JP6019917B2 - Electrophotographic photosensitive member, process cartridge, and image forming apparatus - Google Patents
Electrophotographic photosensitive member, process cartridge, and image forming apparatus Download PDFInfo
- Publication number
- JP6019917B2 JP6019917B2 JP2012180681A JP2012180681A JP6019917B2 JP 6019917 B2 JP6019917 B2 JP 6019917B2 JP 2012180681 A JP2012180681 A JP 2012180681A JP 2012180681 A JP2012180681 A JP 2012180681A JP 6019917 B2 JP6019917 B2 JP 6019917B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- group
- layer
- photosensitive member
- electrophotographic photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electrophotography Configuration And Component (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、電子写真感光体、プロセスカートリッジ、及び画像形成装置に関するものである。 The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.
電子写真方式の画像形成装置は、一般的には、次の如き構成及びプロセスを有するものである。
即ち、電子写真感光体表面を帯電手段で所定の極性及び電位に帯電させ、帯電後の電子写真感光体表面を、像露光により選択的に除電することにより静電潜像を形成させた後、現像手段で該静電潜像にトナーを付着させることにより、潜像をトナー像として現像し、トナー像を転写手段で被転写媒体に転写させることにより、画像形成物として排出させるといったものである。
An electrophotographic image forming apparatus generally has the following configuration and process.
That is, the surface of the electrophotographic photosensitive member is charged to a predetermined polarity and potential by a charging unit, and the surface of the electrophotographic photosensitive member after charging is selectively neutralized by image exposure to form an electrostatic latent image, The toner is attached to the electrostatic latent image by the developing means, whereby the latent image is developed as a toner image, and the toner image is transferred to a transfer medium by the transfer means, and discharged as an image formed product. .
電子写真感光体の保護層(最表面層)の材料系については、以下のものが提案されている。
特許文献1には、有機−無機ハイブリッド材料によるものが提案されている。
特許文献2には、連鎖重合性材料によるものが提案されている。
特許文献3には、アクリル系材料によるものが提案されている。
特許文献4、5には、放射線架橋剤と電荷輸送物質からなり、放射線架橋されたものが提案されている。
The following materials have been proposed for the material system of the protective layer (outermost surface layer) of the electrophotographic photosensitive member.
Patent Document 1 proposes an organic-inorganic hybrid material.
Patent Document 2 proposes a chain polymerizable material.
Patent Document 3 proposes an acrylic material.
Patent Documents 4 and 5 propose a radiation cross-linked material composed of a radiation cross-linking agent and a charge transport material.
また、電子写真感光体の最表面層の別の態様としては、例えば、特許文献6には、導電粉をフェノール樹脂に分散したものも提案されている。 As another aspect of the outermost surface layer of the electrophotographic photosensitive member, for example, Patent Document 6 proposes a conductive powder dispersed in a phenol resin.
本発明の課題は、長期に亘り繰り返し使用しても電気特性の劣化が抑制された電子写真感光体を提供することである。 An object of the present invention is to provide an electrophotographic photosensitive member in which deterioration of electrical characteristics is suppressed even when used repeatedly over a long period of time.
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、下記一般式(I)で表される化合物の重合体を含有する電荷輸送性層を備えた電子写真感光体である。
The above problem is solved by the following means. That is,
The invention according to claim 1 is an electrophotographic photosensitive member provided with a charge transporting layer containing a polymer of a compound represented by the following general formula (I).
上記一般式(I)中、Fは電荷輸送性サブユニットを示し、一般式(I)で表される化合物中の下記部分構造(A)は、下記一般式(IV−1)で表される基、下記一般式(IV−2)で表される基、下記一般式(V−1)で表される基又は下記一般式(V−2)で表される基を示す。mは1以上6以下の整数を示す。
上記一般式(IV−1)及び(IV−2)中、Xは連結基を示し、pは0又は1を示す。なお、上記部分構造(A)において波線はFで示される電荷輸送性サブユニットとの結合部位を示す。
上記一般式(V−1)及び(V−2)中、X’は連結基を示し、p’は0又は1を示す。なお、上記部分構造(A)において波線はFで示される電荷輸送性サブユニットとの結合部位を示す。
In the general formula (I), F represents a charge transporting subunit , and the following partial structure (A) in the compound represented by the general formula (I) is represented by the following general formula (IV-1). Group, group represented by the following general formula (IV-2), group represented by the following general formula (V-1), or group represented by the following general formula (V-2) . m represents an integer of 1 to 6.
In the general formulas (IV-1) and (IV-2), X represents a linking group, and p represents 0 or 1. In the partial structure (A), the wavy line indicates the binding site with the charge transporting subunit indicated by F.
In the general formulas (V-1) and (V-2), X ′ represents a linking group, and p ′ represents 0 or 1. In the partial structure (A), the wavy line indicates the binding site with the charge transporting subunit indicated by F.
請求項2に係る発明は、前記一般式(I)で表される化合物が下記一般式(II)で表される化合物である請求項1に記載の電子写真感光体である。 The invention according to claim 2 is the electrophotographic photoreceptor according to claim 1, wherein the compound represented by the general formula (I) is a compound represented by the following general formula (II).
上記一般式(II)中、Ar1乃至Ar4はそれぞれ独立に置換若しくは未置換のアリール基を示し、Ar5は置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示し、Dは前記一般式(IV−1)で表される基、前記一般式(IV−2)で表される基、前記一般式(V−1)で表される基、又は前記一般式(V−2)で表される基を示す。kは0又は1を示し、c1〜c5はそれぞれ0〜2の整数を示し、c1〜c5の全てが同時に0になることはない。 In the general formula (II), Ar 1 to Ar 4 each independently represents a substituted or unsubstituted aryl group, Ar 5 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylene group, and D Is a group represented by the general formula (IV-1), a group represented by the general formula (IV-2), a group represented by the general formula (V-1), or the general formula (V- The group represented by 2) is shown. k is 0 or 1, c1 to c5 represent an integer of 0 to 2, that all of c1 to c5 becomes 0 at the same time have greens.
請求項3に係る発明は、前記電荷輸送性層を最表面層として備えた請求項1又は請求項2に記載の電子写真感光体である。 The invention according to claim 3 is the electrophotographic photosensitive member according to claim 1 or 2 , wherein the charge transporting layer is provided as an outermost surface layer.
請求項4に係る発明は、前記電荷輸送性層が熱ラジカル発生剤又はその誘導体を更に含む請求項1〜請求項3のいずれか1項に記載の電子写真感光体である。 The invention according to claim 4 is the electrophotographic photosensitive member according to any one of claims 1 to 3 , wherein the charge transporting layer further contains a thermal radical generator or a derivative thereof.
請求項5に係る発明は、請求項1〜請求項4のいずれか1項に記載の電子写真感光体を備え、画像形成装置に着脱するプロセスカートリッジである。 A fifth aspect of the present invention is a process cartridge that includes the electrophotographic photosensitive member according to any one of the first to fourth aspects and is detachable from an image forming apparatus.
請求項6に係る発明は、請求項1〜請求項4のいずれか1項に記載の電子写真感光体と、前記電子写真感光体を帯電させる帯電手段と、帯電した前記電子写真感光体に静電潜像を形成する静電潜像形成手段と、前記電子写真感光体に形成された静電潜像をトナーにより現像してトナー像を形成する現像手段と、前記トナー像を被転写体に転写する転写手段と、を備える画像形成装置である。 According to a sixth aspect of the present invention, there is provided an electrophotographic photosensitive member according to any one of the first to fourth aspects of the present invention, a charging unit for charging the electrophotographic photosensitive member, and the electrostatically charged electrophotographic photosensitive member. An electrostatic latent image forming means for forming an electrostatic latent image; a developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner to form a toner image; and the toner image on a transfer target. And an image forming apparatus including a transfer unit that transfers the image.
請求項1に係る発明によれば、前記一般式(I)で表される化合物の重合体を含む電荷輸送性層を備えない場合に比べ、長期に亘り繰り返し使用しても電気特性の劣化が抑制された電子写真感光体が得られる。また、前記一般式(IV−1)又は(IV−2)で表される基を有しない場合に比べ、さらに高い硬化度と優れた電荷輸送性能との両立を可能とする電子写真感光体が得られる。また、前記一般式(V−1)又は(V−2)で表される基を有しない場合に比べ、さらに高い硬化度と優れた電荷輸送性能との両立を可能とし、特に電荷輸送性能に優れた電子写真感光体が得られる。
請求項2に係る発明によれば、前記一般式(II)で表される化合物の重合体でない場合に比べ、電荷輸送性能に優れた電子写真感光体が得られる。また、前記一般式(IV−1)又は(IV−2)で表される基を有しない場合に比べ、さらに高い硬化度と優れた電荷輸送性能との両立を可能とする電子写真感光体が得られる。また、前記一般式(V−1)又は(V−2)で表される基を有しない場合に比べ、さらに高い硬化度と優れた電荷輸送性能との両立を可能とし、特に電荷輸送性能に優れた電子写真感光体が得られる。
According to the first aspect of the present invention, even when the charge transporting layer containing the polymer of the compound represented by the general formula (I) is not provided, the electrical characteristics are deteriorated even when used repeatedly over a long period of time. A suppressed electrophotographic photoreceptor is obtained. In addition, an electrophotographic photosensitive member capable of achieving both a higher degree of curing and excellent charge transport performance than the case where the group represented by the general formula (IV-1) or (IV-2) is not included. can get. Moreover, compared with the case where it does not have the group represented by the general formula (V-1) or (V-2), it is possible to achieve both a higher degree of curing and excellent charge transport performance, particularly in charge transport performance. An excellent electrophotographic photoreceptor can be obtained.
According to the invention of claim 2, an electrophotographic photoreceptor excellent in charge transport performance can be obtained as compared with the case where the compound is not a polymer of the compound represented by the general formula (II). In addition, an electrophotographic photosensitive member capable of achieving both a higher degree of curing and excellent charge transport performance than the case where the group represented by the general formula (IV-1) or (IV-2) is not included. can get. Moreover, compared with the case where it does not have the group represented by the general formula (V-1) or (V-2), it is possible to achieve both a higher degree of curing and excellent charge transport performance, particularly in charge transport performance. An excellent electrophotographic photoreceptor can be obtained.
請求項3に係る発明によれば、前記一般式(I)で表される化合物の重合体を含む電荷輸送性層が最表面層ではない場合に比べ、長期に亘り繰り返し使用しても電気特性の劣化がより抑制された電子写真感光体が得られる。
請求項4に係る発明によれば、熱ラジカル発生剤又はその誘導体を含まない場合に比べ、長期に亘り繰り返し使用しても電気特性の劣化がより抑制された電子写真感光体が得られる。
According to the invention of claim 3 , even when the charge transporting layer containing the polymer of the compound represented by the general formula (I) is not the outermost surface layer, the electrical characteristics are maintained even when used repeatedly over a long period of time. An electrophotographic photosensitive member in which the deterioration of the toner is further suppressed is obtained.
According to the fourth aspect of the present invention, an electrophotographic photosensitive member can be obtained in which deterioration of electrical characteristics is further suppressed even when used repeatedly over a long period of time, compared with a case where a thermal radical generator or derivative thereof is not included.
請求項5、6に係る発明によれば、前記一般式(I)で表される化合物の重合体を含む電荷輸送性層を備えた電子写真感光体を適用しない場合に比べ、長期に亘り繰り返し使用しても画質の劣化が抑制されたプロセスカートリッジ、及び画像形成装置が提供できる。 According to the inventions according to claims 5 and 6 , it is repeated over a long period of time as compared with a case where an electrophotographic photoreceptor provided with a charge transporting layer containing a polymer of the compound represented by the general formula (I) is not applied. A process cartridge and an image forming apparatus in which deterioration of image quality is suppressed even when used can be provided.
〔電子写真感光体〕
本実施形態に係る電子写真感光体は、下記一般式(I)で表される化合物の重合体を含有する電荷輸送性層を備えた電子写真感光体である。
[Electrophotographic photoconductor]
The electrophotographic photoreceptor according to the exemplary embodiment is an electrophotographic photoreceptor provided with a charge transporting layer containing a polymer of a compound represented by the following general formula (I).
<一般式(I)で表される化合物>
まず、下記一般式(I)で表される化合物について説明する。
<Compound represented by formula (I)>
First, the compound represented by the following general formula (I) will be described.
上記一般式(I)中、Fは電荷輸送性サブユニットを示し、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、及びアルカン若しくはアルケンから誘導される3価又は4価の基からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示し、Rは水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上6以下の整数を示し、nは2以上3以下の整数を示す。 In the general formula (I), F represents a charge transporting subunit, L represents an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O-, -S. -Represents an (n + 1) -valent linking group formed by combining two or more selected from the group consisting of a trivalent or tetravalent group derived from alkane or alkene, and R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group; m represents an integer of 1 to 6, and n represents an integer of 2 to 3.
一般式(I)中のFとして示される電荷輸送性サブユニットとしては、電荷輸送性能を有する化合物に由来するサブユニットであればよく、具体的には、具体的には、フタロシアニン系化合物、ポルフィリン系化合物、アゾベンゼン系化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物、キノン系化合物、フルオレノン系化合物、などの電荷輸送性能を有する化合物に由来するサブユニットが挙げられる。
中でも、電荷移動度、酸化安定性などの面で優れる、トリアリールアミン化合物に由来するサブユニットであることがよい。
The charge transporting subunit represented by F in the general formula (I) may be a subunit derived from a compound having charge transporting performance. Specifically, specifically, a phthalocyanine compound, porphyrin Compounds, azobenzene compounds, triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, hydrazone compounds, quinone compounds, fluorenone compounds, etc. Examples include subunits derived from compounds having charge transport performance.
Among them, a subunit derived from a triarylamine compound that is excellent in terms of charge mobility, oxidation stability, and the like is preferable.
一般式(I)中のLをして示される(n+1)価の連結基としては、具体的には、アルキレン基と、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、及びアルカン若しくはアルケンから誘導される3価又は4価の基からなる群から選ばれる基と、を組み合わせてなる3価又は4価の基が挙げられる。アルカン若しくはアルケンから誘導される3価又は4価の基とは、アルカン若しくはアルケンから水素原子を取り除いた基を意味する。以下、同様である。
より具体的には、3価の連結基の場合には、以下のような基が挙げられる。下記に示す3価の連結基中、「*」は、Fと連結する部位を示している。
*−(CH2)a−CH[−C(=O)−O−(CH2)b−]2、
*−(CH2)a−CH[−CH2−O−(CH2)b−]2、
*−CH=C[−C(=O)−O−(CH2)b−]2、
*−CH=C[−(CH2)c−O−(CH2)b−]2、
*−(CH2)a−CH[−C(=O)−N(R)−(CH2)b−]2、
*−(CH2)a−CH[−C(=O)−S−(CH2)b−]2、
*−(CH2)a−CH[−(CH2)c−N(R)−(CH2)b−]2、
*−(CH2)a−CH[−(CH2)c−S−(CH2)b−]2、
Specific examples of the (n + 1) -valent linking group represented by L in the general formula (I) include an alkylene group, -C = C-, -C (= O)-, and -N (R )-, -O-, -S-, and a group selected from the group consisting of a trivalent or tetravalent group derived from alkane or alkene, and a trivalent or tetravalent group. The trivalent or tetravalent group derived from alkane or alkene means a group obtained by removing a hydrogen atom from alkane or alkene. The same applies hereinafter.
More specifically, in the case of a trivalent linking group, the following groups are exemplified. In the trivalent linking group shown below, “*” represents a site linked to F.
* - (CH 2) a- CH [-C (= O) -O- (CH 2) b-] 2,
* - (CH 2) a- CH [-CH 2 -O- (CH 2) b-] 2,
* -CH = C [-C (= O) -O- (CH 2) b-] 2,
* -CH = C [- (CH 2) c-O- (CH 2) b-] 2,
* - (CH 2) a- CH [-C (= O) -N (R) - (CH 2) b-] 2,
* - (CH 2) a- CH [-C (= O) -S- (CH 2) b-] 2,
* - (CH 2) a- CH [- (CH 2) c-N (R) - (CH 2) b-] 2,
* - (CH 2) a- CH [- (CH 2) c-S- (CH 2) b-] 2,
*−O−(CH2)d−CH[−(CH2)c−O−(CH2)b−]2、
*−(CH2)f−O−(CH2)d−CH[−(CH2)c−O−(CH2)b−]2
ここで、上記の3価の連結基中、a、b、c、d、e、及びfは、メチレン基の繰り返し単位を示し、1以上10以下(望ましくは1以上4以下)の整数を示す。
* -O- (CH 2) d- CH [- (CH 2) c-O- (CH 2) b-] 2,
* - (CH 2) f- O- (CH 2) d-CH [- (CH 2) c-O- (CH 2) b-] 2
Here, in the above trivalent linking group, a, b, c, d, e, and f represent a repeating unit of a methylene group and represent an integer of 1 to 10 (preferably 1 to 4). .
また、Lが4価の連結基の場合には、具体的には、以下のような基が挙げられる。下記に示す4価の連結基中、「*」は、Fと連結する部位を示している。 Further, when L is a tetravalent linking group, specific examples include the following groups. In the tetravalent linking group shown below, “*” indicates a site to be connected to F.
ここで、上記の4価の連結基中、b、c、及びgは、メチレン基の繰り返し単位を示し、1以上10以下(望ましくは1以上4以下)の整数を示す。 Here, in the above tetravalent linking group, b, c, and g represent a repeating unit of a methylene group, and represent an integer of 1 to 10 (preferably 1 to 4).
一般式(I)中のLを表す連結基において、「−N(R)−」のRが表すアルキル基としては、炭素数1以上10以下(望ましくは1以上5以下)の直鎖状、分枝状のアルキル基が挙げられ、具体的には、メチル基、エチル基、nプロピル基、isoプロピル基、ブチル基、t−ブチル機、ペンチル基等が挙げられる。
「−N(R)−」のRが表すアリール基としては、炭素数6以上20以下(望ましくは6以上12以下)のアリール基が挙げられ、具体的には、例えば、フェニル基、トルイル基、キシリル基、クメニル基、メシチル基、ナフチル基等が挙げられる。
アラルキル基としては、炭素数7以上20以下(望ましくは7以上14以下)のアラルキル基が挙げられ、具体的には、例えば、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基、ナルチルエチル基等が挙げられる。
In the linking group representing L in the general formula (I), the alkyl group represented by R of “—N (R) —” is a straight chain having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), Examples include a branched alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a t-butyl machine, and a pentyl group.
Examples of the aryl group represented by R of “—N (R) —” include aryl groups having 6 to 20 carbon atoms (preferably 6 to 12 carbon atoms). Specific examples thereof include a phenyl group and a toluyl group. , Xylyl group, cumenyl group, mesityl group, naphthyl group and the like.
Examples of the aralkyl group include aralkyl groups having 7 to 20 carbon atoms (preferably 7 to 14 carbon atoms). Specific examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group, and a naltylethyl group. Is mentioned.
一般式(I)中の芳香環に結合されているLとビニル基との位置関係としては、メタ位、パラ位が挙げられる。一般式(I)中に芳香環は複数存在するが、この複数存在する芳香環においてLとビニル基との結合位置関係は、メタ位のみ、パラ位のみであってもよいし、メタ位とパラ位とが混在していてもよい。
中でも、溶解度の点からは混合体が好ましく、電荷輸送剤の製造性の点からは、再結晶による精製が可能になる場合が多いため、メタ位のみ、パラ位のみで構成されることが好ましく、特にパラ体が好ましい。
Examples of the positional relationship between L and the vinyl group bonded to the aromatic ring in the general formula (I) include a meta position and a para position. In the general formula (I), there are a plurality of aromatic rings. In the plurality of aromatic rings, the bonding positional relationship between L and the vinyl group may be only in the meta position or only in the para position, Para positions may be mixed.
Among them, a mixture is preferable from the viewpoint of solubility, and from the viewpoint of manufacturability of the charge transfer agent, purification by recrystallization is often possible. In particular, the para form is preferred.
一般式(I)中のmは1以上6以下の整数であり、電荷輸送性能を上げるためにはの点から、mは1以上3以下が好ましく、強度を上げるためには2以上6以下であることがよい。 In general formula (I), m is an integer of 1 or more and 6 or less, and m is preferably 1 or more and 3 or less from the viewpoint of improving the charge transport performance, and 2 or more and 6 or less for increasing the strength. There should be.
本実施形態に係る新規化合物は、特に望ましくは、一般式(I)中のFとしてトリアリールアミン系化合物に由来する電荷輸送性サブユニットを有するものが挙げられる。具体的には、下記一般式(II)で表される化合物であることが望ましい。 The novel compound according to this embodiment is particularly preferably a compound having a charge transporting subunit derived from a triarylamine-based compound as F in the general formula (I). Specifically, a compound represented by the following general formula (II) is desirable.
上記一般式(II)中、Ar1乃至Ar4はそれぞれ独立に置換若しくは未置換のアリール基を示し、Ar5は置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示し、Dは上記一般式(III)で表される基を示す。kは0又は1を示し、c1〜c5はそれぞれ0〜2の整数を示し、c1〜c5の全てが同時に0になることはない。
上記一般式(III)中、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、及びアルカン若しくはアルケンから誘導される3価又は4価の基からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示し、Rは水素原子、アルキル基、アリール基、又はアラルキル基を示す。nは2以上3以下の整数を示す。
In the general formula (II), Ar 1 to Ar 4 each independently represents a substituted or unsubstituted aryl group, Ar 5 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylene group, and D Represents a group represented by the general formula (III). k represents 0 or 1, c1 to c5 each represents an integer of 0 to 2, and c1 to c5 do not all become 0 at the same time.
