JP3880457B2 - Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member - Google Patents

Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member Download PDF

Info

Publication number
JP3880457B2
JP3880457B2 JP2002168658A JP2002168658A JP3880457B2 JP 3880457 B2 JP3880457 B2 JP 3880457B2 JP 2002168658 A JP2002168658 A JP 2002168658A JP 2002168658 A JP2002168658 A JP 2002168658A JP 3880457 B2 JP3880457 B2 JP 3880457B2
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
layer
electrophotographic
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002168658A
Other languages
Japanese (ja)
Other versions
JP2004012986A (en
Inventor
弘規 植松
道代 関谷
周二 石井
晶夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002168658A priority Critical patent/JP3880457B2/en
Publication of JP2004012986A publication Critical patent/JP2004012986A/en
Application granted granted Critical
Publication of JP3880457B2 publication Critical patent/JP3880457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、更には該電子写真感光体の製造方法に関し、詳しくは、放射線照射後に加熱されることによって形成された電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、該電子写真感光体の製造方法に関する。
【0002】
【従来の技術】
近年、電子写真感光体に用いられる材料として有機光導電材料は、その高生産性や無公害性等の利点が注目され、広く用いられるようになってきた。これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の電子写真感光体として利用される場合が多い。一方、当然のことながら電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、更には光学的特性を備えていることが要求される。特に、繰り返し使用される電子写真感光体にあっては、その電子写真感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的や機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久性、帯電による表面劣化による転写効率や滑り性の低下、更には感度低下、電位低下等の電気特性の劣化に対する耐久性も要求される。
【0003】
一般に電子写真感光体の表面は薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年アクリル樹脂やポリカーボネート樹脂等が実用化されているが、前述したような特性の全てがこれらの樹脂で満足されるわけではなく、特に電子写真感光体の高耐久化を図る上では該樹脂の被膜硬度は十分高いとは言い難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも繰り返し使用時において表面層の磨耗が起こり、更に傷が発生するという問題点があった。更に、近年の有機電子写真感光体の高感度化に対する要求から電荷輸送材料等の低分子量化合物が比較的大量に添加される場合が多いが、この場合それら低分子量物質の可塑剤的な作用により膜強度が著しく低下し、一層繰り返し使用時の表面層の磨耗や傷発生が問題となっている。また、電子写真感光体を長期にわたって保存する際に前述の低分子量成分が析出してしまい、層分離するといった問題も発生している。
【0004】
これらの問題点を解決する手段として、硬化性の樹脂を電荷輸送層用の樹脂として用いる試みが、例えば特開平2−127652号公報等に開示されている。このように、電荷輸送層用の樹脂に硬化性の樹脂を用い電荷輸送層を硬化、架橋することによって機械的強度が増し、繰り返し使用時の耐削れ性及び耐傷性は大きく向上する。しかしながら硬化性樹脂を用いても、低分子量成分はあくまでも結着樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題は根本的な解決にはなっていない。また、有機電荷輸送材料と結着樹脂とで構成される電荷輸送層においては電荷輸送能の樹脂に対する依存度が大きく、例えば硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく繰り返し使用時に残留電位の上昇が見られる等、これまでの系では高い硬度と十分な電荷輸送能の両立について見当の余地が残されていた。
【0005】
以上の状況に対して本発明者らは、特開平11−265085号公報及び特開2000−66425号公報において、放射線による重合反応を利用した電子写真感光体によって上記課題が大幅に改善されることを開示した。
【0006】
【発明が解決しようとする課題】
しかしながら、近年のプリントスピードの更なる高速化、更なる高プリントボリューム化、更なる低ランニングコスト化等に対応すべく、より一層優れた耐久性を有する電子写真感光体が検討されている。
【0007】
本発明の目的は、放射線による重合反応を利用した電子写真感光体において、更に耐磨耗性の向上した電子写真感光体を提供することにある。
【0008】
本発明の別の目的は、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0009】
本発明の更に別の目的は、上記電子写真感光体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に従って、支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体において、
該感光層あるいは保護層の少なくとも一つの層が放射線を照射され、かつ該放射線照射後に真空度が1×10 -2 Pa以下の真空中で加熱されることによって形成された層であることを特徴とする電子写真感光体、該電子写真感光体の製造方法が提供される。
【0011】
また、本発明に従って、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置が提供される。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0013】
本発明は基本的に放射線による重合・架橋反応を利用したものであるが、この反応は通常室温下で行われるのが一般的であり、紫外線硬化プロセスや熱硬化プロセスのように熱に関する種々の問題点が発生しないことが利点であると広く知られている。本発明者らは、この重合・架橋反応時の温度に着目した結果、放射線照射時の温度を上昇させることにより、当然のことながら反応が促進されることを確認した。放射線照射時に温度を上昇させる手段としては、
(1)被照射体を照射前に加温する、
(2)照射時に被照射体を加温する、
(3)照射室内を所定温度に加温し、被照射体を投入する、
(4)被照射体の放射線吸収効率を向上させる(高加速電圧化あるいは吸収線量の増大)
等が考えられるが、装置/設備が複雑になりやすいことや、特に(4)では、電子写真特性や物性の悪化が懸念される。
【0014】
そこで本発明者らが更に鋭意検討した結果、重合・架橋反応は放射線照射時に限らず、照射後の加温においても十分に促進されることを見出した。詳細なメカニズムは判明していないが、放射線照射時に系内で発生したラジカル等を開始点として重合・架橋反応が進行し、その成長末端がある程度の寿命を有して系内で安定に存在、その後の加熱により更に重合・架橋反応が進行する、すなわち一種のリビング重合が起こっていると考えられる。
【0015】
本発明の電子写真感光体の構成は、支持体上に感光層として電荷発生層、電荷輸送層をこの順に積層した構成又は逆に電荷輸送層、電荷発生層をこの順に積層した構成、更には電荷発生材料と電荷輸送材料を結着樹脂中に分散した単層より構成されるもののいずれの構成をとることも可能である。更に、前記感光層上に表面保護層を形成することも可能である。
【0016】
この電子写真感光体構成において、本発明の主たる目的は電子写真感光体の耐久性能の向上であるから、電子写真感光体の表面層を放射線照射及び加熱により形成することによってその効果が十分に発揮される。なかでも、電子写真特性、特に残留電位等の電気的特性及び耐久性の点より、電荷発生層、電荷輸送層をこの順に積層した機能分離型の電子写真感光体構成、又は前記電荷発生層、電荷輸送層をこの順に積層した機能分離型の感光層上に保護層を形成した構成が好ましい。すなわち電荷輸送層あるいは保護層を放射線照射及び加熱により形成することが好ましい。
【0017】
本発明の放射線照射及び加熱により形成される層は、この工程により重合又は架橋し硬化するものであればいずれのものでも構わない。すなわち、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよい。中でも分子内に不飽和重合性官能基を有する化合物は、反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましい。
【0018】
本発明における不飽和重合性官能基を有する化合物は、モノマー、オリゴマーあるいはマクロマーのいずれにも限定されない。
【0019】
また、本発明における表面層が電荷輸送層あるいは保護層のいずれの場合においても、両者は硬化後に電荷輸送能を有している必要があるが、前記不飽和重合性官能基を有する化合物が電荷輸送能力を有さない化合物である場合においては、電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましく、前記不飽和重合性官能基を有する化合物自体が電荷輸送能を有する場合においては、この限りではない。ただし、表面層の膜硬度や種々の電子写真特性の点からして、後者のような電荷輸送能を有する化合物を使用するのがより好ましい。更に、電荷輸送能を有する化合物の中でも、電子写真プロセスや材料の汎用性の点からして、正孔輸送能を有する化合物が更に好ましい。
【0020】
本発明の電子写真感光体の感光層は、導電性支持体上に形成される。支持体は、導電性を有するものであればよい。例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属や合金をドラム状又はシート状に成形したもの、アルミニウム及び銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫等をプラスチックフィルムに蒸着したもの、導電性物質を単独又は結着樹脂と共に塗布して導電層を設けた金属、プラスチックフィルム及び紙等が挙げられる。
【0021】
本発明においては、支持体と感光層の間にバリアー機能と接着機能をもつ下引き層を設けることができる。下引き層は、感光層の接着性改良、塗工性改良、支持体の保護、支持体の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護等のために形成される。
【0022】
下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチン等が挙げられる。下引き層は、これらの材料をそれぞれに適した溶剤に溶解した溶液を支持体上に塗布し、乾燥することによって形成される。膜厚は0.1〜2μm程度であることが好ましい。
【0023】
本発明の電子写真感光体が機能分離型の電子写真感光体である場合には、電荷発生層及び電荷輸送層を積層する。
【0024】
電荷発生層に用いる電荷発生材料としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的には例えばα、β、γ、ε又はX型等の結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコン等が挙げられる。
【0025】
電荷発生層は前記電荷発生材料を0.3〜4倍量の結着樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター又はロールミル等の方法で均一に分散し、得られた分散液を塗布し、乾燥することによって形成されるか、又は前記電荷発生材料の蒸着膜等、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
【0026】
結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等が挙げられる。
【0027】
次に、電荷輸送層について説明する。本発明において、表面層が電荷輸送層である場合には、電荷輸送層が放射線照射及び加熱により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。電荷輸送材料としては、ポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体及びヒドラゾン誘導体等の低分子化合物が挙げられるが、これらを放射線照射及び加熱により重合、架橋可能な樹脂と共に適当な溶剤に分散あるいは溶解させ、先の電荷発生層上に塗布した後、後述する放射線及び加熱工程により電荷輸送層を形成する。
【0028】
放射線照射及び加熱により重合・架橋可能な樹脂としては前述したように、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよく、一般的には連鎖重合性官能基を有する化合物が挙げられる。中でも分子内に不飽和重合性官能基を有する化合物は、反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましく、アクリロイルオキシ基、メタクリロイルオキシ基及びスチレン基等が特に好ましく、これらはモノマー、オリゴマー、マクロマー、ポリマーのいずれにも限定されることなく適宜選択あるいは組み合わせることができる。
【0029】
より具体的には、不飽和重合性官能基が下記式(1)で示されるアクリロイルオキシ基、下記式(2)で示されるメタクリロイルオキシ基あるいは下記式(3)で示されるスチレン基であることが好ましく、特には式(1)で示されるアクリロイルオキシ基が好ましい
【0030】
【化

Figure 0003880457
【0031】
(式中、Arは置換もしくは無置換のアリーレン基を示し、R1は水素原子又はメチル基を示す)
【0032】
また、電荷輸送能、好ましくは正孔輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な樹脂を用いる場合は、それ単独で電荷輸送層を形成、あるいは前述の電荷輸送材料及び電荷輸送能を有さない放射線照射及び加熱により重合・架橋可能な樹脂を適宜混合することが可能である。
【0033】
電荷輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な樹脂は、例えば上記の不飽和重合性官能基を有する公知の正孔輸送性化合物や、公知の正孔輸送性化合物の一部に上記の不飽和重合性官能基を付加した化合物等であればよい。公知の正孔輸送性化合物の例としては、ヒドラゾン化合物、ピラゾリン化合物、トリフェニルアミン化合物、ベンジジン化合物及びスチルベン化合物等が挙げられるが、正孔輸送性化合物であればいかなる化合物も使用可能である。
【0034】
更に、本発明において電子写真感光体表面層の硬度を十分に確保するためには、連鎖重合性官能基を有する化合物は同一分子内に2つ以上の連鎖重合性官能基を有する化合物であることが好ましい。
【0035】
本発明において、単層構成の電子写真感光体の場合には、少なくとも電荷発生材料、電荷輸送材料及び放射線照射及び加熱により重合・架橋可能な化合物を分散又は溶解した溶液を用いて感光層が形成される。この場合においても先の機能分離型電子写真感光体と同様に、電荷輸送能を有しかつ放射線照射及び加熱により重合・架橋可能な化合物の使用が好ましい。
【0036】
本発明において、表面層が保護層である場合には、保護層が放射線照射及び加熱により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。
【0037】
この場合、下層である感光層の構成は、電荷発生層及び電荷輸送層をこの順に積層した機能分離型電子写真感光体、電荷輸送層及び電荷発生層をこの順に積層した機能分離型電子写真感光体、あるいは単層電子写真感光体のいずれもが可能であるが、先に述べた理由により、電荷発生層及び電荷輸送層をこの順に積層した電子写真感光体構成が好ましい。
【0038】
この場合、電荷発生層は、前述と同様な方法で形成され、電荷輸送層は、先の電荷輸送材料をスチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等の結着樹脂中に分散あるいは溶解した溶液を用いて形成される。場合によっては、放射線照射及び加熱により重合・架橋可能な化合物を有する化合物の添加も可能である。
【0039】
保護層は硬化後に電荷輸送能を有している必要があるため、放射線照射及び加熱工程により重合・架橋し保護層を形成する化合物自体が電荷輸送能力を有さない化合物である場合においては、前述の電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましい。この場合、電荷輸送材料は、放射線照射及び加熱により重合・架橋可能な官能基を有しても有さなくてもかまわないが、電荷輸送材料の可塑性による機械的強度の低下を避けるためには、前者が好ましい。
【0040】
導電性材料としては、酸化チタンや酸化錫等の導電性微粒子が一般的ではあるが、その他として、導電性高分子化合物等の利用も可能である。放射線照射及び加熱工程により重合・架橋し保護層を形成する化合物自体が電荷輸送能を有する場合においては、この限りではない。本発明においては、表面層の膜硬度や種々の電子写真の点からして、後者のような電荷輸送能を有する化合物を使用した表面層が特に好ましい。
【0041】
本発明において各々溶液を塗布する方法は、例えば、浸漬コーティング法、スプレイコーティング法、カーテンコーティング法及びスピンコーティング法等の公知の塗布方法が可能であるが、効率性/生産性の点からは浸漬コーティング法が好ましい。また、蒸着、プラズマその他の公知の製膜方法も適宜選択できる。
【0042】
本発明において、感光層及び保護層には各種添加剤を添加することができる。該添加剤とは、酸化防止剤及び紫外線吸収剤等の劣化防止剤やフッ素系樹脂微粒子等の滑材等である。
【0043】
次に、放射線照射及び加熱について説明する。
【0044】
本発明における放射線とは、特開2000−66425号公報において開示したものと同様に、電子線及びγ線等が挙げられ、装置の大きさ、安全性、コスト及び汎用性等の種々の点から電子線が好ましい。電子線照射をする場合、加速器としては、スキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型等のいずれの形成も使用することができる。
【0045】
また、電子線照射により電子写真感光体を形成する本発明においても、電子写真感光体の電気特性及び耐久性能を十分に発現させる上で、電子線の加速電圧と吸収線量が非常に重要なファクターであり、加速電圧は300KV以下が好ましく、最適には150KV以下、また線量は好ましくは1〜100Mradの範囲、より好ましくは50Mrad以下の範囲である。加速電圧が300KVを超えたり、線量が100Mradを超えると、電子写真感光体への劣化が起こり易い傾向にあることは該公報において示した通りである。
【0046】
本発明者らは、鋭意検討を重ねた結果、放射線照射後も数時間以上にわたって、反応活性点であるラジカルが存在し続けることを発見した。これによれば、放射線照射後のラジカルが存在している間にその系の温度を後述する加熱手段により上昇させることによって、より重合・架橋反応を進行させることができ、同じ線量でも、より硬化度の高い膜が形成されることを実証した。更には、この放射線照射後の加熱を利用した重合・架橋反応を利用すると、従来と比べてより少ない線量で十分な硬化性を得ることが判明した。
【0047】
すなわち従来の方法では余分な放射線エネルギーによって必要以上のラジカルを生成させていたことになるが、本願においては必要最小限のラジカル発生に対して放射線の線量を決定することの優位性を示している。これはとりもなおさず、より電子写真感光体に対して緩やかな条件で放射線照射が行なえること、また装置の簡略化、低エネルギー化、コストダウン等に対する大きな利点である。
【0048】
反応活性点であるラジカル開始点の生成量は、重合・架橋する層の構成材料の化学構造自体、すなわちこれらの化合物の放射線に対する開始反応効率にも大きく依存するが、ラジカルの生成量を正確に予測したり測定することは困難であるため、現状では最終的な硬化性を評価することにより、最適な構成材料と放射線照射条件を決定する必要がある。なお本願で使用している不飽和重合性官能基を有する化合物の場合は、おおむね20Mrad以下の線量においても十分な硬化性を得ることが可能であり、材料によってはわずか1Mradの線量においても十分な硬化性が得られることがわかった。
【0049】
次に、加熱について説明する。本発明における加熱の手段としては、電子写真感光体の外部あるいは内部からのいずれにおいても行うことができる。外部から加温する場合は、電子写真感光体の近傍に各種のヒーター等を設置し直接加熱する方法等が挙げられる。内部から加温する方法においても、内部に各種ヒーターを設置する方法、加熱された流体を通過させる方法等が挙げられる。また、これらの加熱手段はそのいくつかを組み合わせることが可能である。なお電子写真感光体の温度は、同組成の温度測定用電子写真感光体を別途準備し、
(1)該感光体表面にサーモラベルを貼り付ける
(2)該感光体表面にテープ型熱電対温度計を接触させる
(3)該感光体表面近傍に非接触型放射温度計を配置する
等の方法により測定することが可能であるが、温度の信頼性を高めるためには、単独ではなくこれらいくつかの測定データを総合して電子写真感光体の温度とすることが好ましい。
【0050】
加熱する温度は、電子写真感光体の温度が室温以上になるように設定することが好ましく、特には放射線照射時の温度以上になるように設定することが好ましい。電子線照射は通常20℃前後の室温雰囲気下で行うのが一般的であるが、電子線照射時にはそのエネルギーを電子写真感光体及び周りの媒体が吸収するために、これらの温度上昇が起こる。その割合は、加速電圧、ビーム電流値、照射時間、線量等の系に加えられるエネルギーと、吸収する側のエネルギーすなわち照射スペースの大きさや材質、雰囲気気体の流れ、装置の冷却システムや電子写真感光体自体の材料構成等の熱収支に依存し、実質的な線量において電子写真感光体自体は一般的には室温から数十℃程度に温度上昇する。
【0051】
ここで室温以上好ましくは放射線照射時の温度以上に電子写真感光体の温度を設定する理由は、重合反応メカニズムに起因すると考えられる。放射線照射時には、重合・架橋する層内部において、反応活性点がまず生成し、構成材料が分子レベルで動けるすなわち二分子反応できる分子間距離内において重合が進行する。ある程度、重合・架橋が進行すると、オリゴマーあるいはポリマー化した構成材料はもはやその温度においては分子レベルで動くことが出来なくなり、反応は一旦停止すると考えられる。この時点で反応活性点は先に述べたようにある程度の寿命をもって存在することができるために、この段階において系の温度を上げることで、更に分子レベルでの運動を可能とし、更なる重合、架橋反応を進行させることが可能であると考えられる。
【0052】
加熱時の温度は高いほど重合・架橋反応に有効ではあるが、電子写真感光体を対象とした本発明においては、250℃以下であることが好ましい。これを超える温度になると電子写真感光体の材料が劣化し、電子写真特性が悪くなる傾向にある。より好ましくは200℃以下、更に好ましくは150℃以下である。
【0053】
一方、温度の下限については、前述のように加熱時の電子写真感光体の温度が放射線照射時の電子写真感光体の温度より高いことで重合・架橋反応が促進されるという推定メカニズムに基づくと、放射線照射時の感光体の温度より少なくとも数十℃は高く設定することが必須であり、好ましくは50℃以上、特に弊害がない限りにおいては出来るだけ設定温度を高くすることが好ましい。
【0054】
加温する時間はおおよそ数秒から数十分程度であるが、加温時間よりはむしろ設定温度すなわち電子写真感光体の到達温度が硬化性には大きく影響する。実質的に加温時間とは、昇温時間及び到達温度保持時間を含む。昇温時間は加熱手段や電子写真感光体の種類、特には基材の材質によっても大きく異なるが、数秒から数分程度で所定温度近傍までに到達する手段を選択することが好ましく、あまりに昇温に対して長い時間を費やすことは、特性上は問題ないと推測されるが、生産上は好ましくはない。
【0055】
到達温度保持時間は、過熱防止/到達温度安定化等の観点から、設定温度に到達した後、場合に応じて数秒から数十分程度設けることが好ましい。これらの時間より短時間、すなわち数秒以内で加温処理を完結することに対して特に問題はないが、装置的な制御の問題や負荷が大きくなる等の点で実用的ではない。一方、これらの時間より長い加熱処理を行なうことも可能ではあるが、生産性等の点からあまり好ましくはない。
【0056】
加温処理を行なう雰囲気は、重合・架橋反応のメカニズムから考えて、酸素による反応活性点の失活を極力避ける意味でも、真空度が1×10 -2 Pa以下の真空中であることが必須であり、更には1×10-5Pa以下であることがより好ましい。
【0057】
放射線照射から加熱処理までの時間は、先のように反応活性点の失活をなるべく避ける目的で短時間に設定するのが好ましく、実質的には放射線照射後に連続して加熱処理を行なうことが好ましいが、装置上の問題から連続処理が困難である場合には、両者の間に数分から数時間程度の放置時間が生じても構わない。ただし、この時間が極短時間である場合においても、少なからず酸素による重合阻害が起こる可能性があるので、雰囲気の酸素濃度には注意すべきである。
【0058】
なお、これらの失活速度が遅い場合すなわち真空中を経由する場合、また材料の種類によってラジカル失活速度が遅い等の場合においては、数時間という放置期間を経由しても硬化性は変化しておらず、また本発明者らが実際に放射線照射直後及び数時間放置後の重合・架橋層におけるラジカル量を電子スピン共鳴法により測定した結果においてもラジカル数の減少は確認されなかったことから、場合によっては例えば一日以上の長い放置時間を経由することも可能であると考えられる。また、これらの加熱方法はその数種類の手段を組み合わせることも可能である。
【0059】
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
【0060】
図1において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
【0061】
形成された静電潜像は、次いで現像手段5によりトナー現像され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー画像が転写手段6により順次転写されていく。
【0062】
トナー画像の転写を受けた転写材7は、電子写真感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
【0063】
像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0064】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも一つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。
【0065】
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。
【0066】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも幅広く適用し得るものである。
【0067】
【実施例】
以下、実施例に従って本発明を更に詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。
【0068】
参考例1
直径30mm×357.5mmのアルミニウムシリンダーを支持体とし、それに、以下の材料より構成される塗工液を支持体上に浸漬コーティング法で塗布し、140℃で30分間熱硬化して、膜厚が18μmの導電層を形成した。
【0069】
導電性顔料:SnO2コート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
結着樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール/メトキシプロパノール=0.2/0.8 15部
【0070】
次に、この上にN−メトキシメチル化ナイロン5部をメタノール65部/n−ブタノール30部の混合溶媒に溶解した溶液を浸漬コーティング法で塗布して、膜厚が0.7μmの中間層を形成した。
【0071】
次に、CuKα特性X線回折のブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン4部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学製)2部及びシクロヘキサノン80部を直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル80部を加えて電荷発生層用分散液を調製した。これを浸漬コーティング法で塗布して、膜厚が0.2μmの電荷発生層を形成した。
【0072】
次いで、下記式(4)で示される正孔輸送性化合物60部を
【0073】
【化
Figure 0003880457
【0074】
モノクロロベンゼン30部/ジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調製した。この塗料を前記の電荷発生層上にコーティングし、窒素雰囲気中において加速電圧150KV、線量20Mradの条件で電子線を照射した後、引き続いて電子写真感光体の温度が150℃になるまでおよそ1分で昇温させその後2分間150℃を保持し、合計で3分間の加熱処理とした。なお電子線照射直後の電子写真感光体の温度は30℃、電子線照射時及び加熱時の酸素濃度は80ppmであった。更に、電子写真感光体を大気中において140℃で1時間後処理を行い、膜厚13μmの電荷輸送層を形成し、電子写真感光体を得た。
【0075】
作製した電子写真感光体は、キヤノン(株)製複写機GP40を用いて22℃/55%の環境下で評価した。電子写真感光体の電位特性については、複写機本体から現像器ユニットを取り外し、代わりに電位測定用プローブを現像位置に固定することにより測定を行った。なおその際に転写ユニットは、電子写真感光体に非接触、紙は非通紙とした。初期の電子写真感光体特性〔暗部電位Vd、光減衰感度(暗部電位650V設定で150Vに光減衰させるために必要な光量)、残留電位Vsl(光減衰感度の光量の3倍の光量を照射したときの電位)〕を測定し、更に100000枚の通紙耐久実験を行い、画像欠陥の発生の有無の観察、電子写真感光体の削れ量を測定した。なお削れ量の測定には、渦電流式膜厚計(カールフィッシャー社製)を使用した。また、通紙耐久はプリント1枚ごとに1回停止する間欠モードとした。
【0076】
結果を表に示す。
【0077】
参考例2
参考例1と同様にして電荷発生層までを形成した。
【0078】
次いで下記式(5)で示されるスチリル化合物7部
【0079】
【化
Figure 0003880457
【0080】
及びポリカーボネート樹脂(商品名:ユーピロンZ800、三菱エンジニアリングプラスチックス(株)社製)10部をモノクロロベンゼン105部/ジクロロメタン35部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は10μmであった。
【0081】
次いで、下記式(6)で示される正孔輸送性化合物45部を
【0082】
【化
Figure 0003880457
【0083】
n−プロピルアルコール55部に溶解し、表面保護層用塗料を調製した。この塗料を用いて、前記電荷輸送層上に保護層を塗布したのち、窒素雰囲気中において加速電圧150KV、線量20Mradの条件で電子線を照射した後、引き続いて電子写真感光体の温度が150℃になるまでおよそ2分で昇温させ、その後1分間150℃を保持し、合計で3分間の加熱処理とした。なお、電子線照射直後の電子写真感光体の温度は30℃、電子線照射時及び加熱時の酸素濃度は80ppmであった。更に、電子写真感光体を大気中において140℃で1時間後処理を行い、膜厚が5μmの保護層を形成し、電子写真感光体を得た。このようにして作製した電子写真感光体を参考例1と同様に評価した。結果を表に示す。
【0084】
参考例3
参考例2における電子線の線量を20Mradから50Mradに変更した以外は、参考例2と同様にして電子写真感光体を作製し、評価した。結果を表に示す。
【0085】
比較例1
参考例2において、窒素中における加温時の酸素濃度を80ppmから酸素濃度20%(大気中)に変更した以外は、参考例2と同様にして電子写真感光体を作製し、評価した。結果を表に示す。
【0086】
(実施例1及び2
参考例2において、窒素中における加温の雰囲気を表に示した真空条件に変更した以外は、参考例2と同様にして電子写真感光体を作製し、評価した。結果を表に示す。
【0087】
表1
Figure 0003880457
【0088】
(比較例
参考例2において、電子線照射後の窒素中加温工程を行わない以外は、参考例2と同様に電子写真感光体を作製し、評価した。結果を表に示す。その結果、電子写真特性は良好であったが耐久性能が大幅に低下した。
【0089】
(比較例
参考例3において、電子線照射後の窒素中加温工程を行わない以外は、参考例3と同様に電子写真感光体を作製し、評価した。結果を表に示す。その結果、比較例と比較して向上はしたものの耐久性能は十分ではなかった。また、初期の電子写真特性が悪い傾向にあった。これは電子線照射による電子写真感光体の劣化が原因であると考えられる。
【0090】
(比較例
参考例1において、電子線照射を行わなかった以外は参考例1と同様に電子写真感光体を作製したが、出来上がった電子写真感光体の表面にはタックが残っており、硬化が十分に進行していないことがわかった。よって、評価は行わなかった。
【0091】
(比較例
比較例に対して、窒素中加温の温度を150℃から200℃に変更した以外は比較例と同様に電子写真感光体を作製し、評価した。結果を表に示す。その結果、比較例のように出来上がった電子写真感光体表面のタックは残っておらず、見かけ上は硬化が進行したと考えられたが、初期の電子写真特性が悪く、また耐久性能は十分ではなかった。これは、電子線による重合及び架橋の開始点の生成工程がなくとも、熱による重合及び架橋が進行することを示していると考えられるが、その重合反応は十分ではないと予想される。また、電子写真感光体を高温にさらすことで、電子写真感光体の劣化が起こっているため、電子写真特性が悪化する傾向にあると推測される。
【0092】
(比較例
比較例に対して窒素中の加温のかわりに大気中において加温を行った結果、出来上がった電子写真感光体の表面にはタックが残っており、硬化が十分に進行していないことがわかった。よって評価は行わなかった。
【0093】
表2
Figure 0003880457
【0094】
表2に見られるように本発明の電子写真感光体は、初期の電子写真感光体特性が良好であり、耐久での削れ量が少なくかつキズ等による画像欠陥が発生しないという従来の電子写真感光体と比較して、優れた耐久性能を示すことがわかった。
【0095】
【発明の効果】
以上のように、本発明の電子写真感光体は電子写真特性に優れ、耐磨耗性や耐傷性に優れた効果を有する。従って、近年のプリントスピードの高速化、高プリントボリューム化、コピーコストの低減等の市場の要求に十分答えうる電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、該電子写真感光体の製造方法を提供することが可能となった。
【図面の簡単な説明】
【図1】 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an electrophotographic photosensitive member, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member, and a method for producing the electrophotographic photosensitive member, and more specifically, an electrophotography formed by heating after radiation irradiation. The present invention relates to a photosensitive member, a process cartridge having the electrophotographic photosensitive member, an electrophotographic apparatus, and a method for manufacturing the electrophotographic photosensitive member.
[0002]
[Prior art]
  In recent years, organic photoconductive materials, which are used for electrophotographic photoreceptors, have been widely used due to their advantages such as high productivity and non-pollution. These electrophotographic photoreceptors are often used as function-separated electrophotographic photoreceptors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical characteristics. On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process. In particular, in an electrophotographic photosensitive member that is repeatedly used, electrical and mechanical external forces such as charging, image exposure, toner development, transfer to paper, and cleaning processing are directly applied to the surface of the electrophotographic photosensitive member. , Durability against them is required. Specifically, durability against surface wear and scratches caused by rubbing, transfer efficiency and slipperiness due to surface deterioration due to charging, and durability against deterioration of electrical characteristics such as sensitivity reduction and potential reduction are also required. Is done.
[0003]
  In general, the surface of an electrophotographic photoreceptor is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins and polycarbonate resins have been put to practical use as resins that satisfy the above-mentioned conditions to some extent, but not all of the above-mentioned characteristics are satisfied with these resins, and in particular, electrophotographic photoreceptors. Therefore, it is difficult to say that the coating film hardness of the resin is sufficiently high. Even when these resins are used as the resin for forming the surface layer, there is a problem that the surface layer is worn during repeated use, and further scratches are generated. Furthermore, due to the recent demand for higher sensitivity of organic electrophotographic photoreceptors, low molecular weight compounds such as charge transport materials are often added in relatively large amounts. In this case, due to the plasticizer action of these low molecular weight materials. The film strength is remarkably lowered, and the surface layer is worn and damaged when repeatedly used. Further, when the electrophotographic photosensitive member is stored for a long period of time, the above-mentioned low molecular weight component is precipitated, resulting in a problem of layer separation.
[0004]
  As means for solving these problems, an attempt to use a curable resin as a resin for a charge transport layer is disclosed in, for example, JP-A-2-127852. Thus, the mechanical strength is increased by curing and crosslinking the charge transport layer using a curable resin as the charge transport layer resin, and the abrasion resistance and scratch resistance during repeated use are greatly improved. However, even when a curable resin is used, the low molecular weight component acts as a plasticizer in the binder resin to the last, so the problems of precipitation and layer separation as described above are not fundamental solutions. In addition, the charge transport layer composed of an organic charge transport material and a binder resin has a large dependence on the charge transport ability of the resin. For example, a curable resin with sufficiently high hardness does not have sufficient charge transport ability and is used repeatedly. In some systems, there has been room for a balance between high hardness and sufficient charge transporting ability, such as an increase in residual potential.
[0005]
  In view of the above situation, the present inventors have found that the above problem is greatly improved by an electrophotographic photoreceptor using a polymerization reaction by radiation in JP-A-11-265085 and JP-A-2000-66425. Disclosed.
[0006]
[Problems to be solved by the invention]
  However, in order to cope with the recent increase in print speed, further increase in print volume, further reduction in running cost, etc., an electrophotographic photosensitive member having further excellent durability has been studied.
[0007]
  An object of the present invention is to provide an electrophotographic photoreceptor further improved in abrasion resistance in an electrophotographic photoreceptor utilizing a polymerization reaction by radiation.
[0008]
  Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[0009]
  Still another object of the present invention is to provide a method for producing the electrophotographic photosensitive member.
[0010]
[Means for Solving the Problems]
  According to the present invention, in an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support,
  At least one of the photosensitive layer or the protective layer is,IrradiatedAndAnd after the irradiationThe degree of vacuum is 1 × 10 -2 In vacuum of Pa or lessAn electrophotographic photoreceptor characterized by being a layer formed by heating, and a method for producing the electrophotographic photoreceptor are provided.
[0011]
  In addition, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member are provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail.
[0013]
  The present invention basically uses a polymerization / crosslinking reaction by radiation, but this reaction is generally performed at room temperature, and various heat-related processes such as an ultraviolet curing process and a thermal curing process are generally performed. It is widely known that it is an advantage that no problems occur. As a result of paying attention to the temperature at the time of this polymerization / crosslinking reaction, the present inventors have confirmed that the reaction is naturally promoted by increasing the temperature at the time of radiation irradiation. As a means of increasing the temperature during radiation irradiation,
(1) Warm the irradiated object before irradiation,
(2) Warm the irradiated object during irradiation,
(3) Warm up the irradiation chamber to a predetermined temperature and insert the irradiated object.
(4) Improving the radiation absorption efficiency of the irradiated object (higher acceleration voltage or increased absorbed dose)
However, there is a concern that the apparatus / equipment is likely to be complicated, and particularly in (4), the electrophotographic characteristics and physical properties are deteriorated.
[0014]
  Therefore, as a result of further intensive studies by the present inventors, it was found that the polymerization / crosslinking reaction is sufficiently promoted not only at the time of irradiation but also at the heating after irradiation. Although the detailed mechanism has not been clarified, polymerization / crosslinking reaction proceeds from the radical generated in the system at the time of radiation irradiation as the starting point, and its growth terminal has a certain lifetime and exists stably in the system. It is considered that polymerization / crosslinking reaction further proceeds by the subsequent heating, that is, a kind of living polymerization occurs.
[0015]
  The electrophotographic photoreceptor of the present invention has a structure in which a charge generation layer and a charge transport layer are laminated in this order on a support as a photosensitive layer, or conversely, a structure in which a charge transport layer and a charge generation layer are laminated in this order, It is possible to adopt any configuration including a single layer in which a charge generation material and a charge transport material are dispersed in a binder resin. Furthermore, a surface protective layer can be formed on the photosensitive layer.
[0016]
  In this electrophotographic photosensitive member configuration, the main object of the present invention is to improve the durability of the electrophotographic photosensitive member. Therefore, the effect can be sufficiently exhibited by forming the surface layer of the electrophotographic photosensitive member by radiation irradiation and heating. Is done. Among them, from the viewpoint of electrophotographic characteristics, particularly electrical characteristics such as residual potential and durability, a charge generation layer, a function-separated type electrophotographic photosensitive member structure in which a charge transport layer is laminated in this order, or the charge generation layer, A configuration in which a protective layer is formed on a function-separated type photosensitive layer in which charge transport layers are laminated in this order is preferable. That is, it is preferable to form the charge transport layer or the protective layer by irradiation with radiation and heating.
[0017]
  The layer formed by irradiation and heating of the present invention may be any layer as long as it is polymerized or crosslinked and cured by this step. That is, any compound may be used as long as an active site such as a radical is generated by irradiation and can be polymerized or crosslinked. Among them, a compound having an unsaturated polymerizable functional group in the molecule is preferable from the viewpoints of high reactivity, high reaction rate, versatility of materials, and the like.
[0018]
  The compound having an unsaturated polymerizable functional group in the present invention is not limited to any monomer, oligomer or macromer.
[0019]
  In addition, in the case where the surface layer in the present invention is either a charge transport layer or a protective layer, both must have charge transport ability after curing, but the compound having an unsaturated polymerizable functional group is charged. In the case of a compound having no transport ability, it is preferable to ensure the charge transport ability by adding a charge transport material or a conductive material, and the compound having the unsaturated polymerizable functional group itself has a charge transport ability. In some cases, this is not the case. However, from the viewpoint of the film hardness of the surface layer and various electrophotographic characteristics, it is more preferable to use a compound having the charge transport ability such as the latter. Further, among compounds having charge transporting ability, compounds having hole transporting ability are more preferable from the viewpoint of versatility of electrophotographic processes and materials.
[0020]
  The photosensitive layer of the electrophotographic photoreceptor of the present invention is formed on a conductive support. The support body should just have electroconductivity. For example, aluminum or copper, chromium, nickel, zinc, stainless steel or other metal or alloy molded into a drum or sheet, aluminum or copper or other metal foil laminated on plastic film, aluminum, indium oxide or oxide Examples thereof include a material obtained by depositing tin or the like on a plastic film, a metal, a plastic film, paper, or the like provided with a conductive layer by applying a conductive substance alone or together with a binder resin.
[0021]
  In the present invention, an undercoat layer having a barrier function and an adhesive function can be provided between the support and the photosensitive layer. The undercoat layer is used to improve the adhesion of the photosensitive layer, improve coating properties, protect the support, cover defects on the support, improve charge injection from the support, and protect against electrical breakdown of the photosensitive layer. Formed.
[0022]
  Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin Etc. The undercoat layer is formed by applying a solution prepared by dissolving these materials in a solvent suitable for each of the materials onto a support and drying it. The film thickness is preferably about 0.1 to 2 μm.
[0023]
  When the electrophotographic photoreceptor of the present invention is a function-separated type electrophotographic photoreceptor, a charge generation layer and a charge transport layer are laminated.
[0024]
  Examples of the charge generation material used for the charge generation layer include selenium-tellurium, pyrylium, thiapyrylium dyes, various central metals and crystal systems, specifically, crystal types such as α, β, γ, ε, or X type. Phthalocyanine compounds, anthanthrone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, monoazo pigments, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, quinocyanines and amorphous materials described in JP-A No. 54-143645 Silicon etc. are mentioned.
[0025]
  The charge generation layer is obtained by uniformly dispersing the charge generation material together with 0.3 to 4 times the amount of binder resin and solvent by a method such as a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor or roll mill. The formed dispersion is applied and dried, or formed as a single composition film such as a vapor deposition film of the charge generation material. The film thickness is preferably 5 μm or less, and particularly preferably in the range of 0.1 to 2 μm.
[0026]
  As binder resin, polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester , Polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin and epoxy resin.
[0027]
  Next, the charge transport layer will be described. In the present invention, when the surface layer is a charge transport layer, the charge transport layer is a layer formed by irradiation and heating, and is composed of a compound that is polymerized or crosslinked and cured by this step. Examples of the charge transporting material include heterocyclic compounds such as poly-N-vinylcarbazole and polystyrylanthracene, polymer compounds having condensed polycyclic aromatics, heterocyclic compounds such as pyrazoline, imidazole, oxazole, triazole and carbazole, and triphenyl. Examples include low molecular weight compounds such as triarylalkane derivatives such as methane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, and hydrazone derivatives. After being dispersed or dissolved in an appropriate solvent together with a polymerizable and crosslinkable resin and coated on the above charge generation layer, a charge transport layer is formed by a radiation and heating process described later.
[0028]
  As described above, the resin that can be polymerized / crosslinked by irradiation and heating may be any compound that can generate an active site such as a radical by irradiation and can be polymerized or crosslinked, and is generally chain polymerization. A compound having a functional group. Among them, a compound having an unsaturated polymerizable functional group in the molecule is preferable from the viewpoint of high reactivity, high reaction rate, versatility of materials, etc., and acryloyloxy group, methacryloyloxy group and styrene group are particularly preferable. Preferably, these are not limited to any of monomers, oligomers, macromers, and polymers, and can be appropriately selected or combined.
[0029]
  More specifically, the unsaturated polymerizable functional group is an acryloyloxy group represented by the following formula (1), a methacryloyloxy group represented by the following formula (2), or a styrene group represented by the following formula (3). Is preferredIn particular, an acryloyloxy group represented by the formula (1) is preferable..
[0030]
[Chemical2]
Figure 0003880457
[0031]
(In the formula, Ar represents a substituted or unsubstituted arylene group, R1Represents a hydrogen atom or a methyl group)
[0032]
  In addition, when a resin having charge transporting ability, preferably hole transporting ability and capable of being polymerized / crosslinked by irradiation and heating, a charge transporting layer is formed by itself, or the above-mentioned charge transporting material and charge transporting are used. It is possible to appropriately mix a resin that can be polymerized and cross-linked by radiation irradiation and heating that do not have the ability.
[0033]
  Resins having charge transporting ability and capable of being polymerized / crosslinked by irradiation and heating are, for example, known hole transporting compounds having the above unsaturated polymerizable functional groups, and some of known hole transporting compounds. Any compound may be used as long as it has the above unsaturated polymerizable functional group added thereto. Examples of known hole transporting compounds include hydrazone compounds, pyrazoline compounds, triphenylamine compounds, benzidine compounds, and stilbene compounds, but any compounds can be used as long as they are hole transporting compounds.
[0034]
  Further, in the present invention, in order to sufficiently ensure the hardness of the electrophotographic photoreceptor surface layer, the compound having a chain polymerizable functional group is a compound having two or more chain polymerizable functional groups in the same molecule. Is preferred.
[0035]
  In the present invention, in the case of an electrophotographic photoreceptor having a single layer structure, a photosensitive layer is formed using a solution in which at least a charge generating material, a charge transporting material, and a compound that can be polymerized and crosslinked by irradiation and heating are dispersed or dissolved. Is done. Also in this case, it is preferable to use a compound that has a charge transporting ability and can be polymerized and crosslinked by irradiation and heating, as in the case of the function-separated electrophotographic photoreceptor.
[0036]
  In the present invention, when the surface layer is a protective layer, the protective layer is a layer formed by irradiation and heating, and is composed of a compound that is polymerized or crosslinked and cured by this step.
[0037]
  In this case, the structure of the lower photosensitive layer is composed of a function-separated electrophotographic photosensitive member in which a charge generation layer and a charge transport layer are laminated in this order, and a function separation type electrophotographic photosensitive member in which a charge transport layer and a charge generation layer are laminated in this order. Either an electrophotographic photosensitive member or a single-layer electrophotographic photosensitive member is possible, but for the reasons described above, an electrophotographic photosensitive member structure in which a charge generation layer and a charge transport layer are laminated in this order is preferable.
[0038]
  In this case, the charge generation layer is formed by the same method as described above, and the charge transport layer is formed by using the above charge transport material as styrene, vinyl acetate, vinyl chloride, acrylate ester, methacrylate ester, vinylidene fluoride, trifluoro In binder resins such as polymers and copolymers of vinyl compounds such as ethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin and epoxy resin It is formed using a solution dispersed or dissolved in. In some cases, it is possible to add a compound having a compound that can be polymerized and crosslinked by irradiation and heating.
[0039]
  Since the protective layer needs to have a charge transporting ability after curing, when the compound itself that forms a protective layer by polymerization and crosslinking by irradiation and heating processes is a compound that does not have a charge transporting ability, It is preferable to ensure the charge transporting ability by adding the above-described charge transporting material or conductive material. In this case, the charge transport material may or may not have a functional group that can be polymerized / crosslinked by irradiation and heating, but in order to avoid a decrease in mechanical strength due to the plasticity of the charge transport material. The former is preferred.
[0040]
  As the conductive material, conductive fine particles such as titanium oxide and tin oxide are generally used, but in addition, a conductive polymer compound or the like can be used. This is not the case when the compound itself that forms a protective layer by polymerization and crosslinking by radiation irradiation and heating has charge transporting ability. In the present invention, from the viewpoint of film hardness of the surface layer and various electrophotography, a surface layer using a compound having a charge transporting ability such as the latter is particularly preferable.
[0041]
  In the present invention, each of the solutions can be applied by a known application method such as a dip coating method, a spray coating method, a curtain coating method, and a spin coating method. A coating method is preferred. Moreover, vapor deposition, plasma, and other known film forming methods can be appropriately selected.
[0042]
  In the present invention, various additives can be added to the photosensitive layer and the protective layer. Examples of the additives include deterioration inhibitors such as antioxidants and ultraviolet absorbers, and lubricants such as fluorine resin fine particles.
[0043]
  Next, radiation irradiation and heating will be described.
[0044]
  The radiation in the present invention includes, for example, electron beams and γ-rays as disclosed in JP-A-2000-66425. From various points such as the size, safety, cost, and versatility of the apparatus. An electron beam is preferred. In the case of electron beam irradiation, any of a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type can be used as an accelerator.
[0045]
  In the present invention in which an electrophotographic photosensitive member is formed by electron beam irradiation, the acceleration voltage and absorbed dose of the electron beam are very important factors in fully expressing the electric characteristics and durability of the electrophotographic photosensitive member. The acceleration voltage is preferably 300 KV or less, optimally 150 KV or less, and the dose is preferably in the range of 1 to 100 Mrad, more preferably 50 Mrad or less. As shown in the publication, when the acceleration voltage exceeds 300 KV or the dose exceeds 100 Mrad, the electrophotographic photosensitive member tends to deteriorate.
[0046]
  As a result of intensive studies, the present inventors have discovered that radicals that are reactive sites continue to exist for several hours or more after irradiation. According to this, by raising the temperature of the system by the heating means described later while the radicals after irradiation are present, the polymerization / crosslinking reaction can be further advanced, and even at the same dose, the curing can be further performed. It was demonstrated that a high degree film was formed. Furthermore, it has been found that when the polymerization / crosslinking reaction using heating after irradiation is used, sufficient curability can be obtained with a smaller dose than in the conventional case.
[0047]
  In other words, in the conventional method, more radicals are generated than necessary due to excess radiation energy, but in this application, the superiority of determining the radiation dose with respect to the minimum radical generation is shown. . This is, of course, a great advantage with respect to the fact that radiation can be performed on the electrophotographic photosensitive member under gentle conditions, and that the apparatus is simplified, energy is reduced, and costs are reduced.
[0048]
  The amount of radical initiation point, which is the active site of reaction, depends largely on the chemical structure of the constituent material of the layer to be polymerized / crosslinked, that is, the initiation reaction efficiency of these compounds with respect to radiation. Since it is difficult to predict and measure, it is necessary to determine the optimum constituent material and radiation irradiation conditions by evaluating the final curability at present. In the case of the compound having an unsaturated polymerizable functional group used in the present application, sufficient curability can be obtained even at a dose of about 20 Mrad or less, and depending on the material, a dose of only 1 Mrad is sufficient. It was found that curability can be obtained.
[0049]
  Next, heating will be described. The heating means in the present invention can be performed either from the outside or the inside of the electrophotographic photosensitive member. When heating from the outside, install various heaters in the vicinity of the electrophotographic photosensitive member and heat directly.LawIs mentioned. Also in the method of heating from the inside, there are a method of installing various heaters inside, a method of passing a heated fluid, and the like. Some of these heating means can be combined. In addition, the temperature of the electrophotographic photosensitive member is prepared by separately preparing a temperature measuring electrophotographic photosensitive member having the same composition,
(1) A thermo label is attached to the surface of the photoconductor.
(2) A tape-type thermocouple thermometer is brought into contact with the surface of the photoreceptor.
(3) A non-contact type radiation thermometer is disposed near the surface of the photosensitive member.
However, in order to increase the reliability of the temperature, it is preferable that the temperature of the electrophotographic photosensitive member is not integrated alone, but some of these measurement data are combined.
[0050]
  The heating temperature is preferably set so that the temperature of the electrophotographic photosensitive member is equal to or higher than room temperature, and particularly preferably set to be equal to or higher than the temperature during radiation irradiation. Electron beam irradiation is generally performed in a room temperature atmosphere of approximately 20 ° C., but when the electron beam is irradiated, the energy is absorbed by the electrophotographic photosensitive member and the surrounding medium, and these temperature increases occur. The ratio is the energy applied to the system such as acceleration voltage, beam current value, irradiation time, dose, etc., and the energy on the absorbing side, that is, the size and material of the irradiation space, the flow of the atmospheric gas, the cooling system of the device, and the electrophotographic photosensitive Depending on the heat balance such as the material structure of the body itself, the electrophotographic photosensitive member itself generally rises from room temperature to several tens of degrees centigrade at a substantial dose.
[0051]
  Here, the reason why the temperature of the electrophotographic photosensitive member is set to room temperature or higher, preferably higher than the temperature at the time of irradiation is considered to be due to the polymerization reaction mechanism. At the time of irradiation, reaction active sites are first generated in the layer to be polymerized / crosslinked, and the polymerization proceeds within the intermolecular distance where the constituent material can move at the molecular level, that is, capable of bimolecular reaction. If polymerization / crosslinking progresses to some extent, the oligomer or polymerized constituent material can no longer move at the molecular level at that temperature, and the reaction is considered to stop once. At this point, the reactive sites can exist with a certain lifetime as described above, so that at this stage, the temperature of the system is raised, allowing further movement at the molecular level, and further polymerization, It is believed that the crosslinking reaction can proceed.
[0052]
  The higher the temperature during heating, the more effective the polymerization / crosslinking reaction is. However, in the present invention intended for an electrophotographic photoreceptor, the temperature is preferably 250 ° C. or lower. When the temperature exceeds this temperature, the material of the electrophotographic photosensitive member deteriorates and the electrophotographic characteristics tend to deteriorate. More preferably, it is 200 degrees C or less, More preferably, it is 150 degrees C or less.
[0053]
  On the other hand, the lower limit of the temperature is based on the presumed mechanism that the temperature of the electrophotographic photosensitive member at the time of heating is higher than the temperature of the electrophotographic photosensitive member at the time of radiation irradiation to promote the polymerization / crosslinking reaction as described above. It is essential that the temperature be set at least several tens of degrees C higher than the temperature of the photosensitive member at the time of radiation irradiation, preferably 50 ° C. or higher, and it is preferable to set the set temperature as high as possible unless particularly harmful.
[0054]
  The heating time is approximately several seconds to several tens of minutes. However, rather than the heating time, the set temperature, that is, the temperature reached by the electrophotographic photosensitive member greatly affects the curability. The heating time substantially includes the temperature rising time and the reached temperature holding time. Although the temperature rise time varies greatly depending on the type of heating means and electrophotographic photosensitive member, especially the material of the substrate, it is preferable to select a means that reaches a predetermined temperature in a few seconds to a few minutes. However, it is presumed that a long time is not a problem in terms of characteristics, but it is not preferable in production.
[0055]
  The ultimate temperature holding time is preferably set from several seconds to several tens of minutes after reaching the set temperature from the viewpoint of preventing overheating / stabilizing the ultimate temperature. There is no particular problem with completing the heating process in a shorter time than these times, that is, within a few seconds, but it is not practical in terms of apparatus control problems and increased load. On the other hand, it is possible to perform a heat treatment longer than these times, but it is not preferable from the viewpoint of productivity.
[0056]
  The atmosphere for the heating process isHeavyConsidering the mechanism of the coupling / crosslinking reaction, in order to avoid the deactivation of the reactive sites due to oxygen as much as possible,The degree of vacuum is 1 × 10 -2 It is essential to be in a vacuum of Pa or less,1x10-FiveMore preferably less than PaYes.
[0057]
  The time from the irradiation to the heat treatment is preferably set to a short time for the purpose of avoiding the deactivation of the reactive sites as much as before, and the heat treatment can be carried out continuously after the irradiation. Although it is preferable, when continuous processing is difficult due to problems in the apparatus, a standing time of several minutes to several hours may occur between the two. However, even when this time is an extremely short time, polymerization inhibition due to oxygen may occur. Therefore, attention should be paid to the oxygen concentration in the atmosphere.
[0058]
  Note that these deactivation rates are slow.ChishinIn the case of passing through the air, or when the radical deactivation rate is slow depending on the type of material, the curability does not change even after passing through a standing period of several hours. Since the radical amount in the polymerized / crosslinked layer immediately after irradiation and after standing for several hours was measured by electron spin resonance, no decrease in the number of radicals was confirmed. It is also possible to go through. These heating methods can be combined with several kinds of means.
[0059]
  FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[0060]
  In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotationally driven around a shaft 2 in a direction indicated by an arrow at a predetermined peripheral speed. In the rotating process, the electrophotographic photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on its peripheral surface by the primary charging unit 3, and then from an exposure unit (not shown) such as slit exposure or laser beam scanning exposure. The exposure light 4 subjected to intensity modulation corresponding to the time-series electric digital image signal of the target image information to be output is received. In this way, electrostatic latent images corresponding to the target image information are sequentially formed on the peripheral surface of the electrophotographic photoreceptor 1.
[0061]
  The formed electrostatic latent image is then developed with toner by the developing means 5 and is taken out from a paper feeding unit (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 in synchronism with the rotation of the electrophotographic photoreceptor 1. The toner image formed and supported on the surface of the electrophotographic photosensitive member 1 is sequentially transferred by the transfer means 6 to the transferred transfer material 7.
[0062]
  The transfer material 7 that has received the transfer of the toner image is separated from the surface of the electrophotographic photosensitive member, introduced into the image fixing means 8, and subjected to image fixing to be printed out as an image formed product (print, copy). .
[0063]
  After the image transfer, the surface of the electrophotographic photosensitive member 1 is cleaned by removing the transfer residual toner by the cleaning unit 9, and is further subjected to charge removal processing by the pre-exposure light 10 from the pre-exposure unit (not shown). Used repeatedly for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.
[0064]
  In the present invention, among the above-described components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 9, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body using a guide unit 12 such as a rail of the apparatus main body. A flexible process cartridge 11 can be obtained.
[0065]
  Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. The light emitted by driving the LED array or the liquid crystal shutter array.
[0066]
  The electrophotographic photosensitive member of the present invention can be used not only for electrophotographic copying machines but also widely applicable to electrophotographic application fields such as laser beam printers, CRT printers, LED printers, FAX, liquid crystal printers, and laser plate making. It is.
[0067]
【Example】
  Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “part” means “part by mass”.
[0068]
  (Reference example 1)
  An aluminum cylinder having a diameter of 30 mm × 357.5 mm is used as a support, and a coating liquid composed of the following materials is applied to the support by a dip coating method, and is thermally cured at 140 ° C. for 30 minutes to obtain a film thickness. Formed a conductive layer of 18 μm.
[0069]
  Conductive pigment: SnO2Coated barium sulfate 10 parts
  Resistance control pigment: Titanium oxide 2 parts
  Binder resin: 6 parts of phenol resin
  Leveling material: 0.001 part of silicone oil
  Solvent: methanol / methoxypropanol = 0.2 / 0.8 15 parts
[0070]
  Next, a solution obtained by dissolving 5 parts of N-methoxymethylated nylon in a mixed solvent of 65 parts of methanol / 30 parts of n-butanol is applied by a dip coating method to form an intermediate layer having a film thickness of 0.7 μm. Formed.
[0071]
  Next, 4 parts of hydroxygallium phthalocyanine having strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) of CuKα characteristic X-ray diffraction, polyvinyl butyral (trade name: ESREC BX-1) 2 parts of Sekisui Chemical Co., Ltd.) and 80 parts of cyclohexanone were dispersed in a sand mill apparatus using glass beads having a diameter of 1 mm for 4 hours, and then 80 parts of ethyl acetate was added to prepare a charge generation layer dispersion. This was applied by a dip coating method to form a charge generation layer having a thickness of 0.2 μm.
[0072]
  Next, 60 parts of the hole transporting compound represented by the following formula (4)
[0073]
[Chemical3]
Figure 0003880457
[0074]
It was dissolved in a mixed solvent of 30 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a charge transport layer coating material. This paint is coated on the charge generation layer and irradiated with an electron beam in a nitrogen atmosphere under the conditions of an acceleration voltage of 150 KV and a dose of 20 Mrad, and then approximately 1 minute until the temperature of the electrophotographic photosensitive member reaches 150 ° C. Then, the temperature was maintained at 150 ° C. for 2 minutes, and the heat treatment was performed for a total of 3 minutes. The temperature of the electrophotographic photosensitive member immediately after the electron beam irradiation was 30 ° C., and the oxygen concentration during electron beam irradiation and heating was 80 ppm. Further, the electrophotographic photoreceptor was post-treated at 140 ° C. for 1 hour in the atmosphere to form a 13 μm-thick charge transport layer to obtain an electrophotographic photoreceptor.
[0075]
  The produced electrophotographic photosensitive member was evaluated in a 22 ° C./55% environment using a copying machine GP40 manufactured by Canon Inc. The potential characteristics of the electrophotographic photosensitive member were measured by removing the developing unit from the copying machine main body and fixing the potential measuring probe at the developing position instead. At that time, the transfer unit was not in contact with the electrophotographic photosensitive member, and the paper was not passed. Initial electrophotographic photosensitive member characteristics [dark portion potential Vd, light attenuation sensitivity (light amount necessary for light attenuation to 150 V when dark portion potential is set to 650 V), residual potential Vsl (light amount three times as large as light attenuation sensitivity) )], And a 100,000 sheet passing durability test was conducted to observe the occurrence of image defects and the amount of abrasion of the electrophotographic photosensitive member. An eddy current film thickness meter (manufactured by Karl Fischer) was used for measurement of the amount of scraping. In addition, the sheet passing durability is an intermittent mode in which the printing is stopped once for each print.
[0076]
  Table the results2Shown in
[0077]
  (Reference example 2)
  Reference example 1In the same manner as described above, the layers up to the charge generation layer were formed.
[0078]
  Next, 7 parts of a styryl compound represented by the following formula (5)
[0079]
[Chemical4]
Figure 0003880457
[0080]
And 10 parts of polycarbonate resin (trade name: Iupilon Z800, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) dissolved in a mixed solvent of 105 parts of monochlorobenzene / 35 parts of dichloromethane, A charge transport layer was formed on the charge generation layer. The film thickness of the charge transport layer at this time was 10 μm.
[0081]
  Next, 45 parts of a hole transporting compound represented by the following formula (6)
[0082]
[Chemical5]
Figure 0003880457
[0083]
It melt | dissolved in 55 parts of n-propyl alcohol, and the coating material for surface protection layers was prepared. Using this paint, after applying a protective layer on the charge transport layer, after irradiating an electron beam in a nitrogen atmosphere under the conditions of an acceleration voltage of 150 KV and a dose of 20 Mrad, the temperature of the electrophotographic photoreceptor is subsequently 150 ° C. Then, the temperature was raised in about 2 minutes until the temperature became 150 ° C., and then kept at 150 ° C. for 1 minute for a total of 3 minutes of heat treatment. The temperature of the electrophotographic photoreceptor immediately after electron beam irradiation was 30 ° C., and the oxygen concentration during electron beam irradiation and heating was 80 ppm. Further, the electrophotographic photosensitive member was post-treated at 140 ° C. for 1 hour in the atmosphere to form a protective layer having a thickness of 5 μm to obtain an electrophotographic photosensitive member. The electrophotographic photoreceptor thus produced isReference example 1And evaluated in the same manner. Table the results2Shown in
[0084]
  (Reference example 3)
  Reference example 2The electron beam dose at 20 Mrad?To 50MradExcept for changes,Reference example 2An electrophotographic photoreceptor was prepared and evaluated in the same manner as. ResultTable2Shown in
[0085]
  (Comparative Example 1)
  Reference example 2The oxygen concentration during heating in nitrogen from 80 ppmOxygen concentration 20% (in air)Except to change toReference example 2An electrophotographic photoreceptor was prepared and evaluated in the same manner as. ResultTable2Shown in
[0086]
  (Example1 and 2)
  Reference example 2Shows the atmosphere of heating in nitrogen.1Except for changing to the vacuum conditions shown inReference example 2In the same manner as above, an electrophotographic photoreceptor was prepared and evaluated. Table the results2Shown in
[0087]
[Table 1]
Figure 0003880457
[0088]
  (Comparative example2)
  Reference example 2In, except not performing the heating process in nitrogen after electron beam irradiation,Reference example 2An electrophotographic photoreceptor was prepared and evaluated in the same manner as described above. Table the results2Shown in As a result, the electrophotographic characteristics were good, but the durability performance was greatly reduced.
[0089]
  (Comparative example3)
  Reference example 3In, except not performing the heating process in nitrogen after electron beam irradiation,Reference example 3An electrophotographic photoreceptor was prepared and evaluated in the same manner as described above. Table the results2Shown in As a result, comparative example2Despite improvement, durability performance was not sufficient. Also, the initial electrophotographic characteristics tended to be poor. This is considered to be caused by deterioration of the electrophotographic photosensitive member due to electron beam irradiation.
[0090]
  (Comparative example4)
  Reference example 1In, except that the electron beam irradiation was not performedReference example 1The electrophotographic photosensitive member was produced in the same manner as in Example 1, but the tack remained on the surface of the completed electrophotographic photosensitive member, and it was found that curing did not proceed sufficiently. Therefore, evaluation was not performed.
[0091]
  (Comparative example5)
  Comparative example4On the other hand, the comparative example except that the temperature in nitrogen was changed from 150 ° C to 200 ° C4An electrophotographic photoreceptor was prepared and evaluated in the same manner as described above. Table the results2Shown in As a result, comparative example4The surface of the electrophotographic photosensitive member thus finished did not remain tacky, and it seemed that curing had progressed, but the initial electrophotographic characteristics were poor and the durability performance was not sufficient. This is considered to indicate that the polymerization and crosslinking by heat proceed even without the step of generating the starting point of polymerization and crosslinking by electron beam, but the polymerization reaction is expected to be insufficient. Further, since the electrophotographic photosensitive member is deteriorated by exposing the electrophotographic photosensitive member to a high temperature, it is presumed that the electrophotographic characteristics tend to deteriorate.
[0092]
  (Comparative example6)
  Comparative example5On the other hand, as a result of heating in the atmosphere instead of heating in nitrogen, it was found that tack remained on the surface of the completed electrophotographic photosensitive member and curing did not proceed sufficiently. Therefore, evaluation was not performed.
[0093]
[Table 2]
Figure 0003880457
[0094]
  As can be seen from Table 2, the electrophotographic photosensitive member of the present invention has a good initial electrophotographic photosensitive member property, has a small amount of wear in durability, and does not cause image defects due to scratches or the like. It was found that it showed superior durability performance compared to the body.
[0095]
【The invention's effect】
  As described above, the electrophotographic photosensitive member of the present invention is excellent in electrophotographic characteristics and has an effect of excellent wear resistance and scratch resistance. Accordingly, an electrophotographic photosensitive member that can sufficiently meet market demands such as recent increase in printing speed, increase in print volume, and reduction in copy cost, process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member, and electrophotography It has become possible to provide a method for producing a photoreceptor.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[Explanation of symbols]
    1 Electrophotographic photoreceptor
    2 axis
    3 Charging means
    4 exposure light
    5 Development means
    6 Transfer means
    7 Transfer material
    8 Fixing means
    9 Cleaning means
  10 Pre-exposure light
  11 Process cartridge
  12 Guide means

Claims (13)

支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体において、
該感光層あるいは保護層の少なくとも一つの層が放射線を照射され、かつ該放射線照射後に真空度が1×10 -2 Pa以下の真空中で加熱されることによって形成された層であることを特徴とする電子写真感光体。
In an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support,
At least one layer of the photosensitive layer or the protective layer may, be exposed to radiation, and a layer formed by vacuum after the irradiation is heated at 1 × 10 -2 Pa in a vacuum of An electrophotographic photoreceptor characterized by the above.
前記加熱時の電子写真感光体の温度が、放射線照射時の温度よりも高い請求項1に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the temperature of the electrophotographic photosensitive member during heating is higher than the temperature during radiation irradiation. 前記加熱時の電子写真感光体の温度が50℃以上250℃以下である請求項1又は2に記載の電子写真感光体。 The temperature of the electrophotographic photosensitive member at the time of heating, electrophotographic photosensitive member according to claim 1 or 2 is 50 ° C. or higher 250 ° C. or less. 前記放射線が電子線である請求項1〜のいずれかに記載の電子写真感光体。 Said radiation, electrophotographic photosensitive member according to any one of claims 1 to 3 which is an electron beam. 前記放射線を照射され、かつ該放射線照射後に真空度が1×10 -2 Pa以下の真空中で加熱されることにより形成された層が、連鎖重合性官能基を有する化合物を重合又は架橋することにより硬化された層である請求項1〜のいずれかに記載の電子写真感光体。 The layer formed by being irradiated with the radiation and heated in a vacuum having a vacuum degree of 1 × 10 −2 Pa or less after the radiation irradiation polymerizes or crosslinks a compound having a chain polymerizable functional group. the electrophotographic photosensitive member according to any one of claims 1 to 4, which is a layer that has been cured by. 前記連鎖重合性官能基が不飽和重合性官能基である請求項に記載の電子写真感光体。 The chain-polymerizable functional group, an electrophotographic photosensitive member according to claim 5 which is an unsaturated polymerizable functional group. 前記不飽和重合性官能基が下記式(1)で示されるアクリロイルオキシ基である請求項11に記載の電子写真感光体。
Figure 0003880457
The unsaturated polymerizable functional group, an electrophotographic photosensitive member according to claim 11 is acryloyloxy group represented by the following formula (1).
Figure 0003880457
前記連鎖重合性官能基を有する化合物が電荷輸送性基を有する請求項のいずれかに記載の電子写真感光体。 The chain-polymerizable compound having a functional group, an electrophotographic photosensitive member according to any one of claims 5-7 having a charge transport group. 前記電荷輸送性基が正孔輸送性基である請求項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 8 , wherein the charge transporting group is a hole transporting group. 前記連鎖重合性官能基を有する化合物が、同一分子内に2つ以上の連鎖重合性官能基を有する請求項のいずれかに記載の電子写真感光体。 The chain-polymerizable compound having a functional group, an electrophotographic photosensitive member according to any one of claims 5-9 having two or more chain polymerizable functional groups in the same molecule. 請求項1〜10のいずれかに記載の電子写真感光体と、帯電手段、現像手段及びクリーニング手段からなる群より選ばれた少なくとも一つの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。 An electrophotographic photosensitive member according to any one of claims 1-10, charging means, and at least one means selected from the group consisting of the developing means and cleaning means integrally supported, detachably attached to an electrophotographic apparatus main body Process cartridge characterized by being. 請求項1〜10のいずれかに記載の電子写真感光体、帯電手段、露光手段、現像手段及び転写手段を有することを特徴とする電子写真装置。The electrophotographic photosensitive member according to any one of claims 1-10, a charging means, an exposure means, the electrophotographic apparatus, characterized in that it comprises a developing means and a transfer means. 支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体の製造方法において、該感光層あるいは保護層の少なくとも一つ以上の層を、
放射線を照射する工程と
該放射線照射後に真空度が1×10 -2 Pa以下の真空中で加熱する工程
によって形成することを特徴とする電子写真感光体の製造方法。
In the method for producing an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support, at least one layer of the photosensitive layer or the protective layer,
A method for producing an electrophotographic photosensitive member, comprising: a step of irradiating radiation; and a step of heating in a vacuum having a vacuum degree of 1 × 10 −2 Pa or less after the radiation irradiation.
JP2002168658A 2002-06-10 2002-06-10 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member Expired - Fee Related JP3880457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168658A JP3880457B2 (en) 2002-06-10 2002-06-10 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168658A JP3880457B2 (en) 2002-06-10 2002-06-10 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006116850A Division JP4266999B2 (en) 2006-04-20 2006-04-20 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2004012986A JP2004012986A (en) 2004-01-15
JP3880457B2 true JP3880457B2 (en) 2007-02-14

Family

ID=30435509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168658A Expired - Fee Related JP3880457B2 (en) 2002-06-10 2002-06-10 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP3880457B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195155A (en) * 2005-01-13 2006-07-27 Canon Inc Image forming method
JP4579151B2 (en) 2005-12-27 2010-11-10 株式会社リコー Photoconductor and manufacturing method thereof
JP2007241140A (en) * 2006-03-10 2007-09-20 Ricoh Co Ltd Image carrier and image forming method using the same, and image forming apparatus, and process cartridge
JP4887188B2 (en) * 2007-03-16 2012-02-29 株式会社リコー Electrophotographic photoreceptor, method for producing the same, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
JP5191759B2 (en) * 2008-02-22 2013-05-08 株式会社クラレ Novel acrylic ester derivative and process for producing the same
JP4702447B2 (en) 2008-12-25 2011-06-15 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US8273511B2 (en) 2008-12-25 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus
JP2010217438A (en) 2009-03-16 2010-09-30 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2010231077A (en) 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming device
JP5560755B2 (en) 2010-02-10 2014-07-30 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5625411B2 (en) 2010-03-17 2014-11-19 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP2012008503A (en) 2010-06-28 2012-01-12 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2012008505A (en) 2010-06-28 2012-01-12 Fuji Xerox Co Ltd Electrophotographic photoreceptor and method for producing the same, process cartridge, and image forming apparatus
JP5601064B2 (en) 2010-07-21 2014-10-08 富士ゼロックス株式会社 Photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5659692B2 (en) 2010-10-22 2015-01-28 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5741017B2 (en) 2011-01-28 2015-07-01 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5691578B2 (en) 2011-02-04 2015-04-01 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US9389525B2 (en) 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5697629B2 (en) * 2011-05-24 2015-04-08 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5772384B2 (en) * 2011-08-22 2015-09-02 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP5849528B2 (en) * 2011-08-22 2016-01-27 富士ゼロックス株式会社 Image forming apparatus and process cartridge
US9034544B2 (en) 2011-08-22 2015-05-19 Fuji Xerox Co., Ltd. Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor using the compound, method of producing electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8846280B2 (en) 2011-08-22 2014-09-30 Fuji Xerox Co., Ltd. Compound, charge transporting film, photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
CN102952030B (en) 2011-08-22 2016-02-24 富士施乐株式会社 Compound, charge transport film, photoelectric conversion device and Electrophtography photosensor
JP5849527B2 (en) * 2011-08-22 2016-01-27 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP5849529B2 (en) * 2011-08-22 2016-01-27 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP5849530B2 (en) * 2011-08-22 2016-01-27 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP5958011B2 (en) 2012-03-28 2016-07-27 富士ゼロックス株式会社 Charge transporting film forming composition, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6015264B2 (en) * 2012-09-12 2016-10-26 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6007691B2 (en) 2012-09-12 2016-10-12 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5892013B2 (en) 2012-09-12 2016-03-23 富士ゼロックス株式会社 Charge transport film, photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6003669B2 (en) 2013-01-21 2016-10-05 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5929785B2 (en) 2013-03-05 2016-06-08 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5888271B2 (en) 2013-03-05 2016-03-16 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5994707B2 (en) 2013-03-26 2016-09-21 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US9310702B2 (en) 2014-03-26 2016-04-12 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6455047B2 (en) 2014-09-26 2019-01-23 富士ゼロックス株式会社 Image forming method, image forming apparatus, and process cartridge
JP2019061094A (en) 2017-09-27 2019-04-18 富士ゼロックス株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP2004012986A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3880457B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP4630806B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4006461B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007086522A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP2000066425A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic device and production of electrophotographic photoreceptor
JP4095509B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007011006A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4630813B2 (en) Electrophotographic photosensitive member and method for manufacturing the same, process cartridge and electrophotographic apparatus
EP2469341A1 (en) Image bearing member and image forming method, image forming apparatus, and process cartridge
JP2002040686A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2005062300A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2005062301A (en) Electrophotographic photoreceptor
JP2004212959A (en) Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge
JP2007192905A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2012113237A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic device
JP4143497B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2004240305A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor
JP4266999B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP2007156081A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2005345662A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4136836B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP2006195497A5 (en)
JP4229352B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP4785366B2 (en) Image forming apparatus
JP4143200B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees