JP2004240305A - Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004240305A
JP2004240305A JP2003031105A JP2003031105A JP2004240305A JP 2004240305 A JP2004240305 A JP 2004240305A JP 2003031105 A JP2003031105 A JP 2003031105A JP 2003031105 A JP2003031105 A JP 2003031105A JP 2004240305 A JP2004240305 A JP 2004240305A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
electrophotographic
layer
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003031105A
Other languages
Japanese (ja)
Inventor
Hironori Uematsu
弘規 植松
Shuji Ishii
周二 石井
Michiyo Sekiya
道代 関谷
Hiroyuki Tanaka
博幸 田中
Atsushi Ochi
敦 大地
Norihiro Kikuchi
憲裕 菊地
Akio Maruyama
晶夫 丸山
Shoji Amamiya
昇司 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003031105A priority Critical patent/JP2004240305A/en
Publication of JP2004240305A publication Critical patent/JP2004240305A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having largely improved wear resistance, with respect to an electrophotographic photoreceptor manufactured by using a radiation polymerization reaction, and to provide a method of manufacturing the electrophotographic photoreceptor, a process cartridge and an electrophotographic apparatus each having the electrophotographic photoreceptor. <P>SOLUTION: In the electrophotographic photoreceptor having a photosensitive layer, or the photosensitive layer and a protective layer, on a support, the photosensitive layer or one or more layers of the protective layer are formed by irradiation with radioactive ray, and the electrophotographic photoreceptor is manufactured in such a way that the temperature of an electrophotographic photoreceptor at the time of start of irradiation or during irradiation with radioactive ray becomes 50-250°C. In addition, an electrophotographic photoreceptor formed by performing irradiation with radioactive ray within a certain temperature range, a process cartridge and an electrophotographic apparatus each having this electrophotographic photoreceptor, and a method of manufacturing this electrophotographic photoreceptor are also provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、更には該電子写真感光体の製造方法に関し、詳しくはある温度範囲内で放射線照射を行うことによって形成された電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置、該電子写真感光体の製造方法に関する。
【0002】
【従来の技術】
近年、電子写真感光体に用いられる材料として有機光導電材料は、その高生産性や無公害性等の利点が注目され、広く用いられるようになってきた。これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の電子写真感光体として利用される場合が多い。一方当然のことながら、電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、更には光学的特性を備えていることが要求される。特に繰り返し使用される電子写真感光体にあっては、その電子写真感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的、機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久性、帯電による表面劣化例えば転写効率や滑り性の低下、更には感度低下、電位低下等の電気特性の劣化に対する耐久性も要求される。
【0003】
一般に電子写真感光体の表面は薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として近年アクリル樹脂やポリカーボネート樹脂等が実用化されているが、前述したような特性の全てがこれらの樹脂で満足されるわけではなく、特に電子写真感光体の高耐久化を図る上では該樹脂の被膜硬度は十分高いとは言い難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも繰り返し使用時において表面層の磨耗が起こり、更に傷が発生するという問題点があった。更に、近年の有機電子写真感光体の高感度化に対する要求から電荷輸送材料等の低分子量化合物が比較的大量に添加される場合が多いが、この場合それら低分子量物質の可塑剤的な作用により膜強度が著しく低下し、一層繰り返し使用時の表面層の磨耗や傷発生が問題となっている。また、電子写真感光体を長期にわたって保存する際に前述の低分子量成分が析出してしまい、層分離するといった問題も発生している。
【0004】
これらの問題点を解決する手段として、硬化性の樹脂を電荷輸送層用の樹脂として用いる試みが開示されている(例えば、特許公報1参照)。このように、電荷輸送層用の樹脂に硬化性の樹脂を用い電荷輸送層を硬化、架橋することによって機械的強度が増し、繰り返し使用時の耐削れ性及び耐傷性は大きく向上する。しかしながら硬化性樹脂を用いても、低分子量成分はあくまでも結着樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題は根本的な解決にはなっていない。また、有機電荷輸送材料と結着樹脂とで構成される電荷輸送層においては電荷輸送能の樹脂に対する依存度が大きく、例えば硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく繰り返し使用時に残留電位の上昇が見られる等、これまでの系では高い硬度と十分な電荷輸送能の両立について見当の余地が残されていた。
【0005】
以上の状況に対して本発明者らは、特開平11−265085号公報及び特開2000−66425号公報において、放射線による重合反応を利用した電子写真感光体によって上記課題が大幅に改善されることを開示した。しかしながら、当時10000枚相当のプリントボリューム(PV)に対しては十分な耐久性能を保持することを確認していたが、近年のプリントスピードの高速化、高PV化、低ランニングコスト化等の市場動向に対応すべくさらなる検討を進めた結果、主に耐磨耗性に対して満足できるものではないことが判明し、さらなる高耐久化の検討が必要であった。
【0006】
【特許文献1】
特開平2−127652号公報
【特許文献2】
特開平11−265085号公報
【特許文献3】
特開2000−66425号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、放射線による重合反応を利用して製造した電子写真感光体において、耐磨耗性が格段に向上した電子写真感光体を提供することにある。
【0008】
本発明の別の目的は、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0009】
本発明の更に別の目的は、上記電子写真感光体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に従って、支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体において、該感光層あるいは保護層の少なくとも一つ以上の層が放射線を照射することにより形成される電子写真感光体であって、該放射線照射開始時あるいは照射中の電子写真感光体の温度が50℃以上250℃以下になるようにして製造されたことを特徴とする電子写真感光体が提供される。
【0011】
また本発明に従って、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置が提供される。
【0012】
更に本発明に従って、上記電子写真感光体の製造方法が提供される。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0014】
本発明は、基本的に放射線による重合・架橋反応を利用したものであるが、この反応は通常室温下で行われるのが一般的であり、紫外線硬化プロセスや熱硬化プロセスのように熱に関する種々の問題点が発生しないことが利点であると広く知られている。本発明者らは、この重合・架橋反応時の温度に着目した結果、放射線照射時の電子写真感光体の温度を上昇させることにより、重合・架橋反応が大幅に促進されることを見出した。これを利用することにより、同じ放射線のエネルギーで重合・架橋反応を行った場合には、より機械的強度の向上した硬化膜が得られ、また従来と比較して低い放射線エネルギーでより機械的強度の向上した硬化膜を形成することが可能になった。
【0015】
本発明の電子写真感光体の構成は、支持体上に感光層として電荷発生層、電荷輸送層をこの順に積層した構成又は逆に電荷輸送層、電荷発生層をこの順に積層した構成、更には電荷発生材料と電荷輸送材料を結着樹脂中に分散した単層より構成されるもののいずれの構成をとることも可能である。更に、前記感光層上に表面保護層を形成することも可能である。
【0016】
この電子写真感光体構成において、本発明の主たる目的は電子写真感光体の耐久性能の向上であるから、電子写真感光体の表面層を放射線照射により形成することによってその効果が十分に発揮される。中でも電子写真特性、特に残留電位等の電気的特性及び耐久性の点より、電荷発生層、電荷輸送層をこの順に積層した機能分離型の電子写真感光体構成、又は前記電荷発生層、電荷輸送層をこの順に積層した機能分離型の感光層上に保護層を形成した構成が好ましい。すなわち電荷輸送層あるいは保護層を放射線照射により形成することが好ましい。
【0017】
本発明の放射線照射により形成される層は、この工程により重合又は架橋し硬化するものであればいずれのものでも構わない。すなわち、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよい。
【0018】
かかる化合物は、特開2000−66424号公報及び特開2000−66425号公報において提案した、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物であることが好ましい。
【0019】
具体的には、連鎖重合性官能基を有する正孔輸送性化合物は、下記式(1)で示される物が好ましい。
【0020】
【化3】

Figure 2004240305
【0021】
式中、Aは正孔輸送性基を示す;P及びPは連鎖重合性官能基を示す;PとPは同一でも異なってもよい;Zは置換基を有してもよい有機基を示す;a、b及びdは0又は1以上の整数を示し、a+b×dは2以上の整数を示す;また、aが2以上の場合Pは同一でも異なっていてもよく、dが2以上の場合Pは同一でも異なっていてもよく、またbが2以上の場合、Z及びPは同一でも異なっていてもよい。
【0022】
中でも分子内に不飽和重合性官能基を有する化合物は反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましい。さらには、下記式(2)で示されるアクリロイルオキシ基又は下記式(3)で示されるメタクリロイルオキシ基を選択することが、その重合特性の点から特に好ましい。
【0023】
【化4】
Figure 2004240305
【0024】
本発明における不飽和重合性官能基を有する化合物は、モノマー、オリゴマーあるいはマクロマーのいずれにも限定されない。
【0025】
また、本発明における表面層が電荷輸送層あるいは保護層のいずれの場合においても、両者は硬化後に電荷輸送能を有している必要があるが、前記不飽和重合性官能基を有する化合物が電荷輸送能力を有さない化合物である場合においては、電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましく、一方前記不飽和重合性官能基を有する化合物自体が電荷輸送能を有する場合においては、この限りではない。ただし、表面層の膜硬度や種々の電子写真特性の点からして、後者のような電荷輸送能を有する化合物を使用するのがより好ましい。更に、電荷輸送能を有する化合物の中でも、電子写真プロセスや材料の汎用性の点からして、正孔輸送能を有する化合物が更に好ましい。
【0026】
本発明の電子写真感光体の感光層は、導電性支持体上に形成される。支持体は、導電性を有するものであればよい。例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属や合金をドラム状又はシート状に成形したもの、アルミニウム及び銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫等をプラスチックフィルムに蒸着したもの、導電性物質を単独又は結着樹脂と共に塗布して導電層を設けた金属、プラスチックフィルム及び紙等が挙げられる。
【0027】
本発明においては、支持体と感光層の間にバリアー機能と接着機能をもつ下引き層を設けることができる。下引き層は、感光層の接着性改良、塗工性改良、支持体の保護、支持体の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護等のために形成される。
【0028】
下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチン等が挙げられる。下引き層は、これらの材料をそれぞれに適した溶剤に溶解した溶液を支持体上に塗布し、乾燥することによって形成される。膜厚は0.1〜2μm程度であることが好ましい。
【0029】
本発明の電子写真感光体が機能分離型の電子写真感光体である場合には、電荷発生層及び電荷輸送層を積層する。電荷発生層に用いる電荷発生材料としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的には例えばα、β、γ、ε及びX型等の結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコン等が挙げられる。
【0030】
電荷発生層は前記電荷発生材料を0.3〜4倍量の結着樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター及びロールミル等の方法で十分に分散し、得られた分散液を塗布し、乾燥することによって形成されるか、又は前記電荷発生材料の蒸着膜等、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
【0031】
結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等が挙げられる。
【0032】
次に、電荷輸送層について説明する。本発明において、表面層が電荷輸送層である場合には、電荷輸送層が放射線照射により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。電荷輸送材料としては、ポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体及びヒドラゾン誘導体等の低分子化合物が挙げられるが、これらを放射線照射により重合・架橋可能な樹脂と共に適当な溶剤に分散あるいは溶解させ、先の電荷発生層上に塗布した後、後述する放射線照射工程により電荷輸送層を形成する。
【0033】
放射線照射により重合・架橋可能な樹脂としては前述したように、放射線照射によりラジカル等の活性点が発生し、重合あるいは架橋することが可能な化合物であればよく、一般的には連鎖重合性官能基を有する化合物が挙げられる。中でも分子内に不飽和重合性官能基を有する化合物は反応性の高さ、反応速度の速さ、材料の汎用性等の点から好ましく、アクリロイルオキシ基、メタクリロイルオキシ基及びスチレン基等が特に好ましく、これらはモノマー、オリゴマー、マクロマー及びポリマーのいずれにも限定されることなく適宜選択あるいは組み合わせることができる。また、電荷輸送能、好ましくは正孔輸送能を有しかつ放射線照射により重合・架橋可能な樹脂を用いる場合は、それ単独で電荷輸送層を形成、あるいは前述の電荷輸送材料及び電荷輸送能を有さない放射線照射により重合・架橋可能な樹脂を適宜混合することが可能である。電荷輸送能を有しかつ放射線照射により重合・架橋可能な樹脂は、例えば不飽和重合性官能基を有する公知の正孔輸送性化合物や、公知の正孔輸送性化合物の一部に不飽和重合製官能基を付加した化合物等であればよい。公知の正孔輸送性化合物の例としては、ヒドラゾン化合物、ピラゾリン化合物、トリフェニルアミン化合物、ベンジジン化合物及びスチルベン化合物等が挙げられるが、正孔輸送性化合物であればいかなる化合物も使用可能である。更に、本発明において電子写真感光体表面層の硬度を十分に確保するためには、不飽和重合性官能基を有する化合物は一分子中に複数の不飽和重合性官能基を有する化合物であることが好ましい。
【0034】
本発明において、単層構成の電子写真感光体の場合には、少なくとも電荷発生材料、電荷輸送材料及び放射線照射により重合・架橋可能な化合物を分散又は溶解した溶液を用いて感光層が形成される。この場合においても先の機能分離型電子写真感光体と同様に、電荷輸送能を有しかつ放射線照射により重合・架橋可能な化合物の使用が好ましい。
【0035】
本発明において、表面層が保護層である場合には、保護層が放射線照射により形成される層となり、この工程により重合又は架橋し硬化する化合物から構成される。この場合、下層である感光層の構成は、電荷発生層及び電荷輸送層をこの順に積層した機能分離型電子写真感光体、電荷輸送層及び電荷発生層をこの順に積層した機能分離型電子写真感光体、あるいは単層電子写真感光体のいずれもが可能であるが、先に述べた理由により、電荷発生層及び電荷輸送層をこの順に積層した電子写真感光体構成が好ましい。この場合、電荷発生層は、前述と同様な方法で形成され、電荷輸送層は、先の電荷輸送材料をスチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等の結着樹脂中に分散あるいは溶解した溶液を用いて形成される。場合によっては、放射線照射により重合・架橋可能な化合物を有する化合物の添加も可能である。
【0036】
保護層は硬化後に電荷輸送能を有している必要があるため、放射線照射により保護層を形成する化合物自体が電荷輸送能力を有さない化合物である場合においては、前述の電荷輸送材料や導電性材料の添加により電荷輸送能を確保することが好ましい。この場合、電荷輸送材料は放射線照射により重合・架橋可能な官能基を有しても有さなくても構わないが、電荷輸送材料の可塑性による機械的強度の低下を避けるためには、前者が好ましい。導電性材料としては、酸化チタンや酸化錫等の導電性微粒子が一般的ではあるが、その他として、導電性高分子化合物等の利用も可能である。放射線照射により保護層を形成する化合物自体が電荷輸送能を有する場合においては、この限りではない。本発明においては、表面層の膜硬度や種々の電子写真の点からして、後者のような電荷輸送能を有する化合物を使用した表面層が特に好ましい。
【0037】
本発明において各々溶液を塗布する方法は、例えば浸漬コーティング法、スプレイコーティング法、カーテンコーティング法及びスピンコーティング法等の公知の塗布方法が可能であるが、効率性/生産性の点からは浸漬コーティング法が好ましい。また、蒸着、プラズマその他の公知の製膜方法も適宜選択できる。
【0038】
本発明において、感光層及び保護層には各種添加剤を添加することができる。該添加剤とは、酸化防止剤、紫外線吸収剤等の劣化防止剤やフッ素系樹脂微粒子等の滑材等である。
【0039】
次に、放射線照射工程について説明する。
【0040】
本発明における放射線とは、特開2000−66425号公報において開示したものと同様に、電子線及びγ線等が挙げられ、装置の大きさ、安全性、コスト、汎用性等の種々の点から電子線が好ましい。電子線照射をする場合、加速器としてはスキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型等のいずれの形成も使用することができる。また、電子線照射により電子写真感光体を形成する本発明においても、電子写真感光体の電気特性及び耐久性能を十分に発現させる上で、電子線の加速電圧、吸収線量が非常に重要なファクターであり、加速電圧は300KV以下が好ましく、最適には150KV以下であり、また線量は1〜100Mradの範囲が好ましく、より好ましくは50Mrad以下の範囲である。加速電圧が300KVを超えたり、線量が100Mradを超えると、電子写真感光体への劣化が起こり易い傾向にあることは該公報において示したとおりである。しかし、このようにして得られた電子写真感光体は耐久性能が十分ではなく、さらなる耐久性能の向上が必要とされたことは前述した通りである。重合・架橋の効率を上げるためには線量を増大させることが一般的であるが、本発明の対象は電子写真感光体であり、線量の増大は電子写真感光体特性の劣化へ繋がるために非実用的であることがわかった。本発明者らは、鋭意検討を重ねた結果、電子線硬化プロセスにおいては、電子線の吸収線量すなわち反応開始点の数よりもむしろ重合・架橋反応時の温度依存性が高く、これが形成された膜の硬化性に大きく影響を与えることを発見した。この電子線照射工程による重合・架橋反応を利用すると、従来と比べてより少ない線量で十分な硬化性を得ることが判明した。
【0041】
次に、電子写真感光体の温度について説明する。重合・架橋反応を促進させるためには少なくとも電子線照射中の温度が所定の温度になっていればよい。そのためには、
(1)被照射体を照射前に加温する、
(2)照射時に被照射体を加温する、
(3)照射室内を所定温度に加温後に被照射体を投入する
等の方法が挙げられる。
【0042】
(1)については、電子線の照射室外で所定の温度に保持した被照射体を照射室内に移動させて引き続き電子線照射を行う場合と、照射室内で所定の温度に保持した被照射体を引き続き電子線照射する場合等が挙げられる。この場合、加温の手段としては、電子写真感光体の外部あるいは内部からのいずれにおいても行うことができる。外部から加温する場合は、電子写真感光体の近傍に各種のヒーター等を設置し直接加熱する方法、電子写真感光体の周りの雰囲気を加熱あるいは加熱された気体を接触させることにより間接的に加熱する方法等が挙げられる。内部から加温する方法においても、内部に各種ヒーターを設置する方法、加熱された流体を通過させる方法等が挙げられる。また、これらの加熱手段はそのいくつかを組み合わせることが可能である。
【0043】
(2)については、照射開始と同時あるいは照射開始後に被照射体を所定の温度まで加温することが可能である。ただし、電子線の照射時間は一般に数秒、長くとも数十秒程度であるから、その短時間内に効率よく温度を上昇させるには、電子写真感光体内部に加温手段を設けるのが好ましい。
【0044】
(3)については、予め照射室内を所定の温度に加温しておく場合であるが、外部から投入された被照射体をこの方法のみで所定の温度まで加温することは、明らかに非効率的であるから、(3)は(1)及び(2)と併用することが好ましい。
【0045】
加熱する温度は、電子写真感光体の温度が少なくとも電子線照射中に50℃以上になるように設定することが必須である。温度は高いほど重合・架橋反応に有効ではあるが、電子写真感光体を対象とした本発明においては、250℃程度が上限である。これより高温になると、電子写真感光体の材料が劣化し、電子写真特性が悪くなる傾向にある。実質的には硬化性と電子写真特性の両立の観点から50℃以上200℃以下が好ましく、特には50℃以上150℃以下の温度範囲が好ましい。また、感光層上に保護層を設ける電子写真感光体構成において、材料によっては保護層の成分が硬化前に下層である感光層に浸透あるいは逆に感光層の成分が保護層へ浸透するマイグレージョンが発生する場合があり、これは硬化性の低下や電子写真特性の悪化を引き起こすため、材料によっては電子線照射前の温度と時間設定には注意が必要である。
【0046】
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
【0047】
図1において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
【0048】
形成された静電潜像は、次いで現像手段5内の荷電粒子(トナー)で正規現像又は反転現像により可転写粒子像(トナー像)として顕画化され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー像が転写手段6により順次転写されていく。この時、転写手段にはバイアス電源(不図示)からトナーの保有電荷とは逆極性のバイアス電圧が印加される。
【0049】
トナー画像の転写を受けた転写材7は、電子写真感光体面から分離されて像定着手段8へ搬送されてトナー像の定着処理を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
【0050】
トナー像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナー等の付着物の除去を受けて清浄面化される。近年、クリーナレスシステムも研究され、転写残りトナーを直接、現像器等で回収することもできる。更に、前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0051】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも1つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。
【0052】
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。
【0053】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも幅広く適用し得るものである。
【0054】
【実施例】
以下に、具体的な実施例を挙げて本発明を更に詳細に説明する。ただし、本発明の実施の形態は、これらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。
【0055】
(実施例1)
直径30mm×357.5mmのアルミニウムシリンダーを支持体とし、それに、以下の材料より構成される塗料を支持体上に浸漬コーティング法で塗布し、140℃で30分熱硬化して、膜厚が18μmの導電層を形成した。
【0056】
導電性顔料:SnOコート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
バインダー樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール、メトキシプロパノール=0.2/0.8 5部
【0057】
次に、この上にN−メトキシメチル化ナイロン3部及び共重合ナイロン3部をメタノール65部/n−ブタノール30部の混合溶媒に溶解した溶液を浸漬コーティング法で塗布して、膜厚が0.7μmの中間層を形成した。
【0058】
次に、CuKα特性X線回折のブラック角(2θ±0.2°)の7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン4部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学製)2部及びシクロヘキサノン80部を直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル80部を加えて電荷発生層用分散液を調製した。これを浸漬コーティング法で塗布して、膜厚が0.2μmの電荷発生層を形成した。
【0059】
次いで下記式(4)で示される正孔輸送性化合物60部
【0060】
【化5】
Figure 2004240305
をモノクロロベンゼン30部/ジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調製した。この塗料を前記の電荷発生層上にコーティングした後、電子写真感光体の温度を80℃に保持するように設定し、窒素中において加速電圧150KV、線量20Mradの条件で電子線を照射した。更に、電子写真感光体を大気中において140℃で1時間後処理を行い、膜厚が13μmの電荷輸送層を形成し、電子写真感光体を得た。なお、電子線照射中の電子写真感光体の温度は、電子線の吸収エネルギー及び重合反応熱等の影響で110℃まで上昇した。
【0061】
作製した電子写真感光体は、キヤノン(株)製複写機GP40を用いて22℃/55%RHの環境下で評価した。電子写真感光体の電位特性については、複写機本体から現像器ユニットを取り外し、代わりに電位測定用プローブを現像位置に固定することにより測定を行った。なおその際に転写ユニットは電子写真感光体に非接触、紙は非通紙とした。初期の電子写真感光体特性(暗部電位Vd、光減衰感度(暗部電位650V設定で150Vに光減衰させるために必要な光量)、残留電位Vsl(光減衰感度の光量の3倍の光量を照射したときの電位))を測定し、更に100000枚の通紙耐久実験を行い、画像欠陥の発生の有無の観察、電子写真感光体の削れ量を測定した。なお削れ量の測定には、渦電流式膜厚計(カールフィッシャー社製)を使用した。また、通紙耐久はプリント1枚ごとに1回停止する間欠モードとした。
【0062】
結果を表1に示す。表1に見られるように本発明の電子写真感光体は、初期の電子写真感光体特性が良好であり、耐久での削れ量が少なくかつキズ等による画像欠陥が発生しない。従来の電子写真感光体と比較して、優れた耐久性能を示すことがわかった。
【0063】
(実施例2〜4)
実施例1における電子写真感光体の保持温度を80℃から表2に示した温度に変更した以外は、実施例1と同様にして電子写真感光体を作製し、評価した。その結果、電子写真感光体の設定温度が高いほど硬化性が向上し、耐久性能が良好に推移した。結果を表1に示す。
【0064】
(実施例5)
実施例1において電子線照射前の温度は25℃に保持し、電子線照射と共に電子写真感光体の温度を上昇させ照射中の到達温度が80℃になるようにした以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0065】
(実施例6)
実施例5において電子線照射前の温度は50℃に保持し、電子線照射と共に電子写真感光体の温度を上昇させ照射中の到達温度が150℃になるようにした以外は、実施例5と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0066】
(実施例7)
実施例5において電子線照射前の温度は100℃に保持し、電子線照射と共に電子写真感光体の温度を上昇させ照射中の到達温度が200℃になるようにした以外は、実施例5と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0067】
(実施例8)
実施例5において電子線照射前の温度は100℃に保持し、電子線照射と共に電子写真感光体の温度を上昇させ照射中の到達温度が250℃になるようにした以外は、実施例5と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0068】
(実施例9)
実施例1における正孔輸送性化合物(4)を下記式(5)に示される化合物に代えた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0069】
【化6】
Figure 2004240305
【0070】
(実施例10)
実施例4において正孔輸送性化合物(4)を下記式(6)に示される化合物に代えた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0071】
【化7】
Figure 2004240305
【0072】
(実施例11)
実施例4において正孔輸送性化合物(4)を下記式(7)に示される化合物に代えた以外は、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0073】
【化8】
Figure 2004240305
【0074】
(実施例12)
実施例1と同様にして電荷発生層までを形成した。
【0075】
次いで、下記式(8)で示されるスチリル化合物7部
【0076】
【化9】
Figure 2004240305
及びポリカーボネート樹脂(商品名:ユーピロンZ800、三菱エンジニアリングプラスチックス(株)社製)10部をモノクロロベンゼン105部/ジクロロメタン35部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。このときの電荷輸送層の膜厚は10μmであった。
【0077】
次いで、下記式(9)に示される正孔輸送性化合物45部を
【0078】
【化10】
Figure 2004240305
n−プロピルアルコール55部に溶解し、表面保護層用塗料を調製した。この塗料を用いて、前記電荷輸送層上に保護層を塗布した後、電子写真感光体の温度を50℃に保持するように設定し、窒素中において加速電圧150KV、線量20Mradの条件で電子線を照射した。更に、電子写真感光体を大気中で140℃で1時間後処理を行って、膜厚5μmの保護層を形成し、電子写真感光体を得た。なお、電子線照射直中の電子写真感光体の温度は電子線の吸収エネルギー及び重合反応熱等の影響で80℃まで上昇した。このようにして作製した電子写真感光体を実施例1と同様に評価した。結果を表1に示す。
【0079】
(実施例13)
実施例12において電子線照射前の温度は50℃に保持し、電子線照射と共に電子写真感光体の温度を上昇させ照射中の到達温度が150℃になるようにした以外は、実施例12と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0080】
(実施例14)
実施例13において、電子線の線量を20Mradから5Mradに代えた以外は、実施例13と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0081】
(実施例15)
実施例13と同様にして電荷輸送層までを形成した。
【0082】
次に、3,3,3,−トリフルオロプロピルトリメトキシシラン(商品名:LS1090、信越化学(株)社製)で表面処理した(処理量7%)アンチモンドープ酸化錫微粒子50部及び下記式(10)で示された正孔輸送機能を有さないアクリルモノマー30部を
【0083】
【化11】
Figure 2004240305
エタノール150部中でサンドミルにより70時間かけて分散し、保護層用塗料を調製した。この塗料を前記の電荷輸送層上に塗布した後は実施例13と同様に、電子線照射以降の処理を行い電子写真感光体を作製し、評価した。なお、この時の保護層の膜厚は4μmであった。結果を表1に示す。
【0084】
(比較例1)
実施例1において、電子線照射中の電子写真感光体の温度を40℃に保持するように設定した以外は、実施例1と同様にして電子写真感光体を作製し、評価した。
結果、電子線による重合・架橋反応時の温度が低かったため、硬化性が十分ではなく耐久性能も実施例と比較して劣る傾向にあった。結果を表1に示す。
【0085】
(比較例2)
実施例12において、電子線照射中の電子写真感光体の温度を40℃に保持するように設定した以外は、実施例12と同様にして電子写真感光体を作製し、評価した。結果、電子線による重合・架橋反応時の温度が低かったため、硬化性が十分ではなく耐久性能も実施例と比較して劣る傾向にあった。比較例1に対して削れ量は少なかったが、硬化層自体の膜厚が薄いため、下層にあたる電荷輸送層にまで傷が到達する速度が速く、一旦電荷輸送層に傷がついてしまうと加速的に傷が成長するので、耐久初期に画像上で傷が発生し、また成長も早く、個数が増える傾向にあった。結果を表1に示す。
【0086】
【表1】
Figure 2004240305
【0087】
【表2】
Figure 2004240305
【0088】
【発明の効果】
以上のように、本発明の電子写真感光体は、電子写真特性に優れ、耐磨耗性や耐傷性に優れた効果を有する。従って、近年のプリントスピードの高速化、高プリントボリューム化、コピーコストの低減等の市場の要求に十分答えうる電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置の提供が可能になった。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, a process cartridge having the electrophotographic photoreceptor, an electrophotographic apparatus, and a method of manufacturing the electrophotographic photoreceptor. More specifically, the invention is formed by irradiating radiation within a certain temperature range. The present invention relates to an electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, an electrophotographic apparatus, and a method for manufacturing the electrophotographic photosensitive member.
[0002]
[Prior art]
2. Description of the Related Art In recent years, organic photoconductive materials have been widely used as materials used in electrophotographic photoreceptors because of their advantages such as high productivity and non-polluting properties. These electrophotographic photoconductors are often used as function-separated electrophotographic photoconductors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical properties. On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the electrophotographic process applied. In particular, in the case of an electrophotographic photoreceptor that is used repeatedly, an electric or mechanical external force such as charging, image exposure, toner development, transfer to paper, and cleaning processing is directly applied to the electrophotographic photoreceptor surface. Durability against them is required. Specifically, durability is required against the abrasion and scratching of the surface due to rubbing, and the surface degradation due to electrification, such as a decrease in transfer efficiency and slipperiness, and further, a decrease in sensitivity and a decrease in electrical characteristics such as a decrease in potential. Is done.
[0003]
Generally, the surface of an electrophotographic photosensitive member is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins, polycarbonate resins, and the like have been put into practical use as resins that satisfy the above-described conditions to some extent. However, not all of the above-described characteristics are satisfied by these resins, and in particular, electrophotographic photoreceptors In order to achieve high durability, it is difficult to say that the coating hardness of the resin is sufficiently high. Even when these resins are used as the resin for forming the surface layer, there is a problem that the surface layer is worn and the flaw is further generated during repeated use. Furthermore, low molecular weight compounds such as charge transport materials are often added in relatively large amounts due to recent demands for higher sensitivity of organic electrophotographic photoreceptors. In this case, due to the action of these low molecular weight substances as plasticizers. The film strength is remarkably reduced, and abrasion and scratching of the surface layer during repeated use are problematic. Further, when the electrophotographic photoreceptor is stored for a long period of time, the above-mentioned low molecular weight component is precipitated, which causes a problem of layer separation.
[0004]
As means for solving these problems, an attempt to use a curable resin as a resin for the charge transport layer has been disclosed (for example, see Patent Document 1). As described above, by using a curable resin as the resin for the charge transport layer and curing and cross-linking the charge transport layer, the mechanical strength is increased, and the abrasion resistance and scratch resistance during repeated use are greatly improved. However, even if a curable resin is used, the low molecular weight component acts as a plasticizer in the binder resin to the last, so that the problems of precipitation and layer separation as described above have not been fundamentally solved. In the charge transport layer composed of an organic charge transport material and a binder resin, the charge transport ability is highly dependent on the resin. For example, a curable resin having sufficiently high hardness has insufficient charge transport ability and is used repeatedly. In the conventional systems, there is still room for a balance between high hardness and sufficient charge transport ability, for example, a rise in residual potential is sometimes observed.
[0005]
In view of the above situation, the present inventors have disclosed in JP-A-11-265085 and JP-A-2000-66425 that the above-mentioned problem can be significantly improved by an electrophotographic photosensitive member using a polymerization reaction by radiation. Was disclosed. However, at the time, it was confirmed that sufficient durability performance was maintained for a print volume (PV) equivalent to 10,000 sheets. However, in recent years, markets such as higher printing speed, higher PV, and lower running cost have been used. As a result of further study to cope with the trend, it was found that the wear resistance was not satisfactory mainly, and it was necessary to study further improvement of durability.
[0006]
[Patent Document 1]
JP-A-2-127652
[Patent Document 2]
JP-A-11-265085
[Patent Document 3]
JP-A-2000-66425
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor manufactured by utilizing a polymerization reaction caused by radiation and having significantly improved abrasion resistance.
[0008]
Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the above electrophotographic photosensitive member.
[0009]
Still another object of the present invention is to provide a method for producing the above electrophotographic photosensitive member.
[0010]
[Means for Solving the Problems]
According to the present invention, in an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support, at least one layer of the photosensitive layer or the protective layer is formed by irradiating radiation. An electrophotographic photoreceptor characterized in that the electrophotographic photoreceptor is manufactured such that the temperature of the electrophotographic photoreceptor at the start of or during irradiation with the radiation is 50 ° C. or more and 250 ° C. or less.
[0011]
Further, according to the present invention, there is provided a process cartridge and an electrophotographic apparatus having the above electrophotographic photosensitive member.
[0012]
Further, according to the present invention, there is provided a method for producing the above electrophotographic photoreceptor.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0014]
Although the present invention basically utilizes a polymerization / crosslinking reaction by radiation, this reaction is generally performed at room temperature, and various reactions related to heat such as an ultraviolet curing process and a heat curing process. It is widely known that there is an advantage that the problem described above does not occur. The present inventors have focused on the temperature during the polymerization / crosslinking reaction, and as a result, have found that the polymerization / crosslinking reaction is greatly accelerated by increasing the temperature of the electrophotographic photosensitive member during irradiation. By using this, a cured film with improved mechanical strength can be obtained when the polymerization / crosslinking reaction is carried out with the same radiation energy. It has become possible to form a cured film with improved properties.
[0015]
The configuration of the electrophotographic photoreceptor of the present invention has a configuration in which a charge generation layer and a charge transport layer are stacked in this order as a photosensitive layer on a support, or a configuration in which a charge transport layer and a charge generation layer are stacked in this order on the support. Any one of a single layer in which a charge generation material and a charge transport material are dispersed in a binder resin can be used. Further, it is also possible to form a surface protective layer on the photosensitive layer.
[0016]
In this electrophotographic photoreceptor configuration, the main object of the present invention is to improve the durability performance of the electrophotographic photoreceptor, so that the effect is sufficiently exhibited by forming the surface layer of the electrophotographic photoreceptor by irradiation with radiation. . Among them, from the viewpoint of electrophotographic characteristics, particularly electric characteristics such as residual potential and durability, a charge-separating type electrophotographic photosensitive member having a charge generation layer and a charge transport layer laminated in this order, or the charge generation layer and the charge transport A configuration in which a protective layer is formed on a function-separated type photosensitive layer in which layers are laminated in this order is preferable. That is, it is preferable to form the charge transport layer or the protective layer by irradiation with radiation.
[0017]
The layer formed by irradiation of the present invention may be any layer as long as it is polymerized or crosslinked and cured by this step. That is, any compound can be used as long as it generates an active site such as a radical upon irradiation with radiation and can be polymerized or crosslinked.
[0018]
Such a compound is preferably a hole transporting compound proposed in JP-A-2000-66424 and JP-A-2000-66425 and having two or more chain-polymerizable functional groups in the same molecule.
[0019]
Specifically, the hole transporting compound having a chain polymerizable functional group is preferably a compound represented by the following formula (1).
[0020]
Embedded image
Figure 2004240305
[0021]
Wherein A represents a hole transporting group; 1 And P 2 Represents a chain polymerizable functional group; 1 And P 2 May be the same or different; Z represents an organic group which may have a substituent; a, b and d each represent 0 or an integer of 1 or more; a + b × d represents an integer of 2 or more; , If a is 2 or more, P 1 May be the same or different, and when d is 2 or more, P 2 May be the same or different, and when b is 2 or more, Z and P 2 May be the same or different.
[0022]
Among them, compounds having an unsaturated polymerizable functional group in the molecule are preferable from the viewpoints of high reactivity, high reaction rate, versatility of materials, and the like. Further, it is particularly preferable to select an acryloyloxy group represented by the following formula (2) or a methacryloyloxy group represented by the following formula (3) from the viewpoint of polymerization characteristics.
[0023]
Embedded image
Figure 2004240305
[0024]
The compound having an unsaturated polymerizable functional group in the present invention is not limited to any of monomers, oligomers and macromers.
[0025]
Further, in the case where the surface layer in the present invention is either a charge transport layer or a protective layer, both need to have charge transport ability after curing, but the compound having the unsaturated polymerizable functional group is not charged. In the case of a compound having no transport ability, it is preferable to secure the charge transport ability by adding a charge transport material or a conductive material, while the compound having the unsaturated polymerizable functional group itself has the charge transport ability. If so, this is not the case. However, from the viewpoint of the film hardness of the surface layer and various electrophotographic characteristics, it is more preferable to use the latter compound having the charge transporting ability. Further, among the compounds having a charge transporting ability, a compound having a hole transporting ability is more preferable in view of the versatility of the electrophotographic process and the material.
[0026]
The photosensitive layer of the electrophotographic photosensitive member of the present invention is formed on a conductive support. The support may be any as long as it has conductivity. For example, a metal or alloy such as aluminum, copper, chromium, nickel, zinc and stainless steel formed into a drum or sheet shape, a metal foil such as aluminum and copper laminated on a plastic film, aluminum, indium oxide and oxide Examples thereof include those in which tin or the like is vapor-deposited on a plastic film, a metal, a plastic film, and paper in which a conductive material is applied alone or together with a binder resin to provide a conductive layer.
[0027]
In the invention, an undercoat layer having a barrier function and an adhesive function can be provided between the support and the photosensitive layer. The undercoat layer is used for improving the adhesiveness of the photosensitive layer, improving the coating properties, protecting the support, covering defects of the support, improving the charge injection property from the support, and protecting the photosensitive layer against electrical breakdown. Formed.
[0028]
Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin. And the like. The undercoat layer is formed by applying a solution obtained by dissolving these materials in a solvent suitable for each of the materials on a support and drying the solution. The thickness is preferably about 0.1 to 2 μm.
[0029]
When the electrophotographic photosensitive member of the present invention is a function-separated type electrophotographic photosensitive member, a charge generation layer and a charge transport layer are laminated. As the charge generation material used for the charge generation layer, selenium-tellurium, pyrylium, thiapyrylium dyes, various center metals and crystal systems, specifically, for example, α, β, γ, ε, and X-type crystal forms Having a phthalocyanine compound, an anthrone pigment, a dibenzopyrene quinone pigment, a pyranthrone pigment, a trisazo pigment, a disazo pigment, a monoazo pigment, an indigo pigment, a quinacridone pigment, an asymmetric quinocyanine pigment, a quinocyanine and an amorphous described in JP-A No. 54-143645. Silicon etc. are mentioned.
[0030]
The charge generation layer is obtained by sufficiently dispersing the charge generation material together with a binder resin and a solvent in an amount of 0.3 to 4 times by a method such as a homogenizer, an ultrasonic dispersion, a ball mill, a vibration ball mill, a sand mill, an attritor and a roll mill. The dispersion is applied and dried, or formed as a film having a single composition, such as a vapor-deposited film of the charge generation material. The film thickness is preferably 5 μm or less, particularly preferably in the range of 0.1 to 2 μm.
[0031]
Examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, and polyester. , Polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.
[0032]
Next, the charge transport layer will be described. In the present invention, when the surface layer is a charge transporting layer, the charge transporting layer becomes a layer formed by irradiation with radiation, and is composed of a compound which is polymerized or crosslinked and cured by this step. Examples of the charge transport material include a polymer compound having a heterocyclic ring or a condensed polycyclic aromatic such as poly-N-vinylcarbazole and polystyrylanthracene, a heterocyclic compound such as pyrazoline, imidazole, oxazole, triazole and carbazole, and triphenyl. Examples include triarylalkane derivatives such as methane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, low molecular compounds such as stilbene derivatives and hydrazone derivatives. After dispersing or dissolving in a suitable solvent together with the crosslinkable resin and applying the solution on the charge generation layer, a charge transport layer is formed by a radiation irradiation step described later.
[0033]
As described above, the resin that can be polymerized and cross-linked by irradiation can be any compound that can generate an active site such as a radical by irradiation and can be polymerized or cross-linked. And a compound having a group. Among them, compounds having an unsaturated polymerizable functional group in the molecule are preferred in terms of high reactivity, high reaction rate, versatility of materials, etc., and acryloyloxy, methacryloyloxy, and styrene groups are particularly preferred. These can be appropriately selected or combined without being limited to any of monomers, oligomers, macromers and polymers. When a resin having a charge transporting ability, preferably a hole transporting ability and capable of being polymerized and cross-linked by irradiation with radiation is used, a charge transporting layer is formed by itself, or the charge transporting material and the charge transporting ability described above are used. It is possible to appropriately mix a polymerizable / crosslinkable resin by irradiation with no radiation. Resins having charge transporting ability and polymerizable / crosslinkable by irradiation include, for example, a known hole transporting compound having an unsaturated polymerizable functional group or an unsaturated polymer Any compound having a functional group added thereto may be used. Examples of the known hole transporting compound include a hydrazone compound, a pyrazoline compound, a triphenylamine compound, a benzidine compound, a stilbene compound, and the like, and any compound can be used as long as it is a hole transporting compound. Further, in the present invention, in order to sufficiently secure the hardness of the electrophotographic photoreceptor surface layer, the compound having an unsaturated polymerizable functional group is a compound having a plurality of unsaturated polymerizable functional groups in one molecule. Is preferred.
[0034]
In the present invention, in the case of an electrophotographic photosensitive member having a single layer structure, the photosensitive layer is formed using a solution in which at least a charge generating material, a charge transporting material, and a compound capable of being polymerized and crosslinked by irradiation with radiation are dispersed or dissolved. . Also in this case, it is preferable to use a compound having a charge transporting ability and capable of being polymerized and crosslinked by irradiation with radiation, as in the case of the above-mentioned electrophotographic photoreceptor having separated functions.
[0035]
In the present invention, when the surface layer is a protective layer, the protective layer becomes a layer formed by irradiation with radiation, and is composed of a compound which is polymerized or crosslinked and cured in this step. In this case, the configuration of the lower photosensitive layer is a function-separated electrophotographic photosensitive member in which a charge generation layer and a charge transport layer are laminated in this order, and a function-separated electrophotographic photosensitive member in which a charge transport layer and a charge generation layer are laminated in this order. Although either a solid or a single-layer electrophotographic photoreceptor is possible, an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order is preferable for the reasons described above. In this case, the charge generating layer is formed by the same method as described above, and the charge transporting layer is formed by using the above charge transporting material as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride, and trifluoroethylene. In binder resins such as polymers and copolymers of vinyl compounds such as ethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin and epoxy resin. It is formed using a solution that is dispersed or dissolved in water. In some cases, it is also possible to add a compound having a compound that can be polymerized and cross-linked by irradiation with radiation.
[0036]
Since the protective layer needs to have charge transporting ability after curing, when the compound itself forming the protective layer by irradiation with radiation is a compound having no charge transporting ability, the aforementioned charge transporting material or conductive material is used. It is preferable to secure the charge transport ability by adding a conductive material. In this case, the charge transporting material may or may not have a functional group that can be polymerized and cross-linked by irradiation, but in order to avoid a decrease in mechanical strength due to plasticity of the charge transporting material, the former is used. preferable. As the conductive material, conductive fine particles such as titanium oxide and tin oxide are generally used, but a conductive polymer compound or the like can also be used. This is not limited to the case where the compound forming the protective layer itself upon irradiation with radiation has a charge transporting ability. In the present invention, from the viewpoint of the film hardness of the surface layer and various electrophotographs, the surface layer using the latter compound having the charge transporting ability is particularly preferable.
[0037]
In the present invention, as a method for applying each solution, known coating methods such as a dip coating method, a spray coating method, a curtain coating method and a spin coating method are possible, but from the viewpoint of efficiency / productivity, dip coating is used. The method is preferred. In addition, a known film forming method such as evaporation, plasma, or the like can be appropriately selected.
[0038]
In the present invention, various additives can be added to the photosensitive layer and the protective layer. Examples of the additive include a deterioration inhibitor such as an antioxidant and an ultraviolet absorber, and a lubricant such as fine particles of a fluororesin.
[0039]
Next, the irradiation step will be described.
[0040]
The radiation in the present invention includes, as disclosed in JP-A-2000-66425, electron beams and γ-rays, in terms of the size, safety, cost, and versatility of the device. Electron beams are preferred. When irradiating with an electron beam, any type of accelerator, such as a scanning type, an electrocurtain type, a broad beam type, a pulse type, and a laminar type, can be used. Also, in the present invention in which an electrophotographic photosensitive member is formed by irradiation with an electron beam, the acceleration voltage of the electron beam and the absorbed dose are very important factors in sufficiently developing the electrical characteristics and durability of the electrophotographic photosensitive member. The acceleration voltage is preferably 300 KV or less, optimally 150 KV or less, and the dose is preferably in the range of 1 to 100 Mrad, more preferably 50 Mrad or less. When the accelerating voltage exceeds 300 KV or the dose exceeds 100 Mrad, as described in the publication, the electrophotographic photosensitive member tends to deteriorate. However, the electrophotographic photoreceptor thus obtained does not have sufficient durability performance, and it is necessary to further improve the durability performance as described above. In order to increase the efficiency of polymerization and crosslinking, it is common to increase the dose. However, the subject of the present invention is an electrophotographic photoreceptor. It turned out to be practical. The present inventors have conducted intensive studies and found that, in the electron beam curing process, the absorbed dose of the electron beam, that is, the temperature dependence at the time of polymerization / crosslinking reaction was higher than the number of reaction initiation points, and this was formed. It has been found that it greatly affects the curability of the film. It has been found that when the polymerization / crosslinking reaction by this electron beam irradiation step is used, sufficient curability can be obtained with a smaller dose than in the past.
[0041]
Next, the temperature of the electrophotographic photosensitive member will be described. In order to accelerate the polymerization / crosslinking reaction, it is sufficient that at least the temperature during electron beam irradiation is a predetermined temperature. for that purpose,
(1) heating the irradiation target before irradiation;
(2) heating the irradiation target at the time of irradiation;
(3) The object to be irradiated is charged after the irradiation chamber is heated to a predetermined temperature.
And the like.
[0042]
Regarding (1), the irradiation object kept at a predetermined temperature outside the irradiation room of the electron beam is moved into the irradiation room to continue the electron beam irradiation, and the irradiation object kept at the predetermined temperature inside the irradiation room is Successive irradiation with an electron beam may be used. In this case, the heating can be performed either outside or inside the electrophotographic photosensitive member. When heating externally, various heaters etc. are installed near the electrophotographic photoreceptor to directly heat it, or the atmosphere around the electrophotographic photoreceptor is heated or the heated gas is brought into contact with it to indirectly heat it. A heating method and the like can be given. The method of heating from the inside also includes a method of installing various heaters inside, a method of passing a heated fluid, and the like. Some of these heating means can be combined.
[0043]
Regarding (2), the object to be irradiated can be heated to a predetermined temperature at the same time as or after the start of irradiation. However, the irradiation time of the electron beam is generally several seconds, at most about several tens of seconds. Therefore, in order to efficiently raise the temperature within that short time, it is preferable to provide a heating means inside the electrophotographic photosensitive member.
[0044]
The case (3) is a case where the irradiation chamber is preliminarily heated to a predetermined temperature. However, it is obviously not possible to heat an irradiation object supplied from the outside to a predetermined temperature only by this method. (3) is preferably used in combination with (1) and (2) because it is efficient.
[0045]
It is essential that the heating temperature is set so that the temperature of the electrophotographic photosensitive member is at least 50 ° C. during the irradiation with the electron beam. The higher the temperature, the more effective the polymerization / crosslinking reaction. However, in the present invention for an electrophotographic photosensitive member, the upper limit is about 250 ° C. If the temperature is higher than this, the material of the electrophotographic photosensitive member is deteriorated, and the electrophotographic characteristics tend to deteriorate. Substantially, from the viewpoint of compatibility between curability and electrophotographic properties, the temperature is preferably from 50 ° C to 200 ° C, and particularly preferably from 50 ° C to 150 ° C. In an electrophotographic photoreceptor configuration in which a protective layer is provided on a photosensitive layer, depending on the material, the components of the protective layer may penetrate into the lower photosensitive layer before curing, or conversely, the components of the photosensitive layer may penetrate into the protective layer. In some cases, this may cause a decrease in curability and deterioration of electrophotographic characteristics. Therefore, it is necessary to pay attention to the temperature and time setting before electron beam irradiation depending on the material.
[0046]
FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[0047]
In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate around a shaft 2 in a direction of an arrow at a predetermined peripheral speed (process speed). In the rotation process, the peripheral surface of the electrophotographic photoreceptor 1 is uniformly charged at a predetermined positive or negative potential by a primary charging unit 3, and then is exposed from an exposure unit (not shown) such as a slit exposure or a laser beam scanning exposure. The exposure light 4 intensity-modulated according to the time-series electric digital image signal of the target image information to be output is received. Thus, an electrostatic latent image corresponding to the target image information is sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1.
[0048]
The formed electrostatic latent image is then visualized as a transferable particle image (toner image) with charged particles (toner) in the developing unit 5 by regular development or reversal development, and is electrophotographic from a paper feeding unit (not shown). The toner image formed and carried on the surface of the electrophotographic photosensitive member 1 is transferred onto the transfer material 7 taken out and fed between the photosensitive member 1 and the transfer means 6 in synchronization with the rotation of the electrophotographic photosensitive member 1. The image is sequentially transferred by the transfer unit 6. At this time, a bias voltage having a polarity opposite to the charge retained in the toner is applied to the transfer unit from a bias power supply (not shown).
[0049]
The transfer material 7 to which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member, conveyed to the image fixing means 8, and subjected to a fixing process of the toner image, thereby being printed out of the apparatus as an image formed product (print, copy). Be out.
[0050]
The surface of the electrophotographic photoreceptor 1 after the transfer of the toner image is cleaned by the cleaning unit 9 to remove extraneous matters such as untransferred toner. In recent years, a cleaner-less system has been studied, and transfer residual toner can be directly collected by a developing device or the like. Further, after being subjected to static elimination processing by pre-exposure light 10 from a pre-exposure unit (not shown), it is repeatedly used for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.
[0051]
In the present invention, among the above-mentioned components such as the electrophotographic photoreceptor 1, the primary charging unit 3, the developing unit 5, and the cleaning unit 9, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body by using a guide unit 12 such as a rail of the apparatus main body. A flexible process cartridge 11 can be provided.
[0052]
When the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and scanned by a laser beam performed in accordance with the signal. , Light emitted by driving an LED array or driving a liquid crystal shutter array.
[0053]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, faxes, liquid crystal printers, and laser plate making. It is.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, embodiments of the present invention are not limited to these. In the examples, “parts” means “parts by mass”.
[0055]
(Example 1)
An aluminum cylinder having a diameter of 30 mm × 357.5 mm was used as a support, and a coating composed of the following materials was applied on the support by a dip coating method, and was thermally cured at 140 ° C. for 30 minutes to form a film having a thickness of 18 μm. Was formed.
[0056]
Conductive pigment: SnO 2 Coated barium sulfate 10 parts
Pigment for resistance adjustment: 2 parts of titanium oxide
Binder resin: 6 parts of phenolic resin
Leveling material: 0.001 part of silicone oil
Solvent: methanol, methoxypropanol = 0.2 / 0.8 5 parts
[0057]
Next, a solution obtained by dissolving 3 parts of N-methoxymethylated nylon and 3 parts of copolymerized nylon in a mixed solvent of 65 parts of methanol / 30 parts of n-butanol was applied thereon by dip coating. An intermediate layer of 0.7 μm was formed.
[0058]
Next, 4 parts of hydroxygallium phthalocyanine having strong peaks at 7.4 ° and 28.2 ° of the black angle (2θ ± 0.2 °) of CuKα characteristic X-ray diffraction, polyvinyl butyral (trade name: Eslek BX-1) (Manufactured by Sekisui Chemical Co., Ltd.) and 80 parts of cyclohexanone were dispersed in a sand mill using glass beads of 1 mm in diameter for 4 hours, and 80 parts of ethyl acetate was added to prepare a dispersion for a charge generation layer. This was applied by a dip coating method to form a charge generation layer having a thickness of 0.2 μm.
[0059]
Next, 60 parts of a hole transporting compound represented by the following formula (4):
[0060]
Embedded image
Figure 2004240305
Was dissolved in a mixed solvent of 30 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a charge transport layer coating. After coating the coating material on the charge generation layer, the temperature of the electrophotographic photosensitive member was set to be maintained at 80 ° C., and an electron beam was irradiated in nitrogen under the conditions of an acceleration voltage of 150 KV and a dose of 20 Mrad. Further, the electrophotographic photosensitive member was subjected to a post-treatment at 140 ° C. for 1 hour in the air to form a charge transport layer having a thickness of 13 μm, thereby obtaining an electrophotographic photosensitive member. The temperature of the electrophotographic photosensitive member during electron beam irradiation rose to 110 ° C. due to the absorption energy of electron beam, heat of polymerization reaction and the like.
[0061]
The produced electrophotographic photosensitive member was evaluated under an environment of 22 ° C./55% RH using a copying machine GP40 manufactured by Canon Inc. The potential characteristics of the electrophotographic photosensitive member were measured by removing the developing unit from the copying machine body and fixing a potential measuring probe at the developing position instead. At that time, the transfer unit was not in contact with the electrophotographic photosensitive member, and the paper was not passed. The initial electrophotographic photoreceptor characteristics (dark portion potential Vd, light attenuation sensitivity (light amount required for light attenuation to 150 V at dark portion potential 650 V setting), residual potential Vsl (light amount three times the light attenuation sensitivity amount) were irradiated. The potential of the electrophotographic photoreceptor was measured, and a 100,000-sheet running durability test was further performed to observe the occurrence of image defects and to measure the shaving amount of the electrophotographic photosensitive member. Note that an eddy current type film thickness meter (manufactured by Karl Fischer) was used to measure the shaved amount. The paper passing durability was set to an intermittent mode in which the printing was stopped once for each print.
[0062]
Table 1 shows the results. As can be seen from Table 1, the electrophotographic photoreceptor of the present invention has good initial electrophotographic photoreceptor characteristics, a small amount of scraping during durability, and no image defects such as scratches. It was found that it exhibited excellent durability performance as compared with the conventional electrophotographic photosensitive member.
[0063]
(Examples 2 to 4)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that the holding temperature of the electrophotographic photosensitive member in Example 1 was changed from 80 ° C. to the temperature shown in Table 2. As a result, the higher the set temperature of the electrophotographic photoreceptor, the higher the curability and the better the durability. Table 1 shows the results.
[0064]
(Example 5)
Example 1 was the same as Example 1 except that the temperature before the electron beam irradiation was maintained at 25 ° C., and the temperature of the electrophotographic photosensitive member was raised together with the electron beam irradiation so that the ultimate temperature during the irradiation became 80 ° C. In the same manner, an electrophotographic photosensitive member was prepared and evaluated. Table 1 shows the results.
[0065]
(Example 6)
Example 5 was the same as Example 5 except that the temperature before electron beam irradiation was kept at 50 ° C. and the temperature of the electrophotographic photosensitive member was raised together with the electron beam irradiation so that the temperature reached during irradiation became 150 ° C. In the same manner, an electrophotographic photosensitive member was prepared and evaluated. Table 1 shows the results.
[0066]
(Example 7)
Example 5 was the same as Example 5 except that the temperature before the electron beam irradiation was kept at 100 ° C. and the temperature of the electrophotographic photosensitive member was raised together with the electron beam irradiation so that the ultimate temperature during the irradiation became 200 ° C. In the same manner, an electrophotographic photosensitive member was prepared and evaluated. Table 1 shows the results.
[0067]
(Example 8)
Example 5 was the same as Example 5 except that the temperature before the electron beam irradiation was kept at 100 ° C. and the temperature of the electrophotographic photosensitive member was raised together with the electron beam irradiation so that the ultimate temperature during the irradiation became 250 ° C. In the same manner, an electrophotographic photosensitive member was prepared and evaluated. Table 1 shows the results.
[0068]
(Example 9)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the hole transporting compound (4) in Example 1 was changed to a compound represented by the following formula (5). Table 1 shows the results.
[0069]
Embedded image
Figure 2004240305
[0070]
(Example 10)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the hole transporting compound (4) in Example 4 was replaced with a compound represented by the following formula (6). Table 1 shows the results.
[0071]
Embedded image
Figure 2004240305
[0072]
(Example 11)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the hole transporting compound (4) in Example 4 was changed to a compound represented by the following formula (7). Table 1 shows the results.
[0073]
Embedded image
Figure 2004240305
[0074]
(Example 12)
In the same manner as in Example 1, the layers up to the charge generation layer were formed.
[0075]
Then, 7 parts of a styryl compound represented by the following formula (8):
[0076]
Embedded image
Figure 2004240305
And a charge transport layer coating prepared by dissolving 10 parts of a polycarbonate resin (trade name: Iupilon Z800, manufactured by Mitsubishi Engineering-Plastics Corporation) in a mixed solvent of 105 parts of monochlorobenzene / 35 parts of dichloromethane. A charge transport layer was formed on the charge generation layer. At this time, the thickness of the charge transport layer was 10 μm.
[0077]
Next, 45 parts of a hole transporting compound represented by the following formula (9)
[0078]
Embedded image
Figure 2004240305
It was dissolved in 55 parts of n-propyl alcohol to prepare a coating for a surface protective layer. After applying a protective layer on the charge transport layer using this paint, the temperature of the electrophotographic photosensitive member is set to be maintained at 50 ° C., and the electron beam is irradiated in nitrogen under the conditions of an acceleration voltage of 150 KV and a dose of 20 Mrad. Was irradiated. Further, the electrophotographic photosensitive member was subjected to post-treatment at 140 ° C. for 1 hour in the air to form a protective layer having a thickness of 5 μm, thereby obtaining an electrophotographic photosensitive member. The temperature of the electrophotographic photosensitive member immediately after the irradiation of the electron beam rose to 80 ° C. due to the absorption energy of the electron beam and the heat of polymerization reaction. The electrophotographic photoreceptor thus produced was evaluated in the same manner as in Example 1. Table 1 shows the results.
[0079]
(Example 13)
Example 12 was the same as Example 12 except that the temperature before electron beam irradiation was kept at 50 ° C. and the temperature of the electrophotographic photosensitive member was raised together with the electron beam irradiation so that the temperature reached during irradiation became 150 ° C. In the same manner, an electrophotographic photosensitive member was prepared and evaluated. Table 1 shows the results.
[0080]
(Example 14)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 13, except that the dose of the electron beam was changed from 20 Mrad to 5 Mrad. Table 1 shows the results.
[0081]
(Example 15)
In the same manner as in Example 13, up to the charge transport layer was formed.
[0082]
Next, 50 parts of antimony-doped tin oxide fine particles surface-treated (treatment amount: 7%) with 3,3,3, -trifluoropropyltrimethoxysilane (trade name: LS1090, manufactured by Shin-Etsu Chemical Co., Ltd.) and the following formula 30 parts of an acrylic monomer having no hole transport function shown in (10)
[0083]
Embedded image
Figure 2004240305
The mixture was dispersed in 150 parts of ethanol by a sand mill for 70 hours to prepare a coating material for a protective layer. After this coating material was applied on the charge transport layer, the same treatment as in Example 13 was performed after electron beam irradiation to produce an electrophotographic photoreceptor, which was evaluated. At this time, the thickness of the protective layer was 4 μm. Table 1 shows the results.
[0084]
(Comparative Example 1)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that the temperature of the electrophotographic photosensitive member during electron beam irradiation was set to be maintained at 40 ° C.
As a result, since the temperature at the time of the polymerization / crosslinking reaction by the electron beam was low, the curability was not sufficient, and the durability performance tended to be inferior to the examples. Table 1 shows the results.
[0085]
(Comparative Example 2)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 12, except that the temperature of the electrophotographic photosensitive member during electron beam irradiation was set to be maintained at 40 ° C. As a result, since the temperature at the time of the polymerization / crosslinking reaction by the electron beam was low, the curability was not sufficient, and the durability performance tended to be inferior to the examples. Although the shaving amount was smaller than that of Comparative Example 1, the speed of the damage reaching the lower charge transport layer was high because the thickness of the hardened layer itself was thin, and the damage was accelerated once the charge transport layer was damaged. Since the scratch grows on the image, the scratch occurs on the image in the early stage of the durability, the growth is fast, and the number tends to increase. Table 1 shows the results.
[0086]
[Table 1]
Figure 2004240305
[0087]
[Table 2]
Figure 2004240305
[0088]
【The invention's effect】
As described above, the electrophotographic photoreceptor of the present invention has excellent electrophotographic properties and has an effect of excellent abrasion resistance and scratch resistance. Accordingly, it is possible to provide an electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus which can sufficiently respond to market demands such as a recent increase in print speed, a high print volume, and a reduction in copy cost. Became.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having an electrophotographic photosensitive member according to the present invention.
[Explanation of symbols]
1. Electrophotographic photoreceptor
2 axes
3 Charging means
4 Exposure light
5 Developing means
6 transfer means
7 Transfer material
8 Fixing means
9 Cleaning means
10 Pre-exposure light
11 Process cartridge
12 Guidance means

Claims (8)

支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体において、該感光層あるいは保護層の少なくとも一つ以上の層が放射線を照射することにより形成される電子写真感光体であって、該放射線照射開始時あるいは照射中の電子写真感光体の温度が50℃以上250℃以下になるようにして製造されたことを特徴とする電子写真感光体。An electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support, wherein at least one of the photosensitive layer or the protective layer is formed by irradiating radiation. An electrophotographic photosensitive member manufactured by setting the temperature of the electrophotographic photosensitive member at the start of or during the irradiation to be 50 ° C. or more and 250 ° C. or less. 放射線を照射することにより形成される層が、連鎖重合性官能基を有する化合物を重合又は架橋することにより硬化した層である請求項1に記載の電子写真感光体。The electrophotographic photoreceptor according to claim 1, wherein the layer formed by irradiating the radiation is a layer cured by polymerizing or crosslinking a compound having a chain polymerizable functional group. 前記連鎖重合性官能基を有する化合物が、下記式(1)で示される請求項1又は2に記載の電子写真感光体。
Figure 2004240305
(式中、Aは正孔輸送性基を示す;P及びPは連鎖重合性官能基を示す;PとPは同一でも異なってもよい;Zは置換基を有してもよい有機基を示す;a、b及びdは0又は1以上の整数を示し、a+b×dは2以上の整数を示す;また、aが2以上の場合Pは同一でも異なっていてもよく、dが2以上の場合Pは同一でも異なっていてもよく、またbが2以上の場合、Z及びPは同一でも異なっていてもよい)
3. The electrophotographic photoreceptor according to claim 1, wherein the compound having a chain polymerizable functional group is represented by the following formula (1).
Figure 2004240305
(Wherein A represents a hole transporting group; P 1 and P 2 represent a chain polymerizable functional group; P 1 and P 2 may be the same or different; Z may have a substituent A, b and d each represent an integer of 0 or 1 or more, and a + b × d represents an integer of 2 or more; and when a is 2 or more, P 1 may be the same or different. , D is 2 or more, P 2 may be the same or different, and when b is 2 or more, Z and P 2 may be the same or different.)
連鎖重合性官能基が不飽和重合性官能基である請求項2又は3に記載の電子写真感光体。The electrophotographic photosensitive member according to claim 2, wherein the chain polymerizable functional group is an unsaturated polymerizable functional group. 連鎖重合性官能基が下記式(2)及び式(3)のいずれかである請求項4に記載の電子写真感光体。
Figure 2004240305
The electrophotographic photosensitive member according to claim 4, wherein the chain polymerizable functional group is one of the following formulas (2) and (3).
Figure 2004240305
請求項1〜5のいずれかに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び転写工程後の電子写真感光体上に残余するトナーを回収するクリーニング手段からなる群より選ばれる少なくとも1つの手段とを共に一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。6. An electrophotographic photosensitive member according to claim 1, a charging unit for charging the electrophotographic photosensitive member, a developing unit for developing the electrophotographic photosensitive member on which an electrostatic latent image is formed with toner, and a transfer step. A process cartridge which integrally supports at least one unit selected from the group consisting of a cleaning unit for recovering toner remaining on the electrophotographic photosensitive member, and is detachably mountable to the main body of the electrophotographic apparatus. . 請求項1〜5のいずれかに記載の電子写真感光体、該電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体に対し露光を行い静電潜像を形成する露光手段、静電潜像の形成された電子写真感光体にトナーで現像する現像手段及び電子写真感光体上のトナー像を転写材上に転写する転写手段を備えることを特徴とする電子写真装置。An electrophotographic photosensitive member according to any one of claims 1 to 5, a charging device for charging the electrophotographic photosensitive member, an exposure device for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, and an electrostatic device. An electrophotographic apparatus, comprising: developing means for developing a latent image formed on an electrophotographic photosensitive member with toner; and transfer means for transferring a toner image on the electrophotographic photosensitive member onto a transfer material. 支持体上に感光層あるいは感光層及び保護層を有する電子写真感光体の製造方法であって、該感光層あるいは保護層の少なくとも一つ以上の層を、放射線を照射することよって形成する工程を有し、該放射線照射開始時あるいは照射中の電子写真感光体の温度が50℃以上250℃以下であることを特徴とする電子写真感光体の製造方法。A method for producing an electrophotographic photosensitive member having a photosensitive layer or a photosensitive layer and a protective layer on a support, comprising a step of forming at least one or more layers of the photosensitive layer or the protective layer by irradiating radiation. Wherein the temperature of the electrophotographic photosensitive member at the start of or during the irradiation is 50 ° C. or more and 250 ° C. or less.
JP2003031105A 2003-02-07 2003-02-07 Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor Pending JP2004240305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031105A JP2004240305A (en) 2003-02-07 2003-02-07 Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031105A JP2004240305A (en) 2003-02-07 2003-02-07 Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2004240305A true JP2004240305A (en) 2004-08-26

Family

ID=32957801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031105A Pending JP2004240305A (en) 2003-02-07 2003-02-07 Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2004240305A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085172A (en) * 2004-09-16 2006-03-30 Xerox Corp Photoconductive imaging member
WO2007100132A1 (en) * 2006-03-01 2007-09-07 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
JP2013044820A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044821A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044824A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044823A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044822A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2014056119A (en) * 2012-09-12 2014-03-27 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085172A (en) * 2004-09-16 2006-03-30 Xerox Corp Photoconductive imaging member
WO2007100132A1 (en) * 2006-03-01 2007-09-07 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
AU2007221629B2 (en) * 2006-03-01 2011-01-27 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
US8197997B2 (en) 2006-03-01 2012-06-12 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
JP2013044820A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044821A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044824A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044823A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2013044822A (en) * 2011-08-22 2013-03-04 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2014056119A (en) * 2012-09-12 2014-03-27 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP3880457B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP4630806B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6436597B2 (en) Electrophotographic photosensitve member, process for producing electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus which have the electrophotographic photosensitive member
JP2007086522A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP4095509B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007011006A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4006461B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4630813B2 (en) Electrophotographic photosensitive member and method for manufacturing the same, process cartridge and electrophotographic apparatus
JP2002040686A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2005062301A (en) Electrophotographic photoreceptor
JP2005062300A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2004240305A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photoreceptor
JP4143497B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007156081A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2005345662A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4136836B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP4266999B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP4143200B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP4229352B2 (en) Electrophotographic photosensitive member, method for producing the electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP2007101807A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2005091742A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge
JP2005091741A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus and method for manufacturing the electrophotographic photoreceptor
JP2010066670A (en) Method of manufacturing electrophotographic photoreceptor
JP2004093802A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2005055729A (en) Electrophotographic photoreceptor, method for manufacturing the same, process cartridge and electrophotographic apparatus