JP4006461B2 - Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents
Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDFInfo
- Publication number
- JP4006461B2 JP4006461B2 JP2006153441A JP2006153441A JP4006461B2 JP 4006461 B2 JP4006461 B2 JP 4006461B2 JP 2006153441 A JP2006153441 A JP 2006153441A JP 2006153441 A JP2006153441 A JP 2006153441A JP 4006461 B2 JP4006461 B2 JP 4006461B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- substituent
- general formula
- photosensitive member
- electrophotographic photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、連鎖重合性官能基を有する電荷輸送性化合物を重合あるいは架橋し硬化した化合物を最表面層に含有した電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関する。 The present invention relates to an electrophotographic photosensitive member containing a compound obtained by polymerizing or cross-linking a charge transporting compound having a chain polymerizable functional group and cured, and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
従来、電子写真感光体に用いられる光導電材料としては、セレン、硫化カドミウム及び酸化亜鉛等の無機材料を使用した無機電子写真感光体が主に使用されて来た。他方、有機材料を用いた有機電子写真感光体は、高生産性や無公害性等の利点が注目され研究開発が活発に行われ、光導電性特性が無機電子写真感光体並みのものが数多く見出され、無機電子写真感光体に代わり近年主力で用いられるようになってきた。 Conventionally, inorganic electrophotographic photoreceptors using inorganic materials such as selenium, cadmium sulfide and zinc oxide have been mainly used as photoconductive materials used in electrophotographic photoreceptors. On the other hand, organic electrophotographic photoreceptors using organic materials have been actively researched and developed due to the advantages of high productivity and non-polluting properties, and many have photoconductive properties similar to those of inorganic electrophotographic photoreceptors. In recent years, it has been found to be used as a mainstay in place of inorganic electrophotographic photoreceptors.
これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために、電荷発生層と電荷輸送層を積層した機能分離型の電子写真感光体として利用される場合が多い。この際、初期は勿論、長時間使用した場合に於いても常に安定し高感度な電気的特性を発現するには、電荷輸送性化合物の構造及び純度が極めて重要である。一方当然のことながら、繰り返し使用される電子写真感光体にあっては、その電子写真感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的、機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久性、帯電による表面劣化(例えば転写効率や滑り性の低下)、更には感度低下・電位低下等の電気特性の劣化に対する耐久性も要求される。 These electrophotographic photoreceptors are often used as function-separated electrophotographic photoreceptors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical characteristics. At this time, the structure and purity of the charge transporting compound are extremely important in order to express stable and highly sensitive electrical characteristics even when used for a long time as well as in the initial stage. On the other hand, as a matter of course, in the electrophotographic photoreceptor to be used repeatedly, the surface of the electrophotographic photoreceptor has electric and mechanical external forces such as charging, image exposure, toner development, transfer to paper, and cleaning treatment. Since they are added directly, durability against them is required. Specifically, durability against surface wear and scratches due to rubbing, surface deterioration due to charging (eg, transfer efficiency and slipperiness decrease), and durability against electrical property deterioration such as sensitivity reduction and potential reduction. Is also required.
一般に電子写真感光体の表面は薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年アクリル樹脂やポリカーボネート樹脂等が実用化されているが、前述したような特性の全てがこれらの樹脂で満足されるわけではなく、特に電子写真感光体の高耐久化を図る上では該樹脂の膜硬度は十分高いとは言い難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも繰り返し使用時において表面層の磨耗が起こり、更に傷が発生するという問題点があった。 In general, the surface of an electrophotographic photoreceptor is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins and polycarbonate resins have been put to practical use as resins that satisfy the above-mentioned conditions to some extent, but not all of the above-mentioned characteristics are satisfied with these resins, and in particular, electrophotographic photoreceptors. Therefore, it is difficult to say that the film hardness of the resin is sufficiently high. Even when these resins are used as the resin for forming the surface layer, there is a problem that the surface layer is worn during repeated use, and further scratches are generated.
更に、近年の有機電子写真感光体の高感度化に対する要求から、電荷輸送性化合物等の低分子量化合物が比較的大量に添加される場合が多いが、この場合それら低分子量物質の可塑剤的な作用により膜強度が著しく低下し、一層繰り返し使用時の表面層の磨耗や傷発生が問題となっている。また、電子写真感光体を長期に亘って保存する際に前述の低分子量成分の電荷輸送性化合物が析出してしまい、層分離するといった問題も発生している。 Furthermore, due to the recent demand for higher sensitivity of organic electrophotographic photoreceptors, low molecular weight compounds such as charge transporting compounds are often added in relatively large amounts. In this case, these low molecular weight substances are plasticizers. The film strength is remarkably lowered by the action, and there is a problem that the surface layer is worn or scratched during repeated use. Further, when the electrophotographic photosensitive member is stored for a long period of time, the above-described charge transporting compound having a low molecular weight component is deposited, resulting in a problem of layer separation.
これらの問題点を解決する手段として、硬化性の樹脂を電荷輸送層用の樹脂として用いる試みが提案されている(例えば、特許文献1参照。)。このように、電荷輸送層用の樹脂に硬化性の樹脂を用い電荷輸送層を硬化、架橋することによって機械的強度が増し、繰り返し使用時の耐削れ性及び耐傷性は大きく向上する。しかしながら硬化性樹脂を用いても、低分子量成分はあくまでも結着樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題は根本的な解決にはなっていない。また、電荷輸送性化合物と結着樹脂とで構成される電荷輸送層においては、電荷輸送能の樹脂に対する依存度が大きく、例えば硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく繰り返し使用時に残留電位の上昇が見られる等、両者を満足させるまでには至っていない。 As means for solving these problems, an attempt to use a curable resin as a resin for a charge transport layer has been proposed (for example, see Patent Document 1). Thus, the mechanical strength is increased by curing and crosslinking the charge transport layer using a curable resin as the charge transport layer resin, and the abrasion resistance and scratch resistance during repeated use are greatly improved. However, even when a curable resin is used, the low molecular weight component acts as a plasticizer in the binder resin to the last, so the problems of precipitation and layer separation as described above are not fundamental solutions. In addition, in the charge transport layer composed of the charge transport compound and the binder resin, the charge transport ability is highly dependent on the resin. For example, a curable resin having a sufficiently high hardness does not have sufficient charge transport ability and is repeated. The residual potential has been increased during use, and both have not been satisfied.
また、電荷輸送層に炭素−炭素二重結合を有するモノマーを含有させ、電荷輸送性化合物の炭素−炭素二重結合を熱あるいは光のエネルギーによって反応させて、電荷輸送層の硬化膜を形成した電子写真感光体が提案されている(例えば、特許文献2〜特許文献4参照。)。しかし、これは本発明と同様に電荷輸送性化合物はポリマー主骨格にペンダント状に固定化されるが、電荷輸送材料が1つの重合性基しか有さず且つ市販の多官能モノマーとブレンドして硬化して膜を形成するので、まず十分な電荷輸送能を出すには炭素−炭素二重結合を1つ有する電荷輸送性化合物をある程度の濃度で使用しなくてはならず、また市販多官能モノマーとの相溶性の関係から膜中において均一に且つ最適な状態で電荷輸送材料の配置を取ることが難しく、機械的強度及び電荷輸送能の両方を十分確保することが出来ないのが実状である。更には重合時に必要とされる開始剤類の電子写真特性への影響も懸念され、実際残留電位の上昇や耐久時の電位変動へ影響を与え問題となっている。 In addition, a monomer having a carbon-carbon double bond is contained in the charge transport layer, and the carbon-carbon double bond of the charge transport compound is reacted by heat or light energy to form a cured film of the charge transport layer. An electrophotographic photosensitive member has been proposed (see, for example, Patent Documents 2 to 4). However, this is because, like the present invention, the charge transporting compound is immobilized in a pendant form on the polymer backbone, but the charge transporting material has only one polymerizable group and is blended with a commercially available polyfunctional monomer. Since a film is formed by curing, a charge transporting compound having one carbon-carbon double bond must be used at a certain concentration in order to obtain a sufficient charge transporting ability. Due to the compatibility with the monomer, it is difficult to arrange the charge transport material uniformly and optimally in the film, and it is actually impossible to ensure both mechanical strength and charge transport ability. is there. Furthermore, there is a concern about the influence of initiators required for polymerization on the electrophotographic characteristics, which actually raises the residual potential and affects the potential fluctuation during durability.
また別の解決手段として、熱可塑性高分子主鎖中に電荷輸送能を有する基を導入し電荷輸送層を形成させた電子写真感光体が提案されている(例えば、特許文献5参照。)。しかし、この電荷輸送層は、従来の分子分散型の電荷輸送層と比較して析出や層分離に対しては効果があり、機械的強度も向上するが、あくまでも使用する高分子は、熱可塑性樹脂であり、その機械的強度には限界があり、樹脂の溶解性等を含めたハンドリングや生産性の面で十分であるとは言い難い。 As another solution, there has been proposed an electrophotographic photosensitive member in which a charge transport layer is formed by introducing a group having a charge transport capability into a thermoplastic polymer main chain (see, for example, Patent Document 5). However, this charge transport layer is more effective for precipitation and layer separation than conventional molecular dispersion type charge transport layers and improves the mechanical strength. It is a resin, and its mechanical strength is limited, and it is difficult to say that it is sufficient in terms of handling and productivity including the solubility of the resin.
以上述べたように、これまでの系では高い機械的強度と電荷輸送能の両立が達成されていなかった。その様な状況に対して本発明らは、連鎖重合性官能基を有する電荷輸送性化合物を電子線照射、紫外線又は熱により架橋/硬化することにより上記課題が大幅に改善されることを数々の文献において提案した(例えば、特許文献6〜特許文献11参照。)。
上記に述べたように連鎖重合性官能基を有する電荷輸送性化合物を電子線や紫外線照射あるいは熱により重合あるいは架橋し硬化した膜を最表面層に使用した電子写真感光体は、これまでのものに比べ十分電気的特性を確保した上で大幅な機械的強度の向上を達成した。しかし、まだまだ電気的特性の点で十分満足出来ない面が有るのも現状である。特に2つ以上の連鎖重合性官能基を有する電荷輸送性化合物を重合あるいは架橋し硬化した電荷輸送性膜は、電荷移動度が十分でなかったり、膜中の電荷移動が均一で無く電荷移動の裾切れが悪かったりした。これによりこれらの膜を厚膜にして使用した場合や、高速でのプロセススピードで使用した場合等に十分な電気的特性が得られ難く、特に使用される環境によっての差が大きく出る場合があった。更に、各種電子写真感光体メモリーにも上記電荷移動の不十分さは影響を与える場合が少なからずあり、特にゴーストと言われている電子写真感光体起因メモリー現象を画像上引き起こし易くなっている。このように2つ以上の連鎖重合性官能基を有する電荷輸送性化合物を重合あるいは架橋し硬化した電荷輸送性膜を最表面層に使用した電子写真感光体は、まだまだ電気的特性が十分で無く改良の必要性が有るのが現状である。 As described above, an electrophotographic photosensitive member using a film obtained by polymerizing or crosslinking a charge transporting compound having a chain polymerizable functional group by electron beam, ultraviolet irradiation or heat as the outermost surface layer has been used so far. Compared to, the mechanical properties were sufficiently improved and sufficient mechanical strength was achieved. However, there are still some aspects that are not fully satisfactory in terms of electrical characteristics. In particular, a charge transporting film obtained by polymerizing or crosslinking a charge transporting compound having two or more chain-polymerizable functional groups is not sufficient in charge mobility or is not uniform in charge transport. The hem cut was bad. As a result, it is difficult to obtain sufficient electrical characteristics when these films are used as thick films or when used at high process speeds, and there may be a large difference depending on the environment in which they are used. It was. Furthermore, inadequate charge transfer often affects various types of electrophotographic photoconductor memories, and in particular, it is easy to cause an electrophotographic photoconductor-induced memory phenomenon called ghost on an image. An electrophotographic photoreceptor using a charge transporting film obtained by polymerizing or crosslinking a charge transporting compound having two or more chain polymerizable functional groups as described above as the outermost surface layer still has insufficient electrical characteristics. At present, there is a need for improvement.
本発明の目的は、連鎖重合性官能基を2つ以上有する電荷輸送性化合物を表面層に含有する電子写真感光体において、機械的強度を十分確保した上で電荷輸送特性を大幅に改善し、電気的特性が十分満足出来る様な電子写真感光体を提供することにある。 The object of the present invention is to provide an electrophotographic photoreceptor containing a charge transporting compound having two or more chain-polymerizable functional groups in the surface layer. An object of the present invention is to provide an electrophotographic photosensitive member that can sufficiently satisfy electrical characteristics.
本発明の別の目的は、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することである。 Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
本発明者等は、上記課題に鑑み鋭意検討した結果下記のことを見出し本発明に至った。上記特許文献6〜特許文献11等は、2つ以上の連鎖重合性官能基を有する電荷輸送性化合物の化合物例や実施例を見て明らかの様に、2つ以上の連鎖重合性官能基を有する電荷輸送性化合物を電子線や紫外線照射あるいは熱により重合あるいは架橋し硬化して生成した膜は、殆ど何れも電荷輸送性材料が3次元架橋構造膜の主鎖に直接組み込まれる様になっている。その様に電荷輸送材料が主鎖に組み込まれた三次元架橋構造膜である場合、電荷輸送材料が膜中に均一に且つ同じ状態で電荷輸送材料の配置を取ることが難しい。つまり電荷輸送性材料は、重合あるいは架橋し硬化した際に捩れが生じかなり強固に固定され且つそれらは膜中に同様な立体配座を取っておらず、それにより膜中にそれぞれエネルギー準位が異なった電荷輸送材料が存在してしまい、それにより電荷の移動速度を低下したり、更にはそれが原因で場合によっては電荷のトラップになったりして電荷移動が膜中を通して均一ではなく電荷移動の遅れが部分的に生じ、その結果として電荷移動の裾切れが悪くなっていると考えた。 As a result of intensive studies in view of the above problems, the present inventors have found the following and have reached the present invention. The above Patent Documents 6 to 11 and the like show that two or more chain-polymerizable functional groups are clearly shown in the compound examples and examples of the charge transporting compound having two or more chain-polymerizable functional groups. Almost all films formed by polymerizing or cross-linking and curing a charge transporting compound having an electron beam, ultraviolet irradiation or heat are such that the charge transporting material is directly incorporated into the main chain of the three-dimensional cross-linked structure film. Yes. When the charge transport material is a three-dimensional cross-linked structure film in which the charge transport material is incorporated in the main chain, it is difficult to arrange the charge transport material uniformly and in the same state in the film. In other words, charge transport materials are twisted when polymerized or cross-linked and cured, and they are fairly firmly fixed, and they do not have the same conformation in the film, so that each energy level is in the film. Different charge transport materials exist, which slows down the charge transfer rate and, in some cases, causes charge trapping, which makes charge transfer non-uniform throughout the film It was thought that the delay of the charge occurred partially, and as a result, the tail of the charge transfer became worse.
その問題を解決するためには、電荷輸送材料に直接連鎖重合性官能基を出来る限り組み込まず、硬化した後でもある程度膜中で自由に動ける様にし、通常の低分子の電荷輸送材料が取り得る熱力学的に近い安定な配座を膜中で均一に取ることが出来ることが重要であると考えた。その中でも電荷輸送能が優れているトリアリールアミン化合物の3つのアリール基中、最低でも2つ以上のアリール基には連鎖重合性官能基が含有されていないことが電荷輸送能に与える影響が大きく重要であり、更には機械的強度を十分確保した上でその効果を発現するためには、ある特定の構造を有した2つ以上の連鎖重合性官能基を有する電荷輸送性化合物が極めて好ましいことを見出し本発明に至った。 In order to solve the problem, the chain transporting functional group is not directly incorporated into the charge transporting material as much as possible, and can move freely in the film to some extent even after being cured, so that a normal low molecular charge transporting material can be used. We thought that it was important to be able to take a stable conformation close to thermodynamics uniformly in the film. Among them, among the three aryl groups of a triarylamine compound having an excellent charge transport ability, at least two aryl groups do not contain a chain-polymerizable functional group, which greatly affects the charge transport ability. It is important that a charge transporting compound having two or more chain-polymerizable functional groups having a specific structure is very preferable in order to exhibit its effect while ensuring sufficient mechanical strength. And found the present invention.
本発明に従って、導電性支持体と該導電性支持体に設けられた感光層とを有する電子写真感光体において、該電子写真感光体の最表面層が、下記一般式(1−1)又は(1−2)で示される連鎖重合性官能基を有する電荷輸送性化合物を重合あるいは架橋し、硬化したものを少なくとも含むことを特徴とする電子写真感光体が提供される。 According to the present invention, in an electrophotographic photosensitive member having a conductive support and a photosensitive layer provided on the conductive support, the outermost surface layer of the electrophotographic photosensitive member has the following general formula (1-1) or ( There is provided an electrophotographic photoreceptor comprising at least one obtained by polymerizing or cross-linking and curing a charge transporting compound having a chain polymerizable functional group represented by 1-2).
式(1−1)中、Ar11及びAr12は置換基を有してもよいアリール基を示し、Ar13は置換基を有してもよいフェニル基を示す。Ar11及びAr12の置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれ、Ar13の置換基としてはアルキル基、アルコキシ基又はハロゲン原子の何れかから選ばれる。但し、Ar13のみに直接又は有機残基を介して下記一般式(2)〜(6)に示される連鎖重合性官能基を少なくとも2つ有する。尚、Ar11とAr12は同一でも異なってもよい。
また、式(1−2)中、Ar21、Ar22及びAr24は置換基を有してもよいアリール基を示し、Ar21、Ar22及びAr24は同一でも異なってもよい。Ar21、Ar22及びAr24の置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれる。Ar23は置換基を有してもよいフェニレン基を示し、置換基としては、アルキル基、アルコキシ基、アリール基又はハロゲン原子の何れかから選ばれる。Zは2価の有機残基を示し、nは0又は1を示す。但し、Ar24のみに直接又は有機残基を介して下記一般式(2)〜(6)に示される連鎖重合性官能基を少なくとも2つ有する。
In formula (1-1), Ar 11 and Ar 12 represent an aryl group which may have a substituent, and Ar 13 represents a phenyl group which may have a substituent. The substituent for Ar 11 and Ar 12 is selected from an alkyl group, an alkoxy group, an aryloxy group, an aralkyl group, an aryl group or a halogen atom, and the substituent for Ar 13 is an alkyl group, an alkoxy group or a halogen atom. Selected from any of the atoms. However, it has at least two chain polymerizable functional groups represented by the following general formulas (2) to (6) only on Ar 13 directly or via an organic residue. Ar 11 and Ar 12 may be the same or different.
