JP2014169818A - Feedwater heating system - Google Patents

Feedwater heating system Download PDF

Info

Publication number
JP2014169818A
JP2014169818A JP2013041621A JP2013041621A JP2014169818A JP 2014169818 A JP2014169818 A JP 2014169818A JP 2013041621 A JP2013041621 A JP 2013041621A JP 2013041621 A JP2013041621 A JP 2013041621A JP 2014169818 A JP2014169818 A JP 2014169818A
Authority
JP
Japan
Prior art keywords
water
water supply
heat
heat exchanger
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041621A
Other languages
Japanese (ja)
Other versions
JP6065212B2 (en
Inventor
Kazuyuki Otani
和之 大谷
Masanori Takemoto
真典 竹本
Yasukuni Tanaka
靖国 田中
Tomoya Osawa
智也 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013041621A priority Critical patent/JP6065212B2/en
Publication of JP2014169818A publication Critical patent/JP2014169818A/en
Application granted granted Critical
Publication of JP6065212B2 publication Critical patent/JP6065212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To heat feedwater to a heat pump as intended in a cycle external heat exchanger so as to improve efficiency of the heat pump, in a feedwater heating system applying the heat pump.SOLUTION: Feedwater to a water supply tank 3 through a water supply passage 8, is successively passed through a cycle external heat exchanger 17, a subcooler 16 and a condenser 13. The cycle external heat exchanger 17 is an indirect heat exchanger between the feedwater to the water supply tank 3 through the water supply passage 8 and a heat source fluid. The subcooler 16 is an indirect heat exchanger between the feedwater to the water supply tank 3 through the water supply passage 8 and a refrigerant from the condenser 13 to an expansion valve 14. The heat source fluid is allowed to pass through an evaporator 15 and the cycle external heat exchanger 17 in parallel.

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。また、出願人は、この従来技術に比べてヒートポンプの効率をさらに向上した給水加温システムを提案し、既に特許出願を済ませている(特願2012−79191)。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In addition, the applicant has proposed a feed water warming system in which the efficiency of the heat pump is further improved as compared with this prior art, and has already filed a patent application (Japanese Patent Application No. 2012-79191).

この出願中の給水加温システムは、ヒートポンプと給水タンクとを備え、給水路を介した給水タンクへの給水は、サイクル外熱交換器(廃熱回収熱交換器)、過冷却器および凝縮器を順に通される。サイクル外熱交換器は、給水路を介した給水タンクへの給水と、蒸発器を通過後の熱源流体との間接熱交換器であり、過冷却器は、給水路を介した給水タンクへの給水と、凝縮器から膨張弁への冷媒との間接熱交換器である。給水路を介した給水タンクへの給水中、ヒートポンプを運転すると共に、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量を調整するのが好ましい。   The pending water heating system includes a heat pump and a water tank, and the water supplied to the water tank via the water supply path includes an external heat exchanger (waste heat recovery heat exchanger), a supercooler, and a condenser. In order. The heat exchanger outside the cycle is an indirect heat exchanger between the water supplied to the water supply tank via the water supply channel and the heat source fluid after passing through the evaporator, and the subcooler is connected to the water supply tank via the water supply channel. It is an indirect heat exchanger between the feed water and the refrigerant from the condenser to the expansion valve. It is preferable to adjust the amount of water flow to the condenser so that the heat pump is operated during water supply to the water supply tank via the water supply path, and the outlet water temperature of the condenser of the heat pump is maintained at the set temperature.

特開2010−25431号公報(図2、図3)JP 2010-25431 A (FIGS. 2 and 3)

しかしながら、熱源流体は、ヒートポンプの蒸発器を通された後、サイクル外熱交換器に通される。言い換えれば、サイクル外熱交換器において給水を加温するための流体は、ヒートポンプの熱源として利用されて温度低下した後、サイクル外熱交換器に供給される。そのため、サイクル外熱交換器において、給水の加温を十分に行えないおそれがある。   However, the heat source fluid is passed through the heat pump evaporator and then to the off-cycle heat exchanger. In other words, the fluid for heating the feed water in the off-cycle heat exchanger is used as a heat source for the heat pump and is supplied to the off-cycle heat exchanger after the temperature is lowered. Therefore, there is a possibility that the water supply cannot be sufficiently heated in the external heat exchanger.

そこで、本発明が解決しようとする課題は、ヒートポンプを用いた給水加温システムにおいて、ヒートポンプへの給水をサイクル外熱交換器において所望に加温でき、それによりヒートポンプの効率を向上することにある。   Therefore, the problem to be solved by the present invention is to improve the efficiency of the heat pump by heating the water supplied to the heat pump as desired in the external heat exchanger in the feed water heating system using the heat pump. .

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、サイクル外熱交換器、過冷却器および前記凝縮器を順に通されて給水路により給水可能な給水タンクとを備え、前記サイクル外熱交換器は、前記給水路を介した前記給水タンクへの給水と、熱源流体との間接熱交換器であり、前記過冷却器は、前記給水路を介した前記給水タンクへの給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、前記蒸発器と前記サイクル外熱交換器とに、熱源流体が並列に通されることを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. Heat is drawn from the heat source fluid that is passed through the condenser, and the heat pump that heats the water that passes through the condenser, the heat exchanger outside the cycle, the supercooler, and the condenser are passed through in order, and water can be supplied through the water supply channel A water supply tank, and the heat exchanger outside the cycle is an indirect heat exchanger for supplying water to the water supply tank via the water supply path and a heat source fluid, and the subcooler is configured to pass the water supply path. Indirect heat exchanger between the water supply to the water supply tank and the refrigerant from the condenser to the expansion valve, and a heat source fluid is passed in parallel through the evaporator and the off-cycle heat exchanger It is the feed water heating system characterized by this.

請求項1に記載の発明によれば、給水タンクへの給水は、サイクル外熱交換器、過冷却器および凝縮器を順に通される一方、熱源流体は、蒸発器とサイクル外熱交換器とに並列に通される。サイクル外熱交換器や過冷却器において、凝縮器への給水を予熱しておくことで、ヒートポンプの効率を向上することができる。また、サイクル外熱交換器には、蒸発器と並列に熱源流体が通されるので、蒸発器を通過後の熱源流体が直列に通される場合と比較して、給水の加温量を増やすことができる。   According to the first aspect of the present invention, water supplied to the water supply tank is sequentially passed through the off-cycle heat exchanger, the subcooler, and the condenser, while the heat source fluid includes the evaporator, the off-cycle heat exchanger, Is passed in parallel. In the heat exchanger outside the cycle and the supercooler, the efficiency of the heat pump can be improved by preheating the water supply to the condenser. In addition, since the heat source fluid is passed through the heat exchanger outside the cycle in parallel with the evaporator, the heating amount of the feed water is increased as compared with the case where the heat source fluid after passing through the evaporator is passed in series. be able to.

さらに、請求項2に記載の発明は、前記給水タンクの水位に基づき、前記給水路を介した前記給水タンクへの給水の有無と、前記ヒートポンプの出力を制御し、前記給水路を介した前記給水タンクへの給水中、前記凝縮器の出口側の水温を設定温度に維持するように通水量を調整することを特徴とする請求項1に記載の給水加温システムである。   Furthermore, the invention according to claim 2 controls the presence or absence of water supply to the water supply tank via the water supply path and the output of the heat pump based on the water level of the water supply tank, and the output via the water supply path. The feed water heating system according to claim 1, wherein the water flow rate is adjusted so that the water temperature on the outlet side of the condenser is maintained at a set temperature during water supply to the water supply tank.

請求項2に記載の発明によれば、給水路を介した給水タンクへの給水中、凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量(給水路を介した給水タンクへの給水流量)を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。   According to the second aspect of the present invention, the amount of water flow to the condenser (via the water supply channel) is maintained so that the water temperature on the outlet side of the condenser is maintained at the set temperature during the water supply to the water supply tank via the water supply channel. Regardless of the water temperature of the water supply source or the temperature of the heat source fluid, hot water having a desired temperature can be obtained by adjusting the water supply flow rate to the water supply tank.

本発明によれば、ヒートポンプを用いた給水加温システムにおいて、ヒートポンプへの給水をサイクル外熱交換器において所望に加温でき、それによりヒートポンプの効率を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the feed water heating system using a heat pump, the feed water to a heat pump can be heated as desired in an external heat exchanger, thereby improving the efficiency of the heat pump.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路またはボイラ2の内部に設けたポンプ7が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 7 provided in the inside of the water supply path from the water supply tank 3 to the boiler 2, or the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、いずれか一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply path 8 and the makeup water pump 11 provided in the makeup water path 9, via either one or both of the water supply path 8 and the makeup water path 9, Water can be supplied from the makeup water tank 5 to the water supply tank 3.

給水ポンプ10は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御される。   In the present embodiment, the feed water pump 10 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 10, the water supply flow rate to the water supply tank 3 through the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機12、凝縮器13、膨張弁14および蒸発器15が順次環状に接続されて構成される。そして、圧縮機12は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器13は、圧縮機12からのガス冷媒を凝縮液化する。さらに、膨張弁14は、凝縮器13からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器15は、膨張弁14からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and includes a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15 that are sequentially connected in an annular shape. The compressor 12 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 13 condenses and liquefies the gas refrigerant from the compressor 12. Furthermore, the expansion valve 14 allows the liquid refrigerant from the condenser 13 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 15 evaporates the refrigerant from the expansion valve 14.

従って、ヒートポンプ4は、蒸発器15において、冷媒が外部から熱を奪って気化する一方、凝縮器13において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器15において、熱源水から熱をくみ上げ、凝縮器13において、給水路8の水を加温する。   Therefore, in the heat pump 4, the refrigerant takes heat from the outside and vaporizes in the evaporator 15, while the refrigerant dissipates heat to the outside and condenses in the condenser 13. In this embodiment, the heat pump 4 draws heat from the heat source water in the evaporator 15 and heats the water in the water supply channel 8 in the condenser 13.

ヒートポンプ4は、さらに、凝縮器13と膨張弁14との間に、過冷却器16を備えるのが好ましい。過冷却器16は、凝縮器13から膨張弁14への冷媒と、凝縮器13への給水との間接熱交換器である。過冷却器16により、凝縮器13への給水で、凝縮器13から膨張弁14への冷媒を過冷却することができると共に、凝縮器13から膨張弁14への冷媒で、凝縮器13への給水を加温することができる。ヒートポンプ4の冷媒は、好適には、凝縮器13において潜熱を放出し、過冷却器16において顕熱を放出する。   It is preferable that the heat pump 4 further includes a supercooler 16 between the condenser 13 and the expansion valve 14. The subcooler 16 is an indirect heat exchanger between the refrigerant from the condenser 13 to the expansion valve 14 and the feed water to the condenser 13. The subcooler 16 can supercool the refrigerant from the condenser 13 to the expansion valve 14 by supplying water to the condenser 13, and can supply the refrigerant to the condenser 13 by the refrigerant from the condenser 13 to the expansion valve 14. The water supply can be heated. The refrigerant of the heat pump 4 preferably releases latent heat in the condenser 13 and releases sensible heat in the subcooler 16.

つまり、凝縮器13において、ガス冷媒は凝縮して液冷媒となり、その液冷媒が過冷却器16に供給されて、過冷却器16において、液冷媒はさらに冷却(過冷却)される。冷媒の凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、熱交換器を簡易な構造で小型化でき、コスト削減を図ることができる。また、汎用の熱交換器の利用も可能となる。   That is, in the condenser 13, the gas refrigerant is condensed into a liquid refrigerant, and the liquid refrigerant is supplied to the subcooler 16, and the liquid refrigerant is further cooled (supercooled) in the subcooler 16. By separating heat exchangers for refrigerant condensation and supercooling, the heat exchanger can be easily designed, the heat exchanger can be reduced in size with a simple structure, and costs can be reduced. In addition, a general-purpose heat exchanger can be used.

その他、ヒートポンプ4には、圧縮機12の入口側にアキュムレータを設置したり、圧縮機12の出口側に油分離器を設置したり、凝縮器13の出口側(凝縮器13と過冷却器16との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 12, an oil separator is installed on the outlet side of the compressor 12, or the outlet side of the condenser 13 (the condenser 13 and the subcooler 16 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力を変更可能とされてもよい。たとえば、圧縮機12のモータの電源周波数ひいては回転数をインバータで変更することで、ヒートポンプ4の出力を変更することができる。   By the way, the heat pump 4 may be capable of changing its output. For example, the output of the heat pump 4 can be changed by changing the power supply frequency of the motor of the compressor 12 and thus the rotational speed by an inverter.

給水加温システム1は、さらに、サイクル外熱交換器17を備える。このサイクル外熱交換器17は、過冷却器16への給水と、熱源水タンク6からの熱源水との間接熱交換器である。従って、給水路8の水は、サイクル外熱交換器17、過冷却器16および凝縮器13へと順に通されることになる。一方、熱源水タンク6の熱源水は、蒸発器15とサイクル外熱交換器17とに並列に通される。具体的には、熱源水タンク6の熱源水は、第一熱源供給路18を介して蒸発器15に通されると共に、第二熱源供給路19を介してサイクル外熱交換器17に通される。   The feed water heating system 1 further includes an external heat exchanger 17. This extra-cycle heat exchanger 17 is an indirect heat exchanger for supplying water to the subcooler 16 and heat source water from the heat source water tank 6. Accordingly, the water in the water supply channel 8 is passed through the cycle heat exchanger 17, the subcooler 16, and the condenser 13 in order. On the other hand, the heat source water in the heat source water tank 6 is passed through the evaporator 15 and the external heat exchanger 17 in parallel. Specifically, the heat source water in the heat source water tank 6 is passed to the evaporator 15 via the first heat source supply path 18 and to the off-cycle heat exchanger 17 via the second heat source supply path 19. The

熱源水タンク6は、ヒートポンプ4の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路20が設けられると共に、所定以上の水をあふれさせるオーバーフロー路21が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump 4. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 20 and an overflow path 21 for overflowing a predetermined amount or more of water.

熱源水タンク6の熱源水は、前述したように、第一熱源供給路18を介して、ヒートポンプ4の蒸発器15を通されると共に、これと並行に、第二熱源供給路19を介して、サイクル外熱交換器17を通される。第一熱源供給路18には、蒸発器15より上流側に第一熱源供給ポンプ22が設けられており、この第一熱源供給ポンプ22を作動させることで、熱源水タンク6からの熱源水を、蒸発器15に通すことができる。一方、第二熱源供給路19には、サイクル外熱交換器17より上流側に第二熱源供給ポンプ23が設けられており、この第二熱源供給ポンプ23を作動させることで、熱源水タンク6からの熱源水を、サイクル外熱交換器17に通すことができる。   As described above, the heat source water in the heat source water tank 6 is passed through the evaporator 15 of the heat pump 4 via the first heat source supply path 18, and in parallel with this, via the second heat source supply path 19. , Passed through the external heat exchanger 17. The first heat source supply path 18 is provided with a first heat source supply pump 22 on the upstream side of the evaporator 15, and the heat source water from the heat source water tank 6 is supplied by operating the first heat source supply pump 22. , Can be passed through the evaporator 15. On the other hand, the second heat source supply path 19 is provided with a second heat source supply pump 23 on the upstream side of the external heat exchanger 17, and the heat source water tank 6 is operated by operating the second heat source supply pump 23. The heat source water from can be passed through an off-cycle heat exchanger 17.

各熱源供給ポンプ22,23は、オンオフ制御されてもよいが、インバータ制御されてもよい。後者の場合、蒸発器15やサイクル外熱交換器17への熱源水の供給流量を調整可能とできる。たとえば、第一熱源供給ポンプ22は、蒸発器15の出口側の熱源水温度に基づき流量調整し、第二熱源供給ポンプ23は、サイクル外熱交換器17の出口側の熱源水温度に基づき流量調整してもよい。それにより、熱源水の排出温度を所望に調整することができる。   The heat source supply pumps 22 and 23 may be on / off controlled, but may be inverter controlled. In the latter case, the supply flow rate of the heat source water to the evaporator 15 and the external heat exchanger 17 can be adjusted. For example, the first heat source supply pump 22 adjusts the flow rate based on the heat source water temperature on the outlet side of the evaporator 15, and the second heat source supply pump 23 sets the flow rate on the basis of the heat source water temperature on the outlet side of the external heat exchanger 17. You may adjust. Thereby, the discharge temperature of the heat source water can be adjusted as desired.

給水路8には、凝縮器13の出口側に、出湯温度センサ24が設けられる。出湯温度センサ24は、凝縮器13を通過後の水温を検出する。出湯温度センサ24の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、出湯温度センサ24の検出温度を設定温度(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路8を介した給水タンク3への給水は、出湯温度センサ24の検出温度を設定温度に維持するように、流量が調整される。但し、場合により、このような出湯温度センサ24による流量調整制御を省略することもできる。   In the water supply path 8, a hot water temperature sensor 24 is provided on the outlet side of the condenser 13. The hot water temperature sensor 24 detects the water temperature after passing through the condenser 13. Based on the temperature detected by the hot water temperature sensor 24, the feed water pump 10 is controlled. Here, the feed water pump 10 is inverter-controlled so that the temperature detected by the tapping temperature sensor 24 is maintained at a set temperature (for example, 75 ° C.). That is, the flow rate of water supplied to the water supply tank 3 via the water supply path 8 is adjusted so that the temperature detected by the hot water temperature sensor 24 is maintained at the set temperature. However, in some cases, such flow rate adjustment control by the tapping temperature sensor 24 can be omitted.

給水タンク3には、水位検出器25が設けられる。この水位検出器25は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、給水タンク3には、長さの異なる複数の電極棒26〜28が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。本実施例では、給水停止電極棒26、給水開始電極棒27および負荷切替電極棒28が、順に下端部の高さ位置を低くして、給水タンク3に挿入されている。各電極棒26〜28は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。   A water level detector 25 is provided in the water supply tank 3. The configuration of the water level detector 25 is not particularly limited. In the present embodiment, the water level detector 25 is an electrode type water level detector. In this case, a plurality of electrode rods 26 to 28 having different lengths are inserted and held in the water supply tank 3 with their lower end portions having different height positions. In the present embodiment, the water supply stop electrode rod 26, the water supply start electrode rod 27, and the load switching electrode rod 28 are inserted into the water supply tank 3 with the lower end portion having a lower height in order. Each electrode rod 26-28 detects the presence or absence of the water level in a lower end part by whether the lower end part is immersed in water.

熱源水タンク6には、熱源水の有無を確認するために、水位検出器29が設けられる。この水位検出器29は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、熱源水タンク6には、低水位検出電極棒30が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。さらに、熱源水タンク6には、熱源水の温度を検出する熱源温度センサ31が設けられる。   The heat source water tank 6 is provided with a water level detector 29 in order to confirm the presence or absence of the heat source water. The configuration of the water level detector 29 is not particularly limited. In the present embodiment, the water level detector 29 is an electrode type water level detector. In this case, the low water level detection electrode rod 30 is inserted in the heat source water tank 6 and it is monitored whether the water level of the heat source water is below the setting. Further, the heat source water tank 6 is provided with a heat source temperature sensor 31 for detecting the temperature of the heat source water.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

給水タンク3には、給水路8を介して給水可能であると共に補給水路9を介しても給水可能であるが、給水路8を介した給水が優先されるように制御されるのが好ましい。たとえば、給水タンク3の水位を設定範囲に維持するように、給水路8を介した給水を制御するが、それでは給水タンク3の水位が設定範囲を維持できない場合には、補給水路9を介しても給水タンク3へ給水するのが好ましい。   Although it is possible to supply water to the water supply tank 3 via the water supply path 8 and also to supply water via the replenishment water path 9, it is preferable to control the water supply via the water supply path 8 to be given priority. For example, the water supply through the water supply channel 8 is controlled so as to maintain the water level of the water supply tank 3 within the set range. However, if the water level of the water supply tank 3 cannot be maintained within the set range, It is preferable to supply water to the water supply tank 3.

具体的には、本実施例では、次のように制御される。いま、給水停止電極棒26が水位を検知し、給水タンク3の水位が十分にある場合、給水タンク3への給水は不要であるから、給水ポンプ10を停止すると共に、補給水ポンプ11も停止している。給水タンク3からボイラ2への給水により、給水タンク3の水位が下がり、給水開始電極棒27が水位を検知しなくなると、給水ポンプ10を作動させる。これにより、給水路8を介して給水タンク3に給水されるが、給水停止電極棒26が水位を検知すると、給水ポンプ10を停止する。一方、給水ポンプ10を作動させても、給水タンク3の水位を回復できず、さらに低い所定の補給水開始水位を下回ると、補給水ポンプ11を作動させて、補給水路9を介しても給水タンク3に給水する。これにより、給水タンク3の水位が回復して、給水タンク3の水位が補給水停止水位を上回ると、補給水ポンプ11を停止して、補給水路9を介しての給水を停止する。このような制御を実施する場合、補給水開始水位や補給水停止水位も、水位検出器25により検出可能としておけばよい。   Specifically, in this embodiment, control is performed as follows. Now, when the water supply stop electrode rod 26 detects the water level and the water level in the water supply tank 3 is sufficient, the water supply to the water supply tank 3 is unnecessary, so the water supply pump 10 is stopped and the makeup water pump 11 is also stopped. doing. When the water level in the water supply tank 3 drops due to the water supply from the water supply tank 3 to the boiler 2 and the water supply start electrode rod 27 no longer detects the water level, the water supply pump 10 is activated. Thus, water is supplied to the water supply tank 3 through the water supply path 8, but when the water supply stop electrode rod 26 detects the water level, the water supply pump 10 is stopped. On the other hand, even if the water supply pump 10 is operated, the water level in the water supply tank 3 cannot be recovered, and when the water supply level falls below a predetermined lower supply water start level, the water supply pump 11 is operated to supply water through the supply water channel 9. Supply water to tank 3. Thereby, when the water level of the water supply tank 3 recovers and the water level of the water supply tank 3 exceeds the makeup water stop water level, the makeup water pump 11 is stopped and the water supply via the makeup water channel 9 is stopped. When such control is performed, it is sufficient that the makeup water start water level and the makeup water stop water level can also be detected by the water level detector 25.

給水路8を介した給水中、ヒートポンプ4を運転すると共に、第一熱源供給ポンプ22および第二熱源供給ポンプ23を作動させる。ヒートポンプ4は、その圧縮機12の作動の有無により、運転と停止が切り替えられる。また、ヒートポンプ4は、給水タンク3の水位に基づき出力を制御されるのがよい。本実施例では、給水タンク3の水位が下がり、給水開始電極棒27が水位を検知しなくなると、ヒートポンプ4を低負荷運転し、それでも水位が回復せず、負荷切替電極棒28が水位を検知しなくなると、ヒートポンプ4を高負荷運転に切り替える。そして、水位回復時には、給水開始電極棒27が水位を検知すれば、ヒートポンプ4を低負荷運転に切り替え、給水停止電極棒26が水位を検知すれば、ヒートポンプ4を停止させる。このように、本実施例では、ヒートポンプ4は、高負荷運転(典型的には全負荷運転=100%出力)、低負荷運転(たとえば50%出力)および停止(0%出力)の三位置で制御される。   While supplying water via the water supply path 8, the heat pump 4 is operated, and the first heat source supply pump 22 and the second heat source supply pump 23 are operated. The heat pump 4 is switched between operation and stop depending on whether or not the compressor 12 is activated. The output of the heat pump 4 is preferably controlled based on the water level of the water supply tank 3. In this embodiment, when the water level in the water supply tank 3 falls and the water supply start electrode rod 27 no longer detects the water level, the heat pump 4 is operated at a low load, and the water level is not recovered yet, and the load switching electrode rod 28 detects the water level. If not, the heat pump 4 is switched to high load operation. And at the time of water level recovery, if the water supply start electrode rod 27 detects the water level, the heat pump 4 is switched to the low load operation, and if the water supply stop electrode rod 26 detects the water level, the heat pump 4 is stopped. Thus, in the present embodiment, the heat pump 4 is in three positions: high load operation (typically full load operation = 100% output), low load operation (for example, 50% output), and stop (0% output). Be controlled.

給水路8を介した給水中、給水ポンプ10は、出湯温度センサ24の検出温度を設定温度(出湯温度設定値)に維持するように、回転数をインバータ制御される。その結果、ヒートポンプ4の高負荷運転時は低負荷運転時よりも多い流量で、給水路8を介して給水タンク3へ給水可能となる。   During the water supply via the water supply path 8, the water supply pump 10 is inverter-controlled in rotation speed so as to maintain the temperature detected by the hot water temperature sensor 24 at the set temperature (the hot water temperature set value). As a result, it is possible to supply water to the water supply tank 3 through the water supply path 8 at a higher flow rate during high load operation of the heat pump 4 than during low load operation.

ヒートポンプ4を運転して、補給水タンク5から給水路8を介して給水タンク3へ給水する際、補給水タンク5からの給水は、サイクル外熱交換器17、過冷却器16および凝縮器13により徐々に加温されて、所定温度で給水タンク3へ供給される。給水タンク3とヒートポンプ4(凝縮器13)との間で水を循環させる場合と比較して、補給水タンク5から給水タンク3への一回の通過(ワンススルー)で給水を加温するので、ヒートポンプ4を通過する前後の給水の温度差を確保して、ヒートポンプ4の成績係数(COP)の向上を図ることができる。また、各熱交換器をコンパクトに構成することもできる。   When the heat pump 4 is operated and water is supplied from the make-up water tank 5 to the water supply tank 3 through the water supply path 8, the water supplied from the make-up water tank 5 is supplied to the heat exchanger 17 outside the cycle, the subcooler 16 and the condenser 13. Is gradually heated and supplied to the water supply tank 3 at a predetermined temperature. Compared with the case where water is circulated between the water supply tank 3 and the heat pump 4 (condenser 13), the water supply is heated by a single pass (once through) from the makeup water tank 5 to the water supply tank 3. The temperature difference of the feed water before and after passing through the heat pump 4 can be secured, and the coefficient of performance (COP) of the heat pump 4 can be improved. Moreover, each heat exchanger can also be comprised compactly.

また、ヒートポンプ4の運転中、つまり給水路8を介した給水タンク3への給水中、熱源水タンク6の水温を熱源温度センサ31で監視して、その温度に基づきヒートポンプ4の出力を調整してもよい。ヒートポンプ4の熱源としての熱源水の温度が高温なほど、ヒートポンプ4の出力を下げることができる。熱源水の温度を考慮してヒートポンプ4の出力を調整することで、熱源水の温度変化に拘わらず、給水路8を介した給水タンク3への給水流量を安定させることができる。   Further, during operation of the heat pump 4, that is, water supply to the water supply tank 3 through the water supply path 8, the water temperature of the heat source water tank 6 is monitored by the heat source temperature sensor 31, and the output of the heat pump 4 is adjusted based on the temperature. May be. The higher the temperature of the heat source water as the heat source of the heat pump 4, the lower the output of the heat pump 4. By adjusting the output of the heat pump 4 in consideration of the temperature of the heat source water, the water supply flow rate to the water supply tank 3 via the water supply path 8 can be stabilized regardless of the temperature change of the heat source water.

さらに、ヒートポンプ4の運転中、熱源水タンク6の水位が下がり、低水位検出電極棒30が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、各熱源供給ポンプ22,23を停止して蒸発器15やサイクル外熱交換器17への熱源水の供給を停止するのがよい。また、同様に、ヒートポンプ4の運転中(つまり給水路8を介した給水タンク3への給水制御中)、万一、給水路8を通る給水の量が設定を下回ると、ヒートポンプ4の運転を停止すると共に、各熱源供給ポンプ22,23を停止して蒸発器15やサイクル外熱交換器17への熱源水の供給を停止するのがよい。   Furthermore, when the water level of the heat source water tank 6 falls during the operation of the heat pump 4 and the low water level detection electrode rod 30 no longer detects the water level, the operation of the heat pump 4 is stopped and the heat source supply pumps 22 and 23 are stopped. Therefore, it is preferable to stop the supply of the heat source water to the evaporator 15 and the heat exchanger 17 outside the cycle. Similarly, during operation of the heat pump 4 (that is, during water supply control to the water supply tank 3 through the water supply path 8), if the amount of water supplied through the water supply path 8 falls below the setting, the operation of the heat pump 4 is stopped. While stopping, it is good to stop supply of the heat source water to the evaporator 15 and the heat exchanger 17 outside a cycle by stopping each heat source supply pump 22 and 23.

給水路8を介した給水タンク3への給水中、熱源水タンク6からの熱源水は、蒸発器15とサイクル外熱交換器17とに並列に通される。蒸発器15とサイクル外熱交換器17とに熱源流体を直列に順に通す場合と比較して、蒸発器15とサイクル外熱交換器17とに熱源流体を並列に通す場合、比較的高温の熱源流体をサイクル外熱交換器17に通すことができる。これにより、サイクル外熱交換器17における熱交換量を高めることができ、ヒートポンプ4の手前における給水の加温が図られるので、圧縮機12の動力を小さくして、ヒートポンプ4の効率を向上することができる。また、ヒートポンプ4の出力を抑えることができるので、過冷却器16などを小さく構成することもできる。さらに、蒸発器15とサイクル外熱交換器17とに順に熱源流体を通した場合、蒸発器15が圧損要素となるが、蒸発器15とサイクル外熱交換器17とに熱源流体を並列に通す場合、そのような圧損要素がないというメリットもある。   During the water supply to the water supply tank 3 through the water supply path 8, the heat source water from the heat source water tank 6 is passed in parallel to the evaporator 15 and the off-cycle heat exchanger 17. Compared with the case where the heat source fluid is passed through the evaporator 15 and the off-cycle heat exchanger 17 sequentially in series, when the heat source fluid is passed through the evaporator 15 and the off-cycle heat exchanger 17 in parallel, a relatively high-temperature heat source Fluid can be passed through the off-cycle heat exchanger 17. Thereby, since the heat exchange amount in the heat exchanger 17 outside the cycle can be increased and the water supply before the heat pump 4 is heated, the power of the compressor 12 is reduced and the efficiency of the heat pump 4 is improved. be able to. Moreover, since the output of the heat pump 4 can be suppressed, the supercooler 16 and the like can be made smaller. Further, when the heat source fluid is passed through the evaporator 15 and the off-cycle heat exchanger 17 in order, the evaporator 15 becomes a pressure loss element, but the heat source fluid is passed through the evaporator 15 and the off-cycle heat exchanger 17 in parallel. In this case, there is an advantage that there is no such pressure loss element.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。たとえば、前記実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けたバルブの開度を調整してもよい。つまり、出湯温度センサ24の検出温度などに基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the said Example, in order to adjust the feed water flow rate to the feed water tank 3 via the feed water path 8, the feed water pump 10 was inverter-controlled, However, The feed water pump 10 was provided in the feed water path 8 while performing on-off control. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply path 8 can be adjusted based on the temperature detected by the hot water temperature sensor 24, the flow rate adjustment method can be changed as appropriate.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機からの冷媒と上段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器であると共に上段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプには、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the lower heat pump and the refrigerant from the expansion valve of the upper heat pump and directly exchanges heat between the two refrigerants is provided. And the evaporator of the upper heat pump. As described above, the multi-stage (multi-stage) heat pump includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination thereof.

また、給水タンク3に、凝縮器13を介して給水路8により給水可能であると共に、凝縮器13を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および/または補給水路9に設けたバルブの開度を調整することで、給水路8や補給水路9を通る流量を調整してもよい。   In addition, if water can be supplied to the water supply tank 3 through the water supply path 8 via the condenser 13 and water can be supplied through the replenishment water path 9 without going through the condenser 13, the specifics of the water supply path 8 and the replenishment water path 9 are specified. The configuration is not limited to the configuration of the above embodiment and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branching portion, and the valves provided in the water supply passage 8 and / or the supplementary waterway 9 downstream of the branching portion are opened. By adjusting the degree, the flow rate through the water supply channel 8 and the replenishment channel 9 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて軟水器に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 and / or the makeup water channel 9, these water supply may be performed directly from a water softener. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10 by connecting the base ends of the water supply channel 8 and the makeup water channel 9 together to the water softener, the opening of an electric valve (motor valve) provided in the water supply channel 8 Instead of adjusting the degree and omitting the installation of the makeup water pump 11, the opening and closing of the electromagnetic valve provided in the makeup water channel 9 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。そして、場合により、補給水タンク5や補給水路9を省略してもよい。   Moreover, although the said Example demonstrated the system which can heat the water supply to the feed water tank 3 of the boiler 2 with the heat pump 4, the utilization place of the stored water of the feed water tank 3 is not restricted to the boiler 2, and can be changed suitably. is there. In some cases, the replenishment water tank 5 and the replenishment water channel 9 may be omitted.

また、前記実施例では、ヒートポンプ4の熱源(サイクル外熱交換器17において給水を加温する流体でもある。)として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Moreover, although the said Example demonstrated the example using heat source water as a heat source of the heat pump 4 (it is also a fluid which heats feed water in the heat exchanger 17 outside a cycle), heat source water is used as a heat source fluid of the heat pump 4. Not limited to this, various fluids such as air and exhaust gas can be used.

さらに、前記実施例では、ヒートポンプ4の圧縮機12は、電気モータにより駆動されたが、圧縮機12の駆動源は特に問わない。たとえば、圧縮機12は、電気モータに代えてまたはそれに加えて、蒸気を用いて動力を起こすスチームモータ(蒸気エンジン)により駆動されたり、ガスエンジンにより駆動されたりしてもよい。その場合、スチームモータへの給蒸量を調整したり、ガスエンジンへの供給ガス量を調整したりして、圧縮機12の出力が調整可能である。   Furthermore, in the said Example, although the compressor 12 of the heat pump 4 was driven by the electric motor, the drive source of the compressor 12 is not ask | required in particular. For example, the compressor 12 may be driven by a steam motor (steam engine) that generates power using steam instead of or in addition to the electric motor, or may be driven by a gas engine. In that case, the output of the compressor 12 can be adjusted by adjusting the amount of steam supplied to the steam motor or the amount of gas supplied to the gas engine.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 圧縮機
13 凝縮器
14 膨張弁
15 蒸発器
16 過冷却器
17 サイクル外熱交換器
18 第一熱源供給路
19 第二熱源供給路
22 第一熱源供給ポンプ
23 第二熱源供給ポンプ
24 出湯温度センサ
25 水位検出器
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 8 Supply water path 9 Supply water path 10 Supply water pump 11 Supply water pump 12 Compressor 13 Condenser 14 Expansion valve 15 Evaporator 16 Supercooler 17 Heat exchanger outside cycle 18 First heat source supply path 19 Second heat source supply path 22 First heat source supply pump 23 Second heat source supply pump 24 Hot water temperature sensor 25 Water level detector

Claims (2)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、
サイクル外熱交換器、過冷却器および前記凝縮器を順に通されて給水路により給水可能な給水タンクとを備え、
前記サイクル外熱交換器は、前記給水路を介した前記給水タンクへの給水と、熱源流体との間接熱交換器であり、
前記過冷却器は、前記給水路を介した前記給水タンクへの給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、
前記蒸発器と前記サイクル外熱交換器とに、熱源流体が並列に通される
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant, draw up heat from a heat source fluid that passes through the evaporator, and heat water that passes through the condenser When,
An external cycle heat exchanger, a supercooler, and a water supply tank capable of supplying water through a water supply passage through the condenser in order,
The heat exchanger outside the cycle is an indirect heat exchanger between the water supply to the water supply tank via the water supply passage and the heat source fluid,
The supercooler is an indirect heat exchanger between the water supplied to the water supply tank via the water supply passage and the refrigerant from the condenser to the expansion valve,
A feed water heating system, wherein a heat source fluid is passed in parallel through the evaporator and the external heat exchanger.
前記給水タンクの水位に基づき、前記給水路を介した前記給水タンクへの給水の有無と、前記ヒートポンプの出力を制御し、
前記給水路を介した前記給水タンクへの給水中、前記凝縮器の出口側の水温を設定温度に維持するように通水量を調整する
ことを特徴とする請求項1に記載の給水加温システム。
Based on the water level of the water supply tank, the presence or absence of water supply to the water supply tank via the water supply path, and the output of the heat pump are controlled,
2. The feed water heating system according to claim 1, wherein the amount of water flow is adjusted so that the water temperature on the outlet side of the condenser is maintained at a set temperature during water supply to the water supply tank via the water supply path. .
JP2013041621A 2013-03-04 2013-03-04 Water heating system Active JP6065212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041621A JP6065212B2 (en) 2013-03-04 2013-03-04 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041621A JP6065212B2 (en) 2013-03-04 2013-03-04 Water heating system

Publications (2)

Publication Number Publication Date
JP2014169818A true JP2014169818A (en) 2014-09-18
JP6065212B2 JP6065212B2 (en) 2017-01-25

Family

ID=51692321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041621A Active JP6065212B2 (en) 2013-03-04 2013-03-04 Water heating system

Country Status (1)

Country Link
JP (1) JP6065212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036939B1 (en) * 2015-08-10 2016-11-30 三菱重工冷熱株式会社 Operation method of refrigeration equipment
JP7435011B2 (en) 2020-02-21 2024-02-21 三浦工業株式会社 Hot water production equipment and hot water production system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (en) * 1983-07-25 1985-02-18 株式会社日立製作所 heat pump equipment
JPS61149759A (en) * 1984-12-21 1986-07-08 Mitsubishi Electric Corp Heat pump type hot water supply apparatus
JPH10103770A (en) * 1996-09-27 1998-04-21 Hoshizaki Electric Co Ltd Hot water producing apparatus employing heat pump
JP2009168348A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Cogeneration apparatus and its control method
JP2010243012A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Exhaust gas heat recovery device
JP2011075206A (en) * 2009-09-30 2011-04-14 Hachiyo Engneering Kk Heat pump system generating a plurality of systems of warm water with different temperature
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
JP2012047439A (en) * 2010-07-27 2012-03-08 Fuji Electric Co Ltd Heat pump steam generator
JP2012102945A (en) * 2010-11-11 2012-05-31 Miura Co Ltd Water supply system
JP2012132650A (en) * 2010-12-24 2012-07-12 Ebara Corp Supercritical cycle heat pump device
JP2012215320A (en) * 2011-03-31 2012-11-08 Miura Co Ltd Steam generation system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (en) * 1983-07-25 1985-02-18 株式会社日立製作所 heat pump equipment
JPS61149759A (en) * 1984-12-21 1986-07-08 Mitsubishi Electric Corp Heat pump type hot water supply apparatus
JPH10103770A (en) * 1996-09-27 1998-04-21 Hoshizaki Electric Co Ltd Hot water producing apparatus employing heat pump
JP2009168348A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Cogeneration apparatus and its control method
JP2010243012A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Exhaust gas heat recovery device
JP2011075206A (en) * 2009-09-30 2011-04-14 Hachiyo Engneering Kk Heat pump system generating a plurality of systems of warm water with different temperature
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
JP2012047439A (en) * 2010-07-27 2012-03-08 Fuji Electric Co Ltd Heat pump steam generator
JP2012102945A (en) * 2010-11-11 2012-05-31 Miura Co Ltd Water supply system
JP2012132650A (en) * 2010-12-24 2012-07-12 Ebara Corp Supercritical cycle heat pump device
JP2012215320A (en) * 2011-03-31 2012-11-08 Miura Co Ltd Steam generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036939B1 (en) * 2015-08-10 2016-11-30 三菱重工冷熱株式会社 Operation method of refrigeration equipment
JP2017036876A (en) * 2015-08-10 2017-02-16 三菱重工冷熱株式会社 Operation method of refrigeration device
JP7435011B2 (en) 2020-02-21 2024-02-21 三浦工業株式会社 Hot water production equipment and hot water production system

Also Published As

Publication number Publication date
JP6065212B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP6065213B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP6066071B2 (en) Water heating system
JP6065212B2 (en) Water heating system
JP6341465B2 (en) Water heating system
JP5962971B2 (en) Water heating system
JP2017146032A (en) Feedwater heating system
JP6083509B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP2013238336A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system
JP6249282B2 (en) Water heating system
JP2017146034A (en) Feedwater heating system
JP6187813B2 (en) Water heating system
JP6083508B2 (en) Water heating system
JP2015132445A (en) Feedwater heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6065212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250