperature and high-pressure gas by the compressor 2 is sent to the condensing unit 3. In the condensing unit 3, the refrigerant flowing through the refrigerant flow path heats the heated medium by exchanging heat with the heated medium flowing through the heated fluid flow path, and the refrigerant itself is condensed and liquefied to be supercooled. Sent to part 4. In the supercooling unit 4, the refrigerant flowing through the refrigerant flow path further heat-exchanges with the water flowing through the heated fluid flow path to heat the water, and the refrigerant itself is supercooled and sent to the expansion valve 5. . The refrigerant sent to the expansion valve 5 is depressurized to a low temperature and low pressure, and then evaporated by exchanging heat with the outside air by the evaporator 6 and sent to the compressor 2 again. Water is heated by repeating the above cycle.

次に、被加熱流体回路20を流れる水を中心に説明する。まず、給水源(図示省略)から給水貯湯タンク7の下部へ貯められた水が供給管22を通って過冷却部4へと送られる。供給管22からはバイパス管26が分岐しているため、全ての水が過冷却部4へと送られるのではなく、一部の水はバイパス管26を通って直接凝縮部3へと送られる。この過冷却部4へと流れる水の流量は、流量調節装置9の開度を調節することによって調節される。過冷却部4を流れる水は、同じく過冷却部4を流れる冷媒と熱交換することで加熱される。そして、過冷却部4を流れて加熱された水とバイパス管26を流れて加熱されていない水が連結管25で合流し、凝縮部3へと送られる。凝縮部3では、凝縮部3の冷媒用流路を流れる冷媒と熱交換を行うことで水が加熱される。このように凝縮部3及び過冷却部4で加熱された水は戻り管23を介して貯湯タンク7の上部に流入し、上から次第に貯湯される。このように凝縮部3や過冷却部4によって加熱されて貯湯タンク7の上部に貯められた水(湯)が、給湯管24を通ってお風呂や暖房器具などに用いられる。   Next, description will be made mainly on water flowing through the heated fluid circuit 20. First, the water stored in the lower part of the hot water storage tank 7 from the water supply source (not shown) is sent to the supercooling unit 4 through the supply pipe 22. Since the bypass pipe 26 is branched from the supply pipe 22, not all the water is sent to the supercooling unit 4, but a part of the water is sent directly to the condensing unit 3 through the bypass pipe 26. . The flow rate of water flowing to the supercooling unit 4 is adjusted by adjusting the opening degree of the flow rate adjusting device 9. The water flowing through the supercooling unit 4 is heated by exchanging heat with the refrigerant flowing through the supercooling unit 4. Then, the water heated through the supercooling unit 4 and the water not heated through the bypass pipe 26 join together at the connecting pipe 25 and are sent to the condensing unit 3. In the condensing unit 3, water is heated by exchanging heat with the refrigerant flowing through the refrigerant flow path of the condensing unit 3. Thus, the water heated by the condensing part 3 and the supercooling part 4 flows into the upper part of the hot water storage tank 7 through the return pipe 23, and is stored hot water gradually from the top. The water (hot water) heated by the condensing unit 3 and the supercooling unit 4 and stored in the upper portion of the hot water storage tank 7 is used for a bath, a heating appliance, and the like through the hot water supply pipe 24.

以上、本実施形態によれば、過冷却部4へ全ての水を流すのではなく、一部の水をバイパス管26を介して過冷却部4をバイパスさせることができるため、過冷却部4における水の圧力損失を低減することができる。   As described above, according to the present embodiment, not all the water is allowed to flow to the supercooling unit 4, but a part of the water can be bypassed through the bypass pipe 26. The pressure loss of water can be reduced.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、図8に示すように、過冷却部4の出口において水の温度を測定するように、バイパス管26と合流する点よりも上流側の連結管25に被加熱流体温度センサ11を設置するとともに、過冷却部4へ送られる冷媒の温度を測定するように、冷媒回路10の冷却部4の入口に冷媒温度センサ12を設置してもよい。そして、これら被加熱流体温度センサ11及び冷媒温度センサ12により測定した測定値に基づいて流量調節装置9の開度を調節する制御装置13が設置されている。このように構成することで、例えば、被加熱流体温度センサ11で測定した被加熱流体温度Tと冷媒温度センサ12で測定した冷媒温度Tとの温度差T−Tが設定温度差ΔT前後となるように、流量調節装置9を調節して過冷却部4に送られる水の流量を調節することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention. For example, as shown in FIG. 8, the heated fluid temperature sensor 11 is installed in the connecting pipe 25 upstream from the point where it joins the bypass pipe 26 so as to measure the water temperature at the outlet of the supercooling section 4. At the same time, the refrigerant temperature sensor 12 may be installed at the inlet of the cooling unit 4 of the refrigerant circuit 10 so as to measure the temperature of the refrigerant sent to the supercooling unit 4. And the control apparatus 13 which adjusts the opening degree of the flow control apparatus 9 based on the measured value measured by these to-be-heated fluid temperature sensors 11 and the refrigerant | coolant temperature sensor 12 is installed. By configuring in this way, for example, the temperature difference T r -T w between the heated fluid temperature T w measured by the heated fluid temperature sensor 11 and the refrigerant temperature Tr measured by the refrigerant temperature sensor 12 is a set temperature difference. It is possible to adjust the flow rate of water sent to the supercooling unit 4 by adjusting the flow rate adjusting device 9 so as to be around ΔT.

また、上記冷媒温度センサ12を省略して被加熱流体温度センサ11のみとすることもできる。この場合は、被加熱流体温度センサ11により測定した被加熱流体温度Tが設定温度Tよりも低ければ流量調節装置9の開度を調節して過冷却部4へ流れる水の量を減らし、逆に設定温度Tよりも高ければ流量調節装置9の開度を調節して過冷却部4へ流れる水の量を増やす。 The refrigerant temperature sensor 12 may be omitted and only the heated fluid temperature sensor 11 may be used. In this case, reduce the amount of water flowing by adjusting the lower if opening of the flow regulating device 9 than the heated fluid temperature T w is the set temperature T measured by the heated fluid temperature sensor 11 to the supercooling part 4, On the contrary, if the temperature is higher than the set temperature T, the amount of water flowing to the supercooling unit 4 is increased by adjusting the opening degree of the flow control device 9.

また、上記実施形態では、流量調節装置9を設置しているがこれを省略することができる。この場合、バイパス管26の流路断面積を調節することで過冷却部4へ流れる被加熱流体の流量を調節することもできる。   Moreover, in the said embodiment, although the flow volume adjusting device 9 is installed, this can be abbreviate | omitted. In this case, the flow rate of the heated fluid flowing to the supercooling unit 4 can be adjusted by adjusting the flow path cross-sectional area of the bypass pipe 26.

また、冷媒回路10の凝縮部3と過冷却部4との間に受液器を設置することもできる。   In addition, a liquid receiver can be installed between the condensing unit 3 and the supercooling unit 4 of the refrigerant circuit 10.

本発明に係るヒートポンプ加熱装置の実施形態を示す構成図である。It is a lineblock diagram showing an embodiment of a heat pump heating device concerning the present invention. 本実施形態に係る凝縮部3を示す斜視図である。It is a perspective view which shows the condensation part 3 which concerns on this embodiment. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 本実施形態に係る過冷却部4及びバイパス管26を示す斜視図である。It is a perspective view which shows the supercooling part 4 and the bypass pipe 26 which concern on this embodiment. 図5のA−A線断面図である。It is the sectional view on the AA line of FIG. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line B-B in FIG. 5. 本発明に係るヒートポンプ加熱装置の別の実施形態を示す構成図である。It is a block diagram which shows another embodiment of the heat pump heating apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 ヒートポンプ加熱装置
2 圧縮機
3 凝縮部
4 過冷却部
5 膨張弁
6 蒸発器
9 流量調節装置
10 冷媒回路
20 被加熱流体回路
26 バイパス管(バイパス流路)
11 被加熱流体温度センサ
12 冷媒温度センサ
13 制御装置
DESCRIPTION OF SYMBOLS 1 Heat pump heating apparatus 2 Compressor 3 Condensing part 4 Supercooling part 5 Expansion valve 6 Evaporator 9 Flow control apparatus 10 Refrigerant circuit 20 Heated fluid circuit 26 Bypass pipe (bypass flow path)
11 Heated fluid temperature sensor 12 Refrigerant temperature sensor 13 Control device

Claims (5)

冷媒により被加熱流体を加熱するヒートポンプ加熱装置であって、
内部を冷媒が流れる冷媒回路であって、冷媒を圧縮する圧縮機、被加熱流体と熱交換させて冷媒を凝縮する凝縮部、さらに被加熱流体と熱交換させて冷媒を過冷却する過冷却部、冷媒を減圧する膨張弁、及び冷媒を蒸発する蒸発器を順次環状に接続した冷媒回路と、
内部を被加熱流体が流れる被加熱流体回路であって、被加熱流体を冷媒と熱交換させる前記過冷却部、前記過冷却部から送られた被加熱流体をさらに冷媒と熱交換させる前記凝縮部、及び前記過冷却部へ送られる被加熱流体の少なくとも一部を前記過冷却部をバイパスさせて前記凝縮部に流すバイパス流路を有する被加熱流体回路と、
を備えた、ヒートポンプ加熱装置。
A heat pump heating device that heats a fluid to be heated with a refrigerant,
A refrigerant circuit in which a refrigerant flows, a compressor that compresses the refrigerant, a condensing unit that condenses the refrigerant by exchanging heat with the heated fluid, and a supercooling unit that supercools the refrigerant by exchanging heat with the heated fluid A refrigerant circuit in which an expansion valve for decompressing the refrigerant and an evaporator for evaporating the refrigerant are sequentially connected in an annular manner;
A heated fluid circuit in which a fluid to be heated flows, the supercooling unit for exchanging heat of the heated fluid with a refrigerant, and the condensing unit for further exchanging heat of the heated fluid sent from the supercooling unit with the refrigerant And a heated fluid circuit having a bypass flow path that bypasses the supercooled portion and flows to the condensing portion at least part of the heated fluid sent to the supercooled portion;
A heat pump heating device.
前記凝縮部及び過冷却部は、プレート式熱交換器である、請求項1に記載のヒートポンプ加熱装置。   The heat pump heating device according to claim 1, wherein the condensing unit and the supercooling unit are plate heat exchangers. 前記被加熱流体回路は、前記過冷却部へ流れる被加熱流体の流量を調整する流量調節装置をさらに有する、請求項1又は2に記載のヒートポンプ加熱装置。   The heat pump heating device according to claim 1 or 2, wherein the heated fluid circuit further includes a flow rate adjusting device that adjusts a flow rate of the heated fluid flowing to the supercooling unit. 前記被加熱流体回路は、前記過冷却部の出口において被加熱流体の温度を測定する被加熱流体温度センサと、前記被加熱流体温度センサの測定値に基づいて前記流量調節装置を制御する制御装置とをさらに有する、請求項3に記載のヒートポンプ加熱装置。   The heated fluid circuit includes a heated fluid temperature sensor that measures the temperature of the heated fluid at an outlet of the supercooling unit, and a control device that controls the flow rate adjusting device based on a measurement value of the heated fluid temperature sensor. The heat pump heating device according to claim 3, further comprising: 前記冷媒回路は、前記凝縮部を出て前記過冷却部へ送られる冷媒の温度を測定する冷媒温度センサをさらに備え、
前記制御装置は、前記被加熱流体温度センサの測定値及び冷媒温度センサの測定値に基づいて、前記流量調節装置を制御する、請求項4に記載のヒートポンプ加熱装置。
The refrigerant circuit further includes a refrigerant temperature sensor that measures the temperature of the refrigerant that leaves the condensing unit and is sent to the supercooling unit,
The heat pump heating device according to claim 4, wherein the control device controls the flow rate adjusting device based on a measured value of the heated fluid temperature sensor and a measured value of the refrigerant temperature sensor.
JP2008176612A 2008-07-07 2008-07-07 Heat pump type heating device Pending JP2010014374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176612A JP2010014374A (en) 2008-07-07 2008-07-07 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176612A JP2010014374A (en) 2008-07-07 2008-07-07 Heat pump type heating device

Publications (1)

Publication Number Publication Date
JP2010014374A true JP2010014374A (en) 2010-01-21

Family

ID=41700640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176612A Pending JP2010014374A (en) 2008-07-07 2008-07-07 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP2010014374A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055088A1 (en) * 2011-10-10 2013-04-18 Lg Electronics Inc. Hot water supply device associated with heat pump
JP2014194316A (en) * 2013-03-29 2014-10-09 Miura Co Ltd Water supply and heating system
WO2015056333A1 (en) 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device
WO2015056334A1 (en) 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device
KR101543747B1 (en) 2015-02-25 2015-08-11 주식회사 부-스타 Compact type heatpump system with multistage heat exchanging structure
KR20150094526A (en) * 2014-02-10 2015-08-19 가부시키가이샤 도요세이사쿠쇼 Method of operating freezing system
JP2015158280A (en) * 2014-02-21 2015-09-03 株式会社コロナ heat pump hot water storage type water heater
JP2017015278A (en) * 2015-06-29 2017-01-19 カルソニックカンセイ株式会社 Heat exchanger
KR20170018759A (en) * 2015-08-10 2017-02-20 미츠비시 주코레이네츠 가부시키가이샤 Method of operating refrigerating device
JP2019138563A (en) * 2018-02-12 2019-08-22 株式会社デンソー Internal heat exchange device for heat pump

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055088A1 (en) * 2011-10-10 2013-04-18 Lg Electronics Inc. Hot water supply device associated with heat pump
KR101325903B1 (en) * 2011-10-10 2013-11-07 엘지전자 주식회사 Hot water supply device associated with heat pump
JP2014194316A (en) * 2013-03-29 2014-10-09 Miura Co Ltd Water supply and heating system
WO2015056333A1 (en) 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device
WO2015056334A1 (en) 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device
KR20150094526A (en) * 2014-02-10 2015-08-19 가부시키가이샤 도요세이사쿠쇼 Method of operating freezing system
JP2015148429A (en) * 2014-02-10 2015-08-20 株式会社東洋製作所 Operational method of refrigerator
KR101647437B1 (en) * 2014-02-10 2016-08-10 미츠비시 주코레이네츠 가부시키가이샤 Method of operating freezing system
JP2015158280A (en) * 2014-02-21 2015-09-03 株式会社コロナ heat pump hot water storage type water heater
KR101543747B1 (en) 2015-02-25 2015-08-11 주식회사 부-스타 Compact type heatpump system with multistage heat exchanging structure
JP2017015278A (en) * 2015-06-29 2017-01-19 カルソニックカンセイ株式会社 Heat exchanger
KR20170018759A (en) * 2015-08-10 2017-02-20 미츠비시 주코레이네츠 가부시키가이샤 Method of operating refrigerating device
KR101871788B1 (en) * 2015-08-10 2018-06-28 미츠비시 주코레이네츠 가부시키가이샤 Method of operating refrigerating device
JP2019138563A (en) * 2018-02-12 2019-08-22 株式会社デンソー Internal heat exchange device for heat pump

Similar Documents

Publication Publication Date Title
JP2010014374A (en) Heat pump type heating device
JP4651627B2 (en) Refrigeration air conditioner
CN103733002B (en) Conditioner
CN103210264B (en) Heat pump-type air-warming device
CN105247302A (en) Air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
CN107110547A (en) Refrigerating circulatory device
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
JP2005315558A (en) Heat pump water heater
JP5355016B2 (en) Refrigeration equipment and heat source machine
CN103958986A (en) Refrigerating/air-conditioning device
JP2010181146A (en) Refrigerating air conditioner
JP2010071544A (en) Air-conditioning system
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
CN110177988A (en) Heat source side unit and refrigerating circulatory device
JP2009052880A (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP2018021730A (en) Refrigeration cycle device
JP2007139257A (en) Refrigeration device
WO2014103407A1 (en) Air-conditioning device
JP2014016067A (en) Heat pump type air-conditioning hot water supply device
JP6549469B2 (en) Heat pump system
JP2010025412A (en) Refrigerating device
JP2009162403A (en) Air conditioner
JP6801873B2 (en) Refrigeration equipment, temperature control equipment and semiconductor manufacturing system