In formula (1-2), Ar 21 , Ar 22 and Ar 24 represent an aryl group which may have a substituent, and Ar 21 , Ar 22 and Ar 24 may be the same or different. The substituent for Ar 21 , Ar 22 and Ar 24 is selected from any of an alkyl group, an alkoxy group, an aryloxy group, an aralkyl group, an aryl group and a halogen atom. Ar 23 represents a phenylene group which may have a substituent, and the substituent is selected from an alkyl group, an alkoxy group, an aryl group, and a halogen atom. Z represents a divalent organic residue, and n represents 0 or 1. However, it has at least two chain-polymerizable functional groups represented by the following general formulas (2) to (6) only on Ar 24 or directly through an organic residue.
また、本発明に従って、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置が提供される。 In addition, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member are provided.
本発明の連鎖重合性官能基を2つ以上有した特定の電荷輸送性化合物を用いることにより、それらを重合あるいは架橋し硬化した膜の電荷輸送機能を大幅に従来に比べ改善することが出来た。それにより、その硬化膜を最表面層に使用した電子写真感光体は従来の耐磨耗性及び耐傷性等の機械的耐久性を維持した上で、大幅に初期電気的特性は勿論、繰り返し使用時にも安定した性能を発揮することができ、更には環境での特性の変化を小さく抑えることや、ゴースト等のメモリー等を従来に比べ大幅に改善することが出来、極めて高耐久・高安定且つ高品質な画像を提供できる電子写真感光体を提供することが出来た。更には、プロセススピードの依存性が少ない電子写真感光体も提供することが出来た。 By using a specific charge transporting compound having two or more chain polymerizable functional groups of the present invention, the charge transporting function of a film obtained by polymerizing or cross-linking them can be greatly improved as compared with the conventional one. . As a result, the electrophotographic photosensitive member using the cured film as the outermost layer maintains the mechanical durability such as the conventional wear resistance and scratch resistance, and is repetitively used as well as the initial electrical characteristics. It is possible to demonstrate stable performance at times, and to suppress changes in environmental characteristics to a small extent, and to significantly improve memory such as ghosts, etc. An electrophotographic photoreceptor capable of providing a high-quality image could be provided. Furthermore, an electrophotographic photosensitive member with little dependency on process speed could be provided.
また、該電子写真感光体の効果は、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置においても当然同様に発揮され、高耐久・高安定で高画質が維持される。 The effect of the electrophotographic photosensitive member is naturally exhibited in the process cartridge and the electrophotographic apparatus having the electrophotographic photosensitive member as well, and the high image quality is maintained with high durability and high stability.
以下に、本発明の実施の形態をより詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
本発明の、導電性支持体上に設けられた感光層を有する電子写真感光体は、最表面層が少なくとも特定の構造を有する下記一般式(1−1)又は(1−2)で示される、連鎖重合性官能基を有する電荷輸送性化合物を重合あるいは架橋し硬化したものを少なくとも含むことを特徴とする。 The electrophotographic photosensitive member having a photosensitive layer provided on a conductive support of the present invention is represented by the following general formula (1-1) or (1-2) where the outermost surface layer has at least a specific structure. And at least a product obtained by polymerizing, crosslinking, or curing a charge transporting compound having a chain polymerizable functional group.
式(1−1)中、Ar11及びAr12は置換基を有してもよいアリール基を示し、Ar13は置換基を有してもよいフェニル基を示す。Ar11及びAr12のアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、ビフェニル基、フルオレニル基、カルバゾリル基、ベンゾフリル基、ベンゾチオフェニル基、ジベンゾフリル基及びジベンゾチオフェニル基等が挙げられる。Ar11及びAr12が有してもよい置換基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、フェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基、又はフッ素、塩素、臭素及びヨウ素等のハロゲン原子の何れかから選ばれる。Ar13が有してもよい置換基としては、上記Ar11及びAr12が有してもよいアルキル基、アルコキシ基又はハロゲン原子の何れかから選ばれる。尚、Ar11とAr12は同一でも異なってもよい。但し、Ar13のみに直接又は有機残基を介して下記の一般式(2)〜(6)の連鎖重合性官能基を2つ以上有する。 In formula (1-1), Ar 11 and Ar 12 represent an aryl group which may have a substituent, and Ar 13 represents a phenyl group which may have a substituent. The aryl group of Ar 11 and Ar 12 includes phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, biphenyl group, fluorenyl group, carbazolyl group, benzofuryl group, benzothiophenyl group, dibenzofuryl group, and dibenzothiophenyl group. Groups and the like. Examples of the substituent that Ar 11 and Ar 12 may have include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group, and a cyclohexyl group. Alkyl groups, preferably alkyl groups having 1 to 8 carbon atoms, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl Group and an aralkyl group such as a thienyl group, an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group, or a halogen atom such as fluorine, chlorine, bromine and iodine. The substituent that Ar 13 may have is selected from any of an alkyl group, an alkoxy group, and a halogen atom that Ar 11 and Ar 12 may have. Ar 11 and Ar 12 may be the same or different. However, Ar 13 has two or more chain-polymerizable functional groups of the following general formulas (2) to (6) directly or via an organic residue.
式(1−2)中、Ar21、Ar22及びAr24は置換基を有してもよいアリール基を示し、Ar21、Ar22及びAr24は同一でも異なってもよい。Ar21、Ar22及びAr24が示すアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、ビフェニル基、フルオレニル基、カルバゾリル基、ベンゾフリル基、ベンゾチオフェニル基、ジベンゾフリル基及びジベンゾチオフェニル基等が挙げられる。 In formula (1-2), Ar 21 , Ar 22 and Ar 24 represent an aryl group which may have a substituent, and Ar 21 , Ar 22 and Ar 24 may be the same or different. As the aryl group represented by Ar 21 , Ar 22 and Ar 24 , phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, biphenyl group, fluorenyl group, carbazolyl group, benzofuryl group, benzothiophenyl group, dibenzofuryl group And a dibenzothiophenyl group.
Ar21、Ar22及びAr24の置換基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、フェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基、又はフッ素、塩素、臭素及びヨウ素等のハロゲン原子の何れかから選ばれる。 Ar 21 , Ar 22 and Ar 24 may be substituted with alkyl groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, n-hexyl and cyclohexyl. Groups, preferably alkyl groups having 1 to 8 carbon atoms, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and It is selected from aralkyl groups such as thienyl group, aryl groups such as phenyl group, naphthyl group, anthryl group and pyrenyl group, or halogen atoms such as fluorine, chlorine, bromine and iodine.
Ar23は置換基を有してもよいフェニレン基を示し、置換基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基、又はフッ素、塩素、臭素及びヨウ素等のハロゲン原子の何れかから選ばれる。 Ar 23 represents a phenylene group which may have a substituent, and examples of the substituent include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and an n-hexyl group. Group and an alkyl group such as a cyclohexyl group, preferably an alkyl group having 1 to 8 carbon atoms, an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group, an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group, or It is selected from any of halogen atoms such as fluorine, chlorine, bromine and iodine.
Zは2価の有機残基を示し、例えば酸素原子、カルボニル基、硫黄原子、−CH=CH−、−CH2−CH2−及び下記一般式(11)の何れかを示し、好ましくは−CH=CH−、−CH2−CH2−又は下記一般式(11)である。nは0又は1を示す。 Z represents a divalent organic residue, for example, an oxygen atom, a carbonyl group, a sulfur atom, —CH═CH—, —CH 2 —CH 2 — or any one of the following general formula (11), preferably — CH = CH -, - a following general formula (11) - CH 2 -CH 2 . n represents 0 or 1.
R24及びR25は置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基又は水素原子を示し、R24とR25は同一でも異なってもよい。置換基としては、アルキル基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれる。 R 24 and R 25 represent an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a hydrogen atom, and R 24 and R 25 are It may be the same or different. The substituent is selected from any of an alkyl group, an aralkyl group, an aryl group, and a halogen atom.
但し、Ar24のみに直接又は有機残基を介して下記一般式(2)〜(6)に示される連鎖重合性官能基を少なくとも2つ有する。 However, it has at least two chain-polymerizable functional groups represented by the following general formulas (2) to (6) only on Ar 24 or directly through an organic residue.
上記特定の構造を有する一般式(1−1)の連鎖重合性官能基を有する電荷輸送性化合物の中でも特に上述した課題を解決するには下記一般式(7)又は(9)で示される化合物がより好ましい。 Among the charge transporting compounds having a chain polymerizable functional group of the general formula (1-1) having the above specific structure, a compound represented by the following general formula (7) or (9) is particularly suitable for solving the above-mentioned problems. Is more preferable.
式中、Ar11及びAr12は置換基を有してもよい、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びビフェニル基等のアリール基を示し、その置換基としてはメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−へキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェニル基、ナフチル基及びアンスリル基等のアリール基の何れかから選ばれ、Ar11とAr12は同一でも異なってもよい。 In the formula, Ar 11 and Ar 12 each represent an aryl group such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group and a biphenyl group, which may have a substituent, and the substituent includes a methyl group, An alkyl group such as an ethyl group, n-propyl group, iso-propyl group, n-butyl group, t-butyl group, n-hexyl group and cyclohexyl group, preferably an alkyl group having 1 to 8 carbon atoms, a methoxy group, Ar 11 and Ar 12 may be the same or different and selected from any of alkoxy groups such as ethoxy group and propoxy group, and aryl groups such as phenyl group, naphthyl group and anthryl group.
R11〜R15は水素原子、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−へキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基又は下記一般式(8)から選ばれ、R11〜R15は同一でも異なってもよい。但し、R11〜R15のうち2つ以上は下記一般式(8)である。 R 11 to R 15 are alkyl groups such as hydrogen atom, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, t-butyl group, n-hexyl group and cyclohexyl group, preferably It is selected from an alkyl group having 1 to 8 carbon atoms, an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group, or the following general formula (8), and R 11 to R 15 may be the same or different. However, two or more of R 11 to R 15 are represented by the following general formula (8).
式中、X11は置換基を有してもよい2価の有機残基を示し、置換基としてはアルキル基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれ、aは0又は1を示す。P11は上記一般式(2)〜(6)で示される連鎖重合性官能基を示す。X11が表す有機残基としては特に酸素原子、−O−Z11−(Z11は2価のアルキレン基)又は2価のアルキレン基である場合が更に好ましい。 In the formula, X 11 represents a divalent organic residue which may have a substituent, and the substituent is selected from an alkyl group, an aralkyl group, an aryl group or a halogen atom, and a is 0 or 1 Indicates. P 11 represents a chain polymerizable functional group represented by the general formulas (2) to (6). The organic residue represented by X 11 is more preferably an oxygen atom, —O—Z 11 — (Z 11 is a divalent alkylene group) or a divalent alkylene group.
式中、Ar11及びAr12は上記一般式(7)において定義したと同義であり、X12は置換基を有してもよい2価のアルキレン基、酸素原子又は−O−Z12−(Z12は2価のアルキレン基)を示し、b=0又は1である。R16〜R18は置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びビフェニル基等のアリール基、置換基を有してもよいメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−へキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェノキシ基及びナフトキシ基等のアリールオキシ基、水素原子又は上記一般式(8)の何れかを示し、R16〜R18は同一でも異なってもよい。R16〜R18が有してもよい置換基としては、アルキル基、アラルキル基、アリール基、ハロゲン原子又は上記一般式(8)から選ばれる。但し、R16〜R18の何れかに上記一般式(2)〜(6)で示される連鎖重合性官能基を少なくとも2つ有する。尚、上記一般式(9)におけるR16及びR17が上記一般式(8)である場合が好ましく、更には一般式(8)において、a=1で且つX11がアルキレン基である場合が更に好ましい。 In the formula, Ar 11 and Ar 12 have the same meaning as defined in the general formula (7), and X 12 is a divalent alkylene group which may have a substituent, an oxygen atom or —O—Z 12 — ( Z 12 represents a divalent alkylene group), and b = 0 or 1. R 16 to R 18 are phenyl groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups, and biphenyl groups that may have a substituent, methyl groups that may have a substituent, ethyl groups, It has an alkyl group such as an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group and a cyclohexyl group, preferably an alkyl group having 1 to 8 carbon atoms and a substituent. Aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group, aryloxy groups such as phenoxy group and naphthoxy group which may have a substituent, hydrogen atom or the above general formula (8) indicates any one of, R 16 to R 18 may be the same or different. The substituent that R 16 to R 18 may have is selected from an alkyl group, an aralkyl group, an aryl group, a halogen atom, or the general formula (8). However, any of R 16 to R 18 has at least two chain-polymerizable functional groups represented by the above general formulas (2) to (6). In the general formula (9), R 16 and R 17 are preferably the above general formula (8), and in the general formula (8), a = 1 and X 11 may be an alkylene group. Further preferred.
また更に、上記一般式(1−1)、(7)又は(9)で示される連鎖重合性官能基を有する電荷輸送性化合物のAr11及びAr12が置換基を有してもよいフェニル基、置換基を有してもよいビフェニル基又は置換基を有してもよいフルオレニル基の何れかである場合が特に好ましい。この場合、Ar11とAr12は同一でも異なってもよく、Ar11及びAr12の置換基としてはアルキル基又はアルコキシ基の何れかである。 Furthermore, Ar 11 and Ar 12 of the charge transporting compound having a chain polymerizable functional group represented by the general formula (1-1), (7) or (9) may have a substituent. In particular, the case of being either a biphenyl group which may have a substituent or a fluorenyl group which may have a substituent is particularly preferable. In this case, Ar 11 and Ar 12 may be the same or different, and the substituent of Ar 11 and Ar 12 is either an alkyl group or an alkoxy group.
尚、連鎖重合性官能基としては硬化速度及び機械的強度と電気的特性の両立等の面で一般式(2)及び(3)が特に好ましい。 In addition, as a chain-polymerizable functional group, general formula (2) and (3) are especially preferable in terms of the curing speed and the compatibility between mechanical strength and electrical characteristics.
一方、上記特定の構造を有する一般式(1−2)の連鎖重合性官能基を有する電荷輸送性化合物の中でも特に上述した課題を解決するには、下記一般式(10)又は(13)で示される化合物がより好ましい。 On the other hand, in order to solve the above-mentioned problem among the charge transporting compounds having the chain polymerizable functional group of the general formula (1-2) having the specific structure, the following general formula (10) or (13) The compounds shown are more preferred.
式中、Ar21及びAr22は上記一般式(1−2)において定義したと同義である。Zは−CH=CH−、−CH2−CH2−及び上記一般式(11)の何れかを示し、nは0又は1を示す。R21〜R23は水素原子、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基又は下記一般式(12)を示し、R21〜R23は同一でも異なってもよい。但し、R21〜R23のうち少なくとも2つは下記一般式(12)である。一般式(11)中、R24及びR25は置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基又は水素原子を示し、R24とR25は同一でも異なってもよい。置換基としては、アルキル基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれる。 In the formula, Ar 21 and Ar 22 have the same definitions as defined in the general formula (1-2). Z represents —CH═CH—, —CH 2 —CH 2 — or any one of the above general formula (11), and n represents 0 or 1. R 21 to R 23 are each a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group, and a cyclohexyl group, preferably carbon. An alkyl group of formulas 1 to 8, an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group, or the following general formula (12) is shown, and R 21 to R 23 may be the same or different. However, at least two of R 21 to R 23 are represented by the following general formula (12). In general formula (11), R 24 and R 25 represent an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a hydrogen atom. , R 24 and R 25 may be the same or different. The substituent is selected from any of an alkyl group, an aralkyl group, an aryl group, and a halogen atom.
式中、X21は置換基を有してもよい2価の有機残基を示し、置換基としてはアルキル基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれ、aは0又は1を示す。X21が表す有機残基としては特に酸素原子、2価のアルキレン基又は−O−Z21−(Z21は2価のアルキレン基)である場合が更に好ましい。P21は上記一般式(2)〜(6)に示される連鎖重合性官能基を示す。 In the formula, X 21 represents a divalent organic residue which may have a substituent, and the substituent is selected from an alkyl group, an aralkyl group, an aryl group or a halogen atom, and a is 0 or 1 Indicates. The organic residue represented by X 21 is more preferably an oxygen atom, a divalent alkylene group, or —O—Z 21 — (Z 21 is a divalent alkylene group). P 21 represents a chain polymerizable functional group represented by the general formulas (2) to (6).
式中、Z、Ar21、Ar22及びnは上記一般式(1−2)において定義したと同義であり、X22は2価の有機残基を示し、特に置換基を有してもよい2価のアルキレン基、酸素原子又は−O−Z22−(Z22は2価のアルキレン基)である場合が好ましく、b=0又は1である。R26〜R28は置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びビフェニル基等のアリール基、置換基を有してもよいメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−へキシル基及びシクロヘキシル基等のアルキル基、好ましくは炭素数1〜8のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェノキシ基及びナフトキシ基等のアリールオキシ基、水素原子又は上記一般式(12)の何れかを示し、R26〜R28は同一でも異なってもよい。R26〜R28の置換基としては、アルキル基、アラルキル基、アリール基、ハロゲン原子又は上記一般式(12)から選ばれる。但し、R26〜R28の何れかに上記一般式(2)〜(6)に示される連鎖重合性官能基を少なくとも2つ有する。尚、上記一般式(13)で示されるR26及びR27が上記一般式(12)である場合が好ましく、更には一般式(12)において、a=1で且つX21がアルキレン基である場合が好ましい。 In the formula, Z, Ar 21 , Ar 22 and n have the same meaning as defined in the general formula (1-2), X 22 represents a divalent organic residue, and may have a substituent. A case where it is a divalent alkylene group, an oxygen atom, or —O—Z 22 — (Z 22 is a divalent alkylene group) is preferred, and b = 0 or 1. R 26 to R 28 are phenyl groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups, and biphenyl groups that may have a substituent, methyl groups that may have a substituent, ethyl groups, It has an alkyl group such as an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group and a cyclohexyl group, preferably an alkyl group having 1 to 8 carbon atoms and a substituent. Aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group, aryloxy groups such as phenoxy group and naphthoxy group which may have a substituent, hydrogen atom or the above general formula (12) indicates any one of, R 26 to R 28 may be the same or different. The substituent for R 26 to R 28 is selected from an alkyl group, an aralkyl group, an aryl group, a halogen atom, or the general formula (12). However, any one of R 26 to R 28 has at least two chain-polymerizable functional groups represented by the general formulas (2) to (6). In addition, it is preferable that R 26 and R 27 represented by the general formula (13) are the general formula (12), and in the general formula (12), a = 1 and X 21 is an alkylene group. The case is preferred.