In the general formula (III), L is derived from an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O-, -S-, and an alkane or alkene. An (n + 1) -valent linking group formed by combining two or more selected from the group consisting of trivalent or tetravalent groups, and R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. n represents an integer of 2 or more and 3 or less.
一般式(II)中のAr1乃至Ar4で示される置換若しくは未置換のアリール基は、それぞれ、同一でもあってもよいし、異なっていてもよい。
ここで、置換アリール基における置換基としては、「(D)C」以外のものとして、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子等が挙げられる。
また、Ar1乃至Ar4としては、下記構造式(1)乃至(7)のうちのいずれかであることが望ましい。なお、下記構造式(1)乃至(7)は、各Ar1乃至Ar4に連結され得る「−(D)C1」乃至「−(D)C4」を総括的に示した「−(D)C」と共に示す。
The substituted or unsubstituted aryl groups represented by Ar 1 to Ar 4 in the general formula (II) may be the same or different.
Here, as a substituent in the substituted aryl group, other than “(D) C ”, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms. Examples include a phenyl group substituted with an alkoxy group, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom.
Ar 1 to Ar 4 are preferably any one of the following structural formulas (1) to (7). In addition, the following structural formulas (1) to (7) collectively indicate “— (D) C1 ” to “— (D) C4 ” that can be connected to each Ar 1 to Ar 4. C ".
上記構造式(1)中、R9は、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基若しくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、及び炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を表す。
上記構造式(2)及び(3)中、R10乃至R12は、それぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、及び炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表す。また、tは1以上3以下の整数を表す
上記構造式(7)中、Arは置換又は未置換のアリーレン基を表す。
ここで、式(7)中のArとしては、下記構造式(8)又は(9)で表されるものが望ましい。
In the structural formula (1), R 9 is a phenyl group substituted with a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. , An unsubstituted phenyl group, and one selected from the group consisting of an aralkyl group having 7 to 10 carbon atoms.
In the structural formulas (2) and (3), R 10 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 1 or more carbon atoms. 1 type selected from the group consisting of a phenyl group substituted with 4 or less alkoxy groups, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom. T represents an integer of 1 or more and 3 or less. In the structural formula (7), Ar represents a substituted or unsubstituted arylene group.
Here, as Ar in Formula (7), what is represented by following Structural formula (8) or (9) is desirable.
上記構造式(8)及び(9)中、R13及びR14は、それぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を表し、tは1以上3以下の整数を表す。
また、前記構造式(7)中、Z’は2価の有機連結基を示すが、下記構造下記式(10)乃至(17)のうちのいずれかで表されるものが望ましい。また、sはそれぞれ0又は1を表す。
In the structural formulas (8) and (9), R 13 and R 14 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 1 or more carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with 4 or less alkoxy groups, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, and t is an integer of 1 to 3 Represents.
In the structural formula (7), Z ′ represents a divalent organic linking group, and is preferably represented by any one of the following structural formulas (10) to (17). S represents 0 or 1 respectively.
上記構造式(10)乃至(17)中、R15及びR16は、それぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基若しくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を表し、Wは2価の基を表し、q及びrはそれぞれ独立に1以上10以下の整数を表し、tはそれぞれ1以上3以下の整数を表す。
前記構造式(16)乃至(17)中のWとしては、下記(18)乃至(26)で表される2価の基のうちのいずれかであることが望ましい。但し、式(25)中、uは0以上3以下の整数を表す。
In the structural formulas (10) to (17), R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 1 or more carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with 4 or less alkoxy groups, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, and W represents a divalent group. , Q and r each independently represent an integer of 1 to 10, and t represents an integer of 1 to 3.
W in the structural formulas (16) to (17) is preferably any one of divalent groups represented by the following (18) to (26). However, in formula (25), u represents an integer of 0 or more and 3 or less.
また、一般式(II)中のAr5は、kが0のときは置換若しくは未置換のアリール基であり、このアリール基としては、Ar1乃至Ar4の説明で例示されたアリール基が挙げられる。また、kが1のとき、Ar5は置換若しくは未置換のアリーレン基であり、このアリーレン基としては、Ar1乃至Ar4の説明で例示されたアリール基から水素原子を1つ除いたアリーレン基が挙げられる。
また、置換アリーレン基における置換基としては、Ar1乃至Ar4の説明で、置換アリール基における「D」以外の置換基として挙げられているものと同様である。
Ar 5 in the general formula (II) is a substituted or unsubstituted aryl group when k is 0, and examples of the aryl group include the aryl groups exemplified in the description of Ar 1 to Ar 4. It is done. When k is 1, Ar 5 is a substituted or unsubstituted arylene group. The arylene group includes an arylene group obtained by removing one hydrogen atom from the aryl group exemplified in the description of Ar 1 to Ar 4. Is mentioned.
Further, the substituent in the substituted arylene group is the same as the substituents other than “D” in the substituted aryl group in the description of Ar 1 to Ar 4 .
一般式(II)中のDで示される前記一般式(III)で表される基におけるLは、一般式(I)の説明中のLと同義であり、具体的に例示した各基が望ましいものとして挙げられる。 L in the group represented by the general formula (III) represented by D in the general formula (II) is synonymous with L in the description of the general formula (I), and each specifically exemplified group is desirable. It is mentioned as a thing.
一般式(II)中のc1〜c5はそれぞれ0〜2の整数を示し、c1〜c5の全てが同時に0になることはない。つまり、一般式(II)中のDの総数は1以上であることを意味し、Dの総数は望ましくは1以上4以下である。 C1 to c5 in the general formula (II) each represent an integer of 0 to 2, and all of c1 to c5 do not become 0 at the same time. That is, it means that the total number of D in the general formula (II) is 1 or more, and the total number of D is preferably 1 or more and 4 or less.
次に、一般式(I)中の下記部分構造及び一般式(III)で表される基として望ましい構造について説明する。
下記部分構造及び一般式(III)で表される基としては、下記一般式(IV−1)で表される基、一般式(IV−2)で表される基、下記一般式(V−1)で表される基、又は一般式(V−2)で表される基が、電気特性と硬化度の両立の点から望ましい。
Next, a structure desirable as a group represented by the following partial structure and the general formula (III) in the general formula (I) will be described.
As the group represented by the following partial structure and general formula (III), the group represented by the following general formula (IV-1), the group represented by the general formula (IV-2), the following general formula (V- The group represented by 1) or the group represented by the general formula (V-2) is desirable from the viewpoint of achieving both electrical properties and a curing degree.
一般式(IV−1)及び(IV−2)中、Xは単結合又は連結基を示し、pは0又は1を示す。
また、一般式(V−1)及び(V−2)中、X’は単結合又は連結基を示し、p’は0又は1を示す。
なお、上記部分構造において波線はFで示される電荷輸送性サブユニットとの結合部位を示す。
In general formulas (IV-1) and (IV-2), X represents a single bond or a linking group, and p represents 0 or 1.
In general formulas (V-1) and (V-2), X ′ represents a single bond or a linking group, and p ′ represents 0 or 1.
In the partial structure, the wavy line indicates the binding site with the charge transporting subunit indicated by F.
上記X及びX’で示される連結基としては、−C=や、炭素数1以上のアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、及び−S−、又は、これらを2種以上組み合わせた基等が挙げられる。 Examples of the linking group represented by X and X ′ include —C═, an alkylene group having 1 or more carbon atoms, —C═C—, —C (═O) —, —N (R) —, —O—. , And -S-, or a group in which two or more of these are combined.
以下に、一般式(I)で表される化合物の具体例を示す。なお、一般式(I)で表される化合物は、これらにより何ら限定されるものではない。
まず、一般式(I)中のFで表される電荷輸送性サブユニット(前記部分構造を除く骨格)の具体例、及び前記部分構造(一般式(III)で表される基)の具体例を例示し、その後ろに、これらの組み合わせについて表1及び表2に記載し、これを一般式(I)で表される化合物の具体例(例示化合物)とした。
なお、以下に示す各種の具体例において「*」は連結部位を意味する。ここで、表1に記載の例示化合物において、化合物No.のCTM−1は、Fで表される電荷輸送性サブユニットの具体例(表1中「骨格」と記載):(1)−1と、前記部分構造(一般式(III)で表される基、表1中「官能基」と記載)の具体例:(III)−1と、を組み合わせてなるものであって、「*」で連結した化合物を示している。具体的には、CTM−1は、以下の構造を示すものである。
Specific examples of the compound represented by the general formula (I) are shown below. In addition, the compound represented with general formula (I) is not limited at all by these.
First, specific examples of the charge transporting subunit (skeleton excluding the partial structure) represented by F in the general formula (I) and specific examples of the partial structure (group represented by the general formula (III)) Thereafter, these combinations are described in Table 1 and Table 2, and this was taken as a specific example (exemplary compound) of the compound represented by the general formula (I).
In the following specific examples, “*” means a linking site. Here, in the exemplary compounds described in Table 1, compound No. CTM-1 is a specific example of a charge transporting subunit represented by F (described as “skeleton” in Table 1): (1) -1 and the partial structure (represented by the general formula (III)) Specific examples of the group (described as “functional group” in Table 1): (III) -1 and a compound connected by “*”. Specifically, CTM-1 shows the following structure.
次に、一般式(I)で表される化合物の合成法について説明する。
一般式(I)で表される化合物の合成は以下にあげるような一般の電荷輸送材料の合成、反応に用いるものを応用することができる。具体的には実施例に挙げた方法を用いることができる。
ホルミル化:電子供与性基を持つ芳香族化合物・複素環化合物・アルケンにホルミル基を導入するのに適した反応。DMFとオキシ三塩化リンを用いるのが一般的であり、反応温度は室温から100℃程度で行われることが多い。
エステル化:有機酸とアルコールまたはフェノールのようなヒドロキシル基を含む化合物との縮合反応。脱水剤を共存させたり、水を系外へ除去することで平衡をエステル側へ偏らせる手法を用いることが好ましい。
エーテル化:アルコキシドと有機ハロゲン化合物を縮合させるウィリアムソン合成法が一般的である。
水素添加:種々の触媒を用いて不飽和結合に水素を反応させる方法。
Next, a method for synthesizing the compound represented by the general formula (I) will be described.
For the synthesis of the compound represented by the general formula (I), those used for the synthesis and reaction of the following general charge transport materials can be applied. Specifically, the methods listed in the examples can be used.
Formylation: A reaction suitable for introducing a formyl group into an aromatic compound, heterocyclic compound or alkene having an electron donating group. DMF and phosphorus oxytrichloride are generally used, and the reaction temperature is often from room temperature to about 100 ° C.
Esterification: A condensation reaction between an organic acid and a compound containing a hydroxyl group such as alcohol or phenol. It is preferable to use a method of biasing the equilibrium toward the ester side by coexisting a dehydrating agent or removing water out of the system.
Etherification: A Williamson synthesis method in which an alkoxide and an organic halogen compound are condensed is common.
Hydrogenation: A method in which hydrogen is reacted with an unsaturated bond using various catalysts.
本実施形態に係る一般式(I)で表される化合物は、Fで示される電荷輸送性サブユニットから、1つの連結基Lを介して2つ又は3つの連鎖重合性の反応性基(スチレン基)を有する化合物である。
本発明者らの詳細な検討により、電荷輸送性化合物の硬化度、即ち架橋部位数を上げると電荷輸送性能が悪くなることが明らかとなった。原因は必ずしも明らかではないが、現段階では、電荷輸送性化合物の硬化度、即ち架橋部位数を上げると、硬化(架橋)させた際に電荷輸送性部位(電荷輸送性サブユニット)に歪みが生じるためであると推測している。
しかしながら、一般式(I)で表される化合物は、1つの連結基Lを介して2つ又は3つの連鎖重合性の反応性基を有する構造であるため、高い硬化度、架橋部位数を保ちつつもこの連結基Lの存在により、硬化(架橋)させた際に電荷輸送性サブユニットに歪みを発生させ難く、高い硬化度と優れた電荷輸送性能との両立が可能となる。
また、従来用いられていた、(メタ)アクリル基を有する電荷輸送性化合物は、上記のようにひずみを生じやすい上に、反応性部位は親水性が高く、電荷輸送性部位は疎水性が高いため、ミクロ相分離しやすいのに対し、一般式(I)で表される化合物は、スチレン基を反応性基として有しており、更に、硬化(架橋)させた際に電荷輸送性部位(電荷輸送性サブユニット)に歪みを生じさせ難い連結基Lを有している構造であること、反応性部位、電荷輸送性部位ともに疎水性のため相分離が起きにくおため、効率的な電荷輸送性能と高強度化が図れると考えられる。その結果として、この一般式(I)で表される化合物の重合体を含む電荷輸送性層は、機械的強度に優れると共に、電荷輸送性能(電気特性)がより優れるものと考えられる。
The compound represented by the general formula (I) according to this embodiment includes two or three chain-polymerizable reactive groups (styrene) through one linking group L from the charge transporting subunit represented by F. Group).
Detailed investigations by the present inventors have revealed that the charge transport performance deteriorates when the degree of cure of the charge transport compound, that is, the number of cross-linking sites is increased. The cause is not necessarily clear, but at this stage, if the degree of cure of the charge transporting compound, that is, the number of cross-linking sites is increased, the charge transporting sites (charge transporting subunits) are distorted when cured (cross-linked). I guess it is because it occurs.
However, since the compound represented by the general formula (I) has a structure having two or three chain polymerizable reactive groups via one linking group L, it maintains a high degree of curing and the number of crosslinking sites. However, the presence of the linking group L makes it difficult to generate distortion in the charge transporting subunit when cured (cross-linked), and it is possible to achieve both a high degree of curing and excellent charge transport performance.
In addition, conventionally used charge transporting compounds having a (meth) acryl group are likely to be distorted as described above, and the reactive sites are highly hydrophilic and the charge transporting sites are highly hydrophobic. Therefore, the compound represented by the general formula (I) has a styrene group as a reactive group, and further has a charge transporting moiety ( It has a structure having a linking group L that is difficult to cause distortion in the charge transporting subunit), and the reactive site and the charge transporting site are both hydrophobic, so that phase separation is difficult to occur. It is thought that charge transport performance and high strength can be achieved. As a result, the charge transporting layer containing the polymer of the compound represented by the general formula (I) is considered to be excellent in mechanical strength and charge transport performance (electrical characteristics).
<電子写真感光体>
本実施形態に係る電子写真感光体は、前記した一般式(I)で表される化合物の重合体を少なくとも含む電荷輸送性層を備えることを特徴とする。
上述したように、一般式(I)で表される化合物は、機械的強度及び電荷輸送性能の両方に優れた電荷輸送性層を形成しうることから、この電荷輸送性層を適用した電子写真感光体は、長期に亘り繰り返し使用しても電気特性の劣化が抑制され、その結果として、安定した画像を継続的に得ることができるものと考えられる。
特に、この電荷輸送性層は機械的強度が高いこともあり、電子写真感光体の最表面層に適用することが望ましく、この構成とした場合であっても、長期に亘り繰り返し使用しても電気特性の劣化が抑制され、その結果として、安定した画像を継続的に得ることができるものと考えられる。
<Electrophotographic photoreceptor>
The electrophotographic photoreceptor according to the exemplary embodiment includes a charge transporting layer including at least a polymer of the compound represented by the general formula (I).
As described above, since the compound represented by the general formula (I) can form a charge transporting layer excellent in both mechanical strength and charge transporting performance, an electrophotographic image to which this charge transporting layer is applied. Even if the photoreceptor is used repeatedly over a long period of time, it is considered that deterioration of electrical characteristics is suppressed, and as a result, stable images can be continuously obtained.
In particular, the charge transporting layer may have high mechanical strength, and is preferably applied to the outermost surface layer of the electrophotographic photosensitive member. Even in this configuration, the charge transporting layer may be used repeatedly over a long period of time. It is considered that deterioration of electrical characteristics is suppressed, and as a result, stable images can be continuously obtained.
電荷輸送性層に含まれる重合体は、一般式(I)で表される化合物を、熱、光、電子線などのエネルギーにより重合させることで得られる。
また、この重合体を含む電荷輸送性層は、一般式(I)で表される化合物と、必要に応じた他の成分と、を含有する組成物を調製し、この組成物を熱、光、電子線などのエネルギーにより重合(硬化)させることで得られる。
The polymer contained in the charge transporting layer can be obtained by polymerizing the compound represented by the general formula (I) with energy such as heat, light, and electron beam.
In addition, the charge transporting layer containing this polymer is prepared by preparing a composition containing the compound represented by the general formula (I) and other components as required, and applying the composition to heat, light, It is obtained by polymerizing (curing) with energy such as an electron beam.
本実施形態に係る電荷輸送性層中の一般式(I)で表される化合物の重合体の含有量としては、電荷輸送性層の用途に応じた電荷輸送性能をもとに設定されればよく、一般的には、電荷輸送性層中に5質量%以上100質量%以下(望ましくは40質量%以上100質量%以下)の範囲にて設定されればよい。
なお、本実施形態に係る電荷輸送性層中には、一般式(I)で表される化合物の重合体の他、一般式(I)で表される化合物自体(未反応の状態)が含有されていてもよい。
The content of the polymer of the compound represented by the general formula (I) in the charge transporting layer according to the present embodiment is set based on the charge transporting performance according to the use of the charge transporting layer. In general, the charge transporting layer may be set in the range of 5 mass% to 100 mass% (desirably 40 mass% to 100 mass%).
In addition, in the charge transport layer according to the present embodiment, in addition to the polymer of the compound represented by the general formula (I), the compound itself represented by the general formula (I) (unreacted state) is contained. May be.
本実施形態に係る電子写真感光体における電荷輸送性層は、一般式(I)で表される化合物中の連鎖重合性の官能基の官能数、即ち、前記部分構造(一般式(III)で表される基)の数が異なるものを併用することで、電荷輸送性能を低下させることなく、電荷輸送性層(硬化物)の強度を調整してもよい。
具体的には、前記した一般式(III)で表される化合物は、電荷輸送性能を低下させることなく、電荷輸送性層(硬化物)の強度を調整する目的で、官能基数が2以上の化合物と、官能基数がそれよりも小さい化合物と、を併用してもよい。
このような併用の場合、官能基数が2以上の化合物の含有量は、一般式(III)で表される化合物の総含有量の5質量%以上95質量%以下(望ましくは10質量%以上90質量%以下)の範囲にて設定されればよい。
The charge transporting layer in the electrophotographic photoreceptor according to the exemplary embodiment has a functional number of the chain polymerizable functional group in the compound represented by the general formula (I), that is, the partial structure (general formula (III) You may adjust the intensity | strength of a charge transportable layer (cured material), without reducing charge transport performance by using together what differs in the number of group represented.
Specifically, the compound represented by the general formula (III) has a functional group number of 2 or more for the purpose of adjusting the strength of the charge transporting layer (cured product) without reducing the charge transport performance. A compound and a compound having a smaller number of functional groups may be used in combination.
In such a combination, the content of the compound having 2 or more functional groups is 5% by mass to 95% by mass (preferably 10% by mass to 90% by mass) of the total content of the compound represented by the general formula (III). (Mass% or less) may be set.
本実施形態に係る電子写真感光体では、本実施形態に係る電荷輸送性層を備えるもので、この電荷輸送性層としては、最表面層、及び最表面層以外の層のいずれであってもよいが、上述のように、機械的強度及び電荷輸送性能の両方に優れる点から、最表面層であることがよい。 The electrophotographic photoreceptor according to the exemplary embodiment includes the charge transporting layer according to the exemplary embodiment, and the charge transporting layer may be any of the outermost surface layer and a layer other than the outermost surface layer. However, as described above, the outermost surface layer is preferable because it is excellent in both mechanical strength and charge transport performance.
ここで、最表面層は、電子写真感光体自体の最上面を形成しているものであり、特に保護層として機能する層、又は、電荷輸送層として機能する層として設けられることが望ましい。
最表面層が保護層として機能する層の場合、導電性基体上に、感光層、及び最表面層として保護層を有し、該保護層が前述した電荷輸送性層で構成される形態が挙げられる。
一方、最表面層が電荷輸送層として機能する層の場合、導電性基体上に、電荷発生層、及び最表面層として電荷輸送層を有し、該電荷輸送層が前述した電荷輸送性層で構成される形態が挙げられる。
なお、前述した電荷輸送性層が最表面層以外の層を構成する場合、導電性基体上に、電荷発生層及び最表面層を含む感光層と共に、感光層上に最表面層として保護層を有し、該電荷輸送層が前述した電荷輸送性層で構成される形態が挙げられる。
Here, the outermost surface layer forms the uppermost surface of the electrophotographic photosensitive member itself, and is desirably provided as a layer functioning as a protective layer or a layer functioning as a charge transport layer.
In the case where the outermost surface layer is a layer functioning as a protective layer, the photosensitive layer and the protective layer as the outermost surface layer are provided on the conductive substrate, and the protective layer includes the charge transporting layer described above. It is done.
On the other hand, in the case where the outermost surface layer is a layer that functions as a charge transport layer, it has a charge generation layer and a charge transport layer as the outermost surface layer on the conductive substrate, and the charge transport layer is the charge transport layer described above. The form comprised is mentioned.
In the case where the above-described charge transporting layer constitutes a layer other than the outermost surface layer, a protective layer as an outermost surface layer is formed on the photosensitive layer together with the photosensitive layer including the charge generating layer and the outermost surface layer on the conductive substrate. And the charge transport layer is composed of the above-described charge transport layer.
以下、前述した電荷輸送性層が最表面層である保護層として機能する層の場合の、本実施形態に係る電子写真感光体について図面を参照しつつ詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとし、重複する説明は省略する。
図1は、実施形態に係る電子写真用感光体の好適な一実施形態を示す模式断面図である。図2乃至図3はそれぞれ他の実施形態に係る電子写真感光体を示す模式断面図である。
Hereinafter, the electrophotographic photoreceptor according to the exemplary embodiment in the case where the above-described charge transporting layer is a layer functioning as a protective layer which is the outermost surface layer will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the electrophotographic photoreceptor according to the embodiment. 2 to 3 are schematic sectional views showing electrophotographic photosensitive members according to other embodiments.
図1に示す電子写真感光体7Aは、いわゆる機能分離型感光体(又は積層型感光体)であり、導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、及び保護層5が順次形成された構造を有するものである。電子写真感光体7Aにおいては、電荷発生層2及び電荷輸送層3により感光層が構成されている。 An electrophotographic photoreceptor 7A shown in FIG. 1 is a so-called function-separated photoreceptor (or laminated photoreceptor), and an undercoat layer 1 is provided on a conductive substrate 4, on which a charge generation layer 2 and a charge are formed. The transport layer 3 and the protective layer 5 have a structure formed sequentially. In the electrophotographic photoreceptor 7 </ b> A, the charge generation layer 2 and the charge transport layer 3 constitute a photosensitive layer.
図2に示す電子写真感光体7Bは、図1に示す電子写真感光体7Aと同様に電荷発生層2と電荷輸送層3とに機能が分離された機能分離型感光体である。また、図3に示す電子写真感光体7Cは、電荷発生材料と電荷輸送性材料とを同一の層(単層型感光層6(電荷発生/電荷輸送層))に含有するものである。 The electrophotographic photoreceptor 7B shown in FIG. 2 is a function-separated type photoreceptor in which the functions are separated into the charge generation layer 2 and the charge transport layer 3 like the electrophotographic photoreceptor 7A shown in FIG. 3 includes the charge generation material and the charge transport material in the same layer (single-layer type photosensitive layer 6 (charge generation / charge transport layer)).
図2に示す電子写真感光体7Bにおいては、導電性基体4上に下引層1が設けられ、その上に、電荷輸送層3、電荷発生層2、及び保護層5が順次形成された構造を有するものである。電子写真感光体7Bにおいては、電荷輸送層3及び電荷発生層2により感光層が構成されている。
また、図3に示す電子写真感光体7Cにおいては、導電性基体4上に下引層1が設けられ、その上に単層型感光層6、保護層5が順次形成された構造を有するものである。
In the electrophotographic photoreceptor 7B shown in FIG. 2, a structure in which an undercoat layer 1 is provided on a conductive substrate 4, and a charge transport layer 3, a charge generation layer 2, and a protective layer 5 are sequentially formed thereon. It is what has. In the electrophotographic photoreceptor 7B, a photosensitive layer is constituted by the charge transport layer 3 and the charge generation layer 2.
Further, the electrophotographic photoreceptor 7C shown in FIG. 3 has a structure in which the undercoat layer 1 is provided on the conductive substrate 4, and the single-layer type photosensitive layer 6 and the protective layer 5 are sequentially formed thereon. It is.
そして、上記図1乃至図3に示す電子写真感光体7A乃至7Cにおいて、保護層5が、導電性基体2から最も遠い側に配置される最表面層となっており、当該最表面層が、前述した電荷輸送性層で構成された構成となっている。
なお、図1乃至図3に示す電子写真感光体において、下引層1は設けてもよいし、設けなくてもよい。
In the electrophotographic photoreceptors 7A to 7C shown in FIGS. 1 to 3, the protective layer 5 is the outermost surface layer disposed on the side farthest from the conductive substrate 2, and the outermost surface layer is It is the structure comprised by the electric charge transportable layer mentioned above.
In the electrophotographic photoreceptor shown in FIGS. 1 to 3, the undercoat layer 1 may or may not be provided.
以下、代表例として図1に示す電子写真感光体7Aに基づいて、各要素について説明する。 Hereinafter, each element will be described based on the electrophotographic photosensitive member 7A shown in FIG. 1 as a representative example.
(導電性基体)
導電性基体としては、従来から使用されているものであれば、如何なるものを使用してもよい。例えば、薄膜(例えばアルミニウム、ニッケル、クロム、ステンレス鋼等の金属類、及びアルミニウム、チタニウム、ニッケル、クロム、ステンレス鋼、金、バナジウム、酸化錫、酸化インジウム、酸化錫インジウム(ITO)等の膜)を設けたプラスチックフィルム等、導電性付与剤を塗布又は含浸させた紙、導電性付与剤を塗布又は含浸させたプラスチックフィルム等が挙げられる。基体の形状は円筒状に限られず、シート状、プレート状としてもよい。
なお、導電性基体は、例えば体積抵抗率が107Ω・cm未満の導電性を有するものがよい。
(Conductive substrate)
Any conductive substrate may be used as long as it is conventionally used. For example, thin films (eg, metals such as aluminum, nickel, chromium, stainless steel, and films of aluminum, titanium, nickel, chromium, stainless steel, gold, vanadium, tin oxide, indium oxide, indium tin oxide (ITO), etc.) And a plastic film coated or impregnated with a conductivity-imparting agent, a plastic film coated or impregnated with a conductivity-imparting agent, and the like. The shape of the substrate is not limited to a cylindrical shape, and may be a sheet shape or a plate shape.
Note that the conductive substrate preferably has a conductivity of, for example, a volume resistivity of less than 10 7 Ω · cm.
導電性基体として金属パイプを用いる場合、表面は素管のままであってもよいし、予め鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニングなどの処理が行われていてもよい。 When a metal pipe is used as the conductive substrate, the surface may be left as it is, and treatments such as mirror cutting, etching, anodizing, rough cutting, centerless grinding, sand blasting, and wet honing have been performed in advance. Also good.
(下引層)
下引層は、導電性基体表面における光反射の防止、導電性基体から感光層への不要なキャリアの流入の防止などの目的で、必要に応じて設けられる。
(Undercoat layer)
The undercoat layer is provided as necessary for the purpose of preventing light reflection on the surface of the conductive substrate and preventing inflow of unnecessary carriers from the conductive substrate to the photosensitive layer.
下引層は、例えば、結着樹脂と、必要に応じてその他添加物とを含んで構成される。
下引層に含まれる結着樹脂としては、ポリビニルブチラールなどのアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂などの公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂などが挙げられる。これらの中でも、上層の塗布溶剤に不溶な樹脂が望ましく用いられ、特にフェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂などが望ましく用いられる。
The undercoat layer includes, for example, a binder resin and, if necessary, other additives.
As the binder resin contained in the undercoat layer, acetal resins such as polyvinyl butyral, polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, Known polymer resin compounds such as polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol resin, phenol-formaldehyde resin, melamine resin, urethane resin, and charge transporting group Examples thereof include charge transporting resins having a conductive resin such as polyaniline. Among these, resins that are insoluble in the upper coating solvent are preferably used, and phenol resins, phenol-formaldehyde resins, melamine resins, urethane resins, epoxy resins, and the like are particularly preferably used.
下引層には、シリコン化合物、有機ジルコニウム化合物、有機チタン化合物、有機アルミニウム化合物等の金属化合物等を含有してもよい。 The undercoat layer may contain a metal compound such as a silicon compound, an organic zirconium compound, an organic titanium compound, or an organic aluminum compound.
金属化合物と結着樹脂との比率は、特に制限されず、所望する電子写真感光体特性を得られる範囲で設定される。 The ratio between the metal compound and the binder resin is not particularly limited, and is set within a range in which desired electrophotographic photoreceptor characteristics can be obtained.
下引層には、表面粗さ調整のために下引層中に樹脂粒子を添加してもよい。樹脂粒子としては、シリコーン樹脂粒子、架橋型ポリメタクリル酸メチル(PMMA)樹脂粒子等が挙げられる。なお、表面粗さ調整のために下引層を形成後、その表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、ウエットホーニング、研削処理等が用いられる。 Resin particles may be added to the undercoat layer in order to adjust the surface roughness. Examples of the resin particles include silicone resin particles and cross-linked polymethyl methacrylate (PMMA) resin particles. The surface may be polished after forming the undercoat layer for adjusting the surface roughness. As a polishing method, buffing, sandblasting, wet honing, grinding, or the like is used.
ここで、下引層の構成として、結着樹脂と導電性粒子とを少なくとも含有する構成が挙げられる。なお、導電性粒子は、例えば体積抵抗率が107Ω・cm未満の導電性を有するものがよい。 Here, the structure of the undercoat layer includes a structure containing at least a binder resin and conductive particles. Note that the conductive particles preferably have conductivity with a volume resistivity of less than 10 7 Ω · cm, for example.
導電性粒子としては、例えば、金属粒子(アルミニウム、銅、ニッケル、銀などの粒子)、導電性金属酸化物粒子(酸化アンチモン、酸化インジウム、酸化スズ、酸化亜鉛などの粒子)、導電性物質粒子(カーボンファイバ、カーボンブラック、グラファイト粉末の粒子)等が挙げられる。これらの中でも、導電性金属酸化物粒子が好適である。導電性粒子は、2種以上混合して用いてもよい。
また、導電性粒子は、疎水化処理剤(例えばカップリング剤)等により表面処理を施して、抵抗調整して用いてもよい。
導電性粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが望ましく、より望ましくは40質量%以上80質量%以下である。
Examples of the conductive particles include metal particles (particles such as aluminum, copper, nickel, and silver), conductive metal oxide particles (particles such as antimony oxide, indium oxide, tin oxide, and zinc oxide), and conductive substance particles. (Carbon fiber, carbon black, particles of graphite powder) and the like. Among these, conductive metal oxide particles are preferable. You may mix and use 2 or more types of electroconductive particle.
In addition, the conductive particles may be subjected to a surface treatment with a hydrophobizing agent (for example, a coupling agent) or the like to adjust the resistance.
For example, the content of the conductive particles is preferably 10% by mass or more and 80% by mass or less, and more preferably 40% by mass or more and 80% by mass or less with respect to the binder resin.
下引層の形成の際には、上記成分を溶媒に加えた下引層形成用塗布液が使用される。
また、下引層形成用塗布液中に粒子を分散させる方法としては、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。ここで、高圧ホモジナイザーとしては、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
In forming the undercoat layer, a coating solution for forming an undercoat layer in which the above components are added to a solvent is used.
In addition, as a method for dispersing particles in the coating solution for forming the undercoat layer, a media disperser such as a ball mill, a vibrating ball mill, an attritor, a sand mill, a horizontal sand mill, an agitator, an ultrasonic disperser, a roll mill, a high-pressure homogenizer, etc. Medialess dispersers are used. Here, examples of the high-pressure homogenizer include a collision method in which the dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high-pressure state, and a penetration method in which a fine flow path is dispersed in a high-pressure state. .
下引層形成用塗布液を導電性基体上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等が挙げられる。 Examples of the method for applying the coating liquid for forming the undercoat layer onto the conductive substrate include dip coating, push-up coating, wire bar coating, spray coating, blade coating, knife coating, and curtain coating. It is done.
下引層の膜厚は、15μm以上が望ましく、20μm以上50μm以下がより望ましい。 The thickness of the undercoat layer is preferably 15 μm or more, and more preferably 20 μm or more and 50 μm or less.
ここで、図示は省略するが、下引層と感光層との間に中間層を更に設けてもよい。中間層に用いられる結着樹脂としては、ポリビニルブチラールなどのアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物のほかに、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素原子などを含有する有機金属化合物などが挙げられる。これらの化合物は、単独に或いは複数の化合物の混合物或いは重縮合物として用いてもよい。中でも、ジルコニウム若しくはケイ素を含有する有機金属化合物は残留電位が低く環境による電位変化が少なく、また繰り返し使用による電位の変化が少ないなど点から好適である。 Here, although not shown, an intermediate layer may be further provided between the undercoat layer and the photosensitive layer. As the binder resin used for the intermediate layer, acetal resins such as polyvinyl butyral, polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinyl In addition to polymer resins such as acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, melamine resin, zirconium, titanium, aluminum, manganese, silicon atom, etc. An organometallic compound containing These compounds may be used alone or as a mixture or polycondensate of a plurality of compounds. Among these, an organometallic compound containing zirconium or silicon is preferable in that it has a low residual potential, a small potential change due to the environment, and a small potential change due to repeated use.
中間層の形成の際には、上記成分を溶媒に加えた中間層形成用塗布液が使用される。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
In forming the intermediate layer, a coating solution for forming an intermediate layer in which the above components are added to a solvent is used.
As the coating method for forming the intermediate layer, usual methods such as a dip coating method, a push-up coating method, a wire bar coating method, a spray coating method, a blade coating method, a knife coating method, and a curtain coating method are used.
なお、中間層は上層の塗布性改善の他に、電気的なブロッキング層の役割も果たすが、膜厚が大きすぎる場合には電気的な障壁が強くなりすぎて減感や繰り返しによる電位の上昇を引き起こすことがある。したがって、中間層を形成する場合には、0.1μm以上3μm以下の膜厚範囲に設定することがよい。また、この場合の中間層を下引層として使用してもよい。 In addition to improving the coatability of the upper layer, the intermediate layer also serves as an electrical blocking layer. However, if the film thickness is too large, the electrical barrier becomes too strong and the potential increases due to desensitization or repetition. May cause. Therefore, when forming the intermediate layer, it is preferable to set the film thickness within the range of 0.1 μm to 3 μm. In this case, the intermediate layer may be used as the undercoat layer.
(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂中とを含んで構成される。かかる電荷発生材料としては、無金属フタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン、ジクロロスズフタロシアニン、チタニルフタロシアニン等のフタロシアニン顔料が挙げられ、特に、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.4゜、16.6゜、25.5゜及び28.3゜に強い回折ピークを有するクロロガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.7゜、9.3゜、16.9゜、17.5゜、22.4゜及び28.8゜に強い回折ピークを有する無金属フタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.5゜、9.9゜、12.5゜、16.3゜、18.6゜、25.1゜及び28.3゜に強い回折ピークを有するヒドロキシガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも9.6゜、24.1゜及び27.2゜に強い回折ピークを有するチタニルフタロシアニン結晶が挙げられる。その他、電荷発生材料としては、キノン顔料、ペリレン顔料、インジゴ顔料、ビスベンゾイミダゾール顔料、アントロン顔料、キナクリドン顔料等が挙げられる。また、これらの電荷発生材料は、単独又は2種以上を混合して用いてもよい。
(Charge generation layer)
The charge generation layer includes, for example, a charge generation material and a binder resin. Examples of such a charge generating material include phthalocyanine pigments such as metal-free phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine, dichlorotin phthalocyanine, and titanyl phthalocyanine. A chlorogallium phthalocyanine crystal having strong diffraction peaks at least at 7.4 °, 16.6 °, 25.5 ° and 28.3 °, a Bragg angle (2θ ± 0.2 °) to CuKα characteristic X-ray of at least 7 Metal-free phthalocyanine crystals having strong diffraction peaks at .7 °, 9.3 °, 16.9 °, 17.5 °, 22.4 °, and 28.8 °, Bragg angle (2θ ± 0) with respect to CuKα characteristic X-rays .2 °) at least 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 ° Hydroxygallium phthalocyanine crystals having strong diffraction peaks at 25.1 ° and 28.3 °, Bragg angles (2θ ± 0.2 °) with respect to CuKα characteristic X-rays of at least 9.6 °, 24.1 ° and 27.2 A titanyl phthalocyanine crystal having a strong diffraction peak at 0 ° can be mentioned. In addition, examples of the charge generation material include quinone pigments, perylene pigments, indigo pigments, bisbenzimidazole pigments, anthrone pigments, quinacridone pigments, and the like. These charge generation materials may be used alone or in combination of two or more.
電荷発生層を構成する結着樹脂としては、例えば、ビスフェノールAタイプ或いはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリ−N−ビニルカルバゾール樹脂等が挙げられる。これらの結着樹脂は、単独又は2種以上混合して用いてもよい。
なお、電荷発生材料と結着樹脂の配合比は、例えば10:1乃至1:10の範囲が望ましい。
Examples of the binder resin constituting the charge generation layer include polycarbonate resin such as bisphenol A type or bisphenol Z type, acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene. Copolymer resin, acrylonitrile-butadiene copolymer, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride Examples thereof include resins, silicone resins, phenol-formaldehyde resins, polyacrylamide resins, polyamide resins, poly-N-vinylcarbazole resins. These binder resins may be used alone or in combination of two or more.
The mixing ratio of the charge generating material and the binder resin is preferably in the range of 10: 1 to 1:10, for example.
電荷発生層の形成の際には、上記成分を溶剤に加えた電荷発生層形成用塗布液が使用される。 When forming the charge generation layer, a coating solution for forming a charge generation layer in which the above components are added to a solvent is used.
電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。 As a method for dispersing particles (for example, charge generation material) in the coating solution for forming the charge generation layer, a media dispersion machine such as a ball mill, a vibration ball mill, an attritor, a sand mill, a horizontal sand mill, an agitation, an ultrasonic dispersion machine, a roll mill, etc. Medialess dispersers such as high-pressure homogenizers are used. Examples of the high-pressure homogenizer include a collision method in which the dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high-pressure state, and a penetration method in which a fine flow path is dispersed in a high-pressure state.
電荷発生層形成用塗布液を下引層上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等が挙げられる。 Examples of the method for applying the charge generation layer forming coating liquid on the undercoat layer include dip coating, push-up coating, wire bar coating, spray coating, blade coating, knife coating, and curtain coating. It is done.
電荷発生層の膜厚は、望ましくは0.01μm以上5μm以下、より望ましくは0.05μm以上2.0μm以下の範囲に設定される。 The thickness of the charge generation layer is desirably set in the range of 0.01 μm to 5 μm, more desirably 0.05 μm to 2.0 μm.
(電荷輸送層)
電荷輸送層は、電荷輸送性材料と、必要に応じて結着樹脂と、を含んで構成される。
(Charge transport layer)
The charge transport layer includes a charge transport material and, if necessary, a binder resin.
電荷輸送性材料としては、例えば、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、N,N′−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン、トリ(p−メチルフェニル)アミニル−4−アミン、ジベンジルアニリン等の芳香族第3級アミノ化合物、N,N′−ビス(3−メチルフェニル)−N,N′−ジフェニルベンジジン等の芳香族第3級ジアミノ化合物、3−(4′−ジメチルアミノフェニル)−5,6−ジ−(4′−メトキシフェニル)−1,2,4−トリアジン等の1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン等のヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリン等のキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)ベンゾフラン等のベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N−ジフェニルアニリン等のα−スチルベン誘導体、エナミン誘導体、N−エチルカルバゾール等のカルバゾール誘導体、ポリ−N−ビニルカルバゾール及びその誘導体などの正孔輸送物質、クロラニル、ブロアントラキノン等のキノン系化合物、テトラアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、キサントン系化合物、チオフェン化合物等の電子輸送物質、及び上記した化合物からなる基を主鎖又は側鎖に有する重合体などが挙げられる。これらの電荷輸送性材料は、1種又は2種以上を組み合わせて用いてもよい。 Examples of the charge transporting material include oxadiazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-triphenyl-pyrazoline, 1- [Pyridyl- (2)]-3- (p-diethylaminostyryl) -5- (p-diethylaminostyryl) pyrazoline and other pyrazoline derivatives, triphenylamine, N, N′-bis (3,4-dimethylphenyl) biphenyl Aromatic tertiary amino compounds such as -4-amine, tri (p-methylphenyl) aminyl-4-amine, dibenzylaniline, N, N'-bis (3-methylphenyl) -N, N'-diphenyl Aromatic tertiary diamino compounds such as benzidine, 3- (4′-dimethylaminophenyl) -5,6-di- (4′-methoxyphenyl) -1,2, -1,2,4-triazine derivatives such as triazine, hydrazone derivatives such as 4-diethylaminobenzaldehyde-1,1-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styryl-quinazoline, 6-hydroxy-2,3 Benzofuran derivatives such as -di (p-methoxyphenyl) benzofuran, α-stilbene derivatives such as p- (2,2-diphenylvinyl) -N, N-diphenylaniline, enamine derivatives, carbazole derivatives such as N-ethylcarbazole, Hole transport materials such as poly-N-vinylcarbazole and derivatives thereof, quinone compounds such as chloranil and broanthraquinone, tetraanoquinodimethane compounds, 2,4,7-trinitrofluorenone, 2,4,5, Fluoreno such as 7-tetranitro-9-fluorenone And an electron transport material such as a thiophene compound, a xanthone compound, and a thiophene compound, and a polymer having a group consisting of the above-described compounds in the main chain or side chain. These charge transport materials may be used alone or in combination of two or more.
電荷輸送層を構成する結着樹脂としては、例えば、ビスフェノールAタイプ或いはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体樹脂、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、塩素ゴム等の絶縁性樹脂、及びポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等が挙げられる。これらの結着樹脂は、単独又は2種以上混合して用いてもよい。
なお、電荷輸送性材料と上記結着樹脂との配合比は、例えば10:1乃至1:5が望ましい。
Examples of the binder resin constituting the charge transport layer include polycarbonate resin such as bisphenol A type or bisphenol Z type, acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene. Copolymer resin, acrylonitrile-butadiene copolymer resin, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-anhydrous maleic acid Insulating resins such as acid resins, silicone resins, phenol-formaldehyde resins, polyacrylamide resins, polyamide resins, and chlorinated rubber, and polyvinylcarbazole and polyvinylanthraces And organic photoconductive polymers such as polyvinyl pyrene, and the like. These binder resins may be used alone or in combination of two or more.
The mixing ratio between the charge transporting material and the binder resin is preferably 10: 1 to 1: 5, for example.
電荷輸送層は、上記成分を溶剤に加えた電荷輸送層形成用塗布液を用いて形成される。 The charge transport layer is formed using a charge transport layer forming coating solution in which the above components are added to a solvent.
電荷輸送層形成用塗布液中に粒子(例えばフッ素樹脂粒子)を分散させる方法としては、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。 As a method for dispersing particles (for example, fluororesin particles) in the coating liquid for forming the charge transport layer, a media dispersing machine such as a ball mill, a vibrating ball mill, an attritor, a sand mill, a horizontal sand mill, a stirring, an ultrasonic dispersing machine, a roll mill, etc. Medialess dispersers such as high-pressure homogenizers are used. Examples of the high-pressure homogenizer include a collision method in which the dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high-pressure state, and a penetration method in which a fine flow path is dispersed in a high-pressure state.
電荷輸送層層形成用塗布液を電荷発生層上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。
電荷輸送層の膜厚は、望ましくは5μm以上50μm以下、より望ましくは10μm以上40μm以下の範囲に設定される。
Examples of methods for applying the charge transport layer forming coating solution onto the charge generation layer include dip coating, push-up coating, wire bar coating, spray coating, blade coating, knife coating, and curtain coating. The usual method is used.
The film thickness of the charge transport layer is desirably set in the range of 5 μm to 50 μm, more desirably 10 μm to 40 μm.
(保護層)
保護層は、前述した電荷輸送性層を適用したものであり、前記一般式(I)で表される化合物の重合体を含有する。
この保護層を形成するにあたって、一般式(I)で表される化合物を含有する電荷輸送性組成物を用いるが、一般式(I)で表される化合物の総含有量は、電荷輸送性組成物(溶媒を除く全固形分質量)に対して、例えば、40質量%以上が望ましく、より望ましくは50質量%以上、更に望ましくは60質量%以上である。
この範囲とすることで、電気特性に優れ、硬化膜の厚膜化が実現される。
(Protective layer)
The protective layer is obtained by applying the above-described charge transporting layer, and contains a polymer of the compound represented by the general formula (I).
In forming this protective layer, a charge transporting composition containing the compound represented by the general formula (I) is used, and the total content of the compound represented by the general formula (I) is the charge transporting composition. For example, 40% by mass or more is desirable, more desirably 50% by mass or more, and still more desirably 60% by mass or more with respect to the product (total solid content mass excluding the solvent).
By setting it as this range, it is excellent in an electrical property and thickness of the cured film is implement | achieved.
また、本実施形態においては、一般式(I)で表される化合物と、反応性基を有さない公知の電荷輸送性材料と、を併用してもよい。反応性基を有さない公知の電荷輸送性材料は、電荷輸送を担わない反応性基を有さないため、電荷輸送性材料の成分濃度を高め、電気特性が更に改善されることから有効である。
この公知の電荷輸送性材料としては、前述の電荷輸送層を構成する電荷輸送性材料として挙げられたものが用いられる。
Moreover, in this embodiment, you may use together the compound represented with general formula (I), and the well-known charge transport material which does not have a reactive group. Known charge transporting materials that do not have reactive groups are effective because they do not have reactive groups that do not carry charge transport, increasing the component concentration of charge transporting materials and further improving electrical properties. is there.
As this known charge transporting material, those mentioned as the charge transporting material constituting the charge transporting layer are used.
以下、保護層を形成するための電荷輸送性組成物の他の成分について説明する。
保護層を形成するために用いる電荷輸送性組成物には、製膜性を確保する観点から、下記界面活性剤を含んでいてもよい。
Hereinafter, other components of the charge transporting composition for forming the protective layer will be described.
The charge transporting composition used for forming the protective layer may contain the following surfactant from the viewpoint of ensuring film forming properties.
界面活性剤は、例えば、(A)フッ素原子を有するアクリルモノマーを重合してなる構造、(B)炭素−炭素二重結合及びフッ素原子を有する構造、(C)アルキレンオキサイド構造、(D)炭素−炭素三重結合及び水酸基を有する構造のうち1種以上の構造を分子内に含む界面活性剤である。
この界面活性剤は、分子内に、(A)乃至(D)の構造を1種以上含有していればよく、2種以上を含有していてもよい。
Examples of the surfactant include (A) a structure formed by polymerizing an acrylic monomer having a fluorine atom, (B) a structure having a carbon-carbon double bond and a fluorine atom, (C) an alkylene oxide structure, and (D) carbon. -A surfactant containing in the molecule thereof one or more types of structures having a carbon triple bond and a hydroxyl group.
This surfactant needs to contain 1 or more types of the structure of (A) thru | or (D) in the molecule | numerator, and may contain 2 or more types.
以下、上記の(A)乃至(D)の構造と該構造を有する界面活性剤について説明する。 Hereinafter, the structures (A) to (D) and the surfactant having the structure will be described.
・(A)フッ素原子を有するアクリルモノマーを重合してなる構造
(A)フッ素原子を有するアクリルモノマーを重合してなる構造としては、特に制限されないが、フルオロアルキル基を有するアクリルモノマーを重合してなる構造であることが望ましく、パーフルオロアルキル基を有するアクリルモノマーを重合してなる構造であることがより望ましい。
(A) Structure formed by polymerizing an acrylic monomer having a fluorine atom (A) The structure formed by polymerizing an acrylic monomer having a fluorine atom is not particularly limited, but an acrylic monomer having a fluoroalkyl group is polymerized. The structure is preferably a structure obtained by polymerizing an acrylic monomer having a perfluoroalkyl group.
上記(A)の構造を有する界面活性剤としては、具体的には、ポリフローKL−600(共栄社化学社製)、エフトップEF−351、EF−352、EF−801、EF−802、EF−601(以上、JEMCO社製)などが挙げられる。 Specific examples of the surfactant having the structure (A) include Polyflow KL-600 (manufactured by Kyoeisha Chemical Co., Ltd.), F-top EF-351, EF-352, EF-801, EF-802, and EF- 601 (manufactured by JEMCO).
・(B)炭素−炭素二重結合及びフッ素原子を有する構造
(B)炭素−炭素二重結合及びフッ素原子を有する構造としては、特に制限されないが、下記構造式(B1)及び(B2)の少なくとも一方で示される基であることが望ましい。
(B) Structure having a carbon-carbon double bond and a fluorine atom (B) The structure having a carbon-carbon double bond and a fluorine atom is not particularly limited, but in the following structural formulas (B1) and (B2) It is desirable that the group be at least one of them.
(B)の構造を有する界面活性剤としては、アクリル重合体の側鎖に上記構造式(B1)及び(B2)の少なくとも一方で示される基を有する化合物、若しくは、下記構造式(B3)乃至(B5)のいずれかで示される化合物であることが望ましい。
(B)の構造を有する界面活性剤がアクリル重合体の側鎖に構造式(B1)及び(B2)の少なくとも一方を有する化合物である場合には、アクリル構造が組成物中の他の成分となじみやすい性質を有しているため、均一な最表面層を形成しうる。
また、(B)の構造を有する界面活性剤が、構造式(B3)乃至(B5)のいずれかで示される化合物である場合には、塗布の際のはじきを防止する傾向にあり、塗膜欠陥を抑制しうる。
As the surfactant having the structure (B), a compound having a group represented by at least one of the structural formulas (B1) and (B2) in the side chain of the acrylic polymer, or the following structural formulas (B3) to (B3) to The compound represented by any one of (B5) is desirable.
When the surfactant having the structure (B) is a compound having at least one of the structural formulas (B1) and (B2) in the side chain of the acrylic polymer, the acrylic structure and the other components in the composition A uniform outermost surface layer can be formed because of the familiarity.
In addition, when the surfactant having the structure (B) is a compound represented by any one of the structural formulas (B3) to (B5), it tends to prevent repelling during coating. Defects can be suppressed.
上記構造式(B3)乃至(B5)中、v及びwはそれぞれ独立に1以上の整数を示し、R’は水素原子又は1価の有機基を示し、Rfはそれぞれ独立に構造式(B1)又は(B2)で示される基を表す。
構造式(B3)乃至(B5)中、R’が表す1価の有機基としては、例えば、炭素数1以上30以下のアルキル基、炭素数1以上30以下のヒドロキシアルキル基が挙げられる。
In the structural formulas (B3) to (B5), v and w each independently represent an integer of 1 or more, R ′ represents a hydrogen atom or a monovalent organic group, and Rf each independently represents a structural formula (B1). Or represents the group shown by (B2).
In the structural formulas (B3) to (B5), examples of the monovalent organic group represented by R ′ include an alkyl group having 1 to 30 carbon atoms and a hydroxyalkyl group having 1 to 30 carbon atoms.
(B)の構造を有する界面活性剤の市販品としては以下のものが挙げられる。
例えば、構造式(B3)乃至(B5)のいずれかで示される化合物として、フタージェント100、100C、110、140A、150、150CH、A−K、501、250、251、222F、FTX−218、300、310、400SW、212M、245M、290M、FTX−207S、FTX−211S、FTX−220S、FTX−230S、FTX−209F、FTX−213F、FTX−222F、FTX−233F、FTX−245F、FTX−208G、FTX−218G、FTX−230G、FTX−240G、FTX−204D、FTX−280D、FTX−212D、FTX−216D、FTX−218D、FTX−220D、FTX−222D(ネオス株式会社製)等が挙げられる。
また、アクリル重合体の側鎖に構造式(B1)及び(B2)の少なくとも一方を有する化合物としては、KB−L82、KB−L85、KB−L97、KB−L109、KB−L110、KB−F2L、KB−F2M、KB−F2S、KB−F3M、KB−FaM(ネオス株式会社製)等が挙げられる。
The following are mentioned as a commercial item of surfactant which has the structure of (B).
For example, as a compound represented by any one of structural formulas (B3) to (B5), the following are possible: 100, 100C, 110, 140A, 150, 150CH, AK, 501, 250, 251, 222F, FTX-218, 300, 310, 400SW, 212M, 245M, 290M, FTX-207S, FTX-211S, FTX-220S, FTX-230S, FTX-209F, FTX-213F, FTX-222F, FTX-233F, FTX-245F, FTX- 208G, FTX-218G, FTX-230G, FTX-240G, FTX-204D, FTX-280D, FTX-212D, FTX-216D, FTX-218D, FTX-220D (manufactured by Neos Corporation), etc. It is done.
Moreover, as a compound which has at least one of Structural formula (B1) and (B2) in the side chain of an acrylic polymer, KB-L82, KB-L85, KB-L97, KB-L109, KB-L110, KB-F2L , KB-F2M, KB-F2S, KB-F3M, KB-FaM (manufactured by Neos Corporation) and the like.
・(C)アルキレンオキサイド構造
(C)アルキレンオキサイド構造としては、アルキレンオキサイド、ポリアルキレンオキサイドを含む。具体的には、アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイドなどがあり、これらのアルキレンオキサイドの繰り返し数が2以上10000以下であるポリアルキレンオキサイドであってもよい。
(C)アルキレンオキサイド構造を有する界面活性剤としては、ポリエチレングリコール、ポリエーテル消泡剤、ポリエーテル変性シリコーンオイルなどが挙げられる。
ポリエチレングリコールとしては、平均分子量が2000以下のものが好ましく、平均分子量が2000以下のポリエチレングリコールとしては、ポリエチレングリコール2000(平均分子量2000)、ポリエチレングリコール600(平均分子量600)、ポリエチレングリコール400(平均分子量400)、ポリエチレングリコール200(平均分子量200)等が挙げられる。
また、PE−M、PE−L(以上、和光純薬工業社製)、消泡剤No.1、消泡剤No.5(以上、花王社製)等のポリエーテル消泡剤も好適な例として挙げられる。
-(C) alkylene oxide structure (C) As an alkylene oxide structure, an alkylene oxide and a polyalkylene oxide are included. Specific examples of the alkylene oxide include ethylene oxide and propylene oxide, and the alkylene oxide may be a polyalkylene oxide having a repeating number of 2 to 10,000.
Examples of the surfactant (C) having an alkylene oxide structure include polyethylene glycol, polyether antifoaming agent, and polyether-modified silicone oil.
The polyethylene glycol preferably has an average molecular weight of 2000 or less, and the polyethylene glycol having an average molecular weight of 2000 or less includes polyethylene glycol 2000 (average molecular weight 2000), polyethylene glycol 600 (average molecular weight 600), polyethylene glycol 400 (average molecular weight). 400), polyethylene glycol 200 (average molecular weight 200), and the like.
In addition, PE-M, PE-L (above, manufactured by Wako Pure Chemical Industries, Ltd.), antifoam No. 1. Antifoaming agent No. 1 Polyether antifoaming agents such as 5 (above, manufactured by Kao Corporation) are also suitable examples.
(C)アルキレンオキサイド構造の他に分子内にフッ素原子を含む界面活性剤としては、アルキレンオキサイド若しくはポリアルキレンオキサイドをフッ素原子を有する重合体の側鎖に有するものや、アルキレンオキサイド若しくはポリアルキレンオキサイドの末端がフッ素原子を含む置換基で置換されたものなどが挙げられる。
(C)アルキレンオキサイド構造の他に分子内にフッ素原子を含む界面活性剤として具体的には、例えば、メガファックF−443、F−444、F−445、F−446(以上、大日本インキ化学工業株式会社製)、フタージェント250、251、222F(以上、ネオス社製)、POLY FOX PF636、PF6320、PF6520、PF656(以上、北村化学社製)などが挙げられる。
(C) As the surfactant containing a fluorine atom in the molecule in addition to the alkylene oxide structure, those having an alkylene oxide or polyalkylene oxide in the side chain of the polymer having a fluorine atom, and alkylene oxide or polyalkylene oxide Examples thereof include those in which the terminal is substituted with a substituent containing a fluorine atom.
(C) Specific examples of surfactants containing a fluorine atom in the molecule in addition to the alkylene oxide structure include, for example, Megafac F-443, F-444, F-445, F-446 (and above, Dainippon Ink, Inc.). Chemical Industry Co., Ltd.), Footgent 250, 251, 222F (above, manufactured by Neos), POLY FOX PF636, PF6320, PF6520, PF656 (above, made by Kitamura Chemical Co., Ltd.).
(C)アルキレンオキサイド構造の他に分子内にシリコーン構造を含む界面活性剤としては、具体的には、KF351(A)、KF352(A)、KF353(A)、KF354(A)、KF355(A)、KF615(A)、KF618、KF945(A)、KF6004(以上、信越化学工業社製)、TSF4440、TSF4445、TSF4450、TSF4446、TSF4452、TSF4453、TSF4460(以上、GE東芝シリコン社製)、BYK−300、302、306、307、310、315、320、322、323、325、330、331、333、337、341、344、345、346、347、348、370、375、377,378、UV3500、UV3510、UV3570等(以上、ビックケミー・ジャパン株式会社社製)が挙げられる。 (C) Specific examples of the surfactant containing a silicone structure in the molecule in addition to the alkylene oxide structure include KF351 (A), KF352 (A), KF353 (A), KF354 (A), KF355 (A ), KF615 (A), KF618, KF945 (A), KF6004 (manufactured by Shin-Etsu Chemical Co., Ltd.), TSF4440, TSF4445, TSF4450, TSF4446, TSF4452, TSF4453, TSF4460 (manufactured by GE Toshiba Silicon Corporation), BYK- 300, 302, 306, 307, 310, 315, 320, 322, 323, 325, 330, 331, 333, 337, 341, 344, 345, 346, 347, 348, 370, 375, 377, 378, UV3500, UV3510, UV3570, etc. (above, Kkukemi Japan Co., Ltd.) and the like.
・(D)炭素−炭素三重結合及び水酸基を有する構造
(D)炭素−炭素三重結合及び水酸基を有する構造としては特に制限はなく、この構造を有する界面活性剤としては、以下に示す化合物が挙げられる。
(D)炭素−炭素三重結合及び水酸基を有する構造を有する界面活性剤としては、分子中に三重結合及び水酸基を有する化合物が挙げられ、具体的には、例えば、2−プロピン−1−オール、1−ブチン−3−オール、2−ブチン−1−オール、3−ブチン−1−オール、1−ペンチン−3−オール、2−ペンチン−1−オール、3−ペンチン−1−オール、4−ペンチン−1−オール、4−ペンチン−2−オール、1−ヘキシン−3−オール、2−ヘキシン−1−オール、3−ヘキシン−1−オール、5−ヘキシン−1−オール、5−ヘキシン−3−オール、1−ヘプチン−3−オール、2−ヘプチン−1−オール、3−ヘプチン−1−オール、4−ヘプチン−2−オール、5−ヘプチン−3−オール、1−オクチン−3−オール、1−オクチン−3−オール、3−オクチン−1−オール、3−ノニン−1−オール、2−デシン−1−オール、3−デシン−1−オール、10−ウンデシン−1−オール、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンテン−4−イン−3−オール、3−メチル−1−ペンチン−3−オール、5−メチル−1−ヘキシン−3−オール、3−エチル−1−ペンチン−3−オール、3−エチル−1−ヘプチン−3−オール、4−エチル−1−オクチン−3−オール、3,4−ジメチル−1−ペンチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、3,6−ジメチル−1−ヘプチン−3−オール、2,2,8,8−テトラメチル−3,6−ノナジイン−5−オール、4,6−ノナデカジイン−1−オール、10,12−ペンタコサジイン−1−オール、2−ブチン−1,4−ジオール、3−ヘキシン−2,5−ジオール、2,4−ヘキサジイン−1,6−ジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、(+)−1,6−ビス(2−クロロフェニル)−1,6−ジフェニル−2,4−ヘキサジイン−1,6−ジオール、(−)−1,6−ビス(2−クロロフェニル)−1,6−ジフェニル−2,4−ヘキサジイン−1,6−ジオール、2−ブチン−1,4−ジオール ビス(2−ヒロドキシエチル)、1,4−ジアセトキシ−2−ブチン、4−ジエチルアミノ−2−ブチン−1−オール、1,1−ジフェニル−2−プロピン−1−オール、1−エチニル−1−シクロヘキサノール、9−エチニル−9−フルオレノール、2,4−ヘキサジインジイル−1,6−ビス(4−フェニルアゾベンゼンスルフォネート)、2−ヒドロキシ−3−ブチン酸、2−ヒドロキシ−3−ブチン酸 エチルエステル、2−メチル−4−フェニル−3−ブチン−2−オール、メチル プロパラギル エーテル、5−フェニル−4−ペンチン−1−オール、1−フェニル−1−プロピン−3−オール、1−フェニル−2−プロピン−1−オール、4−トリメチルシリル−3−ブチン−2−オール、3−トリメチルシリル−2−プロピン−1−ol等が挙げられる。
また、上記の化合物の水酸基の一部又は全部にエチレンオキサイド等のアルキレンオキサイドが付加した化合物(例えば、サーフィノール400シリーズ(信越化学社製))等が挙げられる。
-(D) Structure having a carbon-carbon triple bond and a hydroxyl group (D) The structure having a carbon-carbon triple bond and a hydroxyl group is not particularly limited, and examples of the surfactant having this structure include the following compounds. It is done.
(D) Examples of the surfactant having a structure having a carbon-carbon triple bond and a hydroxyl group include compounds having a triple bond and a hydroxyl group in the molecule. Specifically, for example, 2-propyn-1-ol, 1-butyn-3-ol, 2-butyn-1-ol, 3-butyn-1-ol, 1-pentyn-3-ol, 2-pentyn-1-ol, 3-pentyn-1-ol, 4- Pentyn-1-ol, 4-pentyn-2-ol, 1-hexyn-3-ol, 2-hexyn-1-ol, 3-hexyn-1-ol, 5-hexyn-1-ol, 5-hexyne- 3-ol, 1-heptin-3-ol, 2-heptin-1-ol, 3-heptin-1-ol, 4-heptin-2-ol, 5-heptin-3-ol, 1-octin-3- All, 1-o Chin-3-ol, 3-octyn-1-ol, 3-nonin-1-ol, 2-decyn-1-ol, 3-decyn-1-ol, 10-undecin-1-ol, 3-methyl- 1-butyn-3-ol, 3-methyl-1-penten-4-in-3-ol, 3-methyl-1-pentyn-3-ol, 5-methyl-1-hexyn-3-ol, 3- Ethyl-1-pentyn-3-ol, 3-ethyl-1-heptin-3-ol, 4-ethyl-1-octin-3-ol, 3,4-dimethyl-1-pentyn-3-ol, 3, 5-dimethyl-1-hexyn-3-ol, 3,6-dimethyl-1-heptin-3-ol, 2,2,8,8-tetramethyl-3,6-nonadiin-5-ol, 4,6 -Nonadecadiin-1-ol, 10,12-pe Tacosadin-1-ol, 2-butyne-1,4-diol, 3-hexyne-2,5-diol, 2,4-hexadiyne-1,6-diol, 2,5-dimethyl-3-hexyne-2, 5-diol, 3,6-dimethyl-4-octyne-3,6-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, (+)-1,6-bis (2-Chlorophenyl) -1,6-diphenyl-2,4-hexadiyne-1,6-diol, (-)-1,6-bis (2-chlorophenyl) -1,6-diphenyl-2,4-hexadiyne -1,6-diol, 2-butyne-1,4-diol bis (2-hydroxyethyl), 1,4-diacetoxy-2-butyne, 4-diethylamino-2-butyn-1-ol, 1,1-diphenyl -2-Propin 1-ol, 1-ethynyl-1-cyclohexanol, 9-ethynyl-9-fluorenol, 2,4-hexadiindiyl-1,6-bis (4-phenylazobenzenesulfonate), 2-hydroxy-3- Butynoic acid, 2-hydroxy-3-butynoic acid ethyl ester, 2-methyl-4-phenyl-3-butyn-2-ol, methyl propargyl ether, 5-phenyl-4-pentyn-1-ol, 1-phenyl- 1-propyn-3-ol, 1-phenyl-2-propyne-1-ol, 4-trimethylsilyl-3-butyn-2-ol, 3-trimethylsilyl-2-propyne-1-ol and the like can be mentioned.
Moreover, the compound (For example, Surfynol 400 series (made by Shin-Etsu Chemical Co., Ltd.) etc.) which alkylene oxides, such as ethylene oxide, added to a part or all of the hydroxyl group of said compound are mentioned.
(D)炭素−炭素三重結合及び水酸基を有する構造を有する界面活性剤としては、下記一般式(D1)及び(D2)のいずれかで示される化合物が望ましい。 (D) As the surfactant having a structure having a carbon-carbon triple bond and a hydroxyl group, a compound represented by any one of the following general formulas (D1) and (D2) is desirable.
上記一般式(D1)及び(D2)中、Ra、Rb、Rc、及びRdは、それぞれ独立に、1価の有機基を示し、x、y、及びzは、それぞれ独立に、1以上の整数を示す。
上記一般式(D1)又は(D2)で示される化合物の中でも、Ra、Rb、Rc、Rdが、アルキル基であるものが望ましい。また、Ra及びRbの少なくとも一方、Rc及びRdの少なくとも一方が分岐アルキル基であるものがより望ましい。更に、zは1以上10以下であることが望ましい。x及びyは、それぞれ1以上500以下であることが望ましい。
In the general formulas (D1) and (D2), R a , R b , R c , and R d each independently represent a monovalent organic group, and x, y, and z are each independently An integer of 1 or more is shown.
Among the compounds represented by the general formula (D1) or (D2), those in which R a , R b , R c and R d are alkyl groups are preferable. More preferably, at least one of R a and R b and at least one of R c and R d are branched alkyl groups. Furthermore, z is preferably 1 or more and 10 or less. x and y are each preferably 1 or more and 500 or less.
一般式(D1)又は(D2)で示される化合物の市販品としては、サーフィノール400シリーズ(信越化学社製)が挙げられる。 Surfinol 400 series (made by Shin-Etsu Chemical Co., Ltd.) is mentioned as a commercial item of the compound shown by general formula (D1) or (D2).
上述した(A)乃至(D)の構造を有する界面活性剤は、1種を単独で用いてもよいが、複数種を混合して用いてもよい。また、複数種を混合して用いる場合、効果を損なわない範囲において、(A)乃至(D)の構造を有する界面活性剤とは異なる構造の界面活性剤を併用してもよい。 The surfactants having the structures (A) to (D) described above may be used singly or in combination of two or more. In the case of using a mixture of a plurality of types, a surfactant having a structure different from the surfactant having the structure of (A) to (D) may be used in combination as long as the effect is not impaired.
併用しうる界面活性剤としては、以下に挙げるフッ素原子を有する界面活性剤やシリコーン構造を有する界面活性剤が挙げられる。
即ち、(A)乃至(D)の構造を有する界面活性剤と併用しうるフッ素原子を有する界面活性剤としては、パーフルオロアルキルスルホン酸類(例えば、パーフルオロブタンスルホン酸、パーフルオロオクタンスルホン酸など)、パーフルオロアルキルカルボン酸類(例えば、パーフルオロブタンカルボン酸、パーフルオロオクタンカルボン酸など)、パーフルオロアルキル基含有リン酸エステルが好適に挙げられる。パーフルオロアルキルスルホン酸類、及びパーフルオロアルキルカルボン酸類は、その塩及びそのアミド変性体であってもよい。
パーフルオロアルキルスルホン酸類の市販品としては、例えば、メガファックF−114(大日本インキ化学工業株式会社製)、エフトップEF−101、EF102、EF−103、EF−104、EF−105、EF−112、EF−121、EF−122A、EF−122B、EF−122C、EF−123A(以上、JEMCO社製)、フタージェント 100、100C、110、140A、150、150CH、A−K、501(以上、ネオス社製)などが挙げられる。
パーフルオロアルキルカルボン酸類の市販品としては、例えば、メガファックF−410(大日本インキ化学工業株式会社製)、エフトップ EF−201、EF−204(以上、JEMCO社製)などが挙げられる。
パーフルオロアルキル基含有リン酸エステルの市販品としては、メガファックF−493、F−494(以上、大日本インキ化学工業株式会社製)エフトップ EF−123A、EF−123B、EF−125M、EF−132、(以上、JEMCO社製)などが挙げられる。
Examples of the surfactant that can be used in combination include the following surfactants having a fluorine atom and surfactants having a silicone structure.
That is, as the surfactant having a fluorine atom that can be used in combination with the surfactant having the structure of (A) to (D), perfluoroalkylsulfonic acid (for example, perfluorobutanesulfonic acid, perfluorooctanesulfonic acid, etc.) ), Perfluoroalkyl carboxylic acids (for example, perfluorobutane carboxylic acid, perfluoro octane carboxylic acid, etc.), and perfluoroalkyl group-containing phosphate esters. Perfluoroalkylsulfonic acids and perfluoroalkylcarboxylic acids may be salts thereof and amide-modified products thereof.
Examples of commercially available perfluoroalkyl sulfonic acids include Megafac F-114 (manufactured by Dainippon Ink & Chemicals, Inc.), F-top EF-101, EF102, EF-103, EF-104, EF-105, and EF. -112, EF-121, EF-122A, EF-122B, EF-122C, EF-123A (JEMCO) As mentioned above, the Neos company) etc. are mentioned.
Examples of commercially available perfluoroalkylcarboxylic acids include Megafac F-410 (Dainippon Ink Chemical Co., Ltd.), F-Top EF-201, EF-204 (above, JEMCO).
As commercial products of perfluoroalkyl group-containing phosphates, MegaFac F-493, F-494 (above, manufactured by Dainippon Ink & Chemicals, Inc.) F-top EF-123A, EF-123B, EF-125M, EF -132 (above, manufactured by JEMCO).
なお、(A)乃至(D)の構造を有する界面活性剤と併用しうるフッ素原子を有する界面活性剤としては、上記に限られず、例えば、フッ素原子含有ベタイン構造化合物(例えば、フタージェント 400SW、ネオス社製)、両性イオン基を持つ界面活性剤(例えば、フタージェント SW(ネオス社製))も好適に用いられる。 In addition, the surfactant having a fluorine atom that can be used in combination with the surfactant having the structure of (A) to (D) is not limited to the above, and for example, a fluorine atom-containing betaine structure compound (for example, Factent 400SW, Neos) and surfactants having amphoteric ion groups (for example, Footent SW (manufactured by Neos)) are also preferably used.
(A)乃至(D)の構造を有する界面活性剤と併用しうるシリコーン構造を有する界面活性剤としては、ジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーンや、それらの誘導体の如く一般的なシリコーンオイルが挙げられる。 Examples of the surfactant having a silicone structure that can be used in combination with the surfactant having the structure of (A) to (D) include general silicone oils such as dimethyl silicone, methylphenyl silicone, diphenyl silicone, and derivatives thereof. Can be mentioned.
界面活性剤の含有量は、電荷輸送性組成物(溶媒を除く全固形分質量)に対して、望ましくは0.01質量%以上1質量%以下、より望ましくは0.02質量%以上0.5質量%以下である。界面活性剤の含有量が0.01質量%未満の場合は塗膜欠陥防止効果が不十分となる傾向にある。また、界面活性剤の含有量が1質量%を超えると、界面活性剤と硬化成分(一般式(I)で示される化合物やその他のモノマー、オリゴマーなど)の分離により、得られる硬化膜の強度が低下する傾向にある。
また、全界面活性剤中、(A)乃至(D)の構造を有する界面活性剤は、1質量%以上含まれることが望ましい、10質量%以上含まれることがより望ましい。
The content of the surfactant is desirably 0.01% by mass or more and 1% by mass or less, more desirably 0.02% by mass or more and 0.000% by mass or more with respect to the charge transporting composition (total solid content excluding the solvent). 5% by mass or less. When the content of the surfactant is less than 0.01% by mass, the coating film defect preventing effect tends to be insufficient. Further, when the content of the surfactant exceeds 1% by mass, the strength of the cured film obtained by separation of the surfactant and the curing component (a compound represented by the general formula (I), other monomers, oligomers, etc.) is obtained. Tend to decrease.
Further, the surfactant having the structure of (A) to (D) is preferably contained in an amount of 1% by mass or more, more preferably 10% by mass or more.
また、保護層を形成するために用いる電荷輸送性組成物には、該組成物の粘度、膜の強度、かとう性、平滑性、クリーニング性などの制御を目的とし、電荷輸送能を持たないラジカル重合性のモノマー、オリゴマー等が添加されていてもよい。
1官能のラジカル重合性のモノマーとしては、例えば、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、2−ヒドロキシアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールメタクリレート、ヒドロキシエチルo−フェニルフェノールアクリレート、o−フェニルフェノールグリシジルエーテルアクリレート等が挙げられる。
In addition, the charge transporting composition used for forming the protective layer includes a radical having no charge transporting ability for the purpose of controlling viscosity, film strength, flexibility, smoothness, cleaning property, etc. of the composition. Polymerizable monomers, oligomers and the like may be added.
Examples of the monofunctional radical polymerizable monomer include isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, 2-hydroxy acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, methoxypolyethylene glycol acrylate, methoxypolyethylene glycol methacrylate , Phenoxypolyethyleneglycol Lumpur acrylate, phenoxy polyethylene glycol methacrylate, hydroxyethyl o- phenylphenol acrylate, and the like o- phenylphenol glycidyl ether acrylate.
2官能のラジカル重合性のモノマーとしては、例えば、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、2−n−ブチル−2−エチル−1,3‐プロパンジオールジアクリレート、トリプロピレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジオキサングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、トリシクロデカンメタノールジアクリレート、トリシクロデカンメタノールジメタクリレート等が挙げられる。 Examples of the bifunctional radical polymerizable monomer include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 2-n-butyl-2-ethyl- 1,3-propanediol diacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate, dioxane glycol diacrylate, polytetramethylene glycol diacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, tricyclodecane Examples include methanol diacrylate and tricyclodecane methanol dimethacrylate.
3官能以上のラジカル重合性のモノマーとしては、例えば、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパンEO付加トリアクリレート、グリセリンPO付加トリアクリレート、トリスアクロイルオキシエチルフォスフェート、ペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌルトリアクリレートが挙げられる。 Examples of the tri- or more functional radical polymerizable monomer include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol acrylate, trimethylolpropane EO-added triacrylate, glycerin PO-added triacrylate, and trisacryloyloxyethylphosphine. Fate, pentaerythritol tetraacrylate, ethoxylated isocyanuric triacrylate.
また、ラジカル重合性のオリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。 Moreover, as a radically polymerizable oligomer, an epoxy acrylate type, a urethane acrylate type, and a polyester acrylate type oligomer are mentioned, for example.
電荷輸送能を持たないラジカル重合性のモノマー、オリゴマーは、電荷輸送性組成物(溶媒を除く全固形分質量)に対して0質量以上50質量%以下含有することが望ましく、0質量以上40質量%以下含有することがより望ましく、0質量以上30質量%以下含有することが更に望ましい。 The radically polymerizable monomer or oligomer having no charge transporting ability is desirably contained in an amount of 0 to 50% by mass, and 0 to 40% by mass with respect to the charge transporting composition (total solid content excluding solvent). % Or less is more preferable, and 0 to 30% by mass is more preferable.
また、保護層を形成するために用いる電荷輸送性組成物には、熱ラジカル発生剤又はその誘導体を添加することが望ましい。つまり、保護層には、熱ラジカル発生剤又はその誘導体が含まれていることが望ましい。
ここで、「熱ラジカル発生剤の誘導体」とは、熱によってラジカルを発生させた後の反応残さ、もしくはラジカル活性種が重合末端に結合したものを意味する。
In addition, it is desirable to add a thermal radical generator or a derivative thereof to the charge transporting composition used for forming the protective layer. That is, it is desirable that the protective layer contains a thermal radical generator or a derivative thereof.
Here, the “derivative of a thermal radical generator” means a reaction residue after a radical is generated by heat, or a radical active species bonded to a polymerization terminal.
ここで、保護層を構成する硬化膜(架橋膜)は、上記各成分を含む電荷輸送性組成物を、熱、光、電子線など様々な方法にて硬化することで得られるが、硬化膜の電気特性、機械的強度等の特性のバランスを取るためには熱硬化が望ましい。通常、一般的なアクリル塗料などを硬化する際には無触媒で硬化が可能な電子線、短時間で硬化が可能な光重合が好適に用いられる。しかしながら、電子写真感光体は最表面層の被形成面となる感光層が感光材料を含むため、この感光材料にダメージを与え難くするため、また、得られる硬化膜の表面性状を高めるため、穏やかに反応を進められる熱硬化が望ましい。
したがって、熱硬化は無触媒で行ってもよいが、上記熱ラジカル発生剤又はその誘導体を触媒として用いることが望ましい。これにより、繰り返し使用による、ゴーストの発生が抑制され易くなる。
熱ラジカル発生剤又はその誘導体は特に限定されないが、保護層の形成時における感光層中の感光材料のダメージを抑制するために、10時間半減期温度が40℃以上110℃以下のものが望ましい。
Here, the cured film (crosslinked film) constituting the protective layer can be obtained by curing the charge transporting composition containing each of the above components by various methods such as heat, light, and electron beam. In order to balance the properties such as the electrical properties and mechanical strength, thermosetting is desirable. Usually, when curing a general acrylic paint or the like, an electron beam that can be cured without a catalyst and photopolymerization that can be cured in a short time are preferably used. However, in the electrophotographic photosensitive member, since the photosensitive layer which is the surface of the outermost layer contains a photosensitive material, it is difficult to damage the photosensitive material, and in order to improve the surface properties of the obtained cured film, It is desirable to perform thermosetting that allows the reaction to proceed.
Therefore, although thermosetting may be performed without a catalyst, it is desirable to use the thermal radical generator or a derivative thereof as a catalyst. Thereby, it becomes easy to suppress generation | occurrence | production of the ghost by repeated use.
The thermal radical generator or derivative thereof is not particularly limited, but a 10-hour half-life temperature of 40 ° C. or higher and 110 ° C. or lower is desirable in order to suppress damage to the photosensitive material in the photosensitive layer during the formation of the protective layer.
熱ラジカル発生剤の市販品としては、V−30(10時間半減期温度:104℃)、V−40(同:88℃)、V−59(同:67℃)、V−601(同:66℃)、V−65(同:51℃)、V−70(同:30℃)、VF−096(同:96℃)、Vam−110(同:111℃)、Vam−111(同:111℃)、VE-073(同:73℃)(以上、和光純薬工業製)、OTAZO−15(同:61℃)、OTAZO−30(同:57℃)、AIBN(同:65℃)、AMBN(同:67℃)、ADVN(同:52℃)、ACVA(同:68℃)(以上、大塚化学社製)等のアゾ系開始剤;
パーテトラA、パーヘキサHC、パーヘキサC、パーヘキサV、パーヘキサ22、パーヘキサMC、パーブチルH,パークミルH、パークミルP、パーメンタH、パーオクタH、パーブチルC、パーブチルD、パーヘキシルD、パーロイルIB、パーロイル355、パーロイルL、パーロイルSA、ナイパーBW、ナイパーBMT−K40/M、パーロイルIPP、パーロイルNPP、パーロイルTCP、パーロイルOPP、パーロイルSBP、パークミルND、パーオクタND、パーヘキシルND、パーブチルND、パーブチルNHP、パーヘキシルPV、パーブチルPV、パーヘキサ250、パーオクタO、パーヘキシルO、パーブチルO、パーブチルL、パーブチル355、パーヘキシルI、パーブチルI、パーブチルE、パーヘキサ25Z、パーブチルA、パーへヘキシルZ、パーブチルZT、パーブチルZ(以上、日油化学社製)、カヤケタールAM−C55、トリゴノックス36−C75、ラウロックス、パーカドックスL−W75、パーカドックスCH−50L、トリゴノックスTMBH、カヤクメンH、カヤブチルH−70、ペルカドックスBC−FF、カヤヘキサAD、パーカドックス14、カヤブチルC、カヤブチルD、カヤヘキサYD−E85、パーカドックス12−XL25、パーカドックス12−EB20、トリゴノックス22−N70、トリゴノックス22−70E、トリゴノックスD−T50、トリゴノックス423−C70、カヤエステルCND−C70、カヤエステルCND−W50、トリゴノックス23−C70、トリゴノックス23−W50N、トリゴノックス257−C70、カヤエステルP−70、カヤエステルTMPO−70、トリゴノックス121、カヤエステルO、カヤエステルHTP−65W、カヤエステルAN、トリゴノックス42、トリゴノックスF−C50、カヤブチルB、カヤカルボンEH−C70、カヤカルボンEH−W60、カヤカルボンI−20、カヤカルボンBIC−75、トリゴノックス117、カヤレン6−70(以上、化薬アクゾ社製)、ルペロックス LP(同:64℃)、ルペロックス 610(同:37℃)、ルペロックス 188(同:38℃)、ルペロックス 844(同:44℃)、ルペロックス 259(同:46℃)、ルペロックス 10(同:48℃)、ルペロックス 701(同:53℃)、ルペロックス 11(同:58℃)、ルペロックス 26(同:77℃)、ルペロックス 80(同:82℃)、ルペロックス 7(同:102℃)、ルペロックス 270(同:102℃)、ルペロックス P(同:104℃)、ルペロックス 546(同:46℃)、ルペロックス 554(同:55℃)、ルペロックス 575(同:75℃)、ルペロックス TANPO(同:96℃)、ルペロックス 555(同:100℃)、ルペロックス 570(同:96℃)、ルペロックス TAP(同:100℃)、ルペロックス TBIC(同:99℃)、ルペロックス TBEC(同:100℃)、ルペロックス JW(同:100℃)、ルペロックス TAIC(同:96℃)、ルペロックス TAEC(同:99℃)、ルペロックス DC(同:117℃)、ルペロックス 101(同:120℃)、ルペロックス F(同:116℃)、ルペロックス DI(同:129℃)、ルペロックス 130(同:131℃)、ルペロックス 220(同:107℃)、ルペロックス 230(同:109℃)、ルペロックス 233(同:114℃)、ルペロックス 531(同:93℃)(以上、アルケマ吉富社製)などが挙げられる。
Commercially available products of thermal radical generators include V-30 (10-hour half-life temperature: 104 ° C.), V-40 (same: 88 ° C.), V-59 (same: 67 ° C.), V-601 (same as above: 66 ° C), V-65 (same: 51 ° C), V-70 (same: 30 ° C), VF-096 (same: 96 ° C), Vam-110 (same: 111 ° C), Vam-111 (same: 111 ° C), VE-073 (same as above: 73 ° C) (manufactured by Wako Pure Chemical Industries, Ltd.), OT AZO- 15 (same as 61 ° C), OT AZO- 30 (same as 57 ° C), AIBN (same as 65) ° C), AMBN (same: 67 ° C), ADVN (same: 52 ° C), ACVA (same: 68 ° C) (above, manufactured by Otsuka Chemical Co., Ltd.);
Pertetra A, Perhexa HC, Perhexa C, Perhexa V, Perhexa 22, Perhexa MC, Perbutyl H, Park Mill H, Park Mill P, Permenta H, Per Octa H, Perbutyl C, Perbutyl D, Perhexyl D, Parroyl IB, Parroyl 355, Parroyl L , Parroyl SA, Niper BW, Niper BMT-K40 / M, Parroyl IPP, Parroyl NPP, Parroyl TCP, Parroyl OPP, Parroyl SBP, Parkmill ND, Perocta ND, Perhexyl ND, Perbutyl ND, Perbutyl NHP, Perhexyl PV, Perbutyl PV, Perhexa 250, Perocta O, Perhexyl O, Perbutyl O, Perbutyl L, Perbutyl 355, Perhexyl I, Perbutyl I, Perbutyl E, Perhexa 5Z, perbutyl A, perhexyl Z, perbutyl ZT, perbutyl Z (manufactured by NOF Chemical Co., Ltd.), Kayaketal AM-C55, Trigonox 36-C75, Laurox, Parkardox L-W75, Percadox CH-50L, Trigonox TMBH, Kayakumen H, Kayabutyl H-70, Percadox BC-FF, Kaya Hexa AD, Parka Dox 14, Kaya Butyl C, Kaya Butyl D, Kaya Hexa YD-E85, Perkadox 12-XL25, Perkadox 12-EB20, Trigonox 22-N70, Trigonox 22-70E, Trigonox DT50, Trigonox 423-C70, Kayaester CND-C70, Kayaester CND-W50, Trigonox 23-C70, Trigonox 23-W5 N, Trigonox 257-C70, Kayaester P-70, Kayaester TMPO-70, Trigonox 121, Kayaester O, Kayaester HTP-65W, Kayaester AN, Trigonox42, Trigonox F-C50, Kayabutyl B, Kayacarboxyl EH- C70, Kaya-Carbon EH-W60, Kaya-Carbon I-20, Kaya-Carbon BIC-75, Trigonox 117, Kayalen 6-70 (manufactured by Kayaku Akzo), Luperox LP (same: 64 ° C.), Ruperox 610 (same: 37 ° C. ), Lupelox 188 (same: 38 ° C), Lupelox 844 (same: 44 ° C), Lupelox 259 (same: 46 ° C), Lupelox 10 (same: 48 ° C), Lupelox 701 (same: 53 ° C), Lupelox 11 ( Same: 58 ℃) Rox 26 (same: 77 ° C), Lupelox 80 (same: 82 ° C), Lupelox 7 (same: 102 ° C), Lupelox 270 (same: 102 ° C), Lupelox P (same: 104 ° C), Lupelox 546 (same: 46 ° C), Lupelox 554 (same: 55 ° C), Lupelox 575 (same: 75 ° C), Lupelox TANPO (same: 96 ° C), Lupelox 555 (same: 100 ° C), Lupelox 570 (same: 96 ° C), Lupelox TAP (same as above: 100 ° C.), Luperox TBIC (same as above: 99 ° C.), Luperlocks TBEC (same as above: 100 ° C.), Luperlocks JW (same as above: 100 ° C.), Lupelox TAIC (same as above: 96 ° C.), Lupelox TAEC (same as 99) ° C), Luperox DC (same as 117 ° C), Luperox 101 (same as 120 ° C) Lupelox F (same as 116 ° C), Lupelox DI (same as 129 ° C), Lupelox 130 (same as 131 ° C), Lupelox 220 (same as 107 ° C), Lupelox 230 (same as 109 ° C), Lupelox 233 (same as above) : 114 ° C.), Ruperox 531 (same as 93 ° C.) (above, manufactured by Arkema Yoshitomi).
熱ラジカル発生剤又はその誘導体は、電荷輸送性組成物中の反応性化合物(一般式(I)で表される化合物+その他の反応性化合物)に対して0.001質量%以上10質量%以下含有することが望ましく、0.01質量%以上5質量%以下含有することがより望ましく、0.1質量以上3質量%以下含有することが更に望ましい。 The thermal radical generator or derivative thereof is 0.001% by mass or more and 10% by mass or less based on the reactive compound (the compound represented by the general formula (I) + the other reactive compound) in the charge transporting composition. It is desirable to contain, more desirably 0.01% by mass to 5% by mass, and still more desirably 0.1% by mass to 3% by mass.
また、保護層を形成するために用いる電荷輸送性組成物には、放電生成ガスを吸着しすぎないように、添加することで放電生成ガスによる酸化を効果的に抑制する目的から、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂などの他の熱硬化性樹脂を添加してもよい。 In addition, the charge transporting composition used for forming the protective layer is added with a phenolic resin for the purpose of effectively suppressing oxidation by the discharge product gas by adding it so as not to adsorb the discharge product gas too much. You may add other thermosetting resins, such as a melamine resin and a benzoguanamine resin.
また、保護層を形成するために用いる電荷輸送性組成物には、更に、膜の成膜性、可とう性、潤滑性、接着性を調整するなどの目的から、カップリング剤、ハードコート剤、含フッ素化合物を添加してもよい。これらの添加剤として具体的には、各種シランカップリング剤、及び市販のシリコーン系ハードコート剤が用いられる。
シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン等が用いられる。
また、市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越シリコーン社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が用いられる。
更に、撥水性等の付与のために、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン等の含フッ素化合物を加えてもよい。
シランカップリング剤は任意の量で使用されるが、含フッ素化合物の量は、フッ素を含まない化合物に対して質量で0.25倍以下とすることが望ましい。この使用量を超えると、架橋膜の成膜性に問題が生じる場合がある。
In addition, the charge transporting composition used for forming the protective layer further includes a coupling agent and a hard coating agent for the purpose of adjusting the film formability, flexibility, lubricity, and adhesiveness of the film. A fluorine-containing compound may be added. Specifically, various silane coupling agents and commercially available silicone hard coat agents are used as these additives.
As the silane coupling agent, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane and the like are used.
Commercially available hard coat agents include KP-85, X-40-9740, X-8239 (manufactured by Shin-Etsu Silicone), AY42-440, AY42-441, AY49-208 (manufactured by Toray Dow Corning). Etc.) are used.
Further, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, 3- (hepta) for imparting water repellency and the like. Fluoroisopropoxy) propyltriethoxysilane, 1H, 1H, 2H, 2H-perfluoroalkyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyl Fluorine-containing compounds such as triethoxysilane may be added.
Although the silane coupling agent is used in an arbitrary amount, the amount of the fluorine-containing compound is desirably 0.25 times or less by mass with respect to the compound not containing fluorine. If this amount is exceeded, there may be a problem with the film formability of the crosslinked film.
また、保護層を形成するために用いる電荷輸送性組成物には、保護層の放電ガス耐性、機械強度、耐傷性、トルク低減、磨耗量コントロール、ポットライフの延長などや、粒子分散性、粘度コントロールの目的で、熱可塑性樹脂を加えてもよい。
ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂などのポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、ポリビニルフェノール樹脂などがあげられる。特に、電気特性の点でポリビニルアセタール樹脂、ポリビニルフェノール樹脂が望ましい。当該樹脂の重量平均分子量は2,000以上100,000以下が望ましく、5,000以上50,000以下がより望ましい。樹脂の分子量が2,000未満であると樹脂の添加による効果が不十分となる傾向にあり、また、100,000を超えると溶解度が低下して添加量が制限され、更には塗布時に製膜不良を招く傾向にある。また、当該樹脂の添加量は1質量%以上40質量%以下が望ましく、1質量%以上30質量%以下がより望ましく、5質量%以上20質量%以下が更に望ましい。当該樹脂の添加量が1質量%未満であると樹脂の添加による効果が不十分となる傾向にあり、また、40質量%を超えると高温高湿下(例えば28℃、85%RH)での画像ボケが発生しやすくなる。
In addition, the charge transport composition used to form the protective layer includes discharge gas resistance, mechanical strength, scratch resistance, torque reduction, wear amount control, extended pot life, particle dispersibility, viscosity, etc. For the purpose of control, a thermoplastic resin may be added.
Polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin such as partially acetalized polyvinyl acetal resin in which a part of butyral is modified with formal, acetoacetal, or the like (for example, Sleksui Chemical Co., Ltd., ESREC B, K, etc.), polyamide resin, cellulosic -Resin, polyvinyl phenol resin and the like. In particular, polyvinyl acetal resin and polyvinyl phenol resin are desirable in terms of electrical characteristics. The resin preferably has a weight average molecular weight of 2,000 to 100,000, and more preferably 5,000 to 50,000. If the molecular weight of the resin is less than 2,000, the effect due to the addition of the resin tends to be insufficient, and if it exceeds 100,000, the solubility is reduced and the addition amount is limited. It tends to cause defects. The amount of the resin added is preferably 1% by mass or more and 40% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. If the addition amount of the resin is less than 1% by mass, the effect of the addition of the resin tends to be insufficient. If the addition amount exceeds 40% by mass, the temperature is high under high humidity (for example, 28 ° C., 85% RH). Image blur is likely to occur.
保護層を形成するために用いる電荷輸送性組成物には、保護層の帯電装置で発生するオゾン等の酸化性ガスによる劣化を防止する目的で、酸化防止剤を添加することが望ましい。感光体表面の機械的強度を高め、感光体が長寿命になると、感光体が酸化性ガスに長い時間接触することになるため、従来より強い酸化耐性が要求される。
酸化防止剤としては、ヒンダードフェノール系又はヒンダードアミン系が望ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。酸化防止剤の添加量としては20質量%以下が望ましく、10質量%以下がより望ましい。
ヒンダードフェノール系酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチルヒドロキノン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナマイド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,5−ジ−t−アミルヒドロキノン、2−t−ブチル−6−(3−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等が挙げられる。
It is desirable to add an antioxidant to the charge transporting composition used for forming the protective layer for the purpose of preventing deterioration due to an oxidizing gas such as ozone generated in the charging device of the protective layer. When the mechanical strength of the surface of the photoconductor is increased and the photoconductor has a long life, the photoconductor is in contact with the oxidizing gas for a long time, and therefore, stronger oxidation resistance is required than before.
Antioxidants are preferably hindered phenols or hindered amines, organic sulfur antioxidants, phosphite antioxidants, dithiocarbamate antioxidants, thiourea antioxidants, benzimidazole antioxidants. , Etc., may be used. The addition amount of the antioxidant is preferably 20% by mass or less, and more preferably 10% by mass or less.
Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butylhydroquinone, N, N′-hexamethylene bis (3,5-di). -T-butyl-4-hydroxyhydrocinnamide, 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 2,4-bis [(octylthio) methyl] -o-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol) 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 2,5-di-t-amylhydroquinone, 2-t-butyl-6- (3-butyl-2-hydro Xyl-5-methylbenzyl) -4-methylphenyl acrylate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), and the like.
更に、保護層を形成するために用いる電荷輸送性組成物には、保護層の残留電位を下げる目的、又は強度を向上させる目的で、各種粒子を添加してもよい。
粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカ及びシリコーン粒子等が挙げられる。ケイ素含有粒子として用いられるコロイダルシリカは、平均粒径1nm以上100nm以下、望ましくは10nm以上30nm以下のシリカを、酸性若しくはアルカリ性の水分散液、アルコール、ケトン、又はエステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用してもよい。保護層中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、製膜性、電気特性、強度の面から、電荷輸送性組成物(溶媒を除く全固形分質量)に対して、0.1質量%以上50質量%以下、望ましくは0.1質量%以上30質量%以下の範囲で用いられる。
ケイ素含有粒子として用いられるシリコーン粒子は、シリコーン樹脂粒子、シリコーンゴム粒子、シリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものが使用される。これらのシリコーン粒子は球状で、その平均粒径は望ましくは1nm以上500nm以下、より望ましくは10nm以上100nm以下である。シリコーン粒子は、化学的に不活性で、樹脂への分散性に優れる小径粒子であり、更に十分な特性を得るために必要とされる含有量が低いため、架橋反応を阻害することなく、電子写真感光体の表面性状が改善される。すなわち、強固な架橋構造中にバラツキが生じることなくに取り込まれた状態で、電子写真感光体表面の潤滑性、撥水性を向上させ、長期にわたって良好な耐磨耗性、耐汚染物付着性が維持される。
保護層中のシリコーン粒子の含有量は、電荷輸送性組成物(溶媒を除く全固形分質量)に対して、望ましくは0.1質量%以上30質量%以下、より望ましくは0.5質量%以上10質量%以下である。
Furthermore, various particles may be added to the charge transporting composition used for forming the protective layer for the purpose of lowering the residual potential of the protective layer or improving the strength.
An example of the particles is silicon-containing particles. The silicon-containing particles are particles containing silicon as a constituent element, and specific examples include colloidal silica and silicone particles. The colloidal silica used as the silicon-containing particles is obtained by dispersing silica having an average particle diameter of 1 nm or more and 100 nm or less, preferably 10 nm or more and 30 nm or less in an organic solvent such as an acidic or alkaline aqueous dispersion, alcohol, ketone, or ester. A commercially available product may be used. The solid content of the colloidal silica in the protective layer is not particularly limited, but from the viewpoint of film forming properties, electrical properties, and strength, the charge transporting composition (total solid content mass excluding solvent) And 0.1 mass% or more and 50 mass% or less, desirably 0.1 mass% or more and 30 mass% or less.
The silicone particles used as the silicon-containing particles are selected from silicone resin particles, silicone rubber particles, and silicone surface-treated silica particles, and those commercially available are generally used. These silicone particles are spherical, and the average particle size is desirably 1 nm or more and 500 nm or less, and more desirably 10 nm or more and 100 nm or less. Silicone particles are small particles that are chemically inert and excellent in dispersibility in resin, and since the content required to obtain more sufficient properties is low, the electron does not hinder the crosslinking reaction. The surface properties of the photographic photoreceptor are improved. In other words, it is improved in lubricity and water repellency on the surface of the electrophotographic photosensitive member in a state of being taken in without a variation in a strong cross-linked structure, and has good wear resistance and contamination resistance adhesion over a long period of time. Maintained.
The content of the silicone particles in the protective layer is desirably 0.1% by mass or more and 30% by mass or less, more desirably 0.5% by mass with respect to the charge transporting composition (total solid content excluding the solvent). It is 10 mass% or less.
また、その他の粒子としては、四フッ化エチレン、三フッ化エチレン、六フッ化プロピレン、フッ化ビニル、フッ化ビニリデン等のフッ素系粒子や“第8回ポリマー材料フォーラム講演予稿集 p89”に示される如く、フッ素樹脂と水酸基を有するモノマーを共重合させた樹脂からなる粒子、ZnO−Al2O3、SnO2−Sb2O3、In2O3−SnO2、ZnO2−TiO2、ZnO−TiO2、MgO−Al2O3、FeO−TiO2、TiO2、SnO2、In2O3、ZnO、MgO等の半導電性金属酸化物が挙げられる。また、同様な目的でシリコーンオイル等のオイルを添加してもよい。シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類;1,3,5−トリメチル−1.3.5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類;ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類;(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素含有シクロシロキサン類;メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類;ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等が挙げられる。 Other particles include fluorine-based particles such as ethylene tetrafluoride, ethylene trifluoride, propylene hexafluoride, vinyl fluoride, vinylidene fluoride, and “8th Polymer Material Forum Lecture Proceedings p89”. As shown, particles made of a resin obtained by copolymerizing a fluororesin and a monomer having a hydroxyl group, ZnO—Al 2 O 3 , SnO 2 —Sb 2 O 3 , In 2 O 3 —SnO 2 , ZnO 2 —TiO 2 , ZnO Examples thereof include semiconductive metal oxides such as —TiO 2 , MgO—Al 2 O 3 , FeO—TiO 2 , TiO 2 , SnO 2 , In 2 O 3 , ZnO, and MgO. For the same purpose, an oil such as silicone oil may be added. Silicone oils include silicone oils such as dimethylpolysiloxane, diphenylpolysiloxane, and phenylmethylsiloxane; amino-modified polysiloxane, epoxy-modified polysiloxane, carboxyl-modified polysiloxane, carbinol-modified polysiloxane, methacryl-modified polysiloxane, mercapto-modified poly Reactive silicone oils such as siloxane and phenol-modified polysiloxane; cyclic dimethylcyclosiloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane; 1,3,5- Trimethyl-1.3.5-triphenylcyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetraphenylcyclo Cyclic methylphenylcyclosiloxanes such as trasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentaphenylcyclopentasiloxane; cyclic phenylcyclosiloxanes such as hexaphenylcyclotrisiloxane Fluorine-containing cyclosiloxanes such as (3,3,3-trifluoropropyl) methylcyclotrisiloxane; hydrosilyl group-containing cyclosiloxanes such as methylhydrosiloxane mixtures, pentamethylcyclopentasiloxane, and phenylhydrocyclosiloxane; penta And vinyl group-containing cyclosiloxanes such as vinylpentamethylcyclopentasiloxane.
また、保護層を形成するために用いる電荷輸送性組成物には、金属、金属酸化物及びカーボンブラック等を添加してもよい。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀及びステンレス等、又はこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ及びアンチモンをドープした酸化ジルコニウム等が挙げられる。これらは単独で用いることも、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着の形にしてもよい。導電性粒子の平均粒径は保護層の透明性の点で0.3μm以下、特に0.1μm以下が望ましい。 In addition, a metal, a metal oxide, carbon black, or the like may be added to the charge transporting composition used for forming the protective layer. Examples of the metal include aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, or those obtained by depositing these metals on the surface of plastic particles. Examples of the metal oxide include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony and tantalum-doped tin oxide, and antimony-doped zirconium oxide. . These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion. The average particle diameter of the conductive particles is preferably 0.3 μm or less, particularly preferably 0.1 μm or less, from the viewpoint of transparency of the protective layer.
保護層を形成するために用いる電荷輸送性組成物は、保護層形成用塗布液として調製されることが好ましく、この保護層形成用塗布液は、無溶媒であってもよいし、必要に応じて、メタノール、エタノール、プロパノール、ブタノール、シクロペンタノール、シクロヘキサノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類等の溶剤を含有していてもよい。
かかる溶剤は1種を単独で又は2種以上を混合して使用可能であるが、望ましくは沸点が100度以下のものである。溶剤としては、特に、少なくとも1種以上の水酸基を持つ溶剤(例えば、アルコール類等)を用いることが望ましい。
The charge transporting composition used for forming the protective layer is preferably prepared as a protective layer-forming coating solution, and this protective layer-forming coating solution may be solvent-free or as necessary. And alcohols such as methanol, ethanol, propanol, butanol, cyclopentanol and cyclohexanol; ketones such as acetone and methyl ethyl ketone; and solvents such as ethers such as tetrahydrofuran, diethyl ether and dioxane.
Such solvents can be used singly or in combination of two or more, but preferably have a boiling point of 100 degrees or less. As the solvent, it is particularly desirable to use a solvent having at least one hydroxyl group (for example, alcohols).
保護層を形成するために用いる電荷輸送性組成物からなる保護層形成用塗布液は、電荷輸送層の上に、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法により塗布され、必要に応じて、例えば、温度100度以上170度以下で加熱して重合(硬化)させることで、膜が得られる。その結果、この膜からなる保護層が得られる。
なお、保護層形成用塗布液の重合(硬化)中の酸素濃度は1%以下が望ましく、1000ppm以下がより望ましく、500ppm以下が更に望ましい。
A coating solution for forming a protective layer made of a charge transporting composition used for forming a protective layer is formed by applying a blade coating method, a wire bar coating method, a spray coating method, a dip coating method, a bead coating method on the charge transport layer. The film is obtained by application by a normal method such as an air knife application method, a curtain application method, or the like, and, if necessary, polymerization (curing) by heating at a temperature of 100 ° C. or more and 170 ° C. or less. As a result, a protective layer made of this film is obtained.
The oxygen concentration during the polymerization (curing) of the coating liquid for forming the protective layer is desirably 1% or less, more desirably 1000 ppm or less, and even more desirably 500 ppm or less.
以上、電子写真感光体として機能分離型の例を説明したが、図2に示される単層型感光層6(電荷発生/電荷輸送層)中の電荷発生材料の含有量は、10質量%以上85質量%以下程度、望ましくは20質量%以上50質量%以下である。また、電荷輸送性材料の含有量は5質量%以上50質量%以下とすることが望ましい。単層型感光層6(電荷発生/電荷輸送層)の形成方法は、電荷発生層や電荷輸送層の形成方法と同様である。単層型感光層(電荷発生/電荷輸送層6の膜厚は5μm以上50μm以下程度が望ましく、10μm以上40μm以下とするのが更に望ましい。 The example of the function separation type has been described as the electrophotographic photosensitive member, but the content of the charge generation material in the single-layer type photosensitive layer 6 (charge generation / charge transport layer) shown in FIG. 2 is 10% by mass or more. It is about 85% by mass or less, desirably 20% by mass or more and 50% by mass or less. The content of the charge transporting material is preferably 5% by mass or more and 50% by mass or less. The method for forming the single-layer type photosensitive layer 6 (charge generation / charge transport layer) is the same as the method for forming the charge generation layer and the charge transport layer. Single-layer type photosensitive layer (The film thickness of the charge generation / charge transport layer 6 is preferably about 5 μm to 50 μm, and more preferably 10 μm to 40 μm.
また、本実施形態では、前述した電荷輸送性層からなる最表面層が保護層である形態を説明したが、保護層がない層構成の場合には、その層構成において最表面に位置する電荷輸送層が該最表面層となり、当該層に電荷輸送性層を適用してもよい。
また、保護層があっても、その下層の電荷輸送層として前述した電荷輸送性層を適用してもよい。
Further, in the present embodiment, the embodiment in which the outermost surface layer made of the above-described charge transporting layer is a protective layer has been described. However, in the case of a layer configuration without a protective layer, the charge located on the outermost surface in the layer configuration. The transport layer may be the outermost surface layer, and a charge transport layer may be applied to the layer.
Moreover, even if there is a protective layer, the charge transporting layer described above may be applied as the charge transporting layer below it.
〔画像形成装置/プロセスカートリッジ〕
図4は、実施形態に係る画像形成装置100を示す概略構成図である。
図4に示される画像形成装置100は、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置(静電潜像形成手段)9と、転写装置(転写手段)40と、中間転写体50と、を備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光可能な位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。
ここで、電子写真感光体7として、前述した本実施形態に係る電子写真感光体が用いられる。本実施形態に係る電子写真感光体は、前述したように、長期に亘り繰り返し使用しても電気特性の劣化が抑制されるので、この電子写真感光体を備えたプロセスカートリッジ、及び画像形成装置は、長期に亘り安定した画像を提供しうる。
[Image forming apparatus / process cartridge]
FIG. 4 is a schematic configuration diagram illustrating the image forming apparatus 100 according to the embodiment.
An image forming apparatus 100 shown in FIG. 4 includes a process cartridge 300 including an electrophotographic photosensitive member 7, an exposure device (electrostatic latent image forming unit) 9, a transfer device (transfer unit) 40, and an intermediate transfer member 50. . In the image forming apparatus 100, the exposure device 9 is disposed at a position where the electrophotographic photosensitive member 7 can be exposed from the opening of the process cartridge 300, and the transfer device 40 is interposed between the electrophotographic photosensitive member via the intermediate transfer member 50. 7, and a part of the intermediate transfer member 50 is disposed in contact with the electrophotographic photosensitive member 7.
Here, as the electrophotographic photosensitive member 7, the above-described electrophotographic photosensitive member according to the present embodiment is used. As described above, since the electrophotographic photosensitive member according to the present embodiment suppresses deterioration of electrical characteristics even when used repeatedly for a long period of time, the process cartridge and the image forming apparatus provided with this electrophotographic photosensitive member are It is possible to provide a stable image over a long period of time.
図4におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置(帯電手段)8、現像装置(現像手段)11、及びクリーニング装置13を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材)を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。
なお、プロセスカートリッジ300は、電子写真感光体7を備え、画像形成装置に着脱される構成であれば、特に制限はなく、必要に応じて電子写真感光体7以外の装置(例えば、帯電装置(帯電手段)8、現像装置(現像手段)11、及びクリーニング装置13から選択される一つ)を電子写真感光体7と共に一体に支持した構成であってもよい。
A process cartridge 300 in FIG. 4 integrally supports an electrophotographic photosensitive member 7, a charging device (charging means) 8, a developing device (developing means) 11, and a cleaning device 13 in a housing. The cleaning device 13 has a cleaning blade (cleaning member), and the cleaning blade 131 is disposed so as to contact the surface of the electrophotographic photosensitive member 7.
The process cartridge 300 is not particularly limited as long as the process cartridge 300 includes the electrophotographic photosensitive member 7 and can be attached to and detached from the image forming apparatus. If necessary, a device other than the electrophotographic photosensitive member 7 (for example, a charging device ( The charging unit 8, the developing device (developing unit) 11, and the cleaning device 13 may be integrally supported together with the electrophotographic photosensitive member 7.
また、図4では、クリーニング装置13として、潤滑材14を感光体7の表面に供給する繊維状部材132(ロール状)を備え、また、クリーニングをアシストする繊維状部材133(平ブラシ状)を用いた例を示してあるが、これらは必要に応じて使用される。 In FIG. 4, the cleaning device 13 includes a fibrous member 132 (roll shape) for supplying the lubricant 14 to the surface of the photoreceptor 7, and a fibrous member 133 (flat brush shape) that assists cleaning. Although the example used is shown, these are used as needed.
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。 As the charging device 8, for example, a contact type charger using a conductive or semiconductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube or the like is used. Further, a non-contact type roller charger, a known charger such as a scorotron charger using a corona discharge or a corotron charger may be used.
なお、図示しないが、画像の安定性を高める目的で、電子写真感光体7の周囲には、電子写真感光体7の温度を上昇させ、相対温度を低減させるための感光体加熱部材を設けてもよい。 Although not shown, a photosensitive member heating member for increasing the temperature of the electrophotographic photosensitive member 7 and reducing the relative temperature is provided around the electrophotographic photosensitive member 7 for the purpose of improving the stability of the image. Also good.
露光装置9としては、例えば、感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、所望の像様に露光する光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下近傍に発振波長を有するレーザーも利用してもよい。また、カラー画像形成のためにはマルチビーム出力が可能なタイプの面発光型のレーザー光源も有効である。 Examples of the exposure apparatus 9 include optical system devices that expose the surface of the photoconductor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in a desired image-like manner. The wavelength of the light source is in the spectral sensitivity region of the photoreceptor. As the wavelength of the semiconductor laser, near infrared having an oscillation wavelength near 780 nm is the mainstream. However, the present invention is not limited to this wavelength, and an oscillation wavelength laser in the 600 nm range or a laser having an oscillation wavelength in the vicinity of 400 nm to 450 nm as a blue laser may be used. For color image formation, a surface-emitting laser light source capable of multi-beam output is also effective.
現像装置11としては、例えば、磁性若しくは非磁性の一成分系現像剤又は二成分系現像剤等を接触又は非接触させて現像する一般的な現像装置を用いて行ってもよい。その現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、上記一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが望ましい。 As the developing device 11, for example, a general developing device that performs development by bringing a magnetic or non-magnetic one-component developer or a two-component developer into contact or non-contact may be used. The developing device is not particularly limited as long as it has the functions described above, and is selected according to the purpose. For example, a known developing device having a function of attaching the one-component developer or the two-component developer to the photoreceptor 7 using a brush, a roller, or the like can be used. Among these, those using a developing roller holding the developer on the surface are desirable.
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。 As the transfer device 40, for example, a contact transfer charger using a belt, a roller, a film, a rubber blade, etc., or a known transfer charger such as a scorotron transfer charger using a corona discharge or a corotron transfer charger. Can be mentioned.
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものを用いられる。 As the intermediate transfer member 50, a belt-like member (intermediate transfer belt) made of polyimide, polyamideimide, polycarbonate, polyarylate, polyester, rubber or the like having semiconductivity is used. Further, as the form of the intermediate transfer member 50, a drum-like one is used in addition to the belt shape.
画像形成装置100は、上述した各装置の他に、例えば、感光体7に対して光除電を行う光除電装置を備えていてもよい。 In addition to the above-described devices, the image forming apparatus 100 may include, for example, a light neutralizing device that performs light neutralization on the photoconductor 7.
図5は、他の実施形態に係る画像形成装置120を示す概略断面図である。
図5に示される画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式のカラー画像形成装置である。
画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
FIG. 5 is a schematic cross-sectional view showing an image forming apparatus 120 according to another embodiment.
An image forming apparatus 120 shown in FIG. 5 is a tandem color image forming apparatus equipped with four process cartridges 300.
In the image forming apparatus 120, four process cartridges 300 are arranged in parallel on the intermediate transfer member 50, and one electrophotographic photosensitive member is used for one color. The image forming apparatus 120 has the same configuration as that of the image forming apparatus 100 except that it is a tandem system.
本実施形態に係る画像形成装置は、上記構成に限られず、他の周知の方式の画像形成装置を適用してもよい。 The image forming apparatus according to the present embodiment is not limited to the above configuration, and other well-known image forming apparatuses may be applied.
以下実施例によって本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。尚、本実施例においては、「実施例10〜12」を「参考例10〜12」に読み替えるものとする。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In this example, “Examples 10 to 12” are replaced with “Reference Examples 10 to 12”.
[合成例1:CTM−39の合成]
例示化合物であるCTM−39について、以下のスキームにて合成した。
[Synthesis Example 1: Synthesis of CTM-39]
The exemplary compound CTM-39 was synthesized according to the following scheme.
三つ口フラスコに、上記化合物(1)25g、トルエン250ml、EthylMaronate12.8gを採取、溶解させた。その後、ピペリジン3.4g、酢酸3.6gを加え130℃で2時間撹拌した。さらにピペリジン0.68g、酢酸0.72gを加え130℃で1時間撹拌した。その後室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=10/1)にて精製し、オイル状の上記化合物(2)33.3gを得た。
続いて、ナス型フラスコに、オイル状の上記化合物(2)33.3gをとり、テトラヒドロフラン(THF)200mlに溶解させ、エタノール50ml、10%Pd/C2gを加え、水素ガス供給元につなぎ24時間撹拌し、減圧下溶剤を留去した。その後、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の上記化合物(3)32.3gを得た。
In a three-necked flask, 25 g of the compound (1), 250 ml of toluene, and 12.8 g of Ethyl Maronate were collected and dissolved. Thereafter, 3.4 g of piperidine and 3.6 g of acetic acid were added and stirred at 130 ° C. for 2 hours. Further, 0.68 g of piperidine and 0.72 g of acetic acid were added and stirred at 130 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 10/1) to obtain 33.3 g of the oily compound (2).
Subsequently, 33.3 g of the oily compound (2) is taken into an eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran (THF), added with 50 ml of ethanol and 2 g of 10% Pd / C, and connected to a hydrogen gas supply source for 24 hours. Stir and distill off the solvent under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 32.3 g of the oily compound (3).
そして、ナス型フラスコに、オイル状の上記化合物(3)25gをとり、THF200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させたものを、0℃にて徐々に滴下し、室温にて2時間撹拌した。析出した固体をトルエン100mlで2回洗浄した。その後、その個体とDMF200ml、クロロメチルスチレン40gを室温で15分、70℃で7時間撹拌した。その後室温まで冷却し、トルエン500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−39を27.1g得た。
得られたCTM−39は、IRスペクトルにより構造を同定した。
CTM−39 のIRスペクトルデータを、図7に示す。
Then, 25 g of the oily compound (3) was taken into an eggplant-shaped flask, dissolved in 200 ml of THF and 50 ml of ethanol, and 8.7 g of sodium hydroxide dissolved in 25 ml of distilled water was gradually added at 0 ° C. The solution was added dropwise and stirred at room temperature for 2 hours. The precipitated solid was washed twice with 100 ml of toluene. Thereafter, the solid, 200 ml of DMF, and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Thereafter, the mixture was cooled to room temperature, 500 ml of toluene was added, the organic layer was washed three times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 27.1 g of oily compound CTM-39.
The structure of CTM-39 obtained was identified by the IR spectrum.
IR spectrum data of CTM-39 is shown in FIG.
[合成例2:CTM−40の合成]
例示化合物であるCTM−40について、以下のスキームにて合成した。
[Synthesis Example 2: Synthesis of CTM-40]
The exemplary compound CTM-40 was synthesized according to the following scheme.
合成例1と同様な方法で合成した上記化合物(3)25gを、THF250mlに溶解し水素化アルミニウムリチウム8.9gを加え室温にて2時間撹拌した。その後水500ml、トルエン1Lを加え、セライトを敷いたろ紙で固形分をろ別した。さらに有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後ヘキサン20ml、酢酸エチル30mlから再結晶し淡桃色の固体状の上記化合物(4)18.5gを得た。
続いて、固体状の上記化合物(4)16.5gをTHF200mlに溶解し4−クロロメチルスチレン18g、カリウム tert−ブトキシド11.9gを徐々に加え、70℃で16時間撹拌した。その後室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状のCTM−40を20.3g得た。
得られたCTM−40は、IRスペクトルにより構造を同定した。
CTM−40のIRスペクトルデータを、図8に示す。
25 g of the above compound (3) synthesized by the same method as in Synthesis Example 1 was dissolved in 250 ml of THF, 8.9 g of lithium aluminum hydride was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 500 ml of water and 1 L of toluene were added, and the solid content was separated by filter paper with celite. Further, the organic layer was washed with 500 ml of distilled water three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, recrystallization from 20 ml of hexane and 30 ml of ethyl acetate gave 18.5 g of the above compound (4) as a pale pink solid.
Subsequently, 16.5 g of the solid compound (4) was dissolved in 200 ml of THF, 18 g of 4-chloromethylstyrene and 11.9 g of potassium tert-butoxide were gradually added, and the mixture was stirred at 70 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 20.3 g of oily CTM-40.
The resulting CTM-40 was identified for structure by IR spectrum.
IR spectrum data of CTM-40 is shown in FIG.
[合成例3:CTM−44の合成]
例示化合物であるCTM−44について、以下のスキームにて合成した。
[Synthesis Example 3: Synthesis of CTM-44]
The exemplary compound CTM-44 was synthesized according to the following scheme.
三つ口フラスコに、上記化合物(5)25g、トルエン250ml、EthylMaronate 12.8gを採取、溶解させた。その後、ピペリジン3.4g、酢酸3.6gを加え130℃で2時間撹拌した。さらにピペリジン0.68g、酢酸0.72gを加え130℃で1時間撹拌した。その後室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の上記化合物(6)31.2gを得た。
続いて、ナス型フラスコにオイル状の上記化合物(6)31.2gをとり、THF200mlに溶解させ、エタノール50ml、10%Pd/C2gを加え、水素ガス供給元につなぎ24時間撹拌し、減圧下溶剤を留去した。その後、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の上記化合物(7)29.8gを得た。
In a three-necked flask, 25 g of the above compound (5), 250 ml of toluene, and 12.8 g of Ethyl Maronate were collected and dissolved. Thereafter, 3.4 g of piperidine and 3.6 g of acetic acid were added and stirred at 130 ° C. for 2 hours. Further, 0.68 g of piperidine and 0.72 g of acetic acid were added and stirred at 130 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 31.2 g of the oily compound (6).
Subsequently, 31.2 g of the above oily compound (6) is taken into an eggplant-shaped flask, dissolved in 200 ml of THF, added with 50 ml of ethanol and 2 g of 10% Pd / C, connected to a hydrogen gas supply source and stirred for 24 hours, The solvent was distilled off. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 29.8 g of the oily compound (7).
そして、ナス型フラスコにオイル状の上記化合物(7)25gをとり、THF200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させたものを、0℃にて徐々に滴下し、室温にて2時間撹拌した。析出した固体をトルエン100mlで2回洗浄した。その後、その個体とDMF200ml、クロロメチルスチレン40gを室温で15分、70℃で7時間撹拌した。その後室温まで冷却し、トルエン500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−44を25.3g得た。
得られたCTM−44は、IRスペクトルにより構造を同定した。
CTM−44のIRスペクトルデータを、図9に示す。
Then, 25 g of the oily compound (7) was taken into an eggplant-shaped flask, dissolved in 200 ml of THF and 50 ml of ethanol, and 8.7 g of sodium hydroxide dissolved in 25 ml of distilled water was gradually added dropwise at 0 ° C. And stirred at room temperature for 2 hours. The precipitated solid was washed twice with 100 ml of toluene. Thereafter, the solid, 200 ml of DMF, and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Thereafter, the mixture was cooled to room temperature, 500 ml of toluene was added, the organic layer was washed three times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 25.3 g of oily compound CTM-44.
The resulting CTM-44 was identified by IR spectrum.
IR spectrum data of CTM-44 is shown in FIG.
[合成例4:CTM−45の合成]
例示化合物であるCTM−45について、以下のスキームにて合成した。
[Synthesis Example 4: Synthesis of CTM-45]
The exemplary compound CTM-45 was synthesized according to the following scheme.
合成例3と同様な方法で合成した上記化合物(7)25gをTHF250mlに溶解し水素化アルミニウムリチウム9.2gを加え室温にて2時間撹拌した。その後水500ml、トルエン1Lを加え、セライトを敷いたろ紙で固形分をろ別した。さらに有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=2/1)にて精製し、オイル状の上記化合物(8)17.8gを得た。
続いて、オイル状の上記化合物(8)16.0gをTHF200mlに溶解し4−クロロメチルスチレン17.5g、カリウムtert−ブトキシド11.2gを徐々に加え、70℃で16時間撹拌した。その後室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状のCTM−45を18.7g得た。
得られたCTM−45は、IRスペクトルにより構造を同定した。
CTM−45のIRスペクトルデータを、図10に示す。
25 g of the above compound (7) synthesized in the same manner as in Synthesis Example 3 was dissolved in 250 ml of THF, 9.2 g of lithium aluminum hydride was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 500 ml of water and 1 L of toluene were added, and the solid content was separated by filter paper with celite. Further, the organic layer was washed with 500 ml of distilled water three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 2/1) to obtain 17.8 g of the oily compound (8).
Subsequently, 16.0 g of the oily compound (8) was dissolved in 200 ml of THF, 17.5 g of 4-chloromethylstyrene and 11.2 g of potassium tert-butoxide were gradually added, and the mixture was stirred at 70 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 18.7 g of oily CTM-45.
The resulting CTM-45 was identified by IR spectrum.
IR spectrum data of CTM-45 is shown in FIG.
[合成例5:CTM−46の合成]
例示化合物であるCTM−46について、以下のスキームにて合成した。
[Synthesis Example 5: Synthesis of CTM-46]
The exemplified compound CTM-46 was synthesized according to the following scheme.
合成例3と同様に上記化合物(5)から上記化合物(6)を合成した。
ナス型フラスコにオイル状の上記化合物(6)27.5gをとり、THF200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させたものを、0℃にて徐々に滴下し、室温にて2時間撹拌した。二層に分離した下層をトルエン100mlで2回洗浄した。その後、その下層とDMF200ml、クロロメチルスチレン40gを室温で15分、70℃で7時間撹拌した。その後室温まで冷却し、酢酸エチル500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−46を18.4g得た。
得られたCTM−46は、IRスペクトルにより構造を同定した。
CTM−46のIRスペクトルデータを、図11に示す。
In the same manner as in Synthesis Example 3, the compound (6) was synthesized from the compound (5).
27.5 g of the above oily compound (6) is taken into an eggplant-shaped flask, dissolved in 200 ml of THF and 50 ml of ethanol, and 8.7 g of sodium hydroxide dissolved in 25 ml of distilled water is gradually added dropwise at 0 ° C. And stirred at room temperature for 2 hours. The lower layer separated into two layers was washed twice with 100 ml of toluene. Thereafter, the lower layer, 200 ml of DMF and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Thereafter, the mixture was cooled to room temperature, 500 ml of ethyl acetate was added, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 18.4 g of oily compound CTM-46.
The resulting CTM-46 was identified by IR spectrum.
IR spectrum data of CTM-46 is shown in FIG.
[合成例6:CTM−71の合成]
例示化合物であるCTM−71について、以下のスキームにて合成した。
[Synthesis Example 6: Synthesis of CTM-71]
The exemplary compound CTM-71 was synthesized according to the following scheme.
三つ口フラスコに、上記化合物(9)25g、トルエン350ml、EthylMaronate22.1gを採取した。その後、ピペリジン1.56g、酢酸1.65gを加え130℃で2.5時間撹拌した。さらにピペリジン0.78g、酢酸0.83gを加え130℃で1時間撹拌した。その後室温まで冷却しトルエン500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=10/1)にて精製し、オイル状の上記化合物(10)28.5gを得た。
続いて、ナス型フラスコに、オイル状の上記化合物(10)28.5gをとり、THF200mlに溶解させ、エタノール25ml、10%Pd/C2gを加え、水素ガス供給元につなぎ24時間撹拌し、減圧下溶剤を留去した。その後、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の上記化合物(11)27.1gを得た。
そして、化合物(11)27.1gを、THF250mlに溶解し水素化アルミニウムリチウム6.2gを加え室温にて2時間撹拌した。その後水500ml、酢酸エチル1Lを加え、セライトを敷いたろしで固形分をろ別した。さらに有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後ラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:酢酸エチル)にて精製し、オイル状の上記化合物(12)19.1gを得た。
続いて、上記化合物(12)19.1gをTHF200mlに溶解し4−クロロメチルスチレン23.7gカリウム tert−ブトキシド17.4gを徐々に加え、70℃で16時間撹拌した。その後室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。その後カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状のCTM−71を20.3g得た。
In a three-necked flask, 25 g of the above compound (9), 350 ml of toluene, and 22.1 g of Ethyl Maronate were collected. Thereafter, 1.56 g of piperidine and 1.65 g of acetic acid were added, and the mixture was stirred at 130 ° C. for 2.5 hours. Further, 0.78 g of piperidine and 0.83 g of acetic acid were added and stirred at 130 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, 500 ml of toluene was added, the organic layer was washed three times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 10/1) to obtain 28.5 g of the oily compound (10).
Subsequently, 28.5 g of the oily compound (10) is taken into an eggplant-shaped flask, dissolved in 200 ml of THF, added with 25 ml of ethanol and 2 g of 10% Pd / C, connected to a hydrogen gas supply source, stirred for 24 hours, The lower solvent was distilled off. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 27.1 g of the oily compound (11).
Then, 27.1 g of compound (11) was dissolved in 250 ml of THF, 6.2 g of lithium aluminum hydride was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 500 ml of water and 1 L of ethyl acetate were added, and the solid content was separated by filtration through celite. Further, the organic layer was washed with 500 ml of distilled water three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, it was purified by ram chromatography (adsorbent: silica gel, solvent: ethyl acetate) to obtain 19.1 g of the oily compound (12).
Subsequently, 19.1 g of the above compound (12) was dissolved in 200 ml of THF, 23.7 g of 4-chloromethylstyrene, 17.4 g of potassium tert-butoxide were gradually added, and the mixture was stirred at 70 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 20.3 g of oily CTM-71.
得られたCTM−71は、IRスペクトルにより構造を同定した。
CTM−71のIRスペクトルデータを、図12に示す。
The resulting CTM-71 was identified by IR spectrum.
IR spectrum data of CTM-71 is shown in FIG.
[実施例1]
(電子写真感光体の作製)
−下引層の作製−
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100質量部をトルエン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学社製)1.3質量部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤で表面処理を施した酸化亜鉛を得た。
表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、更に60℃で減圧乾燥を行い、アリザリンを付与させた酸化亜鉛を得た。
[Example 1]
(Preparation of electrophotographic photoreceptor)
-Production of undercoat layer-
Zinc oxide: (average particle diameter 70 nm: manufactured by Teica Co., Ltd .: specific surface area value 15 m 2 / g) 100 parts by mass is stirred and mixed with 500 parts by mass of toluene, and silane coupling agent (KBM503: manufactured by Shin-Etsu Chemical Co., Ltd.) 1.3 parts by mass Part was added and stirred for 2 hours. Thereafter, toluene was distilled off under reduced pressure and baked at 120 ° C. for 3 hours to obtain zinc oxide surface-treated with a silane coupling agent.
110 parts by mass of surface-treated zinc oxide was stirred and mixed with 500 parts by mass of tetrahydrofuran, a solution prepared by dissolving 0.6 parts by mass of alizarin in 50 parts by mass of tetrahydrofuran was added, and the mixture was stirred at 50 ° C. for 5 hours. . Then, the zinc oxide to which alizarin was imparted by filtration under reduced pressure was filtered off, and further dried at 60 ° C. under reduced pressure to obtain zinc oxide to which alizarin was imparted.
このアリザリンを付与させた酸化亜鉛:60質量部と、硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製):13.5質量部と、ブチラール樹脂(エスレックBM−1、積水化学社製):15質量部と、をメチルエチルケトン85質量部に混合した液38質量部とメチルエチルケトン:25質量部とを混合し、直径1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い、分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、及びシリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製):40質量部を添加し、下引層形成用塗布液を得た。この塗布液を浸漬塗布法にてアルミニウム基材上に塗布し、175℃、40分の乾燥硬化を行い、厚さ22μmの下引層を得た。
Zinc oxide provided with this alizarin: 60 parts by mass, curing agent (blocked isocyanate Sumijoule 3175, manufactured by Sumitomo Bayern Urethane Co., Ltd.): 13.5 parts by mass, butyral resin (ESREC BM-1, manufactured by Sekisui Chemical Co., Ltd.) ): 15 parts by mass of 38 parts by mass of methyl ethyl ketone mixed with 85 parts by mass of methyl ethyl ketone: 25 parts by mass of methyl ethyl ketone were mixed, and dispersion was performed for 2 hours with a sand mill using glass beads having a diameter of 1 mmφ. Got.
Dioctyltin dilaurate: 0.005 parts by mass and silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone): 40 parts by mass were added as catalysts to the obtained dispersion to obtain a coating liquid for forming an undercoat layer. . This coating solution was applied on an aluminum substrate by a dip coating method, followed by drying and curing at 175 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 22 μm.
−電荷発生層の作製−
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10質量部、及びn−酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175質量部、及びメチルエチルケトン180質量部を添加し、攪拌して電荷発生層形成用塗布液を得た。この電荷発生層形成用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.15μmの電荷発生層を形成した。
-Fabrication of charge generation layer-
Bragg angles (2θ ± 0.2 °) of X-ray diffraction spectrum using Cukα characteristic X-ray as a charge generating material are at least 7.3 °, 16.0 °, 24.9 °, 28.0 ° A mixture consisting of 15 parts by mass of hydroxygallium phthalocyanine having a diffraction peak, 10 parts by mass of vinyl chloride / vinyl acetate copolymer resin (VMCH, manufactured by Nihon Unicar) as a binder resin, and 200 parts by mass of n-butyl acetate. The mixture was dispersed for 4 hours in a sand mill using glass beads having a diameter of 1 mmφ. To the obtained dispersion, 175 parts by mass of n-butyl acetate and 180 parts by mass of methyl ethyl ketone were added and stirred to obtain a coating solution for forming a charge generation layer. This charge generation layer forming coating solution was dip coated on the undercoat layer and dried at room temperature (25 ° C.) to form a charge generation layer having a thickness of 0.15 μm.
−電荷輸送層の作製−
N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン(以下、「TPD」と表記)48質量部、及びビスフェノールZポリカーボネート樹脂(以下、「PCZ500」と表記、粘度平均分子量:5万)52質量部をクロルベンゼン800質量部に加えて溶解し、電荷輸送層形成用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が22μmの電荷輸送層を形成した。
-Preparation of charge transport layer-
48 parts by mass of N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine (hereinafter referred to as “TPD”) and bisphenol Z 52 parts by mass of a polycarbonate resin (hereinafter referred to as “PCZ500”, viscosity average molecular weight: 50,000) was added to 800 parts by mass of chlorobenzene and dissolved to obtain a coating solution for forming a charge transport layer. This coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 22 μm.
−保護層の作製−
一般式(I)で表される化合物(前記例示化合物CTM−9)20質量部を、安定剤不含テトラヒドロフラン(THF)15質量部、及びシクロペンチルメチルエーテル15質量部に溶解し、更に開始剤V−601(和光純薬社製)3.8質量部を溶解させ保護層形成用塗布液を得た。この塗布液を電荷輸送層上に塗布し、酸素濃度約80ppmの雰囲気下で155℃、40分加熱し、厚み7μmの保護層を形成した。
以上のような方法で、電子写真感光体を得た。この感光体を感光体1とする。
-Production of protective layer-
20 parts by mass of the compound represented by formula (I) (Exemplary Compound CTM-9) is dissolved in 15 parts by mass of stabilizer-free tetrahydrofuran (THF) and 15 parts by mass of cyclopentyl methyl ether, and further, initiator V -601 (made by Wako Pure Chemical Industries) 3.8 mass parts was dissolved, and the coating liquid for protective layer formation was obtained. This coating solution was applied onto the charge transport layer and heated at 155 ° C. for 40 minutes in an atmosphere having an oxygen concentration of about 80 ppm to form a protective layer having a thickness of 7 μm.
An electrophotographic photoreceptor was obtained by the method as described above. This photoreceptor is referred to as a photoreceptor 1.
(評価)
(1)帯電電位(表面電位)及び残留電位の測定
得られた電子写真感光体を、高温、高湿下(28℃、67%RH)で下記工程(A)〜(C)に供した。
(A):グリッド印加電圧−700Vのスコロトロン帯電器で電子写真感光体を帯電させる工程
(B):工程(A)の1秒後に波長780nmの半導体レーザーを用いて10.0erg/cm2の光を照射する露光工程
(C):工程(A)の3秒後に50.0erg/cm2の赤色LED光を照射する除電工程
このとき、レーザープリンター改造スキャナーを用いて、上記の工程を100kcycle繰り返した。
(Evaluation)
(1) Measurement of charging potential (surface potential) and residual potential The obtained electrophotographic photosensitive member was subjected to the following steps (A) to (C) at high temperature and high humidity (28 ° C., 67% RH).
(A): Step of charging the electrophotographic photosensitive member with a scorotron charger with a grid applied voltage of −700 V (B): 10.0 erg / cm 2 light using a semiconductor laser with a wavelength of 780 nm one second after step (A) Exposure step (C) for irradiating with 50.0 erg / cm 2 of red LED light 3 seconds after step (A) At this time, using the laser printer remodeling scanner, the above steps were repeated 100 kcycles .
初期および100Kcycle後のVH(工程(A)にて帯電された後の感光体の表面電位)、VL(工程(B)にて露光された後の感光体の表面電位)、及びVRP(工程(C)にて除電された後の感光体の表面電位(残留電位))を測定し、初期のVH、VL、及びVRP、初期からの変動量ΔVH、ΔVL、及びΔVRPを求めた。
なお、表面電位(残留電位)の測定には、表面電位計 MODEL344 (トレックジャパン社製)を用いた。
VH (surface potential of the photoconductor after being charged in step (A)), VL (surface potential of the photoconductor after exposure in step (B)), and VRP (step ( The surface potential (residual potential) of the photoconductor after being neutralized in C) was measured, and the initial VH, VL, and VRP, and the variations ΔVH, ΔVL, and ΔVRP from the initial stage were obtained.
In addition, the surface potential meter MODEL344 (made by Trek Japan) was used for the measurement of the surface potential (residual potential).
評価指標は以下の通りである。
(VLの評価指標)
A:−240V以上
B:−280V以上−240V未満
C:−300V以上−280V未満
D:−300V未満
(VRPの評価指標)
A:−130V以上
B:−150V以上−130V未満
C:−170V以上−150V未満
D:−170V未満
(ΔVH、ΔVL、及びΔVRPの評価指標)
A:10V以下
B:10Vより大きく20V以下
C:20Vより大きく30V以下
D:30Vより大きい
これらの結果を表4に示す。
The evaluation index is as follows.
(VL evaluation index)
A: -240V or more B: -280V or more and less than -240V C: -300V or more and less than -280V D: -300V or less (VRP evaluation index)
A: -130 V or more B: -150 V or more and less than -130 V C: -170 V or more and less than -150 V D: less than -170 V (evaluation index of ΔVH, ΔVL, and ΔVRP)
A: 10 V or less B: More than 10 V and 20 V or less C: More than 20 V and 30 V or less D: More than 30 V These results are shown in Table 4.
(2)初期画質評価:ゴーストの評価
作製した電子写真感光体を富士ゼロックス社製「Docu Centre−III C7600(K色)」に装着し、28℃、67%RHの環境下において、以下のようにしてゴーストの評価(テスト1)を行った。
なお、この評価には、富士ゼロックス社製 P紙(A4サイズ、短手方向送り)を用いた。
(2) Evaluation of initial image quality: Evaluation of ghost The produced electrophotographic photosensitive member is mounted on “Docu Center-III C7600 (K color)” manufactured by Fuji Xerox Co., Ltd., in an environment of 28 ° C. and 67% RH as follows. The ghost was evaluated (test 1).
For this evaluation, Fuji Xerox P paper (A4 size, short direction feed) was used.
−ゴーストの評価−
ゴーストは、図6(A)に示したGと黒領域を有するパターンのチャートをプリントし、黒領域部分にGの文字の現れ具合を目視にて評価した。
A:図6(A)のように良好乃至軽微である。
B:図6(B)のように若干目立つ程度である
C:図6(C)のようにはっきり確認されることを示す。
-Evaluation of ghost-
For the ghost, a chart of a pattern having G and a black area shown in FIG. 6A was printed, and the appearance of the letter G in the black area was visually evaluated.
A: Good or slight as shown in FIG.
B: Slightly conspicuous as shown in FIG. 6 (B) C: It is clearly confirmed as shown in FIG. 6 (C).
(3)プリントテスト後画質評価:ゴーストの評価
作製した電子写真感光体を富士ゼロックス社製「Docu Centre−III C7600(K色)」に装着し、28℃、67%RHの環境下において、15%ハーフトーンのプリントテストを1万枚行った。
その後、28℃、67%RHの環境下において、上記と同様にしてゴーストの評価(テスト2)を行った。
(3) Image quality evaluation after print test: Evaluation of ghost The produced electrophotographic photosensitive member was mounted on “Docu Center-III C7600 (K color)” manufactured by Fuji Xerox Co., Ltd., and the environment was 28 ° C. and 67% RH. % Halftone print test was performed 10,000 sheets.
Thereafter, the ghost was evaluated (test 2) in the same manner as described above in an environment of 28 ° C. and 67% RH.
(4)初期表面観察
前記(2)初期画質評価:ゴーストの評価時の電子写真感光体の表面を観察し、以下のようにして表面観察(テスト1)を行った。
(4) Initial surface observation (2) Initial image quality evaluation: The surface of the electrophotographic photosensitive member at the time of ghost evaluation was observed, and surface observation (test 1) was performed as follows.
−表面観察−
電子写真感光体表面を観察し、以下のように評価した。
A:20倍に拡大しても傷、付着ともに見らせず良好。
B:20倍に拡大すると付着物が見られる
C:20倍に拡大するとわずかな傷が見られる
D:肉眼でもわずかに傷、若しくは付着物が見られる。
E:肉眼でもはっきりと傷、若しくは付着物が見られる。
-Surface observation-
The surface of the electrophotographic photosensitive member was observed and evaluated as follows.
A: Even if it is magnified 20 times, both scratches and adhesion are not visible.
B: Deposits are observed when magnified 20 times. C: Slight scratches are observed when magnified 20 times. D: Slight scratches or deposits are observed even with the naked eye.
E: Scratches or deposits are clearly seen even with the naked eye.
(5)プリントテスト後の表面観察
前記(3)プリントテスト後画質評価:ゴーストの評価時の電子写真感光体の表面を観察し、上記と同様にして表面観察(テスト2)を行った。
(5) Surface observation after print test (3) Image quality evaluation after print test: The surface of the electrophotographic photosensitive member at the time of ghost evaluation was observed, and surface observation (test 2) was performed in the same manner as described above.
[実施例2〜15、比較例1]
(電子写真感光体の作製)
電荷輸送層までは実施例1と同様に作製し、保護層の形成に用いられる材料の組成を表3のように変更して、保護層形成用塗布液を得た。それぞれの塗布液を電荷輸送層上に塗布し、酸素濃度約80ppmの雰囲気下で155℃、40分加熱し、厚さ7μmの保護層を形成した。
以上のような方法で、電子写真感光体を得た。この感光体を感光体2〜15、比較感光体R1とする。
ここで、比較例1において電荷輸送能を有する化合物として用いられたRef CT−1を、以下に示す。
[Examples 2 to 15, Comparative Example 1]
(Preparation of electrophotographic photoreceptor)
The layers up to the charge transport layer were prepared in the same manner as in Example 1, and the composition of the material used for forming the protective layer was changed as shown in Table 3 to obtain a coating liquid for forming a protective layer. Each coating solution was applied onto the charge transport layer and heated at 155 ° C. for 40 minutes in an atmosphere having an oxygen concentration of about 80 ppm to form a protective layer having a thickness of 7 μm.
An electrophotographic photoreceptor was obtained by the method as described above. This photoreceptor is referred to as photoreceptors 2 to 15 and comparative photoreceptor R1.
Here, Ref CT-1 used as a compound having charge transport ability in Comparative Example 1 is shown below.
(評価)
得られた感光体について、実施例1と同様な評価を行った。結果を表4に示す。
(Evaluation)
The obtained photoreceptor was evaluated in the same manner as in Example 1. The results are shown in Table 4.
上記結果から、本実施例は、比較例に比べ、VL及びVRPに優れ、初期からの変動量ΔVH、ΔVL、及びΔVRPも優れることが分かる。
また、本実施例は、比較例に比べ、初期及びプリントテスト後におけるゴーストにも優れ、プリントテスト後における表面観察において良好な結果が得られた。
From the above results, it can be seen that the present example is superior in VL and VRP as compared with the comparative example, and is also excellent in the fluctuation amounts ΔVH, ΔVL, and ΔVRP from the initial stage.
Further, compared with the comparative example, the present example was excellent in ghost at the initial stage and after the print test, and a good result was obtained in the surface observation after the print test.
1 下引層、2 電荷発生層、3 電荷輸送層、4 導電性基体、5 保護層、6 単層型感光層、7A、7B、7C、7 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、40 転写装置、50 中間転写体、100 画像形成装置、120 画像形成装置、300 プロセスカートリッジ DESCRIPTION OF SYMBOLS 1 Undercoat layer, 2 Charge generation layer, 3 Charge transport layer, 4 Conductive substrate, 5 Protective layer, 6 Single layer type photosensitive layer, 7A, 7B, 7C, 7 Electrophotographic photoreceptor, 8 Charging device, 9 Exposure device , 11 Developing device, 13 Cleaning device, 14 Lubricant, 40 Transfer device, 50 Intermediate transfer member, 100 Image forming device, 120 Image forming device, 300 Process cartridge
Claims (6)
〔一般式(I)中、Fは電荷輸送性サブユニットを示し、一般式(I)で表される化合物中の下記部分構造(A)は、下記一般式(IV−1)で表される基、下記一般式(IV−2)で表される基、下記一般式(V−1)で表される基又は下記一般式(V−2)で表される基を示す。mは1以上6以下の整数を示す。〕
〔一般式(IV−1)及び(IV−2)中、Xは連結基を示し、pは0又は1を示す。一般式(V−1)及び(V−2)中、X’は連結基を示し、p’は0又は1を示す。なお、上記部分構造(A)において波線はFで示される電荷輸送性サブユニットとの結合部位を示す。〕 An electrophotographic photosensitive member provided with a charge transporting layer containing a polymer of a compound represented by the following general formula (I).
[In general formula (I), F represents a charge transporting subunit , and the following partial structure (A) in the compound represented by general formula (I) is represented by the following general formula (IV-1). Group, group represented by the following general formula (IV-2), group represented by the following general formula (V-1), or group represented by the following general formula (V-2) . m represents an integer of 1 to 6. ]
[In General Formulas (IV-1) and (IV-2), X represents a linking group, and p represents 0 or 1. In the general formulas (V-1) and (V-2), X ′ represents a linking group, and p ′ represents 0 or 1. In the partial structure (A), the wavy line indicates the binding site with the charge transporting subunit indicated by F. ]
〔一般式(II)中、Ar1乃至Ar4はそれぞれ独立に置換若しくは未置換のアリール基を示し、Ar5は置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示し、Dは前記一般式(IV−1)で表される基、前記一般式(IV−2)で表される基、前記一般式(V−1)で表される基、又は前記一般式(V−2)で表される基を示す。kは0又は1を示し、c1〜c5はそれぞれ0〜2の整数を示し、c1〜c5の全てが同時に0になることはない。〕 The electrophotographic photosensitive member according to claim 1, wherein the compound represented by the general formula (I) is a compound represented by the following general formula (II).
[In General Formula (II), Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group, Ar 5 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylene group, and D Is a group represented by the general formula (IV-1), a group represented by the general formula (IV-2), a group represented by the general formula (V-1), or the general formula (V- The group represented by 2) is shown. k is 0 or 1, c1 to c5 represent an integer of 0 to 2, that all of c1 to c5 becomes 0 at the same time have greens. ]
画像形成装置に着脱するプロセスカートリッジ。 The electrophotographic photosensitive member according to any one of claims 1 to 4 , comprising:
A process cartridge that can be attached to and detached from an image forming apparatus.
前記電子写真感光体を帯電させる帯電手段と、
帯電した前記電子写真感光体に静電潜像を形成する静電潜像形成手段と、
前記電子写真感光体に形成された静電潜像をトナーにより現像してトナー像を形成する現像手段と、
前記トナー像を被転写体に転写する転写手段と、
を備える画像形成装置。 The electrophotographic photosensitive member according to any one of claims 1 to 4 ,
Charging means for charging the electrophotographic photoreceptor;
Electrostatic latent image forming means for forming an electrostatic latent image on the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner to form a toner image;
Transfer means for transferring the toner image to a transfer object;
An image forming apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012180681A JP6019917B2 (en) | 2011-08-22 | 2012-08-16 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181014 | 2011-08-22 | ||
JP2011181014 | 2011-08-22 | ||
JP2012180681A JP6019917B2 (en) | 2011-08-22 | 2012-08-16 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013061640A JP2013061640A (en) | 2013-04-04 |
JP6019917B2 true JP6019917B2 (en) | 2016-11-02 |
Family
ID=48186309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012180681A Active JP6019917B2 (en) | 2011-08-22 | 2012-08-16 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6019917B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015052672A (en) * | 2013-09-06 | 2015-03-19 | 株式会社リコー | Image formation device, and process cartridge |
JP6217348B2 (en) * | 2013-11-28 | 2017-10-25 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6171901B2 (en) * | 2013-12-03 | 2017-08-02 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6241322B2 (en) * | 2014-03-05 | 2017-12-06 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2015175908A (en) * | 2014-03-13 | 2015-10-05 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4011791B2 (en) * | 1998-06-12 | 2007-11-21 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
JP4596843B2 (en) * | 2003-07-25 | 2010-12-15 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP4006461B2 (en) * | 2005-06-02 | 2007-11-14 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
-
2012
- 2012-08-16 JP JP2012180681A patent/JP6019917B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013061640A (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4702447B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP6015264B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5644138B2 (en) | Electrophotographic photoreceptor, process cartridge, image forming apparatus, and cured film | |
JP6007691B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5636690B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP6003669B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5892013B2 (en) | Charge transport film, photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5691578B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP6019917B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5732727B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
US8846280B2 (en) | Compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP6176080B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5834620B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, process cartridge, and image forming apparatus | |
JP5879817B2 (en) | Novel reactive compound, charge transport film and photoelectric conversion device | |
JP2015105972A (en) | Electrophotographic photoreceptor, process cartridge, and image forming apparatus | |
JP6024554B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5962793B2 (en) | Cured film | |
JP5644133B2 (en) | Electrophotographic photosensitive member, process cartridge, image forming apparatus, charge transporting composition, and charge transporting cured film | |
JP6024555B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP5879818B2 (en) | Charge transport film, photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
CN102163015B (en) | Electrophotographic photoreceptor, process cartridge, image forming apparatus, cured film, and organic electroluminescent device | |
JP6241322B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP6036057B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus | |
JP6241293B2 (en) | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160919 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6019917 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |