JP2007086522A - Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor Download PDF

Info

Publication number
JP2007086522A
JP2007086522A JP2005276486A JP2005276486A JP2007086522A JP 2007086522 A JP2007086522 A JP 2007086522A JP 2005276486 A JP2005276486 A JP 2005276486A JP 2005276486 A JP2005276486 A JP 2005276486A JP 2007086522 A JP2007086522 A JP 2007086522A
Authority
JP
Japan
Prior art keywords
charge transport
parts
compound
transport layer
curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005276486A
Other languages
Japanese (ja)
Inventor
Atsushi Ochi
敦 大地
Norihiro Kikuchi
憲裕 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005276486A priority Critical patent/JP2007086522A/en
Publication of JP2007086522A publication Critical patent/JP2007086522A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor excellent in mechanical strength and electric characteristics and capable of forming a stable image over a long period of time. <P>SOLUTION: The electrophotographic photoreceptor has, in particular, a first charge transport layer and a second charge transport layer in this order with the second charge transport layer as the outermost surface layer. The second charge transport layer contains a compound that is obtained by carrying out either polymerization or crosslinking or both of them on a curable charge transport compound expressed by general formula (1) and a curable compound having no charge transport property; and the charge transport component included in the second charge transport layer satisfies conditions expressed by K=L/M and K<0.95, wherein L represents a concentration of the charge transport component present from the surface of the electrophotographic photoreceptor to the depth at 40% of the film thickness of the second charge transport layer, M represents a concentration of the charge transport component present from the interface between the first charge transport layer and the second charge transport layer to the depth at 40% of the film thickness of the second charge transport layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、連続的あるいは段階的な濃度変化で電荷輸送成分が分布した硬化性の表面保護層を有する電子写真感光体に関する。また、本発明は上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関する。   The present invention relates to an electrophotographic photosensitive member having a curable surface protective layer in which a charge transport component is distributed by continuous or stepwise concentration change. The present invention also relates to a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

近年、電子写真感光体に用いられる材料として、無公害性や高生産性等の利点を有する有機光導電物質が広く利用されている。これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の感光体として利用される場合が多い。   In recent years, organic photoconductive substances having advantages such as pollution-free and high productivity have been widely used as materials used for electrophotographic photoreceptors. These electrophotographic photoreceptors are often used as function-separated photoreceptors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical properties.

一方、当然のことながら、電子写真感光体には適用される電子写真プロセスに応じた感度や電気的特性、更には光学的特性を備えていることが要求される。   On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process.

特に、繰り返し使用される感光体の表面層には、帯電、露光、トナー現像、紙への転写及びクリーニングといった様々な電気的及び機械的外力が直接加えられるため、それらに対する耐久性が要求される。   In particular, since various electric and mechanical external forces such as charging, exposure, toner development, transfer to paper and cleaning are directly applied to the surface layer of the photoreceptor to be used repeatedly, durability against them is required. .

具体的には、帯電時に発生するオゾンやNOx、硝酸等の活性物質による劣化のために感度や電位の低下、及び残留電位の増加がおこり、加えて摺擦によって表面が摩耗したり傷が発生することなど、これらに対する耐久性が要求されている。   Specifically, sensitivity and potential decrease and residual potential increase due to degradation by active substances such as ozone, NOx, and nitric acid generated during charging. In addition, the surface is worn or scratched by rubbing. Durability against these is required.

これらの問題点を解決する手段として、たとえば特許文献1に開示されているような、同一分子内に連鎖重合性官能基を有する電荷輸送性化合物を硬化させたものを最表面層に含有する感光体が報告されている。このような電荷輸送性を有する硬化性膜を用いることで、優れた機械的強度と電荷輸送能を両立させることが理論的には可能である。しかしながら上述したような電荷輸送性を有する硬化性膜は、その優れた機械的強度のために磨耗により新規表面が創出されにくいので、電気的劣化が蓄積され、長期にわたり安定した画像を提供することが困難なことがあり、未だ本来の性能を十分に引き出すまでには至っていない。
特開2000−147813号公報
As a means for solving these problems, for example, a photosensitivity containing a cured product of a charge transporting compound having a chain polymerizable functional group in the same molecule as disclosed in Patent Document 1 in the outermost surface layer. The body has been reported. By using such a curable film having charge transportability, it is theoretically possible to achieve both excellent mechanical strength and charge transport ability. However, since the curable film having the above-described charge transporting property is difficult to create a new surface due to abrasion due to its excellent mechanical strength, electrical deterioration is accumulated and a stable image can be provided over a long period of time. However, it is still difficult to get the full performance.
JP 2000-147813 A

本発明の目的は、機械的強度及び電気的特性に優れ、長期にわたり安定した画像を形成可能な電子写真感光体並びに該子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。   An object of the present invention is to provide an electrophotographic photoreceptor excellent in mechanical strength and electrical characteristics and capable of forming a stable image over a long period of time, and a process cartridge and an electrophotographic apparatus having the child photographic photoreceptor.

本発明者らは鋭意研究を重ねた結果、硬化性の表面保護層中に存在する電荷輸送成分を特定の条件で分布させることが、前述の課題を解決するものであることを見出した。   As a result of intensive studies, the present inventors have found that the distribution of the charge transport component present in the curable surface protective layer under a specific condition solves the above-described problem.

すなわち、本発明は、導電性支持体上に少なくとも電荷発生層、第一電荷輸送層及び第二電荷輸送層をこの順に有し、前記第二電荷輸送層が最表面層である電子写真感光体において、前記第二電荷輸送層は、下記一般式(1)で表される硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を重合及び架橋のいずれか一方又は両方を行うことによって得られる化合物を含有し、かつ前記第二電荷輸送層中に含有される電荷輸送成分が、下記条件を満たすことを特徴とする電子写真感光体である。
K=L/M かつ K<0.95
(式中、Lは電子写真感光体の表面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示し、Mは第一電荷輸送層と第二電荷輸送層の界面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示す。なお電荷輸送成分とは、下記一般式(1)で表される化合物中のトリフェニルアミンを意味する。)
That is, the present invention provides an electrophotographic photosensitive member having at least a charge generation layer, a first charge transport layer, and a second charge transport layer in this order on a conductive support, wherein the second charge transport layer is the outermost surface layer. The second charge transport layer is formed by polymerizing and / or crosslinking a curable charge transport compound represented by the following general formula (1) and a curable compound having no charge transport property. An electrophotographic photosensitive member characterized in that the charge transport component contained in the second charge transport layer contains the resulting compound and satisfies the following conditions.
K = L / M and K <0.95
(In the formula, L represents the concentration of the charge transport component existing from the surface of the electrophotographic photosensitive member to a depth of 40% of the thickness of the second charge transport layer, and M represents the first charge transport layer and the second charge transport layer). The concentration of the charge transport component existing from the interface of the transport layer to a depth of 40% of the thickness of the second charge transport layer is indicated in the compound represented by the following general formula (1). Of triphenylamine.)

(式中、Aはトリフェニルアミン骨格を有する電荷輸送性基を示し、P及びPは連鎖重合性官能基を示し、Zは置換基を有しても良い有機基を示し、a、b及びdは0又は1以上の整数を示し、a+b×dは1以上の整数を示す。PとPは同一でも異なっても良く、また、aが2以上の場合Pは同一でも異なっても良く、dが2以上の場合Pは同一でも異なっても良く、またbが2以上の場合、Z及びPのそれぞれは同一でも異なっても良い。) (In the formula, A represents a charge transporting group having a triphenylamine skeleton, P 1 and P 2 represent a chain polymerizable functional group, Z represents an organic group which may have a substituent, a, b and d represent 0 or an integer of 1 or more, and a + b × d represents an integer of 1 or more, P 1 and P 2 may be the same or different, and when a is 2 or more, P 1 may be the same And may be different. When d is 2 or more, P 2 may be the same or different. When b is 2 or more, Z and P 2 may be the same or different.

また、本発明は上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置である。   The present invention also provides a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

本発明によれば、優れた機械的強度と電気的特性を有する電子写真感光体を作成でき、長期にわたり安定した画像を継続して形成することができる。また、本発明によれば、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することができる。   According to the present invention, an electrophotographic photosensitive member having excellent mechanical strength and electrical characteristics can be produced, and a stable image can be continuously formed over a long period of time. In addition, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member can be provided.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明における、導電性支持体上に少なくとも電荷発生層、第一電荷輸送層及び第二電荷輸送層をこの順に有する電子写真感光体の第二電荷輸送層は、硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を重合及び架橋のいずれか一方又は両方を行うことによって得られる化合物を含有し、さらに前記第二電荷輸送層中に含有される電荷輸送成分が、特定の分布条件で存在することを特徴とする。   In the present invention, the second charge transport layer of the electrophotographic photosensitive member having at least the charge generation layer, the first charge transport layer, and the second charge transport layer in this order on the conductive support is composed of a curable charge transport compound and a charge transport. Containing a compound obtained by polymerizing and / or cross-linking a curable compound having no property, and further containing a charge transport component contained in the second charge transport layer under specific distribution conditions It exists in.

ここで、本発明における硬化性電荷輸送化合物とは、連鎖重合性官能基が電荷輸送性化合物に官能基として少なくとも1個以上化学結合している化合物を示す。この場合、連鎖重合性官能基はすべて同一でも異なったものであってもよく、下記の一般式(1)である場合が好ましい。   Here, the curable charge transport compound in the present invention refers to a compound in which at least one chain polymerizable functional group is chemically bonded to the charge transport compound as a functional group. In this case, all the chain-polymerizable functional groups may be the same or different, and the following general formula (1) is preferable.

(式中、Aはトリフェニルアミン骨格を有する電荷輸送性基を示し、P及びPは連鎖重合性官能基を示し、Zは置換基を有しても良い有機基を示し、a、b及びdは0又は1以上の整数を示し、a+b×dは1以上の整数を示す。PとPは同一でも異なっても良く、また、aが2以上の場合Pは同一でも異なっても良く、dが2以上の場合Pは同一でも異なっても良く、またbが2以上の場合、Z及びPのそれぞれは同一でも異なっても良い。) (In the formula, A represents a charge transporting group having a triphenylamine skeleton, P 1 and P 2 represent a chain polymerizable functional group, Z represents an organic group which may have a substituent, a, b and d represent 0 or an integer of 1 or more, and a + b × d represents an integer of 1 or more, P 1 and P 2 may be the same or different, and when a is 2 or more, P 1 may be the same And may be different. When d is 2 or more, P 2 may be the same or different. When b is 2 or more, Z and P 2 may be the same or different.

また、上記一般式(1)における連鎖重合性官能基P及びPは、ラジカルあるいはイオン等の中間体を経由して反応が進行する不飽和重合、開環重合及び異性化重合等が可能な官能基を意味するが、重合特性等の点からアクリル基及びメタクリル基が特に好ましい。 In addition, the chain polymerizable functional groups P 1 and P 2 in the general formula (1) can undergo unsaturated polymerization, ring-opening polymerization, isomerization polymerization, etc. in which the reaction proceeds via an intermediate such as a radical or an ion. An acrylic group and a methacryl group are particularly preferable from the viewpoint of polymerization characteristics and the like.

なお、上記一般式(1)における正孔輸送性基Aは、トリフェニルアミン骨格を有し、正孔輸送性を示すものであればどのようなものでもよい。   The hole transporting group A in the general formula (1) may be any one as long as it has a triphenylamine skeleton and exhibits hole transporting properties.

以下、表1に本発明の第二電荷輸送層に係わる硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物の代表例を挙げるが、本発明はこれらに限定されるものではない。これらの中でNo.1〜13が一般式(1)で表される硬化性電荷輸送化合物である。   Hereinafter, typical examples of the curable charge transport compound and the curable compound having no charge transport property relating to the second charge transport layer of the present invention are listed in Table 1, but the present invention is not limited thereto. Among these, No. 1 to 13 are curable charge transport compounds represented by the general formula (1).

次に、本発明における電荷輸送成分とは、正孔輸送性基Aで示される構造中のトリフェニルアミンを示す。正孔輸送性基Aの構造によっては、トリフェニルアミンが複数存在することもあるが、このような場合は全てのトリフェニルアミンを電荷輸送成分とみなす。たとえば、表1の化合物例No.2の場合、電荷輸送成分はトリフェニルアミン1個であり、化合物例No.3の場合には、電荷輸送成分はトリフェニルアミン2個である。   Next, the charge transport component in the present invention refers to triphenylamine in the structure represented by the hole transporting group A. Depending on the structure of the hole transporting group A, there may be a plurality of triphenylamines. In such a case, all triphenylamines are regarded as charge transporting components. For example, Compound Example Nos. In the case of No. 2, the charge transport component is one triphenylamine. In case 3, the charge transport component is two triphenylamines.

本発明における電子写真感光体の第二電荷輸送層は、極めて短時間で形成されるために生産性が高く、三次元的架橋構造を有するために硬化後の機械的強度に優れ、かつ電荷輸送成分を含有するので電気的特性にも優れるという特徴がある。   The second charge transport layer of the electrophotographic photosensitive member in the present invention is formed in a very short time and thus has high productivity, has a three-dimensional cross-linked structure, and has excellent mechanical strength after curing, and charge transport. Since it contains a component, it is characterized by excellent electrical characteristics.

しかしながら、第二電荷輸送層は、その優れた機械的強度のため磨耗により新規表面が創出されにくく、その結果、特に表面近傍に存在する電荷輸送成分が帯電により劣化し、これが解消されないまま蓄積されてしまう傾向にあり、特に高温高湿環境下での連続使用時においては、画像流れ等の問題が発生することがあり、機械的強度には優れるものの、本来の電気的特性を十分に引き出すまでには至っていない。   However, the second charge transport layer is difficult to create a new surface due to abrasion due to its excellent mechanical strength, and as a result, the charge transport component existing in the vicinity of the surface deteriorates due to charging and is accumulated without being eliminated. Especially when used continuously in a high temperature and high humidity environment, problems such as image flow may occur, and the mechanical properties are excellent, but the original electrical characteristics are fully exploited. It has not reached.

ところが、上述した第二電荷輸送層の電荷輸送成分を、支持体側よりも表面側のほうが低濃度となるように分布させることにより、機械的強度及び電気的特性を向上させることが可能である。その理由が未だ明らかになっていないが、画像形成時の帯電プロセスにおいては、主に電荷輸送成分が放電により劣化するため、電子写真特性を損なわない範囲で表面付近の電荷輸送成分濃度を低下させることで、電気的劣化を最小限に抑制できるほか、同時に可塑的作用が減少するために機械的強度も向上するものと推察される。さらに、第一電荷輸送層と第二電荷輸送層の界面付近に電荷輸送成分が高濃度で分布することにより、電荷輸送性が向上し、これが電気的特性の向上に寄与すると推察される。   However, it is possible to improve mechanical strength and electrical characteristics by distributing the charge transport component of the second charge transport layer described above so that the concentration on the surface side is lower than that on the support side. The reason has not yet been clarified, but in the charging process at the time of image formation, the charge transport component deteriorates mainly due to discharge, so the concentration of the charge transport component near the surface is reduced within a range that does not impair the electrophotographic characteristics. Thus, it is presumed that electrical deterioration can be suppressed to a minimum, and at the same time, the mechanical strength is improved because the plastic action is reduced. Furthermore, it is presumed that the charge transport property is improved by the high concentration distribution of the charge transport component in the vicinity of the interface between the first charge transport layer and the second charge transport layer, which contributes to the improvement of electrical characteristics.

次に本発明による電子写真感光体の製造方法を具体的に示す。   Next, a method for producing an electrophotographic photoreceptor according to the present invention will be specifically described.

電子写真感光体の支持体としては導電性を有するものであればよく、例えばアルミニウム、銅、クロム、ニッケル、亜鉛及びステンレスなどの金属や合金をドラムまたはシート状に成形したもの、アルミニウム及び銅などの金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫などをプラスチックフィルムに蒸着したもの、導電性物質を単独または結着樹脂とともに塗布して導電層を設けた金属、またプラスチックフィルム及び紙などが挙げられる。   The electrophotographic photosensitive member may have any conductivity, such as aluminum, copper, chromium, nickel, zinc and stainless steel or alloy formed into a drum or sheet, aluminum, copper, etc. Metal foil laminated with plastic film, aluminum, indium oxide and tin oxide deposited on plastic film, metal with conductive layer applied alone or with binder resin, and plastic film And paper.

本発明においては導電性支持体の上にはバリアー機能と接着機能をもつ下引き層を設けることができる。   In the present invention, an undercoat layer having a barrier function and an adhesive function can be provided on the conductive support.

下引き層は感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護などのために形成される。下引き層の材料としてはポリビニルアルコール、ポリ―N―ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、ニカワ及びゼラチンなどが知られている。これらはそれぞれに適した溶剤に溶解されて支持体上に塗布される。その際の膜厚としては0.1〜2μmが好ましい。本発明の感光体が機能分離型の感光体である場合には電荷発生層及び電荷輸送層を積層する。電荷発生層に用いる電荷発生物質としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的にいえばα、β、γ、ε及びX型などの結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開平54−143645号広報に記載のアモルファスシリコーンなどが挙げられる。   The undercoat layer is used to improve the adhesion of the photosensitive layer, improve coating properties, protect the support, cover defects on the support, improve charge injection from the support, and protect the photosensitive layer from electrical breakdown. Formed. Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin. It has been known. These are dissolved in a solvent suitable for each and coated on a support. The film thickness at that time is preferably 0.1 to 2 μm. When the photoreceptor of the present invention is a function separation type photoreceptor, a charge generation layer and a charge transport layer are laminated. Examples of the charge generation material used in the charge generation layer include selenium-tellurium, pyrylium, thiapyrylium dyes, various central metals and crystal systems, specifically, crystal types such as α, β, γ, ε, and X types. Examples include phthalocyanine compounds, anthanthrone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, monoazo pigments, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, quinocyanines, and amorphous silicones described in JP-A No. 54-143645. It is done.

機能分離型感光体の場合、電荷発生層は前記電荷発生物質を質量基準で0.3〜4倍量の結着樹脂及び溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター及びロールミルなどの方法でよく分散し、分散液を塗布し、乾燥させて形成されるか、または前記電荷発生物質の蒸着膜など、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。   In the case of a function-separated type photoreceptor, the charge generation layer comprises the charge generation material 0.3 to 4 times the amount of binder resin and solvent on a mass basis, a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, and the like. It is well dispersed by a method such as a roll mill, and is formed by applying a dispersion and drying, or formed as a single composition film such as a vapor deposition film of the charge generation material. The film thickness is preferably 5 μm or less, and particularly preferably in the range of 0.1 to 2 μm.

結着樹脂を用いる場合の例は、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of using binder resins are polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol, polyvinyl acetal. , Polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.

本発明における第二電荷輸送層の形成方法は、硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物とを含有する溶液を塗布後、重合反応をさせるのが一般的であるが、前もって該溶液を反応させて硬化物を得た後に再度溶剤中に分散あるいは溶解させたものなどを用いて、第二電荷輸送層を形成することも可能である。これらの溶液を塗布する方法は、例えば浸漬コーティング法、スプレーコーティング法、カーテンコーティング法及びスピンコーティング法などが知られており、本発明のように特定条件で電荷輸送成分を分布させるうえではスプレーコーティング法が最も望ましいが、その他の成膜方法も適宜選択可能である。   In the present invention, the second charge transport layer is generally formed by applying a polymerization reaction after applying a solution containing a curable charge transport compound and a curable compound having no charge transport property, It is also possible to form the second charge transport layer by using a solution obtained by reacting the solution in advance to obtain a cured product and then again dispersing or dissolving in a solvent. As a method for applying these solutions, for example, dip coating, spray coating, curtain coating, spin coating, and the like are known. In order to distribute charge transporting components under specific conditions as in the present invention, spray coating is used. Although the method is most desirable, other film forming methods can be selected as appropriate.

また本発明における第二電荷輸送層の塗布液は熱・光及び放射線により重合させることが可能であり、特に放射線で重合させることが好ましい。放射線による重合の最大の利点は、重合開始剤を必要とせず、これによる電子写真特性への影響を排除することができる点である。また、短時間で効率的な重合反応であるがゆえに生産性も高く、さらには放射線の透過性の良さから、厚膜時や添加剤などの遮蔽物質が膜中に存在する際の硬化阻害の影響が非常に小さいことなどが挙げられる。ただし、電荷輸送性を有する中心骨格の種類によっては重合反応が進行しにくい場合があり、その際には影響のない範囲内での重合開始剤の添加は可能である。この際使用する放射線とは電子線及びγ線である。電子線を使用する場合、加速器としてはスキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型などいずれの形式も使用することが出来る。電子線を使用する場合に、本発明の感光体においては電気特性及び耐久性能を発現させる上で使用条件が非常に重要である。本発明において、加速電圧は250KV以下が好ましく、最適には150KV以下である。また電子線の線量は好ましくは200kGy以下の範囲、より好ましくは100kGy以下の範囲である。電子線の加速電圧が上記を越えると感光体特性のダメージが増加する傾向にある。また、電子線の線量が上記範囲よりも多い場合には感光体特性の劣化がおこりやすいので注意が必要である。   The coating solution for the second charge transport layer in the present invention can be polymerized by heat, light and radiation, and it is particularly preferable to polymerize by radiation. The greatest advantage of polymerization by radiation is that a polymerization initiator is not required, and the influence on the electrophotographic characteristics due to this can be eliminated. In addition, because it is an efficient polymerization reaction in a short time, productivity is also high, and furthermore, because of its good radiation permeability, it inhibits curing when a thick film or a shielding substance such as an additive is present in the film. The impact is very small. However, depending on the type of the central skeleton having the charge transporting property, the polymerization reaction may not easily proceed, and in this case, it is possible to add the polymerization initiator within a range that does not affect the polymerization reaction. The radiation used at this time is an electron beam and a γ-ray. When an electron beam is used, any type of accelerator such as a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type can be used. When an electron beam is used, the use conditions are very important in the photoreceptor of the present invention in order to develop electric characteristics and durability. In the present invention, the acceleration voltage is preferably 250 KV or less, and optimally 150 KV or less. The dose of the electron beam is preferably 200 kGy or less, more preferably 100 kGy or less. When the acceleration voltage of the electron beam exceeds the above, damage to the photoreceptor characteristics tends to increase. Also, when the electron beam dose is larger than the above range, care must be taken because the characteristics of the photoreceptor are liable to deteriorate.

前記第二電荷輸送層の下層にあたる第一電荷輸送層は適当な電荷輸送物質、例えばポリ−N−ビニルカルバゾール、ポリスチリルアントラセンなどの複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール、カルバゾールなどの複素環化合物、トリフェニルメタンなどのトリアリールアルカン誘導体、トリフェニルアミンなどのトリアリールアミン誘導体、フェニレンジアミン誘導体、N―フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体などの低分子化合物を適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)とともに溶剤に分散/溶解した溶液を前述の公知の方法によって塗布、乾燥して形成することができる。この場合の電荷輸送物質と結着樹脂の比率は、両者の全質量を100とした場合に電荷輸送物質の質量が30〜100が望ましく、好ましくは50〜100の範囲で適宜選択される。電荷輸送物質の量がそれ以下であると、電荷輸送能が低下し、感度低下及び残留電位の上昇などの問題点が生ずる。第一電荷輸送層の膜厚は、上層の第二電荷輸送層と合わせた総膜厚が1〜50μmとなるように決定され、好ましくは5〜30μmの範囲で調整される。   The first charge transport layer, which is the lower layer of the second charge transport layer, is a suitable charge transport material such as a polymer compound having a heterocyclic ring or condensed polycyclic aromatic compound such as poly-N-vinylcarbazole or polystyrylanthracene, or pyrazoline. , Heterocyclic compounds such as imidazole, oxazole, triazole, carbazole, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, hydrazone derivatives, etc. A solution in which a low molecular weight compound is dispersed / dissolved in a solvent together with a suitable binder resin (which can be selected from the aforementioned resin for charge generation layer) can be applied and dried by the above-mentioned known methods. In this case, the ratio of the charge transport material to the binder resin is preferably selected in the range of 30 to 100, preferably 50 to 100, when the total mass of both is 100. If the amount of the charge transport material is less than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential occur. The film thickness of the first charge transport layer is determined so that the total film thickness combined with the second charge transport layer on the upper layer is 1 to 50 μm, and is preferably adjusted in the range of 5 to 30 μm.

また前記第二電荷輸送層中に含有される電荷輸送成分は、次の条件を満たすように分布していることが必要である。
K=L/M かつ K<0.95
(式中、Lは電子写真感光体の表面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示し、Mは電荷輸送層と第二電荷輸送層の界面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示す。なお電荷輸送成分とは、硬化性電荷輸送化合物における電荷輸送性基中のトリフェニルアミンを意味する。)
The charge transport component contained in the second charge transport layer must be distributed so as to satisfy the following conditions.
K = L / M and K <0.95
(In the formula, L represents the concentration of the charge transport component existing from the surface of the electrophotographic photosensitive member to a depth of 40% of the film thickness of the second charge transport layer, and M represents the charge transport layer and the second charge transport layer. The concentration of the charge transport component existing from the interface to the depth of 40% of the film thickness of the second charge transport layer is represented by triphenyl in the charge transport group in the curable charge transport compound. Means amine.)

この条件を満たさない分布状態においては、可塑的作用が低減せず、帯電プロセスによる電気的劣化を抑制する効果も不十分であり、長期にわたり安定した画像を提供することは困難である。また、次の条件を満たすように分布していることが望ましい。
K=L/M かつ 0.25<K<0.80
In a distribution state that does not satisfy this condition, the plastic effect is not reduced, and the effect of suppressing electrical deterioration due to the charging process is insufficient, and it is difficult to provide a stable image over a long period of time. Further, it is desirable that the distribution is made so as to satisfy the following condition.
K = L / M and 0.25 <K <0.80

更に本発明における感光層には必要に応じて各種添加剤を添加することができる。該添加剤とは酸化防止剤、重合禁止剤、紫外線吸収剤やハロゲン化合物などの劣化防止剤や、テトラフルオロエチレン樹脂及びフッ化カーボンなどの潤剤、単官能あるいは多官能の連鎖重合性官能基を有する重合性モノマー等の硬化性付与剤、熱可塑性樹脂、公知の電荷輸送化合物及び公知の電荷発生物質等が挙げられる。   Furthermore, various additives can be added to the photosensitive layer in the present invention as required. The additives include antioxidants, polymerization inhibitors, deterioration inhibitors such as UV absorbers and halogen compounds, lubricants such as tetrafluoroethylene resin and fluorocarbon, monofunctional or polyfunctional chain polymerizable functional groups. Examples thereof include a curability-imparting agent such as a polymerizable monomer having, a thermoplastic resin, a known charge transport compound, and a known charge generating substance.

図1に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略を示す。図において、1はドラム上の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、一次帯電手段3によりその周面に正または負の所定電位に均一帯電を受け、次いでスリット露光やレーザービーム走査露光などの像露光手段(不図示)からの画像露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から感光体1の回転と同期取り出されて給紙された転写材7に、転写手段6により順次転写されていく。像転写を受けた転写材7は、感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。像転写後の感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9などの構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱可能に構成しても良い。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも一つを感光体1とともに一体に支持してカートリッジ化して、装置本体のレール12などの案内手段を用いて装置本体に着脱可能なプロセスカートリッジ11とすることが出来る。また、画像露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいはセンサーで原稿を読み取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動などにより照射される光である。   FIG. 1 schematically shows an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention. In the figure, reference numeral 1 denotes an electrophotographic photosensitive member of the present invention on a drum, which is rotated about a shaft 2 in the direction of an arrow at a predetermined peripheral speed. In the rotating process, the photosensitive member 1 is uniformly charged at a predetermined positive or negative potential on its peripheral surface by the primary charging unit 3, and then an image from an image exposure unit (not shown) such as slit exposure or laser beam scanning exposure. Exposure light 4 is received. In this way, electrostatic latent images are sequentially formed on the peripheral surface of the photoreceptor 1. The formed electrostatic latent image is then developed with toner by the developing means 5, and the developed toner developed image is taken out in synchronization with the rotation of the photosensitive member 1 from a paper feeding unit (not shown) and fed onto the transfer material 7. Then, the images are sequentially transferred by the transfer means 6. The transfer material 7 that has received the image transfer is separated from the surface of the photosensitive member, introduced into the image fixing means 8, and subjected to image fixing, thereby being printed out as a copy (copy). After the image transfer, the surface of the photoreceptor 1 is cleaned by removing the transfer residual toner by the cleaning unit 9, and is further subjected to a charge removal process by the pre-exposure light 10 from the pre-exposure unit (not shown), and then repeatedly. Used for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary. In the present invention, a plurality of components such as the above-described electrophotographic photosensitive member 1, primary charging unit 3, developing unit 5, and cleaning unit 9 are integrally coupled as a process cartridge. May be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the photoreceptor 1 to form a cartridge, and can be attached to and detached from the apparatus main body using guide means such as a rail 12 of the apparatus main body. The process cartridge 11 can be obtained. Further, when the electrophotographic apparatus is a copying machine or a printer, the image exposure light 4 is a reflected light or transmitted light from a document, or a signal is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. The light is emitted by driving the LED array and the liquid crystal shutter array.

本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザープリンター、CRTプリンター、LEDプリンター、液晶プリンター、ファクシミリ及び電子写真式製版システムなどの電子写真応用分野にも広く用いることができる。   The electrophotographic photosensitive member of the present invention is not only used in electrophotographic copying machines but also widely used in electrophotographic application fields such as laser printers, CRT printers, LED printers, liquid crystal printers, facsimiles, and electrophotographic plate making systems. Can do.

以下、実施例及び比較例によって、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

以下に実施例を挙げ、本発明を更に詳細に説明する。実施例中、「部」は質量部を表す。   The following examples further illustrate the present invention. In the examples, “parts” represents parts by mass.

[実施例1]
まず導電層用の塗料を以下の手順で調製した。10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部(質量部、以下同様)、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部およびシリコーン化合物(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部をφ1mmガラスビーズを用いたサンドミル装置で2時間分散して調製した。この塗料をφ30mmのアルミニウムシリンダー上に浸漬塗布方法で塗布し、150℃で30分乾燥して、膜厚が18μmの導電層を形成した。
[Example 1]
First, a coating material for the conductive layer was prepared by the following procedure. 50 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide (mass parts, hereinafter the same), phenol resin 25 parts, methyl cellosolve 20 parts, methanol 5 parts and silicone compound (polydimethylsiloxane poly) An oxyalkylene copolymer (average molecular weight 3000) 0.002 part was prepared by dispersing for 2 hours in a sand mill using φ1 mm glass beads. This paint was applied on a φ30 mm aluminum cylinder by a dip coating method and dried at 150 ° C. for 30 minutes to form a conductive layer having a thickness of 18 μm.

次に、N−メトキシメチル化ナイロン5部をメタノール95部中に溶解し、中間層用塗料を調製した。この塗料を前記の導電層上に浸漬コーティング法によって塗布し、100℃で20分間乾燥して、膜厚が0.5μmの中間層を形成した。   Next, 5 parts of N-methoxymethylated nylon was dissolved in 95 parts of methanol to prepare an intermediate layer coating material. This paint was applied on the conductive layer by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.5 μm.

次に、CuKα特性X線回折におけるブラック角2θ±0.2度の9.0度、14.2度、23.9度及び27.1度に強いピ−クを有するオキシチタニウムフタロシアニンを3部、ポリビニルブチラ−ル(商品名エスレックBM2、積水化学(株)製)3.5部及びシクロヘキサノン35部をφ1mmガラスビ−ズを用いたサンドミル装置で2時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を前記の中間層の上に浸漬塗布方法で塗布して90℃で10分間乾燥し、膜厚0.2μmの電荷発生層を形成した。   Next, 3 parts of oxytitanium phthalocyanine having strong peaks at 9.0 degrees, 14.2, 23.9 degrees, and 27.1 degrees of black angle 2θ ± 0.2 degrees in CuKα characteristic X-ray diffraction , 3.5 parts of polyvinyl butyral (trade name S-REC BM2, manufactured by Sekisui Chemical Co., Ltd.) and 35 parts of cyclohexanone are dispersed for 2 hours in a sand mill using φ1 mm glass beads, and then 60 parts of ethyl acetate. Was added to prepare a charge generation layer coating material. This paint was applied on the intermediate layer by a dip coating method and dried at 90 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm.

次に、下記構造式で示される電荷輸送化合物20部、   Next, 20 parts of a charge transport compound represented by the following structural formula,

及び下記構造式で示される繰り返し単位を有するポリカーボネート樹脂(数平均分子量20000) And a polycarbonate resin having a repeating unit represented by the following structural formula (number average molecular weight 20000)

10部をモノクロロベンゼン50部及びジクロロメタン20部の混合溶媒中に溶解して調製した塗布液を用いて、電荷発生層上に第一電荷輸送層を形成した。この時の第一電荷輸送層の膜厚は15μmであった。 A first charge transport layer was formed on the charge generation layer using a coating solution prepared by dissolving 10 parts in a mixed solvent of 50 parts monochlorobenzene and 20 parts dichloromethane. At this time, the thickness of the first charge transport layer was 15 μm.

次に、分散剤としてフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)1.25部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5部と1−プロパノール37.5部に溶解した後、潤滑剤として四フッ化エチレン樹脂粉体(商品名:ルブロンL−2、ダイキン工業(株)製)25部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)で5880N/cmの圧力で3回の処理を施し均一に分散させた。これを10μmのPTFEメンブレンフィルターで加圧濾過を行い、潤滑剤分散液を調製した。 Next, 1.25 parts of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant was added to 1,1,2,2,3,3,4-heptafluorocyclopentane. (Product name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) 37.5 parts and 1-propanol 37.5 parts, and then dissolved in tetrafluoroethylene resin powder (trade name: Lubron L-2, Daikin Industries, Ltd. (25 parts) was added, and a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA) was subjected to 3 treatments at a pressure of 5880 N / cm 2 and uniformly dispersed. . This was subjected to pressure filtration with a 10 μm PTFE membrane filter to prepare a lubricant dispersion.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(1−1)表1の化合物例No.4の硬化性電荷輸送化合物30部、化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(1−1)を調製した。   (1-1) Compound Example Nos. No. 4 curable charge transport compound, 30 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (1-1).

(1−2)表1の化合物例No.4の硬化性電荷輸送化合物25部、化合物例No.14の電荷輸送性を有さない硬化性化合物11部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(1−2)を調製した。   (1-2) Compound Example Nos. No. 4 curable charge transport compound 25 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating liquid (1-2).

(1−3)表1の化合物例No.4の硬化性電荷輸送化合物15部、化合物例No.14の電荷輸送性を有さない硬化性化合物21部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(1−3)を調製した。   (1-3) Compound Example Nos. No. 4 curable charge transport compound 15 parts, Compound Example No. 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (1-3).

(1−4)表1の化合物例No.4の硬化性電荷輸送化合物7部、化合物例No.14の電荷輸送性を有さない硬化性化合物29部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(1−4)を調製した。   (1-4) Compound Example Nos. No. 4 curable charge transport compound, 7 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (1-4).

(1−5)表1の化合物例No.4の硬化性電荷輸送化合物5部、化合物例No.14の電荷輸送性を有さない硬化性化合物31部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(1−5)を調製した。   (1-5) Compound Example Nos. No. 4 curable charge transport compound 5 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (1-5).

上記記載の塗布液(1−1)〜(1−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(1)を作成した。   After applying the coating liquids (1-1) to (1-5) described above on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer is 1.0 μm, in nitrogen Curing was carried out under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and subsequently a heat treatment was carried out for 90 seconds under the condition that the temperature of the photoreceptor was 120 ° C. The oxygen concentration at this time was 10 ppm. Furthermore, the photoconductor was heat-treated for 20 minutes in a hot air drier adjusted to 100 ° C. in the atmosphere to form a second charge transport layer having a thickness of 5 μm, thereby preparing the photoconductor (1).

この感光体(1)を、光量及び帯電設定を変更可能に改造したレーザービームプリンター(LASER SHOT LBP−930:キヤノン製)に装着し、高温高湿環境下(32℃/85%RH)(H/H)において連続15000枚の通紙耐久を行い、目視による画像欠陥の発生の有無を観察し、更にその電子写真感光体の膜厚を過電流式膜厚計(カールフィッシャー社製)を使用して測定した。なお、通紙耐久試験における改造機の設定は、転写電流:+5.5μA、プロセススピード:106mm/secとした。また、通紙耐久試験前後に光放電特性を測定し、初期値及び通紙耐久試験後のVrの変動量(ΔVl)を算出した。その結果を表2に示す。   The photoconductor (1) is mounted on a laser beam printer (LASER SHOT LBP-930: manufactured by Canon Inc.) modified so that the light amount and the charge setting can be changed, and in a high temperature and high humidity environment (32 ° C./85% RH) (H / H), continuous 15,000 sheets were passed through, and the presence or absence of visual image defects was observed. Furthermore, the film thickness of the electrophotographic photoreceptor was measured using an overcurrent film thickness meter (manufactured by Karl Fischer). And measured. The modified machine in the paper passing durability test was set to transfer current: +5.5 μA and process speed: 106 mm / sec. Further, the photodischarge characteristics were measured before and after the paper passing durability test, and the initial value and the amount of fluctuation (ΔVl) of Vr after the paper passing durability test were calculated. The results are shown in Table 2.

これらの結果から感光体(1)は、高温高湿環境下での連続通紙耐久試験において高い機械的強度を有し、画像流れ等の画像欠陥も発生せず、連続使用前後の電位変動も極めて小さいことから、長期にわたり鮮明な画像が安定して得られ、優れた電気的特性及び機械的強度を有することが明確となった。   From these results, the photoreceptor (1) has high mechanical strength in a continuous paper passing durability test in a high temperature and high humidity environment, does not cause image defects such as image flow, and does not change potential before and after continuous use. Since it was extremely small, it became clear that a clear image was stably obtained over a long period of time and had excellent electrical characteristics and mechanical strength.

[実施例2]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に行った。
[Example 2]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were performed in the same manner as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(2−1)表1の化合物例No.4の硬化性電荷輸送化合物30部、化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(2−1)を調製した。   (2-1) Compound Example Nos. No. 4 curable charge transport compound, 30 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (2-1).

(2−2)表1の化合物例No.4の硬化性電荷輸送化合物20部、化合物例No.14の電荷輸送性を有さない硬化性化合物16部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(2−2)を調製した。   (2-2) Compound Example Nos. No. 4 curable charge transport compound, no. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (2-2).

(2−3)表1の化合物例No.4の硬化性電荷輸送化合物15部、化合物例No.14の電荷輸送性を有さない硬化性化合物21部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(2−3)を調製した。   (2-3) Compound Example Nos. No. 4 curable charge transport compound 15 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After the parts were mixed and stirred, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (2-3).

(2−4)表1の化合物例No.4の硬化性電荷輸送化合物10部、化合物例No.14の電荷輸送性を有さない硬化性化合物26部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(2−4)を調製した。   (2-4) Compound Example Nos. No. 4 curable charge transport compound, 10 parts; 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (2-4).

(2−5)表1の化合物例No.4の硬化性電荷輸送化合物5部、化合物例No.14の電荷輸送性を有さない硬化性化合物31部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(2−5)を調製した。   (2-5) Compound Example Nos. No. 4 curable charge transport compound 5 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (2-5).

上記記載の塗布液(2−1)〜(2−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(2)を作成し、実施例1と同様に評価した。その結果を表2に示す。   After coating the coating liquids (2-1) to (2-5) described above on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer becomes 1.0 μm, in nitrogen Curing was carried out under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and subsequently a heat treatment was carried out for 90 seconds under the condition that the temperature of the photoreceptor was 120 ° C. The oxygen concentration at this time was 10 ppm. Furthermore, the photoconductor was heat-treated in a hot air dryer adjusted to 100 ° C. in the atmosphere for 20 minutes to form a second charge transport layer having a thickness of 5 μm, and the photoconductor (2) was prepared and carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

[実施例3]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に行った。
[Example 3]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were performed in the same manner as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(3−1)表1の化合物例No.4の硬化性電荷輸送化合物30部、化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(3−1)を調製した。   (3-1) Compound Example Nos. No. 4 curable charge transport compound, 30 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (3-1).

(3−2)表1の化合物例No.4の硬化性電荷輸送化合物25部、化合物例No.14の電荷輸送性を有さない硬化性化合物11部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(3−2)を調製した。   (3-2) Compound Example Nos. No. 4 curable charge transport compound 25 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (3-2).

(3−3)表1の化合物例No.4の硬化性電荷輸送化合物20部、化合物例No.14の電荷輸送性を有さない硬化性化合物16部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(3−3)を調製した。   (3-3) Compound Example Nos. No. 4 curable charge transport compound, no. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (3-3).

(3−4)表1の化合物例No.4の硬化性電荷輸送化合物15部、化合物例No.14の電荷輸送性を有さない硬化性化合物21部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(3−4)を調製した。   (3-4) Compound Example Nos. No. 4 curable charge transport compound 15 parts, Compound Example No. 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (3-4).

(3−5)表1の化合物例No.4の硬化性電荷輸送化合物10部、化合物例No.14の電荷輸送性を有さない硬化性化合物26部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(3−5)を調製した。   (3-5) Compound Example Nos. No. 4 curable charge transport compound, 10 parts; 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (3-5).

上記記載の塗布液(3−1)〜(3−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(3)を作成し、実施例1と同様に評価した。その結果を表2に示す。   After applying the coating liquids (3-1) to (3-5) described above on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer becomes 1.0 μm, in nitrogen Curing was carried out under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and subsequently a heat treatment was carried out for 90 seconds under the condition that the temperature of the photoreceptor was 120 ° C. The oxygen concentration at this time was 10 ppm. Further, the photoconductor was heated in the air at 100 ° C. in a hot air dryer for 20 minutes to form a second charge transport layer having a thickness of 5 μm, and the photoconductor (3) was prepared and carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

[実施例4]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に行った。
[Example 4]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were performed in the same manner as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(4−1)表1の化合物例No.4の硬化性電荷輸送化合物30部、化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(4−1)を調製した。   (4-1) Compound Example Nos. No. 4 curable charge transport compound, 30 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (4-1).

(4−2)表1の化合物例No.4の硬化性電荷輸送化合物28部、化合物例No.14の電荷輸送性を有さない硬化性化合物8部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(4−2)を調製した。   (4-2) Compound Example Nos. No. 4 curable charge transport compound 28 parts, Compound Example No. 14 parts of a curable compound having no charge transporting property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (4-2).

(4−3)表1の化合物例No.4の硬化性電荷輸送化合物25部、化合物例No.14の電荷輸送性を有さない硬化性化合物11部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(4−3)を調製した。   (4-3) Compound Example Nos. No. 4 curable charge transport compound 25 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (4-3).

(4−4)表1の化合物例No.4の硬化性電荷輸送化合物22部、化合物例No.14の電荷輸送性を有さない硬化性化合物14部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(4−4)を調製した。   (4-4) Compound Example Nos. No. 4 curable charge transport compound, 22 parts; 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (4-4).

(4−5)表1の化合物例No.4の硬化性電荷輸送化合物20部、化合物例No.14の電荷輸送性を有さない硬化性化合物16部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(4−5)を調製した。   (4-5) Compound Example Nos. No. 4 curable charge transport compound, no. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (4-5).

上記記載の塗布液(4−1)〜(4−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(4)を作成し、実施例1と同様に評価した。その結果を表2に示す。   After applying the coating liquids (4-1) to (4-5) described above on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer becomes 1.0 μm, in nitrogen Curing was carried out under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and subsequently a heat treatment was carried out for 90 seconds under the condition that the temperature of the photoreceptor was 120 ° C. The oxygen concentration at this time was 10 ppm. Furthermore, the photoconductor was heat-treated in a hot air dryer adjusted to 100 ° C. in the atmosphere for 20 minutes to form a second charge transport layer having a film thickness of 5 μm, and a photoconductor (4) was prepared and carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

[実施例5]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に行った。
[Example 5]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were performed in the same manner as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(5−1)表1の化合物例No.4の硬化性電荷輸送化合物30部、化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(5−1)を調製した。   (5-1) Compound Example Nos. No. 4 curable charge transport compound, 30 parts; 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (5-1).

(5−2)表1の化合物例No.4の硬化性電荷輸送化合物29部、化合物例No.14の電荷輸送性を有さない硬化性化合物7部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(5−2)を調製した。   (5-2) Compound Example Nos. No. 4 curable charge transport compound 29 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (5-2).

(5−3)表1の化合物例No.4の硬化性電荷輸送化合物28部、化合物例No.14の電荷輸送性を有さない硬化性化合物8部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(5−3)を調製した。   (5-3) Compound Example Nos. No. 4 curable charge transport compound 28 parts, Compound Example No. 14 parts of a curable compound having no charge transporting property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (5-3).

(5−4)表1の化合物例No.4の硬化性電荷輸送化合物27部、化合物例No.14の電荷輸送性を有さない硬化性化合物9部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(5−4)を調製した。   (5-4) Compound Example Nos. No. 4 curable charge transport compound 27 parts, Compound Example No. 14 parts of curable compound having no charge transport property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (5-4).

(5−5)表1の化合物例No.4の硬化性電荷輸送化合物26部、化合物例No.14の電荷輸送性を有さない硬化性化合物10部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(5−5)を調製した。   (5-5) Compound Example Nos. No. 4 curable charge transport compound 26 parts, Compound Example No. 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After the parts were mixed and stirred, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (5-5).

上記記載の塗布液(5−1)〜(5−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(5)を作成し、実施例1と同様に評価した。その結果を表2に示す。   After applying the coating liquids (5-1) to (5-5) described above on the first charge transport layer in this order by the spray coating method so that the thickness of each layer becomes 1.0 μm, in nitrogen Curing was carried out under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and subsequently a heat treatment was carried out for 90 seconds under the condition that the temperature of the photoreceptor was 120 ° C. The oxygen concentration at this time was 10 ppm. Furthermore, the photoconductor was heat-treated in a hot air dryer adjusted to 100 ° C. in the atmosphere for 20 minutes to form a second charge transport layer having a film thickness of 5 μm, and a photoconductor (5) was prepared and carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

[実施例6]
実施例1の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は実施例1と同様に感光体(6)を作成し、評価した。その結果を表2に示す。
[Example 6]
The curable charge transport compound of Example 1 was identified as Compound Example No. 1 in Table 1. A photoconductor (6) was prepared and evaluated in the same manner as in Example 1 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[実施例7]
実施例2の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は実施例2と同様に感光体(7)を作成し、評価した。その結果を表2に示す。
[Example 7]
The curable charge transport compound of Example 2 was identified as Compound Example No. 1 in Table 1. A photoconductor (7) was prepared and evaluated in the same manner as in Example 2 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[実施例8]
実施例3の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は実施例3と同様に感光体(8)を作成し、評価した。その結果を表2に示す。
[Example 8]
The curable charge transport compound of Example 3 was identified as Compound Example No. 1 in Table 1. A photoconductor (8) was prepared and evaluated in the same manner as in Example 3 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[実施例9]
実施例4の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は実施例4と同様に感光体(9)を作成し、評価した。その結果を表2に示す。
[Example 9]
The curable charge transport compound of Example 4 was identified as Compound Example No. 1 in Table 1. A photoconductor (9) was prepared and evaluated in the same manner as in Example 4 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[実施例10]
実施例5の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は実施例5と同様に感光体(10)を作成し、評価した。その結果を表2に示す。
[Example 10]
The curable charge transport compound of Example 5 was identified as Compound Example No. 1 in Table 1. A photoconductor (10) was prepared and evaluated in the same manner as in Example 5 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[実施例11]
実施例1の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.2及び化合物例No.16にそれぞれ変更した以外は実施例1と同様に感光体(11)を作成し、評価した。その結果を表2に示す。
[Example 11]
The curable charge transport compound of Example 1 and the curable compound having no charge transport property are designated as Compound Example No. 1 in Table 1. 2 and Compound Example No. A photoconductor (11) was prepared and evaluated in the same manner as in Example 1 except that the number was changed to 16. The results are shown in Table 2.

[実施例12]
実施例2の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.2及び化合物例No.16にそれぞれ変更した以外は実施例2と同様に感光体(12)を作成し、評価した。その結果を表2に示す。
[Example 12]
The curable charge transport compound of Example 2 and the curable compound having no charge transport property are shown in Compound Example No. 1 in Table 1. 2 and Compound Example No. A photoconductor (12) was prepared and evaluated in the same manner as in Example 2 except for changing to 16 respectively. The results are shown in Table 2.

[実施例13]
実施例3の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.2及び化合物例No.16にそれぞれ変更した以外は実施例3と同様に感光体(13)を作成し、評価した。その結果を表2に示す。
[Example 13]
The curable charge transport compound of Example 3 and the curable compound having no charge transport property are shown in Compound Example No. 1 in Table 1. 2 and Compound Example No. A photoconductor (13) was prepared and evaluated in the same manner as in Example 3 except for changing to 16 respectively. The results are shown in Table 2.

[実施例14]
実施例4の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.2及び化合物例No.16にそれぞれ変更した以外は実施例4と同様に感光体(14)を作成し、評価した。その結果を表2に示す。
[Example 14]
The curable charge transport compound of Example 4 and the curable compound having no charge transport property are shown in Compound Example No. 1 in Table 1. 2 and Compound Example No. A photoconductor (14) was prepared and evaluated in the same manner as in Example 4 except for changing to 16 respectively. The results are shown in Table 2.

[実施例15]
実施例5の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.2及び化合物例No.16にそれぞれ変更した以外は実施例5と同様に感光体(15)を作成し、評価した。その結果を表2に示す。
[Example 15]
The curable charge transport compound of Example 5 and the curable compound having no charge transport property are shown in Compound Example No. 1 in Table 1. 2 and Compound Example No. A photoconductor (15) was prepared and evaluated in the same manner as in Example 5 except that each was changed to 16. The results are shown in Table 2.

[実施例16]
実施例11の硬化性電荷輸送化合物を表1の化合物例No.7に変更した以外は実施例11と同様に感光体(16)を作成し、評価した。その結果を表2に示す。
[Example 16]
The curable charge transport compound of Example 11 was converted to Compound Example No. 1 in Table 1. A photoconductor (16) was prepared and evaluated in the same manner as in Example 11 except for changing to 7. The results are shown in Table 2.

[実施例17]
実施例12の硬化性電荷輸送化合物を表1の化合物例No.7に変更した以外は実施例12と同様に感光体(17)を作成し、評価した。その結果を表2に示す。
[Example 17]
The curable charge transport compound of Example 12 was identified as Compound Example No. 1 in Table 1. A photoconductor (17) was prepared and evaluated in the same manner as in Example 12 except for changing to 7. The results are shown in Table 2.

[実施例18]
実施例13の硬化性電荷輸送化合物を表1の化合物例No.7に変更した以外は実施例13と同様に感光体(18)を作成し、評価した。その結果を表2に示す。
[Example 18]
The curable charge transport compound of Example 13 was identified as Compound Example No. 1 in Table 1. A photoconductor (18) was prepared and evaluated in the same manner as in Example 13 except for changing to 7. The results are shown in Table 2.

[実施例19]
実施例14の硬化性電荷輸送化合物を表1の化合物例No.7に変更した以外は実施例14と同様に感光体(19)を作成し、評価した。その結果を表2に示す。
[Example 19]
The curable charge transport compound of Example 14 was identified as Compound Example No. 1 in Table 1. A photoconductor (19) was prepared and evaluated in the same manner as in Example 14 except for changing to 7. The results are shown in Table 2.

[実施例20]
実施例15の硬化性電荷輸送化合物を表1の化合物例No.7に変更した以外は実施例15と同様に感光体(20)を作成し、評価した。その結果を表2に示す。
[Example 20]
The curable charge transport compound of Example 15 was designated as Compound Example No. 1 in Table 1. A photoconductor (20) was prepared and evaluated in the same manner as in Example 15 except for changing to 7. The results are shown in Table 2.

[実施例21]
実施例18の硬化性電荷輸送化合物を表1の化合物例No.9に変更した以外は実施例18と同様に感光体(21)を作成し、評価した。その結果を表2に示す。
[Example 21]
The curable charge transport compound of Example 18 was identified as Compound Example No. 1 in Table 1. A photoconductor (21) was prepared and evaluated in the same manner as in Example 18 except for changing to 9. The results are shown in Table 2.

[実施例22]
実施例8の硬化性電荷輸送化合物を表1の化合物例No.8に変更した以外は実施例8と同様に感光体(22)を作成し、評価した。その結果を表2に示す。
[Example 22]
The curable charge transport compound of Example 8 was identified as Compound Example No. 1 in Table 1. A photoconductor (22) was prepared and evaluated in the same manner as in Example 8 except for changing to 8. The results are shown in Table 2.

[実施例23]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Example 23]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(23−1)表1の化合物例No.11の硬化性電荷輸送化合物30部、化合物例No.15の電荷輸送性を有さない硬化性化合物6部、熱重合開始剤(下記構造式A)0.2部、
潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(23−1)を調製した。
(23-1) Compound Example Nos. No. 11 curable charge transport compound, 30 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A),
After mixing and stirring 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 24 parts of 1-propanol, a PTFE 5 μm membrane filter was used. Pressure filtration was performed to prepare a coating solution (23-1).

(23−2)表1の化合物例No.11の硬化性電荷輸送化合物25部、化合物例No.15の電荷輸送性を有さない硬化性化合物11部、熱重合開始剤(下記構造式A)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(23−2)を調製した。   (23-2) Compound Example Nos. No. 11 curable charge transport compound, 25 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (23-2).

(23−3)表1の化合物例No.11の硬化性電荷輸送化合物20部、化合物例No.15の電荷輸送性を有さない硬化性化合物16部、熱重合開始剤(下記構造式A)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(23−3)を調製した。   (23-3) Compound Example Nos. No. 11 curable charge transport compound 20 parts, Compound Example No. 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (23-3).

(23−4)表1の化合物例No.11の硬化性電荷輸送化合物15部、化合物例No.15の電荷輸送性を有さない硬化性化合物21部、熱重合開始剤(下記構造式A)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(23−4)を調製した。   (23-4) Compound Example Nos. 11 curable charge transport compound, Compound Example No. 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (23-4).

(23−5)表1の化合物例No.11の硬化性電荷輸送化合物10部、化合物例No.15の電荷輸送性を有さない硬化性化合物26部、熱重合開始剤(下記構造式A)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(23−5)を調製した。   (23-5) Compound Example Nos. No. 11 curable charge transport compound, 10 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (23-5).

上記記載の塗布液(23−1)〜(23−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、150℃にて1時間加熱硬化することで膜厚5μmの第二電荷輸送層を形成し、感光体(23)を作成し、実施例1と同様に評価した。その結果を表2に示す。   After coating the coating liquids (23-1) to (23-5) described above on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer is 1.0 μm, the coating liquid is heated to 150 ° C. Then, a second charge transport layer having a film thickness of 5 μm was formed by heat curing for 1 hour to prepare a photoconductor (23), which was evaluated in the same manner as in Example 1. The results are shown in Table 2.

[実施例24]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Example 24]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(24−1)表1の化合物例No.11の硬化性電荷輸送化合物30部、化合物例No.15の電荷輸送性を有さない硬化性化合物6部、光重合開始剤(下記構造式B)0.2部、
潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(24−1)を調製した。
(24-1) Compound Example Nos. No. 11 curable charge transport compound, 30 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B),
After mixing and stirring 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 24 parts of 1-propanol, a PTFE 5 μm membrane filter was used. The coating solution (24-1) was prepared by performing pressure filtration.

(24−2)表1の化合物例No.11の硬化性電荷輸送化合物25部、化合物例No.15の電荷輸送性を有さない硬化性化合物11部、光重合開始剤(下記構造式B)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(24−2)を調製した。   (24-2) Compound Example Nos. No. 11 curable charge transport compound, 25 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (24-2).

(24−3)表1の化合物例No.11の硬化性電荷輸送化合物20部、化合物例No.15の電荷輸送性を有さない硬化性化合物16部、光重合開始剤(下記構造式B)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(24−3)を調製した。   (24-3) Compound Example Nos. No. 11 curable charge transport compound 20 parts, Compound Example No. 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (24-3).

(24−4)表1の化合物例No.11の硬化性電荷輸送化合物15部、化合物例No.15の電荷輸送性を有さない硬化性化合物21部、光重合開始剤(下記構造式B)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(24−4)を調製した。   (24-4) Compound Example Nos. 11 curable charge transport compound, Compound Example No. 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (24-4).

(24−5)表1の化合物例No.11の硬化性電荷輸送化合物10部、化合物例No.15の電荷輸送性を有さない硬化性化合物26部、光重合開始剤(下記構造式B)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(24−5)を調製した。   (24-5) Compound Nos. No. 11 curable charge transport compound, 10 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution (24-5).

上記記載の塗布液(24−1)〜(24−5)を、この順にスプレーコーティング法により各層の膜厚が1.0μmとなるように第一電荷輸送層上に塗布したのち、メタルハライドランプを用いて500mW/cmの光強度で60秒間硬化させたのち加熱処理を行い、膜厚5μmの第二電荷輸送層を形成し、感光体(24)を作成し、実施例1と同様に評価した。その結果を表2に示す。 After the coating liquids (24-1) to (24-5) described above are applied on the first charge transport layer in this order by the spray coating method so that the film thickness of each layer is 1.0 μm, a metal halide lamp is used. After curing for 60 seconds at a light intensity of 500 mW / cm 2 , heat treatment is performed to form a second charge transport layer having a thickness of 5 μm, and a photoconductor (24) is produced. did. The results are shown in Table 2.

[実施例25]
実施例3の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を表1の化合物例No.11及びNo.15にそれぞれ変更した以外は実施例3と同様に感光体(25)を作成し、評価した。その結果を表2に示す。
[Example 25]
The curable charge transport compound of Example 3 and the curable compound having no charge transport property are shown in Compound Example No. 1 in Table 1. 11 and no. A photoconductor (25) was prepared and evaluated in the same manner as in Example 3 except for changing to 15 respectively. The results are shown in Table 2.

[実施例26]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に行った。
[Example 26]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were performed in the same manner as in Example 1.

次に、以下5種類の塗料を調製した。   Next, the following five types of paints were prepared.

(26−1)表1の化合物例No.7の硬化性電荷輸送化合物30部、化合物例No.16の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(26−1)を調製した。   (26-1) Compound Example Nos. No. 7 curable charge transport compound, 30 parts; 16 parts of a curable compound having no charge transporting property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating liquid (26-1).

(26−2)表1の化合物例No.7の硬化性電荷輸送化合物25部、化合物例No.16の電荷輸送性を有さない硬化性化合物11部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(26−2)を調製した。   (26-2) Compound Example Nos. No. 7 curable charge transport compound 25 parts, Compound Example No. 16 parts of a curable compound having no charge transporting property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (26-2).

(26−3)表1の化合物例No.7の硬化性電荷輸送化合物20部、化合物例No.16の電荷輸送性を有さない硬化性化合物16部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(26−3)を調製した。   (26-3) Compound Nos. No. 7 curable charge transport compound 20 parts, Compound Example No. 16 parts of a curable compound having no charge transporting property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (26-3).

(26−4)表1の化合物例No.7の硬化性電荷輸送化合物15部、化合物例No.16の電荷輸送性を有さない硬化性化合物21部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(26−4)を調製した。   (26-4) Compound Example Nos. No. 7 curable charge transport compound 15 parts, Compound Example No. 16 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (26-4).

(26−5)表1の化合物例No.7の硬化性電荷輸送化合物10部、化合物例No.16の電荷輸送性を有さない硬化性化合物26部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液(26−5)を調製した。   (26-5) Compound Example Nos. No. 7 curable charge transport compound, 10 parts; 16 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution (26-5).

上記記載の塗布液(26−1)を、浸漬塗布法により膜厚が1.0μmとなるように第一電荷輸送層上に塗布し、窒素中において、加速電圧150kV、電子線の線量1kGyの条件で予備硬化させた。こうして形成された予備硬化層の上に、同様にして塗布液(26−2)〜(26−4)をこの順に塗布し、窒素中で予備硬化させ、さらに塗布液(26−5)を浸漬塗布法により塗布し、窒素中において加速電圧150kV、電子線の線量46kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに、感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、感光体(26)を作成し、実施例1と同様に評価した。その結果を表2に示す。   The coating liquid (26-1) described above is applied onto the first charge transport layer by a dip coating method so that the film thickness becomes 1.0 μm, and in nitrogen, the acceleration voltage is 150 kV and the electron beam dose is 1 kGy. Precured under conditions. On the pre-cured layer thus formed, coating solutions (26-2) to (26-4) are similarly applied in this order, pre-cured in nitrogen, and further immersed in the coating solution (26-5). It was applied by a coating method, cured in nitrogen under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 46 kGy, and subsequently subjected to a heat treatment for 90 seconds under the condition that the temperature of the photoreceptor becomes 120 ° C. The oxygen concentration at this time was 10 ppm. Further, the photoconductor was heated in the air at 100 ° C. in a hot air dryer for 20 minutes to form a second charge transport layer having a thickness of 5 μm, and a photoconductor (26) was prepared, Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

[比較例1]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Comparative Example 1]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、表1の化合物例No.4の硬化性電荷輸送化合物30部及び化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液を調製した。この塗布液を、浸漬塗布法により第一電荷輸送層上に塗布し、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに、感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、比較感光体(1)を作成し、実施例1と同様に評価した。その結果を表2に示す。   Next, Compound Example Nos. No. 4 curable charge transport compound 30 parts and Compound Example No. 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution. This coating solution is applied onto the first charge transport layer by a dip coating method, cured in nitrogen under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and then the temperature of the photoreceptor is 90 ° C. Heat treatment was performed for 2 seconds. The oxygen concentration at this time was 10 ppm. Further, the photoconductor was heat-treated for 20 minutes in a hot air dryer adjusted to 100 ° C. in the air to form a second charge transport layer having a thickness of 5 μm, and a comparative photoconductor (1) was prepared. Evaluation was conducted in the same manner as in Example 1. The results are shown in Table 2.

[比較例2]
比較例1の硬化性電荷輸送化合物を表1の化合物例No.10の硬化性電荷輸送化合物に変更した以外は比較例1と同様に比較感光体(2)を作成し、評価した。その結果を表2に示す。
[Comparative Example 2]
The curable charge transport compound of Comparative Example 1 was identified as Compound Example No. 1 in Table 1. A comparative photoreceptor (2) was prepared and evaluated in the same manner as in Comparative Example 1 except that the curable charge transport compound was changed to 10. The results are shown in Table 2.

[比較例3]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Comparative Example 3]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、表1の化合物例No.8の硬化性電荷輸送化合物30部及び化合物例No.14の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液を調製した。この塗布液を、浸漬塗布法により第一電荷輸送層上に塗布し、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに、感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、比較感光体(3)を作成し、実施例1と同様に評価した。その結果を表2に示す。   Next, Compound Example Nos. No. 8 curable charge transport compound 30 parts and Compound Example No. 14 parts of curable compound having no charge transporting property, 16.2 parts of lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution. This coating solution is applied onto the first charge transport layer by a dip coating method, cured in nitrogen under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and then the temperature of the photoreceptor is 90 ° C. Heat treatment was performed for 2 seconds. The oxygen concentration at this time was 10 ppm. Further, the photoconductor was heat-treated for 20 minutes in a hot air dryer adjusted to 100 ° C. in the atmosphere to form a second charge transport layer having a thickness of 5 μm, and a comparative photoconductor (3) was prepared. Evaluation was conducted in the same manner as in Example 1. The results are shown in Table 2.

[比較例4]
比較例1の硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を、表1の化合物例No.2の硬化性電荷輸送化合物及び化合物例No.16の電荷輸送性を有さない硬化性化合物にそれぞれ変更した以外は比較例1と同様に比較感光体(4)を作成し、評価した。その結果を表4に示す。
[Comparative Example 4]
The curable charge transporting compound of Comparative Example 1 and the curable compound having no charge transporting property are designated as Compound Example No. 1 in Table 1. No. 2 curable charge transport compound and Compound Example No. 2 A comparative photoconductor (4) was prepared and evaluated in the same manner as in Comparative Example 1 except that it was changed to a curable compound having no charge transport property of 16. The results are shown in Table 4.

[比較例5]
比較例4の硬化性電荷輸送化合物を、表1の化合物例No.7の硬化性電荷輸送化合物に変更した以外は比較例4と同様に比較感光体(5)を作成し、評価した。その結果を表2に示す。
[Comparative Example 5]
The curable charge transport compound of Comparative Example 4 was converted into Compound Example No. A comparative photoreceptor (5) was prepared and evaluated in the same manner as in Comparative Example 4 except that the curable charge transport compound was changed to 7. The results are shown in Table 2.

[比較例6]
比較例4の硬化性電荷輸送化合物を、表1の化合物例No.9の硬化性電荷輸送化合物に変更した以外は比較例4と同様に比較感光体(6)を作成し、評価した。その結果を表2に示す。
[Comparative Example 6]
The curable charge transport compound of Comparative Example 4 was converted into Compound Example No. A comparative photoreceptor (6) was prepared and evaluated in the same manner as in Comparative Example 4 except that the curable charge transport compound was changed to 9. The results are shown in Table 2.

[比較例7]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Comparative Example 7]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、表1の化合物例No.11の硬化性電荷輸送化合物30部、化合物例No.15の電荷輸送性を有さない硬化性化合物6部、熱重合開始剤(下記構造式A)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液を調製した。   Next, Compound Example Nos. No. 11 curable charge transport compound, 30 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a thermal polymerization initiator (the following structural formula A), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution.

この塗布液を、浸漬塗布法により第一電荷輸送層上に塗布したのち、150℃にて1時間加熱硬化することで膜厚5μmの第二電荷輸送層を形成し、比較感光体(7)を作成し、実施例1と同様に評価した。その結果を表2に示す。   The coating solution is applied onto the first charge transport layer by a dip coating method, and then heated and cured at 150 ° C. for 1 hour to form a second charge transport layer having a thickness of 5 μm. The comparative photoreceptor (7) Was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.

[比較例8]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Comparative Example 8]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、表1の化合物例No.11の硬化性電荷輸送化合物30部、化合物例No.15の電荷輸送性を有さない硬化性化合物6部、光重合開始剤(下記構造式B)0.2部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液を調製した。   Next, Compound Example Nos. No. 11 curable charge transport compound, 30 parts; 15 parts of a curable compound having no charge transporting property, 0.2 part of a photopolymerization initiator (the following structural formula B), 16.2 parts of a lubricant dispersion, 1,1,2,2,3,3 , 4-Heptafluorocyclopentane and 24 parts of 1-propanol were mixed and stirred, followed by pressure filtration with a PTFE 5 μm membrane filter to prepare a coating solution.

この塗布液を、浸漬塗布法により第一電荷輸送層上に塗布したのち、メタルハライドランプを用いて500mW/cmの光強度で60秒間硬化させたのち加熱処理を行い、膜厚5μmの第二電荷輸送層を形成し、比較感光体(8)を作成し、実施例1と同様に評価した。その結果を表2に示す。 This coating solution is applied onto the first charge transport layer by a dip coating method, and then cured for 60 seconds at a light intensity of 500 mW / cm 2 using a metal halide lamp, followed by heat treatment, and a second film having a thickness of 5 μm. A charge transport layer was formed, a comparative photoreceptor (8) was prepared, and evaluated in the same manner as in Example 1. The results are shown in Table 2.

[比較例9]
第一電荷輸送層の形成、潤滑剤分散液の調製までは、実施例1と同様に作成した。
[Comparative Example 9]
The processes up to the formation of the first charge transport layer and the preparation of the lubricant dispersion were the same as in Example 1.

次に、表1の化合物例No.11の硬化性電荷輸送化合物30部及び化合物例No.15の電荷輸送性を有さない硬化性化合物6部、潤滑剤分散液16.2部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン24部、1−プロパノール24部を混合、攪拌したのち、PTFE製の5μmメンブレンフィルターで加圧濾過を行い、塗布液を調製した。この塗布液を、浸漬塗布法により第一電荷輸送層上に塗布し、窒素中において加速電圧150kV、電子線の線量50kGyの条件で硬化させ、引き続き感光体の温度が120℃になる条件で90秒間加熱処理を行った。このときの酸素濃度は10ppmであった。さらに、感光体を大気中で100℃に調整された熱風乾燥機中で、20分間加熱処理を行って、膜厚5μmの第二電荷輸送層を形成し、比較感光体(9)を作成し、実施例1と同様に評価した。その結果を表2に示す。   Next, Compound Example Nos. No. 11 curable charge transport compound 30 parts and Compound Example No. 15 parts of a curable compound having no charge transport property, 16.2 parts of a lubricant dispersion, 24 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane, 1-propanol 24 After mixing and stirring the parts, pressure filtration was performed with a PTFE 5 μm membrane filter to prepare a coating solution. This coating solution is applied onto the first charge transport layer by a dip coating method, cured in nitrogen under the conditions of an acceleration voltage of 150 kV and an electron beam dose of 50 kGy, and then the temperature of the photoreceptor is 90 ° C. Heat treatment was performed for 2 seconds. The oxygen concentration at this time was 10 ppm. Further, the photoconductor was heat-treated for 20 minutes in a hot air dryer adjusted to 100 ° C. in the atmosphere to form a second charge transport layer having a thickness of 5 μm, and a comparative photoconductor (9) was prepared. Evaluation was conducted in the same manner as in Example 1. The results are shown in Table 2.

以上の実験結果から、第二電荷輸送層中の電荷輸送成分が、
K=L/M かつ K<0.95
(式中、Lは電子写真感光体の表面から、第二電荷輸送層中の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示し、Mは電荷輸送層と第二電荷輸送層の界面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示す。なお電荷輸送成分とは、硬化性電荷輸送化合物中の電荷輸送基及び電荷輸送化合物の両方を意味する。)
を満たす条件で分布している電子写真感光体は、機械的強度及び電気的特性に優れ、高品位の画像を長期にわたり安定して形成することが可能である。
From the above experimental results, the charge transport component in the second charge transport layer is
K = L / M and K <0.95
(In the formula, L represents the concentration of the charge transport component existing from the surface of the electrophotographic photosensitive member to a depth of 40% of the film thickness in the second charge transport layer, and M represents the charge transport layer and the second charge transport layer). The concentration of the charge transport component existing from the interface of the layer to a depth of 40% of the film thickness of the second charge transport layer is represented by the charge transport group and the charge transport in the curable charge transport compound. Means both compounds.)
The electrophotographic photosensitive member distributed under the conditions satisfying the above conditions is excellent in mechanical strength and electrical characteristics, and can form a high-quality image stably over a long period of time.

本発明の電子写真感光体を有するプロセスカートリッジ及びこのプロセスカートリッジを有する電子写真装置の一実施の形態を示す概略図である。1 is a schematic view showing an embodiment of a process cartridge having an electrophotographic photosensitive member of the present invention and an electrophotographic apparatus having the process cartridge. FIG.

符号の説明Explanation of symbols

1 電子写真感光体
2 軸
3 一次帯電手段
4 画像露光光
5 現像手段
6 転写手段
7 転写材
8 像定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 レール
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Axis 3 Primary charging means 4 Image exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Image fixing means 9 Cleaning means 10 Pre-exposure light 11 Process cartridge 12 Rail

Claims (8)

導電性支持体上に少なくとも電荷発生層、第一電荷輸送層及び第二電荷輸送層をこの順に有し、前記第二電荷輸送層が最表面層である電子写真感光体において、前記第二電荷輸送層は、下記一般式(1)で表される硬化性電荷輸送化合物及び電荷輸送性を有さない硬化性化合物を重合及び架橋のいずれか一方又は両方を行うことによって得られる化合物を含有し、かつ前記第二電荷輸送層中に含有される電荷輸送成分が、下記条件を満たすことを特徴とする電子写真感光体。
K=L/M かつ K<0.95
(式中、Lは電子写真感光体の表面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示し、Mは第一電荷輸送層と第二電荷輸送層の界面から、第二電荷輸送層の膜厚の40%の深さまでに存在する電荷輸送成分の濃度を示す。なお電荷輸送成分とは、下記一般式(1)で表される化合物中のトリフェニルアミンを意味する。)

(式中、Aはトリフェニルアミン骨格を有する電荷輸送性基を示し、P及びPは連鎖重合性官能基を示し、Zは置換基を有しても良い有機基を示し、a、b及びdは0又は1以上の整数を示し、a+b×dは1以上の整数を示す。PとPは同一でも異なっても良く、また、aが2以上の場合Pは同一でも異なっても良く、dが2以上の場合Pは同一でも異なっても良く、またbが2以上の場合、Z及びPのそれぞれは同一でも異なっても良い。)
In the electrophotographic photoreceptor having at least a charge generation layer, a first charge transport layer, and a second charge transport layer in this order on a conductive support, wherein the second charge transport layer is an outermost surface layer, the second charge The transport layer contains a compound obtained by polymerizing and / or crosslinking a curable charge transport compound represented by the following general formula (1) and a curable compound having no charge transport property. An electrophotographic photoreceptor, wherein the charge transport component contained in the second charge transport layer satisfies the following conditions.
K = L / M and K <0.95
(In the formula, L represents the concentration of the charge transport component existing from the surface of the electrophotographic photosensitive member to a depth of 40% of the thickness of the second charge transport layer, and M represents the first charge transport layer and the second charge transport layer). The concentration of the charge transport component existing from the interface of the transport layer to a depth of 40% of the thickness of the second charge transport layer is indicated in the compound represented by the following general formula (1). Of triphenylamine.)

(In the formula, A represents a charge transporting group having a triphenylamine skeleton, P 1 and P 2 represent a chain polymerizable functional group, Z represents an organic group which may have a substituent, a, b and d represent 0 or an integer of 1 or more, and a + b × d represents an integer of 1 or more, P 1 and P 2 may be the same or different, and when a is 2 or more, P 1 may be the same And may be different. When d is 2 or more, P 2 may be the same or different. When b is 2 or more, Z and P 2 may be the same or different.
前記一般式(1)において、a+b×dが2以上であることを特徴とする請求項1に記載の電子写真感光体。   2. The electrophotographic photosensitive member according to claim 1, wherein in the general formula (1), a + b × d is 2 or more. 前記硬化性化合物の少なくとも一種は、アクリル基、メタクリル基あるいはスチレン基のいずれかを有することを特徴とする請求項1から2のいずれか一項に記載の電子写真感光体。   3. The electrophotographic photosensitive member according to claim 1, wherein at least one of the curable compounds has any one of an acryl group, a methacryl group, and a styrene group. 4. 請求項1におけるL及びMが、下記条件を満たすことを特徴とする請求項1〜3のいずれか一項に記載の電子写真感光体。
K=L/M かつ 0.25<K<0.80
The electrophotographic photosensitive member according to claim 1, wherein L and M in claim 1 satisfy the following conditions.
K = L / M and 0.25 <K <0.80
前記第二電荷輸送層は、熱、紫外線あるいは放射線のいずれかにより硬化されることを特徴とする請求項1〜4の何れか一項に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the second charge transport layer is cured by any one of heat, ultraviolet rays, and radiation. 前記第二電荷輸送層は、電子線により硬化されることを特徴とする請求項1〜5の何れか一項に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the second charge transport layer is cured by an electron beam. 請求項1〜6のいずれか一項に記載の電子写真感光体と、この電子写真感光体を帯電させる帯電手段と、帯電した前記電子写真感光体に形成された静電潜像を現像する現像手段と、前記電子写真感光体の表面からトナーを除去するクリーニング手段とを有する電子写真感光体に装着されるプロセスカートリッジであって、前記電子写真感光体と、前記帯電手段、前記現像手段、及び前記クリーニング手段からなる群より選ばれた少なくとも一つの手段とを一体に支持し、電子写真装置本体に着脱自在に構成されていることを特徴とするプロセスカートリッジ。   7. The electrophotographic photosensitive member according to claim 1, a charging unit for charging the electrophotographic photosensitive member, and development for developing an electrostatic latent image formed on the charged electrophotographic photosensitive member. And a process cartridge mounted on the electrophotographic photosensitive member having a cleaning means for removing toner from the surface of the electrophotographic photosensitive member, the electrophotographic photosensitive member, the charging unit, the developing unit, and A process cartridge which integrally supports at least one means selected from the group consisting of the cleaning means and is detachably attached to the electrophotographic apparatus main body. 請求項1〜6のいずれか一項に記載の電子写真感光体と、この電子写真感光体を帯電させる帯電手段と、帯電した前記電子写真感光体に露光によって静電潜像を形成する露光手段と、前記電子写真感光体に形成された静電潜像をトナーによって現像する現像手段と、前記電子写真感光体に形成されたトナー像を転写材に転写する転写手段とを有することを特徴とする電子写真装置。   7. The electrophotographic photosensitive member according to claim 1, charging means for charging the electrophotographic photosensitive member, and exposure means for forming an electrostatic latent image on the charged electrophotographic photosensitive member by exposure. And developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner, and transfer means for transferring the toner image formed on the electrophotographic photosensitive member to a transfer material. An electrophotographic device.
JP2005276486A 2005-09-22 2005-09-22 Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor Withdrawn JP2007086522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276486A JP2007086522A (en) 2005-09-22 2005-09-22 Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276486A JP2007086522A (en) 2005-09-22 2005-09-22 Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2007086522A true JP2007086522A (en) 2007-04-05

Family

ID=37973550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276486A Withdrawn JP2007086522A (en) 2005-09-22 2005-09-22 Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2007086522A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133617A1 (en) * 2007-04-25 2008-11-06 Hewlett-Packard Development Company, L.P. Photoconductor
JP2008304664A (en) * 2007-06-07 2008-12-18 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method, image forming apparatus and process cartridge for image forming apparatus
JP2009128745A (en) * 2007-11-27 2009-06-11 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus
EP2202582A1 (en) 2008-12-25 2010-06-30 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus
US8273510B2 (en) 2010-02-10 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2013060422A (en) * 2011-08-22 2013-04-04 Fuji Xerox Co Ltd Novel compound, charge transporting film, and photoelectric conversion device
US20130137024A1 (en) * 2011-11-30 2013-05-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US8486595B2 (en) 2009-09-10 2013-07-16 Ricoh Company, Ltd. Image bearing member, image forming apparatus, and process cartridge
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8518617B2 (en) 2010-02-25 2013-08-27 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2013205540A (en) * 2012-03-28 2013-10-07 Fuji Xerox Co Ltd Composition for forming charge transport film, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8609310B2 (en) 2009-03-16 2013-12-17 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8883381B2 (en) 2010-03-17 2014-11-11 Fuji Xerox Co., Ltd. Image forming apparatus, and processing cartridge
US8900783B2 (en) 2013-03-05 2014-12-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9005855B2 (en) 2012-09-12 2015-04-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9034544B2 (en) 2011-08-22 2015-05-19 Fuji Xerox Co., Ltd. Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor using the compound, method of producing electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9034543B2 (en) 2013-03-26 2015-05-19 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9057972B2 (en) 2013-03-05 2015-06-16 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2015129295A (en) * 2015-02-10 2015-07-16 富士ゼロックス株式会社 Cured film
US9235145B2 (en) 2013-01-21 2016-01-12 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9535343B2 (en) 2014-09-26 2017-01-03 Fuji Xerox Co., Ltd. Image forming method, image forming apparatus, and process cartridge
WO2018181183A1 (en) * 2017-03-28 2018-10-04 キヤノン株式会社 Optical element, material, optical device and compound
US11500129B2 (en) 2017-03-28 2022-11-15 Canon Kabushiki Kaisha Optical element, material, optical apparatus and compound

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133617A1 (en) * 2007-04-25 2008-11-06 Hewlett-Packard Development Company, L.P. Photoconductor
JP2008304664A (en) * 2007-06-07 2008-12-18 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method, image forming apparatus and process cartridge for image forming apparatus
JP2009128745A (en) * 2007-11-27 2009-06-11 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus
EP2202582A1 (en) 2008-12-25 2010-06-30 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus
US8273511B2 (en) 2008-12-25 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus
US8609310B2 (en) 2009-03-16 2013-12-17 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8486595B2 (en) 2009-09-10 2013-07-16 Ricoh Company, Ltd. Image bearing member, image forming apparatus, and process cartridge
US8273510B2 (en) 2010-02-10 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8518617B2 (en) 2010-02-25 2013-08-27 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8883381B2 (en) 2010-03-17 2014-11-11 Fuji Xerox Co., Ltd. Image forming apparatus, and processing cartridge
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9034544B2 (en) 2011-08-22 2015-05-19 Fuji Xerox Co., Ltd. Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor using the compound, method of producing electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2013060422A (en) * 2011-08-22 2013-04-04 Fuji Xerox Co Ltd Novel compound, charge transporting film, and photoelectric conversion device
US20130137024A1 (en) * 2011-11-30 2013-05-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US9091951B2 (en) * 2011-11-30 2015-07-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013137517A (en) * 2011-11-30 2013-07-11 Canon Inc Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2013205540A (en) * 2012-03-28 2013-10-07 Fuji Xerox Co Ltd Composition for forming charge transport film, electrophotographic photoreceptor, process cartridge, and image forming apparatus
CN103365129A (en) * 2012-03-28 2013-10-23 富士施乐株式会社 Composition for forming charge transporting film, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9005855B2 (en) 2012-09-12 2015-04-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9235145B2 (en) 2013-01-21 2016-01-12 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9057972B2 (en) 2013-03-05 2015-06-16 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8900783B2 (en) 2013-03-05 2014-12-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9034543B2 (en) 2013-03-26 2015-05-19 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9535343B2 (en) 2014-09-26 2017-01-03 Fuji Xerox Co., Ltd. Image forming method, image forming apparatus, and process cartridge
JP2015129295A (en) * 2015-02-10 2015-07-16 富士ゼロックス株式会社 Cured film
WO2018181183A1 (en) * 2017-03-28 2018-10-04 キヤノン株式会社 Optical element, material, optical device and compound
US11500129B2 (en) 2017-03-28 2022-11-15 Canon Kabushiki Kaisha Optical element, material, optical apparatus and compound

Similar Documents

Publication Publication Date Title
JP2007086522A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP4630806B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6433238B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP5871775B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6406931B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, electrophotographic apparatus, and process cartridge
JP4095509B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6429498B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4630813B2 (en) Electrophotographic photosensitive member and method for manufacturing the same, process cartridge and electrophotographic apparatus
JP2008070761A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP6095425B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2005062300A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2005062301A (en) Electrophotographic photoreceptor
JP2002040686A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor
US6770410B2 (en) Imaging member
JP6071733B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6226714B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4143497B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007156081A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2004240305A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor
JP2007101807A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5546574B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2004093802A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2017142336A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and electrophotographic device
JP2010066670A (en) Method of manufacturing electrophotographic photoreceptor
JP2005345781A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202