また更に、上記一般式(1−2)、(10)又は(13)で示される連鎖重合性官能基を有する電荷輸送性化合物のAr21及びAr22が、置換基を有してもよいフェニル基、置換基を有してもよいビフェニル基又は置換基を有してもよいフルオレニル基の何れかである場合が特に好ましい。この場合、Ar21とAr22は同一でも異なってもよく、Ar21とAr22の置換基としてはアルキル基又はアルコキシ基の何れかである。 Furthermore, Ar 21 and Ar 22 of the charge transporting compound having a chain polymerizable functional group represented by the general formula (1-2), (10) or (13) may have a substituent. A group, a biphenyl group which may have a substituent, or a fluorenyl group which may have a substituent is particularly preferable. In this case, Ar 21 and Ar 22 may be the same or different, and the substituent of Ar 21 and Ar 22 is either an alkyl group or an alkoxy group.
尚、連鎖重合性官能基としては、硬化速度及び機械的強度と電気的特性の両立等の面で一般式(2)及び(3)が特に好ましい。
また、本発明の電子写真感光体の最表面層は電子線によって硬化されることが好ましい。
本発明は、ここに記載した電子写真感光体と、電子写真感光体を帯電させる帯電手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び転写工程後の電子写真感光体上に残余するトナーを回収するクリーニング手段からなる群より選ばれる少なくとも1つの手段とを共に一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジを提供する。
さらに、本発明は、ここに記載の電子写真感光体、電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体に対し露光を行い静電潜像を形成する露光手段、静電潜像の形成された電子写真感光体にトナーで現像する現像手段及び電子写真感光体上のトナー像を転写材上に転写する転写手段を備えることを特徴とする電子写真装置を提供する。
In addition, as a chain-polymerizable functional group, general formulas (2) and (3) are particularly preferable in terms of curing speed and compatibility of mechanical strength and electrical characteristics.
The outermost surface layer of the electrophotographic photosensitive member of the present invention is preferably cured by an electron beam.
The present invention relates to the electrophotographic photosensitive member described herein, a charging means for charging the electrophotographic photosensitive member, a developing means for developing the electrophotographic photosensitive member on which an electrostatic latent image is formed with toner, and an electrophotographic image after the transfer process. There is provided a process cartridge characterized in that it integrally supports at least one means selected from the group consisting of cleaning means for collecting toner remaining on the photoreceptor, and is detachable from the main body of the electrophotographic apparatus.
Furthermore, the present invention relates to an electrophotographic photosensitive member described herein, a charging means for charging the electrophotographic photosensitive member, an exposure means for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, and an electrostatic latent image. An electrophotographic apparatus comprising: a developing unit that develops toner on the electrophotographic photosensitive member formed with the toner; and a transfer unit that transfers a toner image on the electrophotographic photosensitive member onto a transfer material.
次に、本発明で用いられる特定の連鎖重合性官能基を有する式(1−1)で示される電荷輸送性化合物の具体例を下記の表1に示す。但し、これらに化合物は限定されるものでは無いし、本発明が限定されるものでも無い。 Next, specific examples of the charge transporting compound represented by the formula (1-1) having a specific chain polymerizable functional group used in the present invention are shown in Table 1 below. However, the compounds are not limited to these, and the present invention is not limited.
次に、本発明で用いられる特定の連鎖重合性官能基を有する式(1−2)で示される電荷輸送性化合物の具体例を下記の表2に示す。但し、これらに化合物は限定されるものでは無いし、本発明が限定されるものでも無い。 Next, specific examples of the charge transporting compound represented by the formula (1-2) having a specific chain polymerizable functional group used in the present invention are shown in Table 2 below. However, the compounds are not limited to these, and the present invention is not limited.
下記に本発明に用いられる連鎖重合性官能基を有する電荷輸送性化合物の代表的な合成方法を示す。 A typical synthesis method of a charge transporting compound having a chain polymerizable functional group used in the present invention is shown below.
(合成例1:例示化合物No.18の合成)
以下のルートに従い例示化合物No.18を合成した。
(Synthesis Example 1: Synthesis of Exemplified Compound No. 18)
According to the following route, Exemplified Compound No. 18 was synthesized.
氷酢酸(480質量部;以下部)、62.5%硫酸(24部)、水(20部)からなる混合溶液へ、1(100部)、50%過ヨウ素酸・2水和物水溶液(50部)及びヨウ素(55部)を加え、攪拌を十分行いながら約70℃前後に加熱し24時間反応を行った。放冷後、氷水にあけ析出した結晶を濾取水洗したのち、粗結晶をヘキサンで再結晶を行い2(100部)を得た。2(100部)をエタノールに加え、更に希硫酸を触媒量加え常法によりエステル化を行い、3(98部)を得た。次に、3(67部)、4(39部)、銅粉(23部)及び無水炭酸カリウム(36部)をo−ジクロロベンゼン(60部)に加え、200〜210℃で16時間加熱攪拌を行った。反応液を冷却後、トルエン(50部)を加え攪拌し、濾過により固形物を除去した。濾液を減圧下で除去後、残留物をシリカゲルカラム(展開溶媒:ヘキサン/トルエン混合溶媒)で精製し、5(30部)を得た。得られた5(30部)をメチルt−ブチルエーテル300部に溶解し、室温でLiAlH4(4部)をゆっくり添加し、添加終了後50℃で反応を5時間行った。反応終了後、6N塩酸により反応液を中性にし酢酸エチルで抽出した。抽出した有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物にTHF18部を加え溶解後、ヘキサン70部を加え結晶を析出させ6(16部)を得た。次いで、6(15部)及びトリエチルアミン(15部)を、乾燥THF150部に加え0〜5℃に冷却後、塩化アクリロイル(10部)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま4時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去した。残留物をシリカゲルカラムで精製(展開溶媒:トルエン)を行い、目的化合物7(例示化合物No.18)を15部得た。 To a mixed solution consisting of glacial acetic acid (480 parts by mass; the following), 62.5% sulfuric acid (24 parts), and water (20 parts), 1 (100 parts), 50% periodic acid dihydrate aqueous solution ( 50 parts) and iodine (55 parts) were added, and the mixture was heated to about 70 ° C. with sufficient stirring and reacted for 24 hours. After allowing to cool, the crystals deposited in ice water were collected by filtration, washed with water, and then the crude crystals were recrystallized from hexane to obtain 2 (100 parts). 2 (100 parts) was added to ethanol, a catalytic amount of dilute sulfuric acid was added, and esterification was carried out by a conventional method to obtain 3 (98 parts). Next, 3 (67 parts), 4 (39 parts), copper powder (23 parts) and anhydrous potassium carbonate (36 parts) were added to o-dichlorobenzene (60 parts), and the mixture was heated and stirred at 200 to 210 ° C. for 16 hours. Went. After cooling the reaction solution, toluene (50 parts) was added and stirred, and solids were removed by filtration. After removing the filtrate under reduced pressure, the residue was purified by a silica gel column (developing solvent: hexane / toluene mixed solvent) to obtain 5 (30 parts). The obtained 5 (30 parts) was dissolved in 300 parts of methyl t-butyl ether, LiAlH 4 (4 parts) was slowly added at room temperature, and the reaction was carried out at 50 ° C. for 5 hours after the addition. After completion of the reaction, the reaction mixture was neutralized with 6N hydrochloric acid and extracted with ethyl acetate. The extracted organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed under reduced pressure. After adding 18 parts of THF to the residue and dissolving, 70 parts of hexane was added to precipitate crystals to obtain 6 (16 parts). Next, 6 (15 parts) and triethylamine (15 parts) were added to 150 parts of dry THF and cooled to 0 to 5 ° C., and then acryloyl chloride (10 parts) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 4 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified with a silica gel column (developing solvent: toluene) to obtain 15 parts of target compound 7 (Exemplary Compound No. 18).
(合成例2:例示化合物No.1の合成)
以下のルートに従い例示化合物No.1を合成した。
(Synthesis Example 2: Synthesis of Exemplary Compound No. 1)
According to the following route, Exemplified Compound No. 1 was synthesized.
1(100部)、2(380部)、銅粉(150部)及び無水炭酸カリウム(135部)をo−ジクロロベンゼン(100部)に加え、200〜210℃で24時間加熱攪拌を行った。反応液を冷却後、トルエン(100部)を加え攪拌し、濾過により固形物を除去した。濾液を減圧下で除去後、残留物をシリカゲルカラム(展開溶媒:ヘキサン/トルエン混合溶媒)で精製し、3(130部)を得た。次に、3(100部)と塩化ピリジニウム(640部)を混ぜ、200〜210℃で4時間加熱攪拌を行った。反応液を145℃位まで冷却後、水600部をゆっくり加え冷却し、6N−塩酸で反応液を酸性にしトルエンで抽出を行った。抽出した有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物をシリカゲルカラム(展開溶媒:トルエン/THF混合溶媒)で精製を行い、4(90部)を得た。次いで、4(80部)及びトリエチルアミン(42部)を、乾燥THF400部に加え0〜5℃に冷却後、塩化アクリロイル(60部)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま4時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去した。残留物をシリカゲルカラムで精製を行い目的化合物5(例示化合物No.1)を75部得た。 1 (100 parts), 2 (380 parts), copper powder (150 parts) and anhydrous potassium carbonate (135 parts) were added to o-dichlorobenzene (100 parts), and the mixture was heated and stirred at 200 to 210 ° C. for 24 hours. . After cooling the reaction solution, toluene (100 parts) was added and stirred, and solids were removed by filtration. After removing the filtrate under reduced pressure, the residue was purified by a silica gel column (developing solvent: hexane / toluene mixed solvent) to obtain 3 (130 parts). Next, 3 (100 parts) and pyridinium chloride (640 parts) were mixed and heated and stirred at 200 to 210 ° C. for 4 hours. After cooling the reaction solution to about 145 ° C., 600 parts of water was slowly added and cooled, the reaction solution was acidified with 6N-hydrochloric acid and extracted with toluene. The extracted organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed under reduced pressure. The residue was purified with a silica gel column (developing solvent: toluene / THF mixed solvent) to obtain 4 (90 parts). Next, 4 (80 parts) and triethylamine (42 parts) were added to 400 parts of dry THF and cooled to 0 to 5 ° C., and then acryloyl chloride (60 parts) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 4 hours. The reaction solution was poured into water, neutralized, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed. The residue was purified with a silica gel column to obtain 75 parts of the target compound 5 (Exemplary Compound No. 1).
(合成例3:例示化合物No.41の合成)
以下のルートに従い例示化合物No.41を合成した。
(Synthesis Example 3: Synthesis of Exemplary Compound No. 41)
According to the following route, Exemplified Compound No. 41 was synthesized.
濃塩酸(35%)(680質量部;以下部)/水(210部)の塩酸水溶液に1(100部)を加えた後、氷水で内温が5℃以下に成る様に冷却した。そこへ硝酸ナトリウム(47部)/水(200部)の冷却した溶液を内温が5℃を超えないようにゆっくり液中滴下を行った。滴下終了後そのまま30分間攪拌を行い、反応液を濾過し濾液を再び氷水で5℃以下に冷却した。その液へナトリウムテトラフルオロボレート(106部)/水(180部)水溶液を滴下した。そのまま30分間攪拌後、吸引濾過し粗製の2を142部得た。更に粗製の2をアセトニトリルに溶解し、そこへイソプロピルエーテルを加へ再沈精製し2を115部得た。得られた2(100部)及び18−クラウン−6−エーテル(5.3部)をヨードベンゼン(9000部)に加えた溶液に、室温で酢酸カリウム(80部)を添加しそのまま3時間攪拌を行った。反応液を濾過し、濾液を食塩水で洗浄し有機層を無水硫酸マグネシウム乾燥した。その後ヨードベンゼンを蒸留により除き、残留物にメタノールを加え結晶を析出させ、その結晶を濾集した。得られた結晶をメタノール/アセトン混合溶媒で再結晶を行い、3を46部得た。次に得られた3(40部)、p−ジトリルアミン(30部)、銅粉(22部)及び無水炭酸カリウム(25部)をo−ジクロロベンゼン(120部)に加え、200〜210℃で16時間加熱攪拌を行った。反応液を冷却後、トルエン(100部)を加え攪拌し、濾過により固形物を除去した。濾液を減圧下で除去後、残留物をシリカゲルカラム(展開溶媒:トルエン)で精製し、4(130部)を得た。次に4(30部)と塩化ピリジニウム(210部)を混ぜ、200〜210℃で4時間加熱攪拌を行った。反応液を145℃位まで冷却後、水350部をゆっくり加え冷却し、6N−塩酸で反応液を酸性にしトルエンで抽出を行った。抽出した有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物をシリカゲルカラム(展開溶媒:トルエン/THF混合溶媒)で精製を行い、5(23部)を得た。次いで5(20部)及びトリエチルアミン(6.8部)を、乾燥THF100部に加え0〜5℃に冷却後、塩化アクリロイル(9.7部)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま4時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去した。残留物をシリカゲルカラムで精製を行い目的化合物6(例示化合物No.41)を16部得た。 1 (100 parts) was added to a hydrochloric acid aqueous solution of concentrated hydrochloric acid (35%) (680 parts by mass; following parts) / water (210 parts), and then cooled with ice water so that the internal temperature became 5 ° C. or less. Thereto, a cooled solution of sodium nitrate (47 parts) / water (200 parts) was slowly dropped into the liquid so that the internal temperature did not exceed 5 ° C. After completion of the dropwise addition, the mixture was stirred as it was for 30 minutes, the reaction solution was filtered, and the filtrate was again cooled to 5 ° C. or lower with ice water. An aqueous solution of sodium tetrafluoroborate (106 parts) / water (180 parts) was added dropwise to the liquid. The mixture was stirred for 30 minutes as it was, and then suction filtered to obtain 142 parts of crude 2 . Further, crude 2 was dissolved in acetonitrile, and isopropyl ether was added thereto for reprecipitation purification to obtain 115 parts of 2 . To a solution obtained by adding 2 (100 parts) and 18-crown-6-ether (5.3 parts) to iodobenzene (9000 parts), potassium acetate (80 parts) was added at room temperature and stirred for 3 hours. Went. The reaction solution was filtered, the filtrate was washed with brine, and the organic layer was dried over anhydrous magnesium sulfate. Thereafter, iodobenzene was removed by distillation, methanol was added to the residue to precipitate crystals, and the crystals were collected by filtration. The obtained crystals were recrystallized with a methanol / acetone mixed solvent to obtain 46 parts of 3 . Next, 3 (40 parts), p-ditolylamine (30 parts), copper powder (22 parts) and anhydrous potassium carbonate (25 parts) obtained were added to o-dichlorobenzene (120 parts), and the mixture was heated at 200 to 210 ° C. Stirring was performed for 16 hours. After cooling the reaction solution, toluene (100 parts) was added and stirred, and solids were removed by filtration. After removing the filtrate under reduced pressure, the residue was purified by a silica gel column (developing solvent: toluene) to obtain 4 (130 parts). Next, 4 (30 parts) and pyridinium chloride (210 parts) were mixed, and heated and stirred at 200 to 210 ° C. for 4 hours. After cooling the reaction solution to about 145 ° C., 350 parts of water was slowly added and cooled, the reaction solution was acidified with 6N-hydrochloric acid and extracted with toluene. The extracted organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed under reduced pressure. The residue was purified with a silica gel column (developing solvent: toluene / THF mixed solvent) to obtain 5 (23 parts). Next, 5 (20 parts) and triethylamine (6.8 parts) were added to 100 parts of dry THF and cooled to 0 to 5 ° C., and then acryloyl chloride (9.7 parts) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 4 hours. The reaction solution was poured into water, neutralized, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed. The residue was purified with a silica gel column to obtain 16 parts of the target compound 6 (Exemplary Compound No. 41).
(合成例4:例示化合物No.72の合成)
以下のルートに従い例示化合物No.72を合成した。
(Synthesis Example 4: Synthesis of Exemplary Compound No. 72)
According to the following route, Exemplified Compound No. 72 was synthesized.
氷酢酸(600部)、62.5%硫酸(24部)、水(20部)からなる混合溶液へ、1(140部)、50%過ヨウ素酸・2水和物水溶液(50部)及びヨウ素(55部)を加え、攪拌を十分行いながら約70℃前後に加熱し24時間反応を行った。放冷後、氷水にあけ析出した結晶を濾取水洗したのち、粗結晶をヘキサン/アセトン混合溶媒で再結晶を行い、2(120部)を得た。2(100部)をエタノールに加え、更に希硫酸を触媒量加え常法によりエステル化を行い、3(95部)を得た。次に、3(80部)、4(46部)、銅粉(13部)及び無水炭酸カリウム(35部)をo−ジクロロベンゼン(100部)に加え、200〜210℃で16時間加熱攪拌を行った。反応液を冷却後、トルエン(80部)を加え攪拌し、濾過により固形物を除去した。濾液を減圧下で除去後、残留物をシリカゲルカラム(展開溶媒:ヘキサン/トルエン混合溶媒)で精製し、5(55部)を得た。得られた5(50部)をメチルt−ブチルエーテル500部に溶解し、室温でLiAlH4(7部)をゆっくり添加し、添加終了後50℃で反応を5時間行った。反応終了後、6N塩酸により反応液を中性にした後、酢酸エチルで抽出した。抽出した有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物アセトン/n−ヘキサン混合溶媒を用い結晶を析出させ、6(28部)を得た。次いで6(20部)及びトリエチルアミン(15部)を、乾燥THF150部に加え0〜5℃に冷却後、塩化アクリロイル(8.3部)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま4時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去した。残留物をシリカゲルカラムで精製(展開溶媒:トルエン)を行い、目的化合物7(例示化合物No.72)を14部得た。 To a mixed solution consisting of glacial acetic acid (600 parts), 62.5% sulfuric acid (24 parts) and water (20 parts), 1 (140 parts), 50% periodic acid dihydrate aqueous solution (50 parts) and Iodine (55 parts) was added, and the mixture was heated to about 70 ° C. with sufficient stirring and reacted for 24 hours. After allowing to cool, the crystals deposited in ice water were collected by filtration, washed with water, and then the crude crystals were recrystallized with a hexane / acetone mixed solvent to obtain 2 (120 parts). 2 (100 parts) was added to ethanol, and a catalytic amount of dilute sulfuric acid was added to carry out esterification by a conventional method to obtain 3 (95 parts). Next, 3 (80 parts), 4 (46 parts), copper powder (13 parts) and anhydrous potassium carbonate (35 parts) are added to o-dichlorobenzene (100 parts), and the mixture is heated and stirred at 200 to 210 ° C. for 16 hours. Went. After cooling the reaction solution, toluene (80 parts) was added and stirred, and solids were removed by filtration. After removing the filtrate under reduced pressure, the residue was purified with a silica gel column (developing solvent: hexane / toluene mixed solvent) to obtain 5 (55 parts). The obtained 5 (50 parts) was dissolved in 500 parts of methyl t-butyl ether, LiAlH 4 (7 parts) was slowly added at room temperature, and the reaction was carried out at 50 ° C. for 5 hours after the addition. After completion of the reaction, the reaction mixture was neutralized with 6N hydrochloric acid and extracted with ethyl acetate. The extracted organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed under reduced pressure. Crystals were precipitated using a residue acetone / n-hexane mixed solvent to obtain 6 (28 parts). Next, 6 (20 parts) and triethylamine (15 parts) were added to 150 parts of dry THF, and after cooling to 0 to 5 ° C., acryloyl chloride (8.3 parts) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 4 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified with a silica gel column (developing solvent: toluene) to obtain 14 parts of the target compound 7 (Exemplary Compound No. 72).
本発明においては、前記同一分子内に二つ以上の連鎖重合性官能基を有する特定の電荷輸送性化合物を重合あるいは架橋し硬化させることで、その感光層中において電荷輸送能を有する化合物は二つ以上の架橋点をもって3次元架橋構造の中に共有結合を介して取り込まれる。しかし、本発明の電荷輸送材料が三次元硬化を取った場合は、従来の主鎖に電荷輸送材料が組み込まれた場合と異なり、電荷輸送材料の捩れは低減し通常の低分子の電荷輸送材料が取り得る熱力学的に近い安定な配置を取ることが出来る。これによりこの系は、これまでのものに比べ十分に電荷輸送能が得られ電気的特性を確保した上で大幅に機械的耐久性を向上することが可能となった。 In the present invention, the compound having charge transporting ability in the photosensitive layer is obtained by polymerizing or crosslinking and curing a specific charge transporting compound having two or more chain polymerizable functional groups in the same molecule. It is incorporated into the three-dimensional crosslinked structure through a covalent bond with two or more crosslinking points. However, when the charge transport material of the present invention is three-dimensionally cured, unlike the conventional case where the charge transport material is incorporated in the main chain, the twist of the charge transport material is reduced and the charge transport material is a normal low molecular weight charge transport material. Can take a stable arrangement close to the thermodynamics that can be taken. As a result, this system has a sufficient charge transport ability compared to the conventional ones, and it is possible to greatly improve the mechanical durability while ensuring electrical characteristics.
前記電荷輸送性化合物は、それのみを重合あるいは架橋し硬化させるあるいは他の連鎖重合性基を有する化合物と混合させることの何れもが可能であり、その種類/比率は全て任意である。ここでいう他の連鎖重合性基を有する化合物とは、連鎖重合性基を有する単量体あるいはオリゴマー/ポリマーの何れもが含まれる。電荷輸送性化合物の官能基とその他の連鎖重合性化合物の官能基が同一の基あるいは互いに重合可能な基である場合には、両者は共有結合を介した共重合3次元架橋構造をとることが可能である。両者の官能基が互いに重合しない官能基である場合には、感光層は二つ以上の3次元硬化物の混合物あるいは主成分の3次元硬化物中に他の連鎖重合性化合物単量体あるいはその硬化物を含んだものとして構成されるが、その配合比率/製膜方法をうまくコントロールすることで、IPN(Inter Penetrating Network)すなわち相互侵入網目構造を形成することも可能である。 The charge transporting compound can be polymerized, crosslinked, cured, or mixed with a compound having another chain polymerizable group, and the kind / ratio thereof is arbitrary. As used herein, the compound having another chain polymerizable group includes any monomer or oligomer / polymer having a chain polymerizable group. When the functional group of the charge transporting compound and the functional group of the other chain polymerizable compound are the same group or a group that can be polymerized with each other, they may have a copolymerized three-dimensional crosslinked structure via a covalent bond. Is possible. When both functional groups are functional groups that do not polymerize with each other, the photosensitive layer is a mixture of two or more three-dimensional cured products, or other chain-polymerizable compound monomer or its component in a three-dimensional cured product as a main component. Although it is comprised as what contains hardened | cured material, it is also possible to form an IPN (Inter Penetrating Network), ie, an interpenetrating network structure, by controlling the compounding ratio / film forming method well.
また、前記電荷輸送性化合物と連鎖重合性基を有しない単量体あるいはオリゴマー/ポリマーや連鎖重合性以外の重合性基を有する単量体あるいはオリゴマー/ポリマー等から感光層を形成してもよい。 Further, a photosensitive layer may be formed from the charge transporting compound and a monomer or oligomer / polymer having no chain polymerizable group, a monomer or oligomer / polymer having a polymerizable group other than the chain polymerizable group, and the like. .
更に場合によっては、3次元架橋構造に化学結合的に組み込まれないすなわち連鎖重合性官能基を有しない電荷輸送性化合物を含有することも可能である。また、その他の各種添加剤やその他の潤滑剤等を含有してもよい。 Further, in some cases, it is possible to contain a charge transporting compound that is not chemically bonded to the three-dimensional crosslinked structure, that is, does not have a chain polymerizable functional group. Moreover, you may contain other various additives, other lubricants, etc.
本発明の電子写真感光体の構成は、導電性支持体上に感光層として電荷発生材料を含有する電荷発生層及び電荷輸送材料を含有する電荷輸送層をこの順に積層した構成あるいは逆に積層した構成、また電荷発生材料と電荷輸送材料を同一層中に分散した単層からなる構成のいずれの構成をとることも可能である。前者の積層型においては電荷輸送層が二層以上の構成、また後者の単層型においては電荷発生材料と電荷輸送材料を同一に含有する感光層上に更に電荷輸送層を構成してもよく、更には電荷発生層あるいは電荷輸送層上に保護層の形成も可能である。これらいずれの場合においても、先の連鎖重合性基を有する電荷輸送性化合物及び/あるいは先の電荷輸送性化合物を重合・硬化したものを感光層が含有していればよい。ただし、電子写真感光体としての特性、特に残留電位等の電気的特性及び耐久性の点より、電荷発生層/電荷輸送層をこの順に積層した機能分離型の電子写真感光体構成が好ましく、本発明の利点も電荷輸送能を低下させることなく表面層の高耐久化が可能になった点にある。 The electrophotographic photosensitive member of the present invention has a structure in which a charge generating layer containing a charge generating material and a charge transporting layer containing a charge transporting material are laminated in this order on a conductive support, or vice versa. It is possible to adopt any configuration including a single layer in which the charge generation material and the charge transport material are dispersed in the same layer. In the former stacked type, the charge transport layer may be composed of two or more layers. In the latter single layer type, the charge transport layer may be further formed on the photosensitive layer containing the same charge generating material and charge transport material. Further, a protective layer can be formed on the charge generation layer or the charge transport layer. In any of these cases, the photosensitive layer may contain a charge transporting compound having a chain polymerizable group and / or a polymerized and cured product of the above charge transporting compound. However, from the viewpoint of characteristics as an electrophotographic photosensitive member, particularly electrical characteristics such as residual potential and durability, a function-separated type electrophotographic photosensitive member structure in which a charge generation layer / charge transport layer are laminated in this order is preferable. The advantage of the invention is that the surface layer can be made highly durable without lowering the charge transport ability.
次に、本発明による電子写真感光体の製造方法を具体的に示す。 Next, a method for producing an electrophotographic photoreceptor according to the present invention will be specifically described.
電子写真感光体の支持体としては、導電性を有するものであればよく、例えばアルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属や合金をドラム又はシート状に成形したもの、アルミニウム及び銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫等をプラスチックフィルムに蒸着したもの、導電性物質を単独又は結着樹脂と共に塗布して導電層を設けた金属、またプラスチックフィルム及び紙等が挙げられる。 The support of the electrophotographic photosensitive member may be any material having conductivity, for example, aluminum, copper, chromium, nickel, zinc, stainless steel or other metal or alloy formed into a drum or sheet, aluminum and copper Metal foils such as those laminated on plastic films, aluminum, indium oxide and tin oxide deposited on plastic films, metals with conductive layers applied alone or with binder resin, and plastic Examples include films and paper.
本発明においては、導電性支持体上にはバリアー機能と接着機能を有する下引き層を設けることができる。下引き層は、感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護等のために形成される。下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチン等が挙げられる。これらは、それぞれに適した溶剤に溶解されて支持体上に塗布される。その際の膜厚としては0.1〜2μmが好ましい。 In the present invention, an undercoat layer having a barrier function and an adhesive function can be provided on the conductive support. The undercoat layer is used for improving the adhesion of the photosensitive layer, improving the coatability, protecting the support, covering defects on the support, improving the charge injection from the support, and protecting the photosensitive layer from electrical breakdown. Formed for. Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin Etc. These are dissolved in a solvent suitable for each and coated on a support. The film thickness at that time is preferably 0.1 to 2 μm.
本発明の電子写真感光体が機能分離型である場合には、電荷発生層及び電荷輸送層を積層する。電荷発生層に用いる電荷発生材料としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的には例えばα、β、γ、ε及びX型等の結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコン等が挙げられる。 When the electrophotographic photoreceptor of the present invention is a function separation type, a charge generation layer and a charge transport layer are laminated. Examples of the charge generation material used for the charge generation layer include selenium-tellurium, pyrylium, thiapyrylium dyes, various central metals and crystal systems, specifically, crystal types such as α, β, γ, ε, and X types. Phthalocyanine compounds, anthanthrone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, monoazo pigments, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, quinocyanines and amorphous materials described in JP-A No. 54-143645 Silicon etc. are mentioned.
機能分離型電子写真感光体の場合、電荷発生層は前記電荷発生材料を0.3〜4倍量の結着樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター及びロールミル等の方法で充分に分散し、分散液を塗布し、乾燥されて形成されるか、又は前記電荷発生材料の蒸着膜等、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。 In the case of a function-separated type electrophotographic photosensitive member, the charge generation layer is composed of the charge generation material 0.3 to 4 times the amount of binder resin and solvent, homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor and roll mill. The film is sufficiently dispersed by a method such as the above, and a dispersion is applied and dried, or is formed as a single composition film such as a vapor deposition film of the charge generation material. The film thickness is preferably 5 μm or less, and particularly preferably in the range of 0.1 to 2 μm.
結着樹脂の例は、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン及びトリフルオロエチレン等のビニル化合物の重合体や共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等が挙げられる。 Examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride and trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, Examples include polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.
本発明における前記連鎖重合性官能基を有する電荷輸送性化合物は、前述した電荷発生層上に形成する電荷輸送層に、もしくは電荷発生層上に電荷輸送材料と結着樹脂からなる電荷輸送層を形成した後に電荷輸送能力を有する表面保護層に用いることができる。いずれの場合も前記表面層の形成方法は、前記電荷輸送性化合物を含有する溶液を塗布後、重合/硬化反応をさせるのが一般的であるが、前もって該電荷輸送性化合物を含む溶液を反応させて硬化物を得た後に再度溶剤中に分散あるいは溶解させたもの等を用いて、表面層を形成することも可能である。これらの溶液を塗布する方法は、例えば、浸漬コーティング法、スプレイコーティング法、カーテンコーティング法及びスピンコーティング法等が知られているが、効率性/生産性の点からは浸漬コーティング法が好ましい。また、蒸着、プラズマその他の公知の製膜方法が適宜選択できる。 In the present invention, the charge transporting compound having a chain polymerizable functional group is formed on the charge transport layer formed on the charge generation layer, or a charge transport layer made of a charge transport material and a binder resin on the charge generation layer. After forming, it can be used for a surface protective layer having a charge transport capability. In any case, the surface layer is generally formed by applying a solution containing the charge transporting compound and then carrying out a polymerization / curing reaction, but the solution containing the charge transporting compound is reacted in advance. It is also possible to form a surface layer by using a material obtained by dispersing the resin in a solvent and then dissolving it. As a method for applying these solutions, for example, a dip coating method, a spray coating method, a curtain coating method, a spin coating method, and the like are known. From the viewpoint of efficiency / productivity, the dip coating method is preferable. Moreover, vapor deposition, plasma, and other known film forming methods can be appropriately selected.
本発明において連鎖重合性官能基を有する電荷輸送性化合物は、放射線により重合・硬化させることが好ましい。放射線による重合の最大の利点は、重合開始剤を必要としない点であり、これにより非常に高純度な三次元感光層マトリックスの作製が可能となり、良好な電子写真特性が確保される点である。また、短時間でかつ効率的な重合反応であるがゆえに生産性も高く、更には放射線の透過性の良さから、厚膜時や添加剤等の遮蔽物質が膜中に存在する際の硬化阻害の影響が非常に小さいこと等が挙げられる。ただし、連鎖重合性基の種類や中心骨格の種類によっては重合反応が進行し難い場合があり、その際には影響のない範囲内での重合開始剤の添加は可能である。この際使用する放射線とは、電子線又はγ線である。電子線照射をする場合、加速器としてはスキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型等いずれの形式も使用することが出来る。 In the present invention, the charge transporting compound having a chain polymerizable functional group is preferably polymerized and cured by radiation. The greatest advantage of radiation polymerization is that it does not require a polymerization initiator, which makes it possible to produce a very high-purity three-dimensional photosensitive layer matrix and ensure good electrophotographic properties. . In addition, because it is a short and efficient polymerization reaction, the productivity is also high, and furthermore, because of its good radiation transmission, it inhibits curing when a thick film or additives such as additives are present in the film. The influence of the is very small. However, depending on the type of the chain polymerizable group and the type of the central skeleton, the polymerization reaction may not easily proceed, and in this case, the polymerization initiator can be added within a range that does not affect the polymerization reaction. The radiation used at this time is an electron beam or γ-ray. In the case of electron beam irradiation, any type of accelerator such as a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type can be used.
電子線を照射する場合に、本発明の電子写真感光体においては電気特性及び耐久性能を発現させる上で照射条件が非常に重要である。本発明において、加速電圧は250KV以下が好ましく、最適には150KV以下である。また電子線の吸収線量は1×103〜1×106Gyであることが好ましく、更には5×103〜5×105Gyが好ましい。吸収線量が1×103Gyに満たないと表面層を十分に硬化し難くなり、1×106Gyを超えると感度や残留電位の特性が悪化し易くなり注意が必要である。図1に本発明の電子写真感光体を作製するために用いられる電子線照射装置の概略構成図を示す。 In the case of irradiating an electron beam, the irradiation condition is very important in the electrophotographic photosensitive member of the present invention in order to develop electric characteristics and durability. In the present invention, the acceleration voltage is preferably 250 KV or less, and optimally 150 KV or less. The absorbed dose of the electron beam is preferably 1 × 10 3 to 1 × 10 6 Gy, and more preferably 5 × 10 3 to 5 × 10 5 Gy. If the absorbed dose is less than 1 × 10 3 Gy, it is difficult to sufficiently cure the surface layer, and if it exceeds 1 × 10 6 Gy, the characteristics of sensitivity and residual potential are liable to be deteriorated. FIG. 1 shows a schematic configuration diagram of an electron beam irradiation apparatus used for producing the electrophotographic photosensitive member of the present invention.
本実施例で用いる電子線照射装置は図1に示すように、電子線発生部10と、照射室20と、照射窓部30とを備えるものである。
As shown in FIG. 1, the electron beam irradiation apparatus used in this embodiment includes an
電子線発生部10は、電子線を発生するターミナル12と、ターミナル12で発生した電子線を真空空間(加速空間)で加速する加速管14とを有するものである。また、電子線発生部10の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、図示しない拡散ポンプなどにより10−4〜10−6Paの真空に保たれている。
The
ターミナル12は、熱電子を放出する線状のフィラメント12aと、フィラメント12aを支持するガン構造体12bと、フィラメント12aで発生した熱電子をコントロールするグリッド12cとを有する。フィラメント12a及びグリッド12cの図面の奥行き方向の長さは、少なくとも被照射体の放射線が照射されるべき部分の円筒軸方向の長さより長くすれば、被照射体の円筒軸方向は1回の電子線照射で全体が照射可能である。
The terminal 12 includes a
また、電子線発生部10には、フィラメント12aを加熱して熱電子を発生させるための不図示の加熱用電源と、フィラメント12aとグリッド12cとの間に電圧を印加する同じく不図示の制御用直流電源と、グリッド12cと照射窓部30に設けられた窓箔32との間に電圧を印加する加速用直流電源とが設けられている。
The
照射室20は、円筒状の被照射体1表面に電子線を照射する照射空間22を含むものである。後述の実施例のように、電子写真感光体の表面層を硬化させる場合には、硬化を安定させるため、照射室20の内部は不活性ガス雰囲気としている。ここで不活性ガスとは窒素ガス、アルゴンガス、ヘリウムガスなどである。また、円筒状の被照射体1は照射室20内をコンベアなどの搬送手段により矢印Aの方向へ搬送される。
The
更に、少なくともこの円筒状の被照射体1が電子線照射窓部30を通過し電子線を照射される時間内は、導電性支持体をその円筒軸を中心にして回転させることによって、該被照射体1は矢印Bの方向に円筒軸を中心にして回転している。なお、電子線発生部10及び照射室20の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないように、鉛遮蔽が施されている。
Further, at least within the time during which the cylindrical irradiated object 1 passes through the electron
照射窓部30は、金属箔からなる窓箔32と、窓箔32を冷却すると共に窓箔32を支持する窓枠構造体34とを有するものである。窓箔32は、電子線発生部10内の真空雰囲気と照射室20内の空気雰囲気とを仕切るものであり、また窓箔32を介して照射室20内に電子線を取り出すものである。
The
加熱用電源によりフィラメント12aに電流を通じて加熱するとフィラメント12aは熱電子を放出し、この熱電子は、フィラメント12aとグリッド12cとの間に印加された制御用直流電源の制御電圧により四方八方に引き寄せられる。このうち、グリッド12cを通過したものだけが電子線として有効に取り出される。そして、このグリッド12cから取り出された電子線は、グリッド12cと窓箔32との間に印加された加速用直流電源の加速電圧により加速管14内の加速空間で加速された後、窓箔32を突き抜け、照射窓部30の下方の照射室20内を搬送される円筒状の被照射体1に照射される。なお、通常は、加熱用電源と加速用直流電源とを所定の値に設定し、制御用直流電源を可変にすることにより、ビーム電流の調整が可能となる。
When the
前記連鎖重合性基を有する電荷輸送性化合物を電荷輸送層として用いた場合の前記電荷輸送性化合物の量は、重合硬化後の電荷輸送層膜の全質量に対して、前記一般式(1)で示される連鎖重合性官能基を有する電荷輸送性化合物の連鎖重合性基を除き水素付加物としたものが、分子量換算で20%以上が好ましく、特には40%以上含有されていることが好ましい。20%未満であると電荷輸送能が低下し、感度低下及び残留電位の上昇等の問題点が生ずる。この場合の電荷輸送層としての膜厚は1〜50μmであることが好ましく、特には3〜30μmであることが好ましい。 When the charge transporting compound having a chain polymerizable group is used as a charge transporting layer, the amount of the charge transporting compound is the above general formula (1) with respect to the total mass of the charge transporting layer film after polymerization and curing. The hydrogenated product excluding the chain polymerizable group of the charge transporting compound having a chain polymerizable functional group represented by is preferably 20% or more in terms of molecular weight, particularly preferably 40% or more. . If it is less than 20%, the charge transport ability is lowered, and problems such as a reduction in sensitivity and an increase in residual potential occur. In this case, the thickness of the charge transport layer is preferably 1 to 50 μm, and particularly preferably 3 to 30 μm.
前記電荷輸送性化合物を電荷発生層/電荷輸送層上に表面保護層として用いた場合、その下層に当たる電荷輸送層は適当な電荷輸送材料、例えば、ポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体及びヒドラゾン誘導体等の低分子化合物等を適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)と共に溶剤に分散/溶解した溶液を前述の公知の方法によって塗布、乾燥して形成することができる。この場合の電荷輸送材料と結着樹脂の比率は、両者の全質量を100とした場合に電荷輸送材料の質量が、30〜100が好ましく、より好ましくは50〜100の範囲で適宜選択される。電荷輸送材料の量がそれ以下であると、電荷輸送能が低下し、感度低下及び残留電位の上昇等の問題点が生ずる。電荷輸送層の膜厚は、上層の表面保護層と合わせた総膜厚が好ましくは1〜50μmとなるように決定され、より好ましくは5〜30μmの範囲で調整される。 When the charge transporting compound is used as a surface protective layer on the charge generation layer / charge transport layer, the charge transport layer corresponding to the lower layer is formed of a suitable charge transport material such as poly-N-vinylcarbazole and polystyrylanthracene. Polymer compounds having a heterocyclic ring or condensed polycyclic aromatics, heterocyclic compounds such as pyrazoline, imidazole, oxazole, triazole and carbazole, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, A solution in which a low molecular weight compound such as a phenylenediamine derivative, an N-phenylcarbazole derivative, a stilbene derivative, or a hydrazone derivative is dispersed / dissolved in a solvent together with an appropriate binder resin (which can be selected from the aforementioned resin for charge generation layer) Apply and dry by the above-mentioned known method. It can be. In this case, the ratio of the charge transport material and the binder resin is appropriately selected in the range of 30 to 100, more preferably 50 to 100, when the total mass of both is 100. . When the amount of the charge transport material is less than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential occur. The film thickness of the charge transport layer is determined so that the total film thickness combined with the upper surface protective layer is preferably 1 to 50 μm, and more preferably adjusted in the range of 5 to 30 μm.
本発明では上述のいずれの場合においても、前記連鎖重合性基を有する電荷輸送性化合物の硬化物を含有する感光層に、前記電荷輸送材料を含有することが可能である。 In the present invention, in any of the above cases, the charge transport material can be contained in the photosensitive layer containing the cured product of the charge transport compound having the chain polymerizable group.
単層型感光層の場合は、前記電荷輸送性化合物を含む溶液中に同時に電荷発生材料が含まれることになり、この溶液を適当な下引き層あるいは中間層を設けてもよい導電性支持体上に塗布後重合あるいは架橋し硬化させて形成される場合と、導電性支持体上に設けられた電荷発生材料及び電荷輸送材料から構成される単層型感光層上に前記電荷輸送性化合物を含有する溶液を塗布後、重合あるいは架橋し硬化させる場合のいずれもが可能である。 In the case of a single-layer type photosensitive layer, a charge generating material is simultaneously contained in the solution containing the charge transporting compound, and this solution may be provided with an appropriate undercoat layer or intermediate layer. The charge transporting compound is formed on a single layer type photosensitive layer composed of a charge generating material and a charge transporting material provided on a conductive support, and when formed by polymerization or crosslinking and curing after coating Any of the cases of polymerizing or crosslinking and curing after application of the contained solution is possible.
本発明の電子写真感光体の感光層には、各種添加剤を添加することができる。該添加剤とは、酸化防止剤及び紫外線吸収剤等の劣化防止剤や、テトラフルオロエチレン樹脂粒子及びフッ化カーボン等の潤剤等である。 Various additives can be added to the photosensitive layer of the electrophotographic photoreceptor of the present invention. Examples of the additives include deterioration inhibitors such as antioxidants and ultraviolet absorbers, and lubricants such as tetrafluoroethylene resin particles and carbon fluoride.
図2に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。 FIG. 2 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
図2に於いて、1はドラム状の本発明の電子写真感光体であり、軸(不図示)を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段2によりその周面に正又は負の所定電位の均一帯電を受け、次いでスリット露光やレーザービーム走査露光等の露光手段3からの露光光Lを受ける。こうして電子写真感光体1の周面に静電潜像が順次形成されていく。形成された静電潜像は、次いで現像手段4によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から電子写真感光体1と転写手段5との間に電子写真感光体1の回転と同期取り出されて給紙された転写材Pに、転写手段5により順次転写されていく。像転写を受けた転写材Pは、電子写真感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。像転写後の電子写真感光体1は、その表面がクリーニング手段6によって転写残りトナーの除去を受けて清浄化され、更に前露光手段(不図示)からの前露光光7により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段2が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。 In FIG. 2, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate at a predetermined peripheral speed in the direction of an arrow about a shaft (not shown). In the rotating process, the electrophotographic photosensitive member 1 is uniformly charged with a positive or negative predetermined potential on its peripheral surface by the primary charging unit 2, and then the exposure light L from the exposure unit 3 such as slit exposure or laser beam scanning exposure. Receive. In this way, electrostatic latent images are sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1. The formed electrostatic latent image is then developed with toner by the developing means 4, and the developed toner developed image is transferred between the electrophotographic photosensitive member 1 and the transfer means 5 from a paper supply unit (not shown). The transfer means 5 sequentially transfers the transfer material P taken out in synchronization with the rotation of 1 and fed. The transfer material P that has received the image transfer is separated from the surface of the electrophotographic photosensitive member, introduced into the image fixing means 8, and subjected to image fixing to be printed out as a copy (copy). After the image is transferred, the surface of the electrophotographic photosensitive member 1 is cleaned by removing the transfer residual toner by the cleaning unit 6, and is further subjected to charge removal processing by the pre-exposure light 7 from the pre-exposure unit (not shown). Used repeatedly for image formation. When the primary charging unit 2 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.
本発明においては、上述の電子写真感光体1、一次帯電手段2、現像手段4及びクリーニング手段6等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成しこのプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段2、現像手段4及びクリーニング手段6の少なくとも一つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール110等の案内手段を用いて装置本体に着脱自在なプロセスカートリッジ100とすることができる。
In the present invention, a plurality of components such as the electrophotographic photosensitive member 1, the primary charging unit 2, the developing unit 4 and the cleaning unit 6 described above are integrally coupled as a process cartridge. The electrophotographic apparatus main body such as a copying machine or a laser beam printer may be detachable. For example, at least one of the primary charging unit 2, the developing unit 4, and the cleaning unit 6 is integrally supported together with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body using guide means such as the
また、露光光Lは、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいはセンサーで原稿を読みとり、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。 Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light L is a reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and a laser beam scanning performed according to this signal, Light emitted by driving the LED array, driving the liquid crystal shutter array, or the like.
本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター及びレーザー製版等の電子写真応用分野にも広く用いることができる。 The electrophotographic photosensitive member of the present invention can be used not only in electrophotographic copying machines but also widely in electrophotographic application fields such as laser beam printers, CRT printers, LED printers, liquid crystal printers, and laser plate making.
以下に実施例と比較例を挙げ更に本発明を詳細に説明する。なお、以下に現れる「部」は、特に説明する場合を除き、すべて「質量部」を意味する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. Note that “parts” appearing below mean “parts by mass” unless otherwise specified.
(実施例1−1)
ポリアミド樹脂(6−60−64−124元ナイロン共重合体)1部、8−ナイロン樹脂(メトキシメチル化ナイロン、メトキシ化率約30%)3部をメタノール50部/ブタノール40部に溶解し、中間層用塗料を調製した。この塗料をホーニング処理したφ30mmのアルミニウムシリンダー上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.5μmの中間層を形成した。
(Example 1-1)
1 part of a polyamide resin (6-60-64-124 original nylon copolymer) and 3 parts of an 8-nylon resin (methoxymethylated nylon, methoxylation rate of about 30%) are dissolved in 50 parts of methanol / 40 parts of butanol. An intermediate layer paint was prepared. This paint was applied on a honed-treated φ30 mm aluminum cylinder by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.5 μm.
CuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を3部、ポリビニルブチラール(商品名:エスレックBM2、積水化学(株)製)1.0部及びシクロヘキサノン35部を、φ1mmガラスビ−ズを用いたサンドミル装置で24時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を前記中間層上に浸漬塗布方法で塗布して105℃で10分間乾燥し、膜厚が0.12μmの電荷発生層を形成した。 3 parts of a hydroxygallium phthalocyanine crystal having strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in the characteristic X-ray diffraction of CuKα, polyvinyl butyral (trade name: ESREC BM2, Sekisui) Chemical Co., Ltd. (1.0 part) and cyclohexanone (35 parts) were dispersed in a sand mill using a φ1 mm glass bead for 24 hours, and then 60 parts of ethyl acetate was added to prepare a charge generation layer coating material. This paint was applied onto the intermediate layer by a dip coating method and dried at 105 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.12 μm.
次いで、分散剤としてフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)1.25部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5部と1−プロパノール37.5部に溶解した後、潤滑剤として四フッ化エチレン樹脂粉体(商品名:ルブロンL−2、ダイキン工業(株)製)12.5部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)で600kgf/cm2の圧力で3回の処理を施し均一に分散させた。これを10μmのポリテトラフルオロエチレン(PTFE)メンブレンフィルターで加圧濾過を行い、潤滑剤分散液を調製した。次に表1の化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物36部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部、1−プロパノール24部を混合、攪拌した後、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、電荷輸送層用塗料を調製した。 Next, 1.25 parts of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant was added to 1,1,2,2,3,3,4-heptafluorocyclopentane ( Trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd. 37.5 parts and 1-propanol 37.5 parts, and then tetrafluoroethylene resin powder as lubricant (trade name: Lubron L-2, Daikin) 12.5 parts of Kogyo Kogyo Co., Ltd.) was added, and the mixture was uniformly dispersed by applying 3 treatments at a pressure of 600 kgf / cm 2 with a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA). It was. This was subjected to pressure filtration with a 10 μm polytetrafluoroethylene (PTFE) membrane filter to prepare a lubricant dispersion. Next, Compound Example Nos. 36 parts of a charge transporting compound having 17 chain polymerizable functional groups, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating for a charge transport layer.
この電荷輸送層用塗料を前記電荷発生層上に浸漬塗布方法で塗布し、40℃で10分間乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約25℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量率3×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧150KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)3×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が18μmの電荷輸送層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This charge transport layer coating was applied onto the charge generation layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window part by a belt conveyor, stopped at the irradiation part and irradiated while rotating the sample (drum temperature at the start of irradiation was about 25 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. The electron beam irradiation conditions are: absorbed dose rate 3 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), acceleration voltage The absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 3 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating an electron beam under the above conditions to cure the compound, a charge transport layer having a film thickness of 18 μm was formed, and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
この様にして得られた電子写真感光体を、キヤノン(株)製複写機GP40を用いて低温低湿(15℃/10%RH)の環境下で評価した。電子写真感光体の電位特性については、複写機本体から現像器ユニットを取り外し、代わりに電位測定用プローブを現像位置に固定することにより測定を行った。なおその際に転写ユニットは、電子写真感光体に非接触、紙は非通紙とした。初期の電子写真感光体特性〔暗部電位Vd、感度:暗部電位−650V設定で170V(明部電位Vl)に光減衰させるために必要な光量、残留電位Vsl:明部電位Vlに必要な光量の3倍の光量を照射したときの電位〕を測定した。更に、200,000枚の通紙耐久実験を行い、画像欠陥発生の有無の観察、電子写真感光体の削れ量及び初期と耐久直後の明部電位の変動量ΔVlを測定した。なお削れ量の測定には、渦電流式膜厚計(カールフィッシャー社製)を使用した。また、通紙耐久はプリント1枚ごとに1回停止する間欠モードとした。 The electrophotographic photoreceptor thus obtained was evaluated in a low-temperature and low-humidity (15 ° C./10% RH) environment using a copying machine GP40 manufactured by Canon Inc. The potential characteristics of the electrophotographic photosensitive member were measured by removing the developing unit from the copying machine main body and fixing the potential measuring probe at the developing position instead. At that time, the transfer unit was not in contact with the electrophotographic photosensitive member, and the paper was not passed. Initial electrophotographic photoreceptor characteristics [dark portion potential Vd, sensitivity: dark portion potential −650 V light intensity necessary for light attenuation to 170 V (light portion potential Vl), residual potential Vsl: light amount necessary for light portion potential Vl The potential when irradiated with 3 times the amount of light] was measured. Furthermore, 200,000 sheets were tested for endurance, and the presence or absence of image defects was observed. The amount of shaving of the electrophotographic photosensitive member and the amount of fluctuation ΔVl in the initial portion and immediately after endurance were measured. An eddy current film thickness meter (manufactured by Karl Fischer) was used for measurement of the amount of scraping. In addition, the sheet passing durability is an intermittent mode in which the printing is stopped once for each print.
更に、同様に作製した電子写真感光体の電荷輸送層の移動度を、ドラム試験機CYNTHIA(GENTEC社製)によるゼログラフィックTOF法で測定した。尚、電界強度が5×105V/cmにおける電荷移動度を測定した。それらの結果を表3に示す。 Further, the mobility of the charge transport layer of the electrophotographic photoreceptor produced in the same manner was measured by a xerographic TOF method using a drum tester CYNTHIA (manufactured by GENTEC). The charge mobility at an electric field strength of 5 × 10 5 V / cm was measured. The results are shown in Table 3.
(実施例1−2〜1−18)
実施例1−1の電荷輸送層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物を、それぞれ化合物例No.1、No.3、No.4、No.5、No.7、No.8、No.9、No.12、No.18、No.19、No.26、No.27、No.29、No.30、No.31、No.33及びNo.34に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表3に示す。
(Examples 1-2 to 1-18)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-1 The charge transporting compounds having 17 chain polymerizable functional groups were respectively referred to as Compound Example Nos. 1, no. 3, no. 4, no. 5, no. 7, no. 8, no. 9, no. 12, no. 18, no. 19, no. 26, no. 27, no. 29, no. 30, no. 31, no. 33 and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-1 except that 34 was used. The results are shown in Table 3.
(実施例1−19)
実施例1−1の電荷輸送層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.17(18部)及びNo.36(18部)に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表3に示す。
(Example 1-19)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-1 36 parts of a charge transporting compound having 17 chain polymerizable functional groups were added to Compound Example No. 17 (18 parts) and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-1, except that 36 (18 parts) was used. The results are shown in Table 3.
(実施例1−20)
実施例1−1の電荷輸送層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.17(27部)及び下記に示される化合物A−1(商品名:ビスコート#540、大阪有機化学工業(株)製)9部に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表3に示す。
(Example 1-20)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-1 36 parts of a charge transporting compound having 17 chain polymerizable functional groups were added to Compound Example No. 17 (27 parts) and electrophotography in the same manner as in Example 1-1 except that 9 parts of Compound A-1 (trade name: Biscote # 540, manufactured by Osaka Organic Chemical Industry Co., Ltd.) shown below was used. A photoconductor was prepared and evaluated in the same manner. The results are shown in Table 3.
(比較例1−1)
実施例1−1の電荷輸送層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物を、下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−1)に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表4に示す。
(Comparative Example 1-1)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-1 Except having replaced the charge transportable compound which has 17 chain polymerizable functional groups with the charge transportable compound (H-1) which has a chain polymerizable functional group shown below, it carried out similarly to Example 1-1. An electrophotographic photosensitive member was produced and evaluated in the same manner. The results are shown in Table 4.
(比較例1−2〜1−9)
比較例1−1の電荷輸送層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−1)を、下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−2)〜(H−9)に代えた以外は、比較例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表4に示す。
(Comparative Examples 1-2 to 1-9)
The charge transporting compound (H-1) having a chain polymerizable functional group used in the preparation of the charge transport layer coating material of Comparative Example 1-1 was replaced with the charge transporting compound (H) having a chain polymerizable functional group shown below. -2) to (H-9) except that the electrophotographic photosensitive member was produced in the same manner as Comparative Example 1-1, and the same evaluation was performed. The results are shown in Table 4.
(比較例1−10)
比較例1−1の電荷輸送層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−1)36部を、下記に示される連鎖重合性官能基を有する電荷輸送化合物(H−10)18部及び前述した化合物(A−1)18部に代えた以外は、比較例1−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表4に示す。
(Comparative Example 1-10)
36 parts of the charge transporting compound (H-1) having a chain polymerizable functional group used in the preparation of the charge transport layer coating material of Comparative Example 1-1 was replaced with a charge transporting compound having a chain polymerizable functional group shown below ( An electrophotographic photosensitive member was produced and evaluated in the same manner as in Comparative Example 1-1 except that 18 parts of H-10) and 18 parts of the compound (A-1) were replaced. The results are shown in Table 4.
(比較例1−11)
比較例1−10の化合物(H−10)18部及び化合物(A−1)18部の比率を化合物(H−10)27部及び化合物(A−1)9部に代えた以外は、比較例1−10と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表4に示す。
(Comparative Example 1-11)
Comparative Example 1-10 except that the ratio of 18 parts of Compound (H-10) and 18 parts of Compound (A-1) was changed to 27 parts of Compound (H-10) and 9 parts of Compound (A-1). An electrophotographic photoreceptor was prepared in the same manner as in Example 1-10, and the same evaluation was performed. The results are shown in Table 4.
表3及び表4より明らかな様に本発明の連鎖重合性官能基を有する電荷輸送性化合物を電荷輸送層に用いた電子写真感光体は、初期の電子写真感光体特性が良好であり、かつ耐久での削れ量も小さく、キズ等による画像欠陥も発生せず、かつ耐久での電位変動が小さく極めて優れた耐久性能を示すことが判った。更に、本発明の連鎖重合性官能基を有する電荷輸送性化合物を硬化した電荷輸送層は、電荷移動度も極めて良好なことが判った。 As apparent from Tables 3 and 4, the electrophotographic photosensitive member using the charge transporting compound having a chain polymerizable functional group of the present invention for the charge transporting layer has good initial electrophotographic photosensitive member properties, and It was found that the amount of shaving during durability was small, image defects due to scratches and the like were not generated, and the potential fluctuation during durability was small, showing extremely excellent durability performance. Furthermore, it has been found that the charge transport layer obtained by curing the charge transport compound having a chain polymerizable functional group of the present invention has very good charge mobility.
(実施例2−1)
ポリアミド樹脂(6−60−64−124元ナイロン共重合体)1部、8−ナイロン樹脂(メトキシメチル化ナイロン、メトキシ化率約30%)3部をメタノール50部/ブタノール40部に溶解し、中間層用塗料を調製した。この塗料をホーニング処理したφ30mmのアルミニウムシリンダー上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.6μmの中間層を形成した。
(Example 2-1)
1 part of a polyamide resin (6-60-64-124 original nylon copolymer) and 3 parts of an 8-nylon resin (methoxymethylated nylon, methoxylation rate of about 30%) are dissolved in 50 parts of methanol / 40 parts of butanol. An intermediate layer paint was prepared. This paint was applied on a honed-treated φ30 mm aluminum cylinder by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.6 μm.
CuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を2.5部、ポリビニルブチラール(商品名エスレックBM2、積水化学(株)製)1.0部及びシクロヘキサノン35部を、φ1mmガラスビーズを用いたサンドミル装置で24時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を前記の中間層の上に浸漬塗布方法で塗布して105℃で10分間乾燥し、膜厚が0.14μmの電荷発生層を形成した。 2.5 parts of a hydroxygallium phthalocyanine crystal having strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in the characteristic X-ray diffraction of CuKα, polyvinyl butyral (trade name S-REC BM2, Sekisui Chemical Co., Ltd. (1.0 part) and cyclohexanone (35 parts) were dispersed for 24 hours in a sand mill using φ1 mm glass beads, and then 60 parts of ethyl acetate was added to prepare a charge generation layer coating material. This paint was applied onto the intermediate layer by a dip coating method and dried at 105 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.14 μm.
次いで、分散剤としてフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)1.25部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5部と1−プロパノール37.5部に溶解した後、潤滑剤として四フッ化エチレン樹脂粉体(商品名:ルブロンL−2、ダイキン工業(株)製)10部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)で600kgf/cm2の圧力で3回の処理を施し均一に分散させた。これを10μmのポリテトラフルオロエチレン(PTFE)メンブレンフィルターで加圧濾過を行い、潤滑剤分散液を調製した。次に表2の化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部、1−プロパノール24部を混合、攪拌した後、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、電荷輸送層用塗料を調製した。 Next, 1.25 parts of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant was added to 1,1,2,2,3,3,4-heptafluorocyclopentane ( Trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd. 37.5 parts and 1-propanol 37.5 parts, and then tetrafluoroethylene resin powder as lubricant (trade name: Lubron L-2, Daikin) 10 parts of Kogyo Co., Ltd.) were added, and the mixture was uniformly dispersed by applying three treatments at a pressure of 600 kgf / cm 2 with a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA). This was subjected to pressure filtration with a 10 μm polytetrafluoroethylene (PTFE) membrane filter to prepare a lubricant dispersion. Next, Compound Example Nos. 36 parts of a charge transporting compound having 41 chain polymerizable functional groups, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating for a charge transport layer.
この電荷輸送層用塗料を前記電荷発生層上に浸漬塗布方法で塗布し、40℃で10分間乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約25℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量率1.5×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧100KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)1.5×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が20μmの電荷輸送層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This charge transport layer coating was applied onto the charge generation layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window part by a belt conveyor, stopped at the irradiation part and irradiated while rotating the sample (drum temperature at the start of irradiation was about 25 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. The electron beam irradiation conditions are: absorbed dose rate 1.5 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), The acceleration voltage was 100 KV, and the absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 1.5 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating an electron beam under the above conditions to cure the compound, a charge transport layer having a thickness of 20 μm was formed, and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
この様にして得られた電子写真感光体を、キヤノン(株)製複写機GP40を用いて常温低湿(23℃/10%RH)の環境下で評価した。電子写真感光体の電位特性については、複写機本体から現像器ユニットを取り外し、代わりに電位測定用プローブを現像位置に固定することにより測定を行った。なおその際に転写ユニットは、電子写真感光体に非接触、紙は非通紙とした。初期の電子写真感光体特性〔暗部電位Vd、感度:暗部電位−650V設定で170V(明部電位Vl)に光減衰させるために必要な光量、残留電位Vsl:明部電位Vlに必要な光量の3倍の光量を照射したときの電位〕を測定した。更に200,000枚の通紙耐久実験を行い、画像欠陥発生の有無の観察、電子写真感光体の削れ量及び初期と耐久直後の明部電位の変動量ΔVlを測定した。なお削れ量の測定には、渦電流式膜厚計(カールフィッシャー社製)を使用した。また、通紙耐久はプリント1枚ごとに1回停止する間欠モードとした。 The electrophotographic photoreceptor thus obtained was evaluated in a normal temperature and low humidity (23 ° C./10% RH) environment using a copying machine GP40 manufactured by Canon Inc. The potential characteristics of the electrophotographic photosensitive member were measured by removing the developing unit from the copying machine main body and fixing the potential measuring probe at the developing position instead. At that time, the transfer unit was not in contact with the electrophotographic photosensitive member, and the paper was not passed. Initial electrophotographic photoreceptor characteristics [dark portion potential Vd, sensitivity: dark portion potential −650 V light intensity necessary for light attenuation to 170 V (light portion potential Vl), residual potential Vsl: light amount necessary for light portion potential Vl The potential when irradiated with 3 times the amount of light] was measured. Furthermore, 200,000 sheets were tested for endurance, and the presence or absence of image defects was observed, the amount of shaving of the electrophotographic photosensitive member, and the amount of fluctuation ΔVl in the initial portion and immediately after endurance of the bright portion potential were measured. An eddy current film thickness meter (manufactured by Karl Fischer) was used for measurement of the amount of scraping. In addition, the sheet passing durability is an intermittent mode in which the printing is stopped once for each print.
更に、同様に作製した電子写真感光体の電荷輸送層の移動度を、ドラム試験機CYNTHIA(GENTEC社製)によるゼログラフィックTOF法で測定した。尚、電界強度が5×105V/cmにおける電荷移動度を測定した。それらの結果を表5に示す。 Further, the mobility of the charge transport layer of the electrophotographic photoreceptor produced in the same manner was measured by a xerographic TOF method using a drum tester CYNTHIA (manufactured by GENTEC). The charge mobility at an electric field strength of 5 × 10 5 V / cm was measured. The results are shown in Table 5.
(実施例2−2〜2−32)
実施例2−1の電荷輸送層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物をそれぞれ化合物例No.42、No.43、No.44、No.45、No.46、No.47、No.48、No.49、No.50、No.57、No.58、No.59、No.60、No.61、No.64、No.65、No.66、No.72、No.73、No.74、No.75、No.77、No.78、No.80、No.81、No.82、No.83、No.84、No.85、No.87及びNo.89に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表5に示す。
(Examples 2-2 to 2-32)
Compound No. used in preparation of the charge transport layer coating material of Example 2-1 The charge transporting compounds having 41 chain polymerizable functional groups were respectively referred to as Compound Example Nos. 42, no. 43, no. 44, no. 45, no. 46, no. 47, no. 48, no. 49, no. 50, no. 57, no. 58, no. 59, no. 60, no. 61, no. 64, no. 65, no. 66, no. 72, no. 73, no. 74, no. 75, no. 77, no. 78, no. 80, no. 81, no. 82, no. 83, no. 84, no. 85, no. 87 and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2-1, except that 89 was used. The results are shown in Table 5.
(実施例2−33)
実施例2−1の電荷輸送層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.41(18部)及びNo.72(18部)に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表5に示す。
(Example 2-33)
Compound No. used in preparation of the charge transport layer coating material of Example 2-1 36 parts of a charge transporting compound having 41 chain polymerizable functional groups were added to Compound Example No. 41 (18 parts) and no. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 2-1, except that 72 (18 parts) was used. The results are shown in Table 5.
(実施例2−34)
実施例2−1の電荷輸送層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.41(27部)及び下記に示される化合物A−1(商品名:ビスコート#540、大阪有機化学工業(株)製)9部に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表5に示す。
(Example 2-34)
Compound No. used in preparation of the charge transport layer coating material of Example 2-1 36 parts of a charge transporting compound having 41 chain polymerizable functional groups were added to Compound Example No. 41 (27 parts) and the following compound A-1 (trade name: Biscote # 540, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 9 parts, electrophotography similar to Example 2-1. A photoconductor was prepared and evaluated in the same manner. The results are shown in Table 5.
(比較例2−1)
実施例2−1の電荷輸送層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物を、下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−13)に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表6に示す。
(Comparative Example 2-1)
Compound No. used in preparation of the charge transport layer coating material of Example 2-1 The charge transporting compound having 41 chain polymerizable functional groups was replaced with the charge transporting compound (H-13) having a chain polymerizable functional group shown below in the same manner as in Example 2-1. An electrophotographic photosensitive member was produced and evaluated in the same manner. The results are shown in Table 6.
(比較例2−2〜2−9)
比較例2−1の電荷輸送層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−13)を、下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−14)〜(H−21)に代えた以外は、比較例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表6に示す。
(Comparative Examples 2-2 to 2-9)
The charge transporting compound (H-13) having a chain polymerizable functional group used in the preparation of the charge transport layer coating material of Comparative Example 2-1 was replaced with the charge transporting compound (H-13) having a chain polymerizable functional group shown below. -14) to (H-21), except that the electrophotographic photosensitive member was produced in the same manner as in Comparative Example 2-1, and the same evaluation was performed. The results are shown in Table 6.
(比較例2−10)
比較例2−1の電荷輸送層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−13)36部を、下記に示される連鎖重合性官能基を有する電荷輸送化合物(H−22)18部及び先の化合物(A−1)18部に代えた以外は、比較例2−1と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表6に示す。
(Comparative Example 2-10)
36 parts of the charge transportable compound (H-13) having a chain polymerizable functional group used in the preparation of the charge transport layer coating material of Comparative Example 2-1 was replaced with the charge transport compound having a chain polymerizable functional group shown below ( An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Comparative Example 2-1, except that 18 parts of H-22) and 18 parts of the previous compound (A-1) were used. The results are shown in Table 6.
(比較例2−11)
比較例2−10の化合物(H−22)18部及び化合物(A−1)18部の比率を化合物(H−22)27部及び化合物(A−1)9部に代えた以外は、比較例2−10と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表6に示す。
(Comparative Example 2-11)
Comparative Example 2-10 except that the ratio of 18 parts of Compound (H-22) and 18 parts of Compound (A-1) was changed to 27 parts of Compound (H-22) and 9 parts of Compound (A-1). An electrophotographic photoreceptor was prepared in the same manner as in Example 2-10, and the same evaluation was performed. The results are shown in Table 6.
表5及び表6より明らかな様に本発明の連鎖重合性官能基を有する電荷輸送性化合物を電荷輸送層に用いた電子写真感光体は、初期の電子写真感光体特性が良好であり、かつ耐久での削れ量も小さく、キズ等による画像欠陥も発生せず、かつ耐久での電位変動が小さく極めて優れた耐久性能を示すことが判った。更に、本発明の連鎖重合性官能基を有する電荷輸送性化合物を硬化した電荷輸送層は、電荷移動度も極めて良好なことが判った。 As apparent from Tables 5 and 6, the electrophotographic photosensitive member using the charge transporting compound having a chain polymerizable functional group of the present invention for the charge transporting layer has good initial electrophotographic photosensitive member properties, and It was found that the amount of shaving during durability was small, image defects due to scratches and the like were not generated, and the potential fluctuation during durability was small, showing extremely excellent durability performance. Furthermore, it has been found that the charge transport layer obtained by curing the charge transport compound having a chain polymerizable functional group of the present invention has very good charge mobility.
(実施例1−21)
実施例1−1と同様に中間層及び電荷発生層を作製した。次に、電荷輸送材料として下記に示される化合物(D−1)4.0部及び化合物(D−2)0.5部及びビスフェノールZ型ポリカーボネート(粘度平均分子量45,000)5.5部をモノクロロベンゼン38部に溶解し、電荷輸送層用塗料を調製した。この塗料を前記電荷発生層上に浸漬塗布方法で塗布して100℃で60分間乾燥し、膜厚12μmの電荷輸送層を形成した。
(Example 1-21)
An intermediate layer and a charge generation layer were prepared in the same manner as in Example 1-1. Next, 4.0 parts of the compound (D-1) and 0.5 part of the compound (D-2) and 5.5 parts of a bisphenol Z-type polycarbonate (viscosity average molecular weight 45,000) shown below as charge transporting materials were used. Dissolved in 38 parts of monochlorobenzene to prepare a charge transport layer coating. This paint was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 60 minutes to form a charge transport layer having a thickness of 12 μm.
次いで、分散剤としてフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)1.25部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5部と1−プロパノール37.5部に溶解した後、潤滑剤として四フッ化エチレン樹脂粉体(商品名:ルブロンL−2、ダイキン工業(株)製)25部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米国Microfluidics社製)で600kgf/cm2の圧力で3回の処理を施し均一に分散させた。これを10μmのPTFEメンブレンフィルターで加圧濾過を行い、潤滑剤分散液を調製した。次に、表1の化合物例No.3の連鎖重合性官能基を有する電荷輸送性化合物36部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部/1−プロパノール24部を混合、攪拌した後、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、保護層用塗料を調製した。 Next, 1.25 parts of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant was added to 1,1,2,2,3,3,4-heptafluorocyclopentane ( Trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd. 37.5 parts and 1-propanol 37.5 parts, and then tetrafluoroethylene resin powder as lubricant (trade name: Lubron L-2, Daikin) 25 parts of Kogyo Kogyo Co., Ltd. were added, and the mixture was uniformly dispersed by applying three treatments at a pressure of 600 kgf / cm 2 with a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA). This was subjected to pressure filtration with a 10 μm PTFE membrane filter to prepare a lubricant dispersion. Next, Compound Example Nos. 36 parts of a charge transporting compound having 3 chain polymerizable functional groups, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane / 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a protective layer coating.
この保護層用塗料を前記電荷輸送層上に浸漬塗布方法で塗布し、40℃で10分間乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約25℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量率2.5×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧150KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)1.5×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が5μmの保護層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This protective layer coating material was applied onto the charge transport layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window part by a belt conveyor, stopped at the irradiation part and irradiated while rotating the sample (drum temperature at the start of irradiation was about 25 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. The electron beam irradiation conditions are: absorbed dose rate 2.5 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), The acceleration voltage was 150 KV, and the absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 1.5 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating with an electron beam under the above conditions to cure the compound, a protective layer having a film thickness of 5 μm was formed, and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
上記で得られた電子写真感光体ドラムをヒューレットパッカード社Laser Jet4300n改造機(帯電のDC成分及び光量を変化出来るように改造)に装着し、常温常湿(23℃/50%RH)条件下で、帯電のDC成分と光量を変化させ初期暗部電位(Vd)が−650(V)になるように帯電設定をし、これに波長780(nm)のレーザー光を照射して−650(V)の電位を−170(V)(明部電位Vl)まで下げるのに必要な光量を測定し感度とした。更に、20(μJ/cm2)の光量を照射した場合の電位を残留電位(Vr)として初期特性を測定した。評価した。なお、電位は現像器の位置にプローブを装着し、測定した。 The electrophotographic photosensitive drum obtained above is mounted on a Hewlett-Packard Laser Jet 4300n remodeling machine (modified so that the DC component and light quantity of charging can be changed), and under normal temperature and normal humidity (23 ° C./50% RH) conditions. The charging is set so that the initial DC dark potential (Vd) becomes -650 (V) by changing the DC component and the light amount of the charging, and the laser beam having a wavelength of 780 (nm) is irradiated to this to -650 (V) The amount of light required to reduce the potential of -170 (V) (light portion potential Vl) was measured and used as sensitivity. Further, the initial characteristics were measured by setting the potential when the light amount of 20 (μJ / cm 2 ) was irradiated as the residual potential (Vr). evaluated. The potential was measured by attaching a probe to the position of the developing device.
次に、連続10、000枚の通紙耐久を行って、初期と耐久直後の暗部電位と明部電位のそれぞれの変動量(ΔVd、ΔVl)、及び削れ量を測定した。尚、初期の電位設定は上記と同じで、暗部電位:−650(V)、明部電位:−170(V)で、耐久パターンは約2mm幅の線を縦横7mmおきに印字した画像を使用し通紙耐久を行った。 Next, continuous 10,000 sheet passing durability was performed, and the amount of change (ΔVd, ΔVl) and scraping amount of the dark portion potential and the light portion potential immediately after the end and after the endurance were measured. The initial potential setting is the same as above, dark portion potential: -650 (V), bright portion potential: -170 (V), and the endurance pattern uses an image printed with lines of about 2 mm width every 7 mm vertically and horizontally. Paper endurance was performed.
更に上記耐久に合わせて、初期及び耐久後のゴーストの評価も行った。ゴーストの評価は、プリント画像を書き出しから電子写真感光体1回転の部分に25mm角の正方形のベタ黒画像部を並べ、電子写真感光体の2回転目以降に全面ハーフトーン画像(1ドット1スペースのドット密度の画像)で印字し、その画像サンプルよりゴースト現象が出ているかどうかを確認した。画像サンプルは、機械の現像ボリューム、F5(中心値)とF9(濃度薄い)で各々サンプリングした。評価基準は目視でいずれのモードでもゴーストが全く見えないものをランク1とし、F9でうっすら見えるものをランク2、いずれのモードでもうっすら見えるものをランク3、いずれのモードでもゴーストがはっきり見えるものをランク4とした。その結果を表7に示す。 Furthermore, in accordance with the above durability, the ghost after the initial and after durability was also evaluated. The ghost is evaluated by arranging a 25 mm square square solid black image portion on the electrophotographic photosensitive member 1 rotation after the print image is written, and the entire halftone image (1 dot 1 space) after the second rotation of the electrophotographic photosensitive member. The image of the dot density was printed, and it was confirmed whether or not a ghost phenomenon occurred from the image sample. Image samples were each sampled at the machine development volume, F5 (center value) and F9 (thin density). The evaluation criteria are rank 1 if no ghost is visible in any mode, rank 2 if it is faint in F9, rank 3 if it is visible in any mode, and ghost is clearly visible in any mode Rank 4 was assigned. The results are shown in Table 7.
(実施例1−22〜1−31)
実施例1−21の電荷輸送層用塗料作製で使用した化合物例No.3の連鎖重合性官能基を有する電荷輸送性化合物を、それぞれ化合物例No.8、No.9、No.10、No.11、No.12、No.17、No.26、No.29、No.31及びNo.34に代えた以外は、実施例1−21と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表7に示す。
(Examples 1-22 to 1-31)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-21 3, each of the charge transporting compounds having a chain polymerizable functional group is referred to as Compound Example No. 8, no. 9, no. 10, no. 11, no. 12, no. 17, no. 26, no. 29, no. 31 and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-21 except that 34 was used. The results are shown in Table 7.
(実施例1−32)
実施例1−21の保護層用塗料作製で使用した化合物例No.3の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.3(24部)及び下記に示される化合物A−2(商品名:カヤラッドTMPTA、日本化薬(株)製)12部に代えた以外は、実施例1−21と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表7に示す。
(Example 1-32)
Compound Example No. used in the preparation of the protective layer coating material of Example 1-21 36 parts of a charge transporting compound having a chain polymerizable functional group of 3 is added to Compound Example No. 3 (24 parts) and Compound A-2 shown below (trade name: Kayarad TMPTA, manufactured by Nippon Kayaku Co., Ltd.) 12 parts, an electrophotographic photoreceptor in the same manner as in Example 1-21 The same evaluation was performed. The results are shown in Table 7.
(比較例1−12)
実施例1−21の保護層用塗料作製で使用した化合物例No.3の連鎖重合性官能基を有する電荷輸送性化合物を、先の連鎖重合性官能基を有する電荷輸送化合物(H−4)に代えた以外は、実施例1−21と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表8に示す。
(Comparative Example 1-12)
Compound Example No. used in the preparation of the protective layer coating material of Example 1-21 3 except that the charge transporting compound (3) having a chain polymerizable functional group (3) was replaced with the charge transporting compound (H-4) having a chain polymerizable functional group (1). A body was prepared and evaluated in the same manner. The results are shown in Table 8.
(比較例1−13〜1−18)
比較例1−12の保護層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−4)を、先の連鎖重合性官能基を有する電荷輸送化合物(H−1)、(H−2)、(H−5)、(H−7)及び下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−11)及び(H−12)に代えた以外は、比較例1−12と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表8に示す。
(Comparative Examples 1-13 to 1-18)
The charge transporting compound (H-4) having a chain polymerizable functional group used in the preparation of the protective layer coating material of Comparative Example 1-12 was replaced with the charge transporting compound (H-1) having a previous chain polymerizable functional group, Except for (H-2), (H-5), (H-7) and the charge transporting compounds (H-11) and (H-12) having the chain polymerizable functional group shown below, An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 1-12, and the same evaluation was performed. The results are shown in Table 8.
(比較例1−19)
比較例1−12の保護層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−4)36部を、先の連鎖重合性官能基を有する電荷輸送化合物(H−10)18部及び先の化合物(A−2)18部に代えた以外は、比較例1−12と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表8に示す。
(Comparative Example 1-19)
36 parts of the charge transporting compound (H-4) having a chain polymerizable functional group used in the preparation of the protective layer coating material of Comparative Example 1-12 was replaced with the charge transporting compound (H-10) having the above chain polymerizable functional group. ) An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Comparative Example 1-12 except that 18 parts and 18 parts of the previous compound (A-2) were used. The results are shown in Table 8.
表7及び表8より明らかな様に本発明の連鎖重合性官能基を有する電荷輸送性化合物を保護層に用いた電子写真感光体は、初期の電子写真感光体特性が良好であるのは勿論、耐久での削れ量及び電位変動が小さく且つ初期及び耐久後も含めゴーストが良好で、極めて優れた耐久性能を示すことが判った。 As is apparent from Tables 7 and 8, the electrophotographic photosensitive member using the charge transporting compound having a chain polymerizable functional group of the present invention for the protective layer has, of course, good initial electrophotographic photosensitive member characteristics. It was found that the wear amount and the potential fluctuation in durability were small, the ghost was good including the initial and after durability, and extremely excellent durability performance was exhibited.
(実施例2−35)
実施例2−1と同様に中間層及び電荷発生層を作製した。次に、電荷輸送材料として下記に示される化合物(D−1)4.5部及び化合物(D−2)0.5部及びビスフェノールZ型ポリカーボネート(粘度平均分子量45,000)5.5部をモノクロロベンゼン38部に溶解し、電荷輸送層用塗料を調製した。この塗料を前記の電荷発生層の上に浸漬塗布方法で塗布して100℃で60分間乾燥し、膜厚が10μmの電荷輸送層を形成した。
(Example 2-35)
An intermediate layer and a charge generation layer were produced in the same manner as in Example 2-1. Next, 4.5 parts of the compound (D-1) and 0.5 part of the compound (D-2) and 5.5 parts of a bisphenol Z-type polycarbonate (viscosity average molecular weight 45,000) shown below as charge transport materials Dissolved in 38 parts of monochlorobenzene to prepare a charge transport layer coating. This paint was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 60 minutes to form a charge transport layer having a thickness of 10 μm.
次いで、分散剤としてフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)1.25部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5部と1−プロパノール37.5部に溶解した後、潤滑剤として四フッ化エチレン樹脂粉体(商品名:ルブロンL−2、ダイキン工業(株)製)25部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)で600kgf/cm2の圧力で3回の処理を施し均一に分散させた。これを10μmのPTFEメンブレンフィルターで加圧濾過を行い、潤滑剤分散液を調製した。次に表2の化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部、1−プロパノール24部を混合、攪拌した後、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、保護層用塗料を調製した。 Next, 1.25 parts of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant was added to 1,1,2,2,3,3,4-heptafluorocyclopentane ( Trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd. 37.5 parts and 1-propanol 37.5 parts, and then tetrafluoroethylene resin powder as lubricant (trade name: Lubron L-2, Daikin) 25 parts of Kogyo Co., Ltd.) was added, and the mixture was uniformly dispersed by applying three treatments at a pressure of 600 kgf / cm 2 with a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA). This was subjected to pressure filtration with a 10 μm PTFE membrane filter to prepare a lubricant dispersion. Next, Compound Example Nos. 36 parts of a charge transporting compound having 41 chain polymerizable functional groups, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a protective layer coating.
この保護層用塗料を前記の電荷輸送層上に浸漬塗布方法で塗布し、40℃で10分間乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約25℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量率2.5×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧150KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)2.5×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が5μmの保護層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This protective layer coating was applied on the charge transport layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window part by a belt conveyor, stopped at the irradiation part and irradiated while rotating the sample (drum temperature at the start of irradiation was about 25 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. The electron beam irradiation conditions are: absorbed dose rate 2.5 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), The acceleration voltage was 150 KV, and the absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 2.5 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating with an electron beam under the above conditions to cure the compound, a protective layer having a film thickness of 5 μm was formed and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
上記で得られた電子写真感光体ドラムをヒューレットパッカード社Laser Jet4300n改造機(帯電のDC成分及び光量を変化出来るように改造)に装着し、常温常湿(23℃/50%)条件下で、帯電のDC成分と光量を変化させ初期暗部電位(Vd)が−650(V)になるように帯電設定をし、これに波長780(nm)のレーザー光を照射して−650(V)の電位を−170(V)(明部電位Vl)まで下げるのに必要な光量を測定し感度とした。更に、20(μJ/cm2)の光量を照射した場合の電位を残留電位(Vr)として初期特性を測定し、評価した。なお、電位は現像器の位置にプローブを装着し測定した。 The electrophotographic photosensitive drum obtained above is mounted on a Hewlett Packard Laser Jet 4300n remodeling machine (modified so that the DC component and light quantity of charging can be changed), and under normal temperature and normal humidity (23 ° C./50%) conditions, The charge is set so that the initial DC dark potential (Vd) becomes −650 (V) by changing the DC component and the amount of charge, and this is irradiated with laser light having a wavelength of 780 (nm) to −650 (V). The amount of light required to reduce the potential to -170 (V) (bright part potential Vl) was measured and used as sensitivity. Furthermore, the initial characteristics were measured and evaluated with the potential when irradiated with a light amount of 20 (μJ / cm 2 ) as the residual potential (Vr). The potential was measured by attaching a probe to the position of the developing device.
次に、連続10、000枚の通紙耐久を行って、初期と耐久直後の暗部電位と明部電位のそれぞれの変動量(ΔVd、ΔVl)、及び削れ量を測定した。尚、初期の電位設定は先と同じで、暗部電位:−650(V)、明部電位:−170(V)で、耐久パターンは約2mm幅の線を縦横7mmおきに印字した画像を使用し通紙耐久を行った。 Next, continuous 10,000 sheet passing durability was performed, and the amount of change (ΔVd, ΔVl) and scraping amount of the dark portion potential and the light portion potential immediately after the end and after the endurance were measured. The initial potential setting is the same as before, dark portion potential: -650 (V), bright portion potential: -170 (V), and the endurance pattern uses an image printed with lines of about 2 mm width every 7 mm vertically and horizontally. Paper endurance was performed.
更に上記耐久に合わせて、初期及び耐久後のゴーストの評価も行った。ゴーストの評価は、プリント画像を書き出しから電子写真感光体1回転の部分に25mm角の正方形のベタ黒画像部を並べ、電子写真感光体の2回転目以降に全面ハーフトーン画像(1ドット1スペースのドット密度の画像)で印字し、その画像サンプルよりゴースト現象が出ているかどうかを確認した。画像サンプルは、機械の現像ボリューム、F5(中心値)とF9(濃度薄い)で各々サンプリングした。評価基準は目視でいずれのモードでもゴーストが全く見えないものをランク1とし、F9でうっすら見えるものをランク2、いずれのモードでもうっすら見えるものをランク3、いずれのモードでもゴーストがはっきり見えるものをランク4とした。その結果を表9に示す。 Furthermore, in accordance with the above durability, the ghost after the initial and after durability was also evaluated. The ghost is evaluated by arranging a 25 mm square square solid black image portion on the electrophotographic photosensitive member 1 rotation after the print image is written, and the entire halftone image (1 dot 1 space) after the second rotation of the electrophotographic photosensitive member. The image of the dot density was printed, and it was confirmed whether or not a ghost phenomenon occurred from the image sample. Image samples were each sampled at the machine development volume, F5 (center value) and F9 (thin density). The evaluation criteria are rank 1 if no ghost is visible in any mode, rank 2 if it is faint in F9, rank 3 if it is visible in any mode, and ghost is clearly visible in any mode Rank 4 was assigned. The results are shown in Table 9.
(実施例2−36〜2−54)
実施例2−35の電荷輸送層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物を、それぞれ化合物例No.43、No.45、No.50、No.51、No.53、No.63、No.68、No.70、No.72、No.74、No.83、No.84、No.88、No.91、No.92、No.93、No.94、No.95及びNo.96に代えた以外は、実施例2−35と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表9に示す。
(Examples 2-36 to 2-54)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 2-35 The charge transporting compounds having 41 chain polymerizable functional groups were respectively referred to as Compound Example Nos. 43, no. 45, no. 50, no. 51, no. 53, no. 63, no. 68, no. 70, no. 72, no. 74, no. 83, no. 84, no. 88, no. 91, no. 92, no. 93, no. 94, no. 95 and No. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2-35 except that 96 was used. The results are shown in Table 9.
(実施例2−55)
実施例2−35の保護層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.43(24部)及び下記に示される化合物A−2(商品名:カヤラッドTMPTA、日本化薬(株)製)12部に代えた以外は、実施例2−35と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表9に示す。
(Example 2-55)
Compound No. used in the preparation of the protective layer coating material of Example 2-35 36 parts of a charge transporting compound having 41 chain polymerizable functional groups were added to Compound Example No. 43 (24 parts) and Compound A-2 (trade name: Kayalard TMPTA, manufactured by Nippon Kayaku Co., Ltd.) 12 parts shown below, and an electrophotographic photoreceptor in the same manner as in Example 2-35. The same evaluation was performed. The results are shown in Table 9.
(実施例2−56)
実施例2−35の保護層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物36部を、化合物例No.41(24部)及び先の連鎖重合性官能基を有する化合物H−22(12部)に代えた以外は、実施例2−35と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表9に示す。
(Example 2-56)
Compound No. used in the preparation of the protective layer coating material of Example 2-35 36 parts of a charge transporting compound having 41 chain polymerizable functional groups were added to Compound Example No. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 2-35 except that 41 (24 parts) and the compound H-22 (12 parts) having a chain polymerizable functional group were used. It was. The results are shown in Table 9.
(比較例2−12)
実施例2−35の保護層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物を、先の(H−15)に代えた以外は、実施例2−35と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表10に示す。
(Comparative Example 2-12)
Compound No. used in the preparation of the protective layer coating material of Example 2-35 An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 2-35 except that the charge transporting compound having 41 chain polymerizable functional groups was replaced with the previous (H-15). . The results are shown in Table 10.
(比較例2−13〜2−18)
比較例2−12の保護層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−15)を、先の連鎖重合性官能基を有する電荷輸送化合物(H−13)、(H−14)、(H−17)、(H−20)、及び下記に示される連鎖重合性官能基を有する電荷輸送性化合物(H−23)及び(H−24)に代えた以外は、比較例2−12と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表10に示す。
(Comparative Examples 2-13 to 2-18)
The charge transporting compound (H-15) having a chain polymerizable functional group used in the preparation of the protective layer coating material of Comparative Example 2-12 was used as the charge transporting compound (H-13) having the previous chain polymerizable functional group, Except for (H-14), (H-17), (H-20), and charge transporting compounds (H-23) and (H-24) having a chain polymerizable functional group shown below. In the same manner as in Comparative Example 2-12, an electrophotographic photosensitive member was produced and evaluated in the same manner. The results are shown in Table 10.
(比較例2−19)
比較例2−13の保護層用塗料作製で使用した連鎖重合性官能基を有する電荷輸送性化合物(H−13)36部を、先の連鎖重合性官能基を有する電荷輸送化合物(H−22)24部及び先の化合物(A−2)12部に代えた以外は、比較例2−12と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表10に示す。
(Comparative Example 2-19)
36 parts of the charge transporting compound (H-13) having a chain polymerizable functional group used in the preparation of the protective layer coating material of Comparative Example 2-13 was replaced with the charge transporting compound (H-22) having the above chain polymerizable functional group. ) An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Comparative Example 2-12 except that 24 parts and 12 parts of the previous compound (A-2) were used. The results are shown in Table 10.
(比較例2−20)
実施例2−56の保護層用塗料作製で使用した化合物例No.41の連鎖重合性官能基を有する電荷輸送性化合物24部を先の化合物H−13(24部)に代えた以外は、実施例2−56と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表10に示す。
(Comparative Example 2-20)
Compound Example No. used in preparation of the protective layer coating material of Example 2-56 An electrophotographic photosensitive member was prepared in the same manner as in Example 2-56 except that 24 parts of the charge transporting compound having 41 chain polymerizable functional groups was replaced with the previous compound H-13 (24 parts). Evaluation was performed. The results are shown in Table 10.
表9及び表10より明らかな様に本発明の連鎖重合性官能基を有する電荷輸送性化合物を保護層に用いた電子写真感光体は、初期の電子写真感光体特性が良好であるのは勿論、耐久での削れ量及び電位変動が小さく且つ初期及び耐久後も含めゴーストが良好で、極めて優れた耐久性能を示すことが判った。 As is apparent from Tables 9 and 10, the electrophotographic photosensitive member using the charge transporting compound having a chain polymerizable functional group of the present invention for the protective layer has, of course, good initial electrophotographic photosensitive member characteristics. It was found that the wear amount and the potential fluctuation in durability were small, the ghost was good including the initial and after durability, and extremely excellent durability performance was exhibited.
(実施例1−33)
まず10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部及びシリコーン化合物(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部、φ1mmガラスビーズを用いたサンドミル装置で2時間分散して調製した。この塗料をφ30mmのアルミニウムシリンダー上に浸漬塗布方法で塗布し、150℃で30分間乾燥して、膜厚が15μmの導電層を形成した。
(Example 1-33)
First, 50 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of phenol resin, 20 parts of methyl cellosolve, 5 parts of methanol and a silicone compound (polydimethylsiloxane polyoxyalkylene copolymer, (Average molecular weight 3000) 0.002 part, and prepared by dispersing for 2 hours in a sand mill using φ1 mm glass beads. This paint was applied on a φ30 mm aluminum cylinder by a dip coating method and dried at 150 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.
次に、N−メトキシメチル化ナイロン5部をメタノール95部中に溶解し、中間層用塗料を調製した。この塗料を前記導電層上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.5μmの中間層を形成した。 Next, 5 parts of N-methoxymethylated nylon was dissolved in 95 parts of methanol to prepare an intermediate layer coating material. This paint was applied onto the conductive layer by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.5 μm.
次に、下記構造式(P−1)で示されるアゾ顔料3部とポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)2部をシクロヘキサノン80部に添加し、ガラスビーズと共にサンドミルで15時間分散し、これにテトラヒドロフラン80部を加えて電荷発生層用塗料を調製した。この塗料を前記中間層上に浸漬塗布方法で塗布して105℃で10分間乾燥し、膜厚が0.15μmの電荷発生層を形成した。 Next, 3 parts of an azo pigment represented by the following structural formula (P-1) and 2 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) are added to 80 parts of cyclohexanone, together with glass beads. The mixture was dispersed in a sand mill for 15 hours, and 80 parts of tetrahydrofuran was added thereto to prepare a charge generation layer coating material. This paint was applied onto the intermediate layer by a dip coating method and dried at 105 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.15 μm.
次に、電荷輸送材料として先の化合物(D−1)4.5部及びビスフェノールZ型ポリカーボネート(粘度平均分子量45,000)5.5部をモノクロロベンゼン38部に溶解し、電荷輸送層用塗料を調製した。この塗料を前記電荷発生層上に浸漬塗布方法で塗布して100℃で60分間乾燥し、膜厚が15μmの電荷輸送層を形成した。 Next, 4.5 parts of the above compound (D-1) and 5.5 parts of bisphenol Z-type polycarbonate (viscosity average molecular weight 45,000) are dissolved in 38 parts of monochlorobenzene as a charge transport material, and the charge transport layer coating material is obtained. Was prepared. This paint was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 μm.
次いで、表1の化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物36部を1−プロパノール24部/1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部の混合溶媒に溶解した後、PTFE製の0.2μmメンブレンフィルターで加圧濾過を行い、保護層用塗料を調製した。 Subsequently, Compound Example No. 1 in Table 1 was used. After dissolving 36 parts of a charge transporting compound having 17 chain polymerizable functional groups in a mixed solvent of 24 parts of 1-propanol / 1,1,2,2,3,3,4-heptafluorocyclopentane, Pressure filtration was performed with a PTFE 0.2 μm membrane filter to prepare a protective layer coating.
この保護層用塗料を前記電荷輸送層上に浸漬塗布方法で塗布し、40℃で10分間乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約25℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量率5×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧150KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)5×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が5μmの保護層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This protective layer coating material was applied onto the charge transport layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window part by a belt conveyor, stopped at the irradiation part and irradiated while rotating the sample (drum temperature at the start of irradiation was about 25 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. The electron beam irradiation conditions are: absorbed dose rate 5 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), acceleration voltage The absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 5 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating with an electron beam under the above conditions to cure the compound, a protective layer having a film thickness of 5 μm was formed and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
得られた電子写真用電子写真感光体をドラム電子写真感光体試験装置(ジェンテック社製の「シンシア−59」)を用い、低温低湿(15℃/10%RH)の環境下で電子写真特性を測定した。 The obtained electrophotographic photoreceptor for electrophotography is electrophotographic characteristics in a low-temperature and low-humidity (15 ° C./10% RH) environment using a drum electrophotographic photoreceptor test apparatus (“Cynthia-59” manufactured by Gentec). Was measured.
測定方法は、ドラム電子写真感光体を暗所下60rpmで回転させながら、コロナ放電により負帯電させ、電位プローブ位置での電位V0が−700Vになるように一次電流を制御した。ここで、光源としてハロゲンランプを用い、フィルターで単色光(775nm)としたものを照射し、表面電位がV0の1/2に減少するまでの露光量を求め、その半減露光量E1/2を感度とした。更に、帯電/露光後に波長700nmの発光ダイオードにより15μJ/cm2のエネルギーを与えて除電する前露光工程を入れ、この除電後の電位を残留電位(Vr)とした。 In the measurement method, the drum electrophotographic photosensitive member was negatively charged by corona discharge while rotating at 60 rpm in the dark, and the primary current was controlled so that the potential V 0 at the potential probe position was −700 V. Here, using a halogen lamp as a light source, it is irradiated with those monochromatic light (775 nm) with a filter, determine the amount of exposure until the surface potential is reduced to 1/2 of V 0, the half decay exposure amount E 1 / 2 was the sensitivity. Further, after charging / exposure, a pre-exposure step for removing electricity by applying energy of 15 μJ / cm 2 with a light emitting diode having a wavelength of 700 nm was performed, and the potential after this elimination was defined as a residual potential (Vr).
更に、上記プロセスを1000回繰り返し、直後に同様な電位測定を行い、繰り返し安定性を評価した。また、上記60rpmを210rpmに変え同様な測定を行った。それらの結果を表11に示す。 Further, the above process was repeated 1000 times, and the same potential measurement was performed immediately thereafter to evaluate the stability repeatedly. Further, the same measurement was performed by changing the 60 rpm to 210 rpm. The results are shown in Table 11.
(実施例1−34〜1−37)
実施例1−33の電荷輸送層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物を、それぞれ化合物例No.3、No.26、No.27及びNo.31に代えた以外は、実施例1−33と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表11に示す。
(Examples 1-34 to 1-37)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 1-33 The charge transporting compounds having 17 chain polymerizable functional groups were respectively referred to as Compound Example Nos. 3, no. 26, no. 27 and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-33 except that 31 was used. The results are shown in Table 11.
(比較例1−20〜1−23)
実施例1−33の保護層用塗料作製で使用した化合物例No.17の連鎖重合性官能基を有する電荷輸送性化合物を、先の連鎖重合性官能基を有する電荷輸送性化合物(H−1)、(H−2)、(H−5)及び(H−12)に代えた以外は、実施例1−33と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表12に示す。
(Comparative Examples 1-20 to 1-23)
Compound Example No. used in the preparation of the protective layer coating material of Example 1-33 The charge transporting compound having 17 chain polymerizable functional groups is converted into the charge transporting compounds (H-1), (H-2), (H-5) and (H-12) having the chain polymerizable functional group. The electrophotographic photosensitive member was produced in the same manner as in Example 1-33, except that the above evaluation was performed. The results are shown in Table 12.
表11及び表12より明らかな様に、本発明の連鎖重合性官能基を有する電荷輸送性化合物を保護層に用いた電子写真感光体は、プロセススピードが変わっても極めて安定し優れた性能を示すことが判った。 As is apparent from Tables 11 and 12, the electrophotographic photoreceptor using the charge transporting compound having a chain polymerizable functional group of the present invention for the protective layer is extremely stable and has excellent performance even when the process speed is changed. It turns out that it shows.
(実施例2−57)
まず10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部及びシリコーン化合物(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部、φ1mmガラスビーズを用いたサンドミル装置で2時間分散して調製した。この塗料をφ30mmのアルミニウムシリンダー上に浸漬塗布方法で塗布し、150℃で30分間乾燥して、膜厚が15μmの導電層を形成した。
(Example 2-57)
First, 50 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of phenol resin, 20 parts of methyl cellosolve, 5 parts of methanol and a silicone compound (polydimethylsiloxane polyoxyalkylene copolymer, (Average molecular weight 3000) 0.002 part, and prepared by dispersing for 2 hours in a sand mill using φ1 mm glass beads. This paint was applied on a φ30 mm aluminum cylinder by a dip coating method and dried at 150 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.
次に、N−メトキシメチル化ナイロン5部をメタノール95部中に溶解し、中間層用塗料を調製した。この塗料を前記の導電層上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.5μmの中間層を形成した。 Next, 5 parts of N-methoxymethylated nylon was dissolved in 95 parts of methanol to prepare an intermediate layer coating material. This paint was applied on the conductive layer by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.5 μm.
次に、下記構造式(P−1)で示されるアゾ顔料3部とポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)2部をシクロヘキサノン80部に添加し、ガラスビーズと共にサンドミルで15時間分散し、これにテトラヒドロフラン80部を加えて電荷発生層用塗料を調製した。この塗料を前記中間層上に浸漬塗布方法で塗布して105℃で10分間乾燥し、膜厚が0.15μmの電荷発生層を形成した。 Next, 3 parts of an azo pigment represented by the following structural formula (P-1) and 2 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) are added to 80 parts of cyclohexanone, together with glass beads. The mixture was dispersed in a sand mill for 15 hours, and 80 parts of tetrahydrofuran was added thereto to prepare a charge generation layer coating material. This paint was applied onto the intermediate layer by a dip coating method and dried at 105 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.15 μm.
次に、電荷輸送材料として先の化合物(D−1)4.5部及びビスフェノールZ型ポリカーボネート(粘度平均分子量45,000)5.5部をモノクロロベンゼン38部に溶解し、電荷輸送層用塗料を調製した。この塗料を前記電荷発生層上に浸漬塗布方法で塗布して100℃で60分間乾燥し、膜厚が15μmの電荷輸送層を形成した。 Next, 4.5 parts of the above compound (D-1) and 5.5 parts of bisphenol Z-type polycarbonate (viscosity average molecular weight 45,000) are dissolved in 38 parts of monochlorobenzene as a charge transport material, and the charge transport layer coating material is obtained. Was prepared. This paint was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 μm.
次いで、表2の化合物例No.43の連鎖重合性官能基を有する電荷輸送性化合物36部を1−プロパノール24部/1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン24部の混合溶媒に溶解した後、PTFE製の0.2μmメンブレンフィルターで加圧濾過を行い、保護層用塗料を調製した。 Subsequently, compound example No. of Table 2 was shown. After dissolving 36 parts of the charge transporting compound having 43 chain polymerizable functional groups in a mixed solvent of 24 parts of 1-propanol / 1,1,2,2,3,3,4-heptafluorocyclopentane, Pressure filtration was performed with a PTFE 0.2 μm membrane filter to prepare a protective layer coating.
この保護層用塗料を前記の電荷輸送層上に浸漬塗布方法で塗布し、40℃で10分乾燥後、図1に示す電子線照射装置を用いて電子線を照射した。サンプルは電子線照射窓部の下部までベルトコンベアーで搬送され、照射部で搬送を止めサンプルを回転しながら照射した(照射開始時のドラム温度は約30℃)。照射終了後、再び搬送され外部に搬出される。このとき、電子線照射部における有効電子線照射幅(サンプル面での電子線密度分布において、そのピーク位置の1/e以上)である幅は4cmであった。電子線照射条件は、吸収線量2.0×105Gy/sec(有効電子線照射幅内での吸収線量/サンプル面上の任意の一点が有効電子線照射幅内に存在する時間)、加速電圧150KV、吸収線量(電子線照射工程においてサンプルが受ける全吸収線量)2.0×105Gyであった。尚、電子線の照射開始から終了までの時間は1.5秒であった。以上の条件にて電子線を照射し化合物を硬化することにより膜厚が5μmの保護層を形成し、更に150℃で1時間加熱処理を行って電子写真感光体を得た。 This protective layer coating was applied on the charge transport layer by a dip coating method, dried at 40 ° C. for 10 minutes, and then irradiated with an electron beam using the electron beam irradiation apparatus shown in FIG. The sample was conveyed to the lower part of the electron beam irradiation window by a belt conveyor, stopped at the irradiation unit, and irradiated while rotating the sample (drum temperature at the start of irradiation was about 30 ° C.). After the irradiation is completed, it is transported again and carried outside. At this time, the effective electron beam irradiation width in the electron beam irradiation portion (in the electron beam density distribution on the sample surface, 1 / e or more of the peak position) was 4 cm. Electron beam irradiation conditions include absorbed dose of 2.0 × 10 5 Gy / sec (absorbed dose within the effective electron beam irradiation width / time during which an arbitrary point on the sample surface exists within the effective electron beam irradiation width), acceleration The voltage was 150 KV, and the absorbed dose (total absorbed dose received by the sample in the electron beam irradiation process) was 2.0 × 10 5 Gy. The time from the start to the end of electron beam irradiation was 1.5 seconds. By irradiating with an electron beam under the above conditions to cure the compound, a protective layer having a film thickness of 5 μm was formed and further heat-treated at 150 ° C. for 1 hour to obtain an electrophotographic photoreceptor.
得られた電子写真感光体をドラム電子写真感光体試験装置(ジェンテック社製の「シンシア−59」)を用い、低温低湿(15℃/10%RH)の環境下で電子写真特性を測定した。 The obtained electrophotographic photoreceptor was measured for electrophotographic characteristics in a low-temperature and low-humidity (15 ° C./10% RH) environment using a drum electrophotographic photoreceptor testing apparatus (“Cynthia-59” manufactured by Gentec Corporation). .
測定方法は、ドラム電子写真感光体を暗所下60rpmで回転させながら、コロナ放電により負帯電させ、電位プローブ位置での電位V0が−700Vになるように一次電流を制御した。ここで、光源としてハロゲンランプを用い、フィルターで単色光(775nm)としたものを照射し、表面電位がV0の1/2に減少するまでの露光量を求め、その半減露光量E1/2を感度とした。更に、帯電/露光後に波長700nmの発光ダイオードにより15μJ/cm2のエネルギーを与えて除電する前露光工程を入れ、この除電後の電位を残留電位(Vr)とした。 In the measurement method, the drum electrophotographic photosensitive member was negatively charged by corona discharge while rotating at 60 rpm in the dark, and the primary current was controlled so that the potential V 0 at the potential probe position was −700 V. Here, using a halogen lamp as a light source, it is irradiated with those monochromatic light (775 nm) with a filter, determine the amount of exposure until the surface potential is reduced to 1/2 of V 0, the half decay exposure amount E 1 / 2 was the sensitivity. Further, after charging / exposure, a pre-exposure step for removing electricity by applying energy of 15 μJ / cm 2 with a light emitting diode having a wavelength of 700 nm was performed, and the potential after this elimination was defined as a residual potential (Vr).
更に、上記プロセスを1000回繰り返し、直後に同様な電位測定を行い、繰り返し安定性を評価した。また、上記60rpmを210rpmに変え同様な測定を行った。それらの結果を表13に示す。 Further, the above process was repeated 1000 times, and the same potential measurement was performed immediately thereafter to evaluate the stability repeatedly. Further, the same measurement was performed by changing the 60 rpm to 210 rpm. The results are shown in Table 13.
(実施例2−58〜2−61)
実施例2−57の電荷輸送層用塗料作製で使用した化合物例No.43の連鎖重合性官能基を有する電荷輸送性化合物を、それぞれ化合物例No.44、No.45、No.91及びNo.93に代えた以外は、実施例2−57と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表13に示す。
(Examples 2-58 to 2-61)
Compound Example No. used in the preparation of the charge transport layer coating material of Example 2-57 A charge transporting compound having a chain polymerizable functional group of 43 is respectively referred to as Compound Example No. 44, no. 45, no. 91 and no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2-57 except that 93 was used. The results are shown in Table 13.
(比較例2−21〜2−24)
実施例2−57の保護層用塗料作製で使用した化合物例No.43の連鎖重合性官能基を有する電荷輸送性化合物を、先の連鎖重合性官能基を有する電荷輸送性化合物(H−13)、(H−14)、(H−23)及び(H−24)に代えた以外は、実施例2−57と同様にして電子写真感光体を作製し同様な評価を行った。その結果を表14に示す。
(Comparative Examples 2-21 to 2-24)
Compound No. used in the preparation of the protective layer coating material of Example 2-57 The charge transporting compound having 43 chain polymerizable functional groups is converted into the charge transporting compounds (H-13), (H-14), (H-23) and (H-24) having the chain polymerizable functional group. The electrophotographic photosensitive member was produced in the same manner as in Example 2-57 except that it was replaced with (). The results are shown in Table 14.
表13及び表14より明らかな様に、本発明の連鎖重合性官能基を有する電荷輸送性化合物を保護層に用いた電子写真感光体は、プロセススピードが変わっても極めて安定し優れた性能を示すことが判った。 As is clear from Tables 13 and 14, the electrophotographic photosensitive member using the charge transporting compound having a chain polymerizable functional group of the present invention for the protective layer is extremely stable and excellent in performance even when the process speed is changed. It turns out that it shows.
1 電子写真感光体
2 帯電手段
3 露光手段
4 現像手段
5 転写手段
6 クリーニングブレード
7 前露光手段
8 定着手段
10 電子線発生部
12 ターミナル
12a フィラメント
12b ハウス
12c グリッド
14 加速管
20 照射部
22 照射空間
30 照射窓部
32 窓箔
34 窓枠構造体
100 支持部材
110 案内部材
L 露光光
P 転写材
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Charging means 3 Exposure means 4 Developing means 5 Transfer means 6 Cleaning blade 7 Pre-exposure means 8 Fixing means 10 Electron
Claims (19)
また、式(1−2)中、Ar21、Ar22及びAr24は置換基を有してもよいアリール基を示し、Ar21、Ar22及びAr24は同一でも異なってもよい。Ar21、Ar22及びAr24の置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アラルキル基、アリール基又はハロゲン原子の何れかから選ばれる。Ar23は置換基を有してもよいフェニレン基を示し、置換基としては、アルキル基、アルコキシ基、アリール基又はハロゲン原子の何れかから選ばれる。Zは2価の有機残基を示し、nは0又は1を示す。但し、Ar24のみに直接又は有機残基を介して下記一般式(2)〜(6)に示される連鎖重合性官能基を少なくとも2つ有する)。
In formula (1-2), Ar 21 , Ar 22 and Ar 24 represent an aryl group which may have a substituent, and Ar 21 , Ar 22 and Ar 24 may be the same or different. The substituent for Ar 21 , Ar 22 and Ar 24 is selected from any of an alkyl group, an alkoxy group, an aryloxy group, an aralkyl group, an aryl group and a halogen atom. Ar 23 represents a phenylene group which may have a substituent, and the substituent is selected from an alkyl group, an alkoxy group, an aryl group, and a halogen atom. Z represents a divalent organic residue, and n represents 0 or 1. However, Ar 24 has at least two chain-polymerizable functional groups represented by the following general formulas (2) to (6) directly or via an organic residue.
An electrophotographic photosensitive member according to any one of claims 1 to 17, a charging unit for charging the electrophotographic photosensitive member, an exposure unit for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, An electrophotographic apparatus comprising: a developing unit that develops toner on an electrophotographic photosensitive member on which a latent image is formed; and a transfer unit that transfers a toner image on the electrophotographic photosensitive member onto a transfer material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006153441A JP4006461B2 (en) | 2005-06-02 | 2006-06-01 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005162730 | 2005-06-02 | ||
JP2005162732 | 2005-06-02 | ||
JP2006153441A JP4006461B2 (en) | 2005-06-02 | 2006-06-01 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007011320A JP2007011320A (en) | 2007-01-18 |
JP4006461B2 true JP4006461B2 (en) | 2007-11-14 |
Family
ID=37749843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006153441A Expired - Fee Related JP4006461B2 (en) | 2005-06-02 | 2006-06-01 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4006461B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4612868B2 (en) * | 2005-06-02 | 2011-01-12 | キヤノン株式会社 | Electrophotographic equipment |
JP5532194B2 (en) * | 2007-04-25 | 2014-06-25 | 株式会社リコー | Polymerizable compound, electrophotographic photosensitive member using the polymerizable compound, image forming method using the electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus |
JP6019917B2 (en) * | 2011-08-22 | 2016-11-02 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP5535268B2 (en) | 2011-11-30 | 2014-07-02 | キヤノン株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP6015264B2 (en) * | 2012-09-12 | 2016-10-26 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6003669B2 (en) * | 2013-01-21 | 2016-10-05 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6370166B2 (en) * | 2014-08-29 | 2018-08-08 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP6628555B2 (en) * | 2015-10-30 | 2020-01-08 | キヤノン株式会社 | Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus |
JP7417350B2 (en) * | 2017-03-28 | 2024-01-18 | キヤノン株式会社 | Optical elements, optical materials, optical instruments and triarylamine compounds |
WO2018181183A1 (en) | 2017-03-28 | 2018-10-04 | キヤノン株式会社 | Optical element, material, optical device and compound |
JP2022073583A (en) * | 2020-11-02 | 2022-05-17 | キヤノン株式会社 | Optical element, optical device, imaging apparatus, and compound |
-
2006
- 2006-06-01 JP JP2006153441A patent/JP4006461B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007011320A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4006461B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
EP1892578B1 (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP3880457B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member | |
JP4365960B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4630806B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4095509B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4365961B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP5535268B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP6429498B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2008070761A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP4455404B2 (en) | Method for manufacturing electrophotographic photosensitive member, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4217360B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP2008262232A (en) | Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge | |
JP4164175B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member | |
KR20140064654A (en) | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2002040686A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor | |
JP4673131B2 (en) | Amine compound, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2005062301A (en) | Electrophotographic photoreceptor | |
JP2005062300A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP4289859B2 (en) | Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus | |
JP4143497B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2004240305A (en) | Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor | |
JP6218507B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP5546574B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4785366B2 (en) | Image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070601 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20070601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070827 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4006461 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20070702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |