JP4365961B2 - Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents

Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDF

Info

Publication number
JP4365961B2
JP4365961B2 JP32465999A JP32465999A JP4365961B2 JP 4365961 B2 JP4365961 B2 JP 4365961B2 JP 32465999 A JP32465999 A JP 32465999A JP 32465999 A JP32465999 A JP 32465999A JP 4365961 B2 JP4365961 B2 JP 4365961B2
Authority
JP
Japan
Prior art keywords
group
general formula
substituent
photosensitive member
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32465999A
Other languages
Japanese (ja)
Other versions
JP2000206716A (en
Inventor
憲裕 菊地
弘規 植松
晶夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32465999A priority Critical patent/JP4365961B2/en
Publication of JP2000206716A publication Critical patent/JP2000206716A/en
Application granted granted Critical
Publication of JP4365961B2 publication Critical patent/JP4365961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体、電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関し、詳しくは特定の樹脂を含有する表面層を有する電子写真感光体、その電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関する。
【0002】
【従来の技術】
従来、電子写真感光体に用いられる光導電材料としては、セレン、硫化カドミウム及び酸化亜鉛等の無機材料が知られていた。他方、有機材料であるポリビニルカルバゾール、フタロシアニン及びアゾ顔料等は高生産性や無公害性等の利点が注目され、無機材料と比較して光導電特性や耐久性等の点で劣る傾向にあるものの、広く用いられる様になってきた。
【0003】
これらの電子写真感光体は、電気的及び機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の電子写真感光体として利用される場合が多い。一方、当然のことながら電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、光学的特性、耐久特性を備えていることが要求される。
【0004】
特に繰り返し使用される電子写真感光体にあっては、その電子写真感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的、機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久が要求され、更には帯電による表面劣化に対する耐久性も要求される。
【0005】
一般に電子写真感光体の表面は、薄い樹脂層であり樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年アクリル樹脂やポリカーボネート樹脂等が実用化されているが、前述したような特性の全てがこれらの樹脂で満足されるわけではなく、特に電子写真感光体の高耐久化を図る上では樹脂の被膜硬度は十分高いとは言い難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも繰り返し使用時において表面層の磨耗が起こり、更に傷が発生するという問題点があった。
【0006】
更に、近年の有機電子写真感光体の高感度化に対する要求から電荷輸送材料等の低分子量化合物が比較的大量に添加される場合が多いが、この場合それら低分子量材料の可塑剤的な作用により膜強度が著しく低下し、一層繰り返し使用時の表面層の磨耗や傷の発生が問題となっている。また、電子写真感光体を長期にわたって保存する際に前述の低分子量成分が析出してしまい、層分離するといった問題も発生している。
【0007】
これらの問題点を解決する手段として、硬化性の樹脂を電荷輸送層用の樹脂として用いる試みが、例えば特開平2−127652号公報に開示されている。このように、電荷輸送層用の樹脂に硬化性の樹脂を用い電荷輸送層を硬化、架橋することによって機械的強度が増し、繰り返し使用時の耐削れ性及び耐傷性は大きく向上する。しかしながら硬化性樹脂を用いても低分子量成分は、あくまでもバインダー樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題は根本的な解決にはなっていない。
【0008】
また、有機電荷輸送材料とバインダー樹脂とで構成される電荷輸送層においては、電荷輸送能の樹脂に対する依存度が大きく、例えば硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく繰り返し使用時に残留電位の上昇が見られる等、両者を満足させるまでには至っていない。また、特開平5−216249号公報、特開平7−72640号公報等においては、電荷輸送層に炭素−炭素二重結合を有するモノマーを含有させ、電荷輸送材の炭素−炭素二重結合と熱あるいは光のエネルギーによって反応させて電荷輸送層硬化膜を形成した電子写真感光体が開示されているが、電荷輸送材はポリマー主骨格にペンダント状に固定化されているだけであり、先の可塑的な作用を十分に排除できないため機械的強度が十分ではない。また、電荷輸送能の向上のために電荷輸送材の濃度を高くすると、架橋密度が低くなり十分な機械的強度を確保することができない。
【0009】
また、別の解決手段として例えば特開平8−248649号公報においては、熱可塑性高分子主鎖中に電荷輸送能を有する基を導入し、電荷輸送層を形成させた電子写真感光体が開示されているが、従来の分子分散型の電荷輸送層と比較して析出や層分離に対しては効果があり、機械的強度も向上するが、あくまでも熱可塑性樹脂であり、その機械的強度には限界があり、樹脂の溶解性等を含めたハンドリングや生産性の面で十分であるとは言い難い。以上述べたように、これまでの系では高い機械的強度と電荷輸送能の両立が達成されていなかった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、従来の樹脂を表面層として用いた電子写真感光体が有していた問題点を解決し、膜強度を高くすることによって耐磨耗性及び耐傷性を向上させ、かつ耐析出性が良好な電子写真感光体を提供することにある。
【0011】
本発明の別の目的は、繰り返し使用時における残留電位の上昇等の電子写真感光体特性の変化や劣化が非常に少なく、繰り返し使用時にも安定した性能を発揮することができる電子写真感光体を提供することにある。
【0012】
本発明の更に別の目的は、電子写真感光体の表面層の耐摩耗性及び耐傷性が向上し、長寿命で高画質な電子写真感光体、その電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明に従って、導電性支持体上に感光層を有する電子写真感光体において、該感光層が下記一般式(1)で示すような同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合した化合物を含有することを特徴とする電子写真感光体が提供される。
【0014】
【化9】
【0015】
式中、Aは正孔輸送性基を示す;P及びPは下記一般式(11)あるいは一般式(12)のいずれかの連鎖重合性官能基を示す;PとPは同一でも異なってもよい;Zは置換基を有してもよい有機残基を示す;a、b及びdは0又は1以上の整数を示し、a+b×dは2以上の整数を示す;また、aが2以上の場合Pは同一でも異なってもよく、dが2以上の場合Pは同一でも異なってもよく、またbが2以上の場合、Z及びPは同一でも異なってもよい。
【0016】
【化10】
【0017】
尚、上記一般式(1)で、AとP及びZとの結合部位を水素原子に置きかえた正孔輸送性化合物は、下記一般式(2)又は一般式(4)で示される。
【0018】
【化11】
【0019】
式中、R 及びAr は置換基を有してもよいフェニル基を示し、R及びR同一でも異なってもよい
但し、一般式(2)は、下記一般式(3)で示される基を一つ以上有する。
【0020】
【化12】
【0021】
式中、R 及びArは置換基を有してもよいフェニル基を示す。
【0022】
【化13】
【0023】
式中、Ar 、A 及びR は置換基を有してもよいフェニル基を示し、Ar及びArは同一でも異なってもよい
但し、一般式(4)で示される化合物は、下記一般式(5)で示される基を一つ有する。
【0024】
【化14】
【0025】
式中、R 及びArは置換基を有してもよいフェニル基を示す。
【0026】
また、本発明に従って、上記電子写真感光体を有するプロセスカートリッジ及び電子写真装置が提供される。
【0027】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0028】
まず、本発明における連鎖重合性官能基について説明する。本発明における連鎖重合とは、高分子物の生成反応を大きく連鎖重合と逐次重合に分けた場合の前者の重合反応形態を示し、詳しくは例えば技報堂出版 三羽忠広著の「基礎 合成樹脂の化学(新版)」1995年7月25日(1版8刷)P.24に説明されている様に、その形態が主にラジカルあるいはイオン等の中間体を経由して反応が進行する不飽和重合、開環重合そして異性化重合等のことをいう。
【0029】
前記一般式(1)における連鎖重合性官能基P及びPとは、前述の反応形態が可能な官能基を意味するが、ここではその大半を占め応用範囲の広い不飽和重合あるいは開環重合性官能基の具体例を示す。
【0030】
不飽和重合とは、ラジカル、イオン等によって不飽和基、例えばC=C、C≡C、C=O、C=N、C≡N等が重合する反応であるが、主にはC=Cである。不飽和重合性官能基の具体例を表1に示すが、これらに限定されるものではない。
【0031】
【表1】
【0032】
表中、Rは置換基を有してもよいメチル基、エチル基及びプロピル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基及びアンスリル基等のアリール基又は水素原子を示す。
【0033】
開環重合とは、炭素環、オクソ環及び窒素ヘテロ環等のひずみを有した不安定な環状構造が触媒の作用で活性化され、開環すると同時に重合を繰り返し鎖状高分子物を生成する反応であるが、この場合基本的にはイオンが活性種として作用するものが大部分である。開環重合性官能基の具体例を表2に示すが、これらに限定されるものではない。
【0034】
【表2】
【0035】
表中、Rは置換基を有してもよいメチル基、エチル基及びプロピル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基及びアンスリル基等のアリール基又は水素原子を示す。
【0036】
上記で説明したような本発明に係わる連鎖重合性官能基の中でも、重合特性等の点から下記の一般式(11)のアクリロイルオキシ基あるいは一般式(12)のメタクリロイルオキシ基が用いられる。
【0037】
【化15】
【0038】
本発明で「連鎖重合性官能基を有する正孔輸送性化合物」とは、上記で説明した連鎖重合性基が上記で説明した正孔輸送性化合物に官能基として二つ以上化学結合している化合物を示す。この場合それらの連鎖重合性官能基は、全て同一でも異なったものであってもよい。それらの連鎖重合性官能基を二つ以上有する正孔輸送性化合物は、前記の一般式(1)で示される。
【0039】
一般式(1)中、「aが2以上の場合Pは同一でも異なってもよく」とは、それぞれ異なるn種類の連鎖重合性官能基をP11、P12、P13、P14、P15・・・・P1nと示した場合、例えばa=3の時に正孔輸送性化合物Aに直接結合する連鎖重合性官能基Pは3つとも同じものでも、二つ同じで一つは違うもの(例えば、P11とP11とP12とか)でも、それぞれ3つとも異なるもの(例えば、P12とP15とP17とか)でもよいということを意味するものである(「dが2以上の場合Pは同一でも異なってもよく」というのも、「bが2以上の場合、Z及びPは同一でも異なってもよい」というのもこれと同様なことを意味するものである)。
【0040】
上記一般式(1)のAは正孔輸送性基を示し、PとZとの結合部位を水素原子に置き換えた水素付加化合物(正孔輸送化合物)としては、下記一般式(2)及び(4)が挙げられる。
【0041】
【化16】
【0042】
但し、上記一般式(2)は、下記一般式(3)で示される基を一つ以上有する。
【0043】
【化17】
【0044】
上記一般式(2)及び(3)中、Ar 、Ar 、R 、R 及びR は置換基を有してもよいフェニル基を示す。なお、RとRはそれぞれ同一であっても異なっていてもよい。
【0045】
た、R又はR又はArのうち任意の二つ、又はAr及びRはそれぞれ直接もしくは結合基を介して結合してもよく、その結合基としては、メチレン基、エチレン基及びプロピレン基等のアルキレン基、酸素及び硫黄原子等のヘテロ原子又はCH=CH基等が挙げられる。
【0046】
【化18】
【0047】
上記一般式(4)において、一般式(4)で示される化合物は、下記一般式(5)で示される基を一つ有する。
【0048】
【化19】
【0049】
上記一般式(4)及び(5)中、Ar、Ar 、Ar 、R 及びR は、置換基を有してもよいフェニル基を示す。なお、Ar及びArはそれぞれ同一であっても異なっていてもよい。
【0050】
た、R又はAr又はArのうち任意の二つ、又はAr及びRはそれぞれ直接もしくは結合基を介して結合してもよく、その結合基としては、メチレン基、エチレン基及びプロピレン基等のアルキレン基、酸素及び硫黄原子等のヘテロ原子又はCH=CH基等が挙げられる。
【0051】
また、上記一般式(1)中のZは、置換基を有してもよいアルキレン基、置換基を有してもよいアリーレン基、CR=CR(R及びRはアルキル基、アリール基又は水素原子を示し、R及びRは同一でも異なってもよい)、C=O、S=O、SO、酸素原子又は硫黄原子より一つあるいは任意に組み合わされた有機残基を示す。その中でも下記一般式(6)で示されるものが好ましく、下記一般式(7)で示されるものが特に好ましい。
【0052】
【化20】
【0053】
【化21】
【0054】
上記一般式(6)中、X〜Xは置換基を有してもよいメチレン基、エチレン基及びプロピレン基等の炭素数20以下のアルキレン基、(CR10=CR11、C=O、S=O、SO、酸素原子又は硫黄原子を示し、Ar及びArは置換基を有してもよいアリーレン基(ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、チオフェン、ピリジン、キノリン、ベンゾキノリン、カルバゾール、フェノチアジン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン及びジベンゾチオフェン等より2個の水素原子を取り除いた基)を示す。R10及びR11は置換基を有してもよいメチル基、エチル基及びプロピル基等のアルキル基、置換基を有してもよいフェニル基、ナフチル基及びチオフェニル基等のアリール基又は水素原子を示し、R10及びR11は同一でも異なってもよい。mは1〜5の整数、p〜tは0又は1〜10の整数を示す(但しp〜tは同時に0であることはない)。
【0055】
上記一般式(7)中、X及びXは(CH、(CH=CR12、C=O、又は酸素原子を示し、Arは置換基を有してもよいアリーレン基(ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、チオフェン、ピリジン、キノリン、ベンゾキノリン、カルバゾール、フェノチアジン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン及びジベンゾチオフェン等より2個の水素原子を取り除いた基)を示す。R12は置換基を有してもよいメチル基、エチル基及びプロピル基等のアルキル基、置換基を有してもよいフェニル基、ナフチル基及びチオフェニル基等のアリール基又は水素原子を示す。gは1〜10の整数、hは1〜5の整数、u〜wは0又は1〜10の整数を示す(特に、0又は1〜5の整数の時が好ましい。但しu〜wは、同時に0であることはない)。
【0056】
なお、上述の一般式(1)〜(7)のR、R、R、R、R〜R12、Ar〜Ar、X〜X及びZがそれぞれ有してもよい置換基としては、フッ素、塩素、臭素及びヨウ素等のハロゲン原子;又はニトロ基又はシアノ基又は水酸基;又はメチル基、エチル基、プロピル基及びブチル基等のアルキル基;又はメトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基;又はフェノキシ基及びナフトキシ基等のアリールオキシ基;又はベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基;又はフェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基;又はジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基及びジ(p−トリル)アミノ基等の置換アミノ基;スチリル基及びナフチルビニル基等のアリールビニル基等が挙げられるが、置換アミノ基以外であることが好ましい。
【0057】
また、本発明における同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物は、酸化電位が1.2(V)以下であることが好ましく、0.4〜1.2(V)であることがより好ましい。それは、酸化電位が1.2(V)超えると電荷発生材料からの電荷(正孔)の注入が起こり難く残留電位の上昇、感度悪化及び繰り返し使用時の電位変動が大きくなる等の問題が生じ易く、また0.4(V)未満では帯電能の低下等の問題の他に、化合物自体が容易に酸化されるために劣化し易く、それに起因した感度悪化、画像ボケ及び繰り返し使用時の電位変動が大きくなる等の問題が生じ易くなるためである。
【0058】
なお、ここで述べている酸化電位は、以下の方法によって測定される。
【0059】
(酸化電位の測定法)
飽和カロメル電極を参照電極とし、電解液に0.1N(n−Bu)ClO アセトニトリル溶液を用い、ポテンシャルスイーパによって作用電極(白金)に印加する電位をスイープし、得られた電流−電位曲線がピークを示した時の電位を酸化電位とした。詳しくは、サンプルを0.1N(n−Bu)ClO アセトニトリル溶液に5〜10mmol%程度の濃度になる様に溶解する。そしてこのサンプル溶液に作用電極によって電圧を加え、電圧を低電位(0V)から高電位(+1.5V)に直線的に変化させた時の電流変化を測定し、電流−電位曲線を得る。この電流−電位曲線において電流値がピーク(ピークが複数ある場合には最初のピーク)を示した時のピークトップの位置の電位を酸化電位とした。
【0060】
また更に、上記連鎖重合性官能基を有する正孔輸送性化合物は正孔輸送能として1×10−7(cm/V.sec)以上のドリフト移動度を有しているものが好ましい(但し、印加電界:5×10V/cm)。1×10−7(cm/V.sec)未満では、電子写真感光体として露光後現像までに正孔が十分に移動できないため見かけ上感度が低減し、残留電位も高くなってしまう問題が発生する場合がある。
【0061】
以下に本発明に係わる、連鎖重合性官能基を有する正孔輸送性化合物の代表例を挙げるがこれらに限定されるものではない。
【0062】
化22
【0063】
【化23
【0064】
化24
【0065】
【化25
【0066】
【化26
【0067】
化27
【0068】
【化28
【0069】
【化29
【0070】
【化30
【0071】
【化31
【0072】
化32
【0073】
【化33
【0074】
【化34
【0075】
【化35
【0076】
化36
【0077】
【化37
【0078】
本発明において、連鎖重合性官能基を有する正孔輸送性化合物の代表的な合成方法を以下に示す。
【0079】
(合成例1:化合物No.1−13の合成)
以下のルートに従い合成した。
【0080】
【化38
【0081】
1(50g:0.173mol)、2(7.5g:81mmol)、無水炭酸カリウム(47.8g)及び銅粉(55g)を1,2−ジクロロベンゼン200gと共に180〜190℃で加熱撹拌を10時間行った。反応液を濾過後、減圧下で溶媒を除去し、残留物をシリカゲルカラムを用い精製を行い3を58g得た。
【0082】
N,N−ジメチルフォルムアミド(DMF)35gを0〜5℃に冷却後、オキシ塩化リン(18.4g:0.12mol)を10℃を超えない様にゆっくり滴下した。滴下終了後15分そのまま撹拌後、3(50.0g:0.12mol)/DMF50g溶液をゆっくり滴下した。滴下終了後そのまま30分間の撹拌後に室温に戻し、1時間撹拌し更に80〜85℃に加熱し5時間撹拌を行った。反応液を約15%の酢酸ナトリウム水溶液800gにあけ12時間撹拌を行った。それを中和後、トルエンを用い抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去し、残留物をシリカゲルカラムを用いカラム精製を行い4を37.8g得た。
【0083】
4(25g:56mmol)をエタノール200mlに加え、そこへ1,1−ジフェニルヒドラジン塩酸塩(35g:159mmol)を添加した。添加終了後そのまま室温で1時間撹拌後、50℃で更に2時間加熱撹拌を行った。反応液を冷却後、水にあけトルエンで抽出し有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い5を24.5g得た。
【0084】
5(20g:33mmol)をメチルセルソルブ200gに加え室温で撹拌しながらナトリウムメチラート(12.0g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後、更に40〜50℃で8時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後減圧下で溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い6を7.1g得た。
【0085】
6(7.0g:11mmol)及びトリエチルアミン(3.5g:35mmol)を、乾燥テトラヒドロフラン(THF)100mlに加え0〜5℃に冷却後、塩化アクリロイル(2.5g:28mmol)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま4時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い7(化合物No.1−13)を2.8g得た(酸化電位:0.69V)。
【0086】
(合成例2:化合物No.2−1の合成)
以下のルートに従い合成した。
【0087】
【化39
【0088】
1(50g:0.173mol)、2(8.0g:86mmol)、無水炭酸カリウム(47.8g)及び銅粉(55g)を1,2−ジクロロベンゼン200gと共に180〜190℃で加熱撹拌を13時間行った。反応液を濾過後、減圧下で溶媒を除去し、残留物をアセトン/メタノール混合溶媒で2回再結晶を行い3を51g得た。
【0089】
DMF35gを0〜5℃に冷却後、オキシ塩化リン(18.4g:0.12mol)を10℃を超えない様にゆっくり滴下した。滴下終了後15分間そのまま撹拌後、3(50.0g:0.12mol)/DMF50g溶液をゆっくり滴下した。滴下終了後そのまま30分間撹拌した後に室温に戻し、1時間撹拌し更に80〜85℃に加熱し5時間撹拌を行った。反応液を約15%の酢酸ナトリウム水溶液800gにあけ12時間撹拌を行った。それを中和後、トルエンを用い抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去し、残留物をシリカゲルカラムを用いカラム精製を行い4を37.8g得た。
【0090】
4(30g:67mmol)及び1,1−ジフェニルメチルジエチルフォスフェート(20.5g:67mmol)を乾燥THF200mlに溶解し、そこに室温で油性水素化ナトリウム(約60%:2.97g:約74mmol)をゆっくり添加した。添加終了後に室温で30分間撹拌後、3時間加熱撹拌を行った。反応液を冷却後、水にあけトルエンで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い5を21.1g得た。
【0091】
5(20g:33.6mmol)をメチルセルソルブ200gに加え室温で撹拌しながらナトリウムメチラート(7.0g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後、更に70〜80℃で12時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後減圧下で溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い6を15.1g得た。
【0092】
6(15g:29.3mmol)及びトリエチルアミン(8.88g:87.9mmol)を、乾燥THF100mlに加え0〜5℃に冷却後、塩化アクリロイル(8.0g:88.4mmol)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し、室温でそのまま6時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い7(化合物No.2−1)を9.8g得た(酸化電位:0.76V)。
【0093】
(合成例3:化合物No.2−34の合成)
以下のルートに従い合成した。
【0094】
【化40
【0095】
1(50g:0.173mol)、8(31.7g:0.173mol)、無水炭酸カリウム(50g)及び銅粉(65g)を1,2−ジクロロベンゼン250gと共に180〜190℃で加熱撹拌を10時間行った。反応液を濾過後、減圧下で溶媒を除去し、残留物をシリカゲルカラムを用いカラム精製を行い9を49g得た。
【0096】
DMF40gを0〜5℃に冷却後、オキシ塩化リン(19.9g:0.13mol)を10℃を超えないようにゆっくり滴下した。滴下終了後15分そのまま撹拌後、9(45g:0.013mol)/DMF60g溶液をゆっくり滴下した。滴下終了後そのまま30分間の撹拌後に室温に戻し、1時間撹拌し更に80〜85℃に加熱し5時間撹拌を行った。反応液を約15%の酢酸ナトリウム水溶液1kgにあけ12時間撹拌を行った。それを中和後、トルエンを用い抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去し、残留物をシリカゲルカラムを用いカラム精製を行い10を33g得た。
【0097】
10(30g:80mmol)及び1−フェニル−1−(p−メトキシフェニル)メチルジエチルフォスフェート(27g:80.7mmol)を乾燥THF200mlに溶解し、そこに室温で油性水素化ナトリウム(約60%:3.8g:約95mmol)をゆっくり添加した。添加終了後に室温で30分間の撹拌後、3時間加熱撹拌を行った。反応液を冷却後、水にあけ酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い11を28.1g得た。
【0098】
11(20g:36mmol)をメチルセルソルブ150gに加え室温で撹拌しながらナトリウムメチラート(8.0g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後、更に90〜100℃で20時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後減圧下で溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い12を15.8g得た。
【0099】
12(15g:23mmol)及びトリエチルアミン(7.0g:69mmol)を、乾燥THF100mlに加え0〜5℃に冷却後、塩化アクリロイル(6.3g:70mmol)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し室温でそのまま6時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムを用いカラム精製を行い13(化合物No.2−34)を5.85g得た(酸化電位:0.78V)。
【0100】
本発明においては、前記同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合することで、感光層中において、正孔輸送能を有する化合物は二つ以上の架橋点をもって3次元架橋構造を形成する。前記正孔輸送性化合物はそれのみを重合・架橋させる、あるいは他の連鎖重合性基を有する化合物と混合させることのいずれもが可能であり、その種類/比率は全て任意である。ここでいう他の連鎖重合性基を有する化合物とは、連鎖重合性基を有する単量体あるいはオリゴマー/ポリマーのいずれもが含まれる。
【0101】
正孔輸送性化合物の官能基とその他の連鎖重合性化合物の官能基が同一の基あるいは互いに重合可能な基である場合には、両者は共有結合を介した共重合3次元架橋構造をとることが可能である。両者の官能基が互いに重合しない官能基である場合には、感光層は二つ以上の3次元硬化物の混合物あるいは主成分の3次元硬化物中に他の連鎖重合性化合物単量体あるいはその硬化物を含んだものとして構成されるが、その配合比率/製膜方法をうまくコントロールすることで、IPN(Inter Penetrating Network)すなわち相互進入網目構造を形成することも可能である。
【0102】
また、前記正孔輸送性化合物と連鎖重合性基を有しない単量体あるいはオリゴマー/ポリマーや連鎖重合性以外の重合性基を有する単量体あるいはオリゴマー/ポリマー等から感光層を形成してもよい。
【0103】
更に、場合によっては3次元架橋構造に化学結合的に組み込まれないすなわち連鎖重合性官能基を有しない正孔輸送性化合物を含有することも可能である。また、その他の各種添加剤、フッ素原子含有樹脂微粒子等の潤剤その他を含有してもよい。
【0104】
本発明の電子写真感光体の構成は、導電性支持体上に感光層として電荷発生材料を含有する電荷発生層及び電荷輸送材料を含有する電荷輸送層をこの順に積層した構成あるいは逆に積層した構成、また電荷発生材料と電荷輸送材料を同一層中に分散した単層からなる構成のいずれの構成をとることも可能である。前者の積層型においては電荷輸送層が二層以上の構成、また後者の単層型においては電荷発生材料と電荷輸送材料を同一に含有する感光層上に更に電荷輸送層を構成してもよく、更には電荷発生層あるいは電荷輸送層上に保護層の形成も可能である。
【0105】
これらいずれの場合においても、先の連鎖重合性基を有する正孔輸送性化合物、前正孔輸送性化合物を重合又は架橋し硬化したものの一方又は両方を感光層が含有していればよい。但し、電子写真感光体としての特性、特に残留電位等の電気的特性及び耐久性の点より、電荷発生層/電荷輸送層をこの順に積層した機能分離型の感光体構成が好ましく、本発明の利点も電荷輸送能を低下させることなく表面層の高耐久化が可能になった点にある。
【0106】
次に、本発明による電子写真感光体の製造方法を具体的に示す。
【0107】
電子写真感光体の支持体としては、導電性を有するものであればよく、例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属や合金をドラム又はシート状に成形したもの、アルミニウム及び銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化錫等をプラスチックフィルムに蒸着したもの、導電性材料を単独又はバインダー樹脂と共に塗布して導電層を設けた金属、またプラスチックフィルム及び紙等が挙げられる。
【0108】
本発明においては、導電性支持体の上にバリアー機能と接着機能をもつ下引き層を設けることができる。下引き層は、感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、また感光層の電気的破壊に対する保護等のために形成される。
【0109】
下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチン等が知られている。これらはそれぞれに適した溶剤に溶解されて支持体上に塗布される。その際の膜厚としては0.1〜2μmが好ましい。
【0110】
本発明の電子写真感光体が機能分離型の電子写真感光体である場合には、電荷発生層及び電荷輸送層を積層する。電荷発生層に用いる電荷発生材料としては、セレン−テルル、ピリリウム、チアピリリウム系染料、また各種の中心金属及び結晶系、具体的には例えは、α、β、γ、ε及びX型等の結晶型を有するフタロシニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコン等が挙げられる。
【0111】
機能分離型の電子写真感光体の場合、電荷発生層は前記電荷発生材料を0.3〜4倍量のバインダー樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター及びロールミル等の方法でよく分散し、分散液を塗布し、乾燥されて形成されるか、又は前記電荷発生材料の蒸着膜等、単独組成の膜として形成される。その膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
【0112】
バインダー樹脂を用いる場合、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂等が挙げられる。
【0113】
本発明における前記連鎖重合性官能基を有する正孔輸送性化合物は、前述した電荷発生層上に電荷輸送層として、もしくは電荷発生層上に電荷輸送材料とバインダー樹脂からなる電荷輸送層を形成した後に、正孔輸送能力を有する表面保護層として用いることができる(この表面保護層は正孔輸送能力を有するので、感光層でもある)。いずれの場合も前記表面層の形成方法は、前記正孔輸送性化合物を含有する溶液を塗布後、重合・架橋反応をさせるのが一般的であるが、前もって正孔輸送性化合物を含む溶液を反応させて硬化物を得た後に再度溶剤中に分散あるいは溶解させたもの等を用いて、表面層を形成することも可能である。これらの溶液を塗布する方法は、例えば、浸漬コーティング法、スプレーコーティング法、カーテンコーティング法及びスピンコーティング法等が知られているが、効率性や生産性の点からは浸漬コーティング法が好ましい。また、蒸着、プラズマ、その他の公知の製膜方法が適宜選択できる。
【0114】
本発明において、連鎖重合性基を有する正孔輸送性化合物は、放射線により重合・架橋させることが好ましい。放射線による重合の最大の利点は、重合開始剤を必要としない点であり、これにより非常に高純度な三次元感光層マトリックスの作製が可能となり、良好な電子写真特性が確保される点である。また、短時間でかつ効率的な重合反応であるがゆえに生産性も高く、更には放射線の透過性の良さから、厚膜時や添加剤等の遮蔽材料が膜中に存在する際の硬化阻害の影響が非常に小さいこと等が挙げられる。但し、連鎖重合性基の種類や中心骨格の種類によっては重合反応が進行しにくい場合があり、その際には影響のない範囲内での重合開始剤の添加は可能である。この際使用する放射線とは、電子線及びγ線である。
【0115】
電子線照射をする場合の加速器としては、スキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型及びラミナー型等いずれの形式も使用することができる。電子線を照射する場合に、本発明の電子写真感光体においては電気特性及び耐久性能を発現させる上で照射条件が非常に重要である。本発明において、加速電圧は300kV以下が好ましく、最適には150kV以下である。また、線量は、好ましくは1Mradから100Mradの範囲、より好ましくは3Mradから50Mradの範囲である。加速電圧が300kVを超えると電子写真感光体特性に対する電子線照射のダメージが増加する傾向にある。また、線量が1Mradよりも少ない場合には架橋が不十分となり易く、線量が100Mradを超えた場合には電子写真感光体特性の劣化が起こり易いので注意が必要である。
【0116】
前記連鎖重合性基を有する正孔輸送性化合物を電荷輸送層として用いた場合の前記正孔輸送性化合物の量は、重合架橋後の電荷輸送層膜の全質量に対して、前記一般式(1)で示される連鎖重合性官能基を有する正孔輸送性基Aの水素付加物が20質量%以上が好ましく、更には40質量%以上含有されていることが好ましい。それ以下であると電荷輸送能が低下し、感度低下及び残留電位の上昇等の問題点が生じ易くなる。この場合の電荷輸送層としての膜厚は1〜50μmであることが好ましく、特には3〜30μmであることが好ましい。
【0117】
前記正孔輸送性化合物を電荷発生層/電荷輸送層上に表面保護層として用いた場合、その下層に当たる電荷輸送層は適当な電荷輸送材料、例えばポリ−N−ビニルカルバゾール及びポリスチリルアントラセン等の複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール及びカルバゾール等の複素環化合物、トリフェニルメタン等のトリアリールアルカン誘導体、トリフェニルアミン等のトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体等の低分子化合物等を適当なバインダー樹脂(前述の電荷発生層用樹脂の中から選択できる)と共に溶剤に分散/溶解した溶液を前述の公知の方法によって塗布、乾燥して形成することができる。
【0118】
この場合の電荷輸送材料とバインダー樹脂の比率は、両者の全質量を100とした場合に電荷輸送材料の質量が30〜100が好ましく、更に好ましくは50〜100の範囲で適宜選択される。電荷輸送材料の量がそれ以下であると、電荷輸送能が低下し、感度低下及び残留電位の上昇等の問題点が生じ易くなる。電荷輸送層の膜厚は、上層の表面保護層と合わせた総膜厚が1〜50μmとなる様に決定され、好ましくは5〜30μmの範囲で調整される。
【0119】
本発明においては上述のいずれの場合においても、前記正孔輸送性化合物の硬化物を含有する感光層に、前記電荷輸送材料を含有することが可能である。単層型感光層の場合は、前記正孔輸送性化合物を含む溶液中に同時に電荷発生材料が含まれることになり、この溶液を適当な下引き層あるいは中間層を設けてもよい、導電性支持体上に塗布後に重合・架橋させて形成される場合と、導電性支持体上に設けられた電荷発生材料及び電荷輸送材料から構成される単層型感光層上に前記正孔輸送性化合物を含有する溶液を塗布後、重合・架橋させる場合のいずれもが可能である。
【0120】
本発明における感光層には、各種添加剤を添加することができる。添加剤とは酸化防止剤及び紫外線吸収剤等の劣化防止剤や、フッ素原子含有樹脂微粒子等の潤剤その他である。
【0121】
図1に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。
【0122】
図において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いでスリット露光やレーザービーム走査露光等の露光手段(不図示)からの露光光4を受ける。こうして電子写真感光体1の周面に静電潜像が順次形成されていく。
【0123】
形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー像は、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給紙された転写材7に、転写手段6により順次転写されていく。
【0124】
像転写を受けた転写材7は、電子写真感光体面から分離されて定着手段8へ導入されて定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。
【0125】
像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等のを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0126】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも一つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール12等の案内手段を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。
【0127】
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいはセンサーで原稿を読みとり、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。
【0128】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター、FAX及びレーザー製版等の電子写真応用分野にも広く用いることができる。
【0129】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。なお、「部」は質量部を示す。
【0130】
(実施例1−1)
まず、導電層用の塗料を以下の手順で調製した。10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部及びシリコーンオイル(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部を1mmφガラスビーズを用いたサンドミル装置で2時間分散して調製した。この塗料を30mmφのアルミニウムシリンダー上に浸漬塗布方法で塗布し、140℃で30分間乾燥することによって、膜厚が20μmの導電層を形成した。
【0131】
次に、N−メトキシメチル化ナイロン5部をメタノール95部中に溶解し、中間層用塗料を調製した。この塗料を前記の導電層上に浸漬コーティング法によって塗布し、100℃で20分間乾燥することによって、膜厚が0.6μmの中間層を形成した。
【0132】
次に、下記構造式(18)に示されるビスアゾ顔料5部、ポリビニルブチラール樹脂2部及びシクロヘキサノン35部を1mmφガラスビーズを用いたサンドミル装置で24時間分散して、更にテトラヒドロフランを加えて電荷発生層用塗料とした。この塗料を前記の中間層の上に浸漬コーティング法で塗布して、100℃で15分間乾燥することによって、膜厚が0.2μmの電荷発生層を形成した。
【0133】
【化41
【0134】
次いで、化合物例No.1−13の正孔輸送性化合物60部をモノクロロベンゼン30部/ジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調製した。この塗料を前記の電荷発生層上にコーティングし、加速電圧150kV、線量30Mradの条件で電子線を照射し樹脂を硬化し、膜厚が15μmの電荷輸送層を形成し、電子写真感光体を得た。
【0135】
作製した電子写真感光体について、経時析出性、電子写真特性、耐久性を評価した。経時析出性については、複写機用のウレタンゴム製のクリーニングブレードを電子写真感光体表面に圧接し、75℃で保存し析出性に対する加速試験を行った。評価は14日後に電子写真感光体表面を顕微鏡により観察し、析出の有無を判定した。析出のない場合は、更に30日後まで試験を継続した。
【0136】
電子写真特性及び耐久性は、この電子写真感光体をキヤノン(株)製LBP−SXに装着して電子写真特性及び耐久性を評価した。初期の電子写真特性[暗部電位Vd、光減衰感度(暗部電位−700V設定で−150Vに光減衰させるために必要な光量)及び残留電位Vsl(光減衰感度の光量の3倍の光量を照射した時の電位)]を測定し、更に10000枚の通紙耐久試験を行い、目視による画像欠陥の発生の有無の観察、電子写真感光体の削れ量及び耐久後の前記電子写真特性を測定し、各々の変化値△Vd、△Vl(初期にVlが−150Vとなる光量と同量の光量を耐久後に照射した時のVlの変化量)及び△Vslを求めた。
【0137】
結果を表3に示すが、本発明の電子写真感光体では析出は発生せず、また電子写真特性が良好であり、耐久での削れ量が少なく、かつ耐久においても電子写真特性にはほとんど変化が見られないという様に、非常に安定した良好な特性を示している。
【0138】
(実施例1−2、1−5、1−10〜1−12、1−18)
実施例1−1において正孔輸送性化合物No.1−13を表4に示した化合物に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0139】
(実施例1−22)
実施例1−1において正孔輸送性化合物No.1−13の量を48部とし、更に下記構造式(19)に示されるアクリルモノマーを12部添加した以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0140】
【化42
【0141】
(実施例1−23)
実施例1−1において正孔輸送性化合物No.1−13の量を48部とし、更に下記構造式(20)に示されるアクリルオリゴマーを12部添加した以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0142】
【化43
【0143】
(実施例1−24〜1−28)
実施例1−1において電子線の照射条件を表5に示した様に代えた以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。結果は、削れ量、耐久性は良好であったが、線量を上げることで初期の電子写真特性において、若干の感度の低下や残留電位の上昇が見られた。その結果を表3に示す。
【0144】
(実施例1−29)
実施例1−1において電荷発生層を形成した後、下記構造式(21)に示されるスチリル化合物20部及び下記構造式(22)に示される繰り返し単位を有するポリカーボネート樹脂10部をモノクロロベンゼン50部/ジクロロメタン20部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。この時の電荷輸送層の膜厚は10μmであった。
【0145】
【化44
【0146】
【化45
【0147】
次いで、正孔輸送性化合物No.1−13 60部をモノクロロベンゼン50部/ジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調製した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、加速電圧150kV、線量30Mradの条件で電子線を照射し樹脂を硬化し、膜厚が5μmの表面保護層を形成し、電子写真感光体を得た。この電位写真感光体を実施例1−1と同様にして評価した。その結果を表3に示す。
【0148】
(実施例1−30)
実施例1−29において正孔輸送性化合物No.1−13を化合物No.1−34に代えた以外は、実施例1−29と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0149】
(実施例1−31)
実施例1−29において正孔輸送性化合物No.1−13を30部とし、構造式(19)に示されるアクリルモノマー30部を添加した以外は、実施例1−29と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0150】
(実施例1−32)
実施例1−29において正孔輸送性化合物No.1−13を30部とし、構造式(20)に示されるアクリルオリゴマーを用いた以外は、実施例1−29と同様にして電子写真感光体を作製し、評価した。その結果を表3に示す。
【0151】
表3
【0152】
表4
【0153】
【表5】
【0154】
(実施例2−1)
実施例1−1において正孔輸送性化合物No.1−13を化合物No.2−1に代え、加速電圧150kV、線量20Mradの条件で電子線を照射した以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0155】
(実施例2−2〜2−5、2−12〜2−14、2−20)
実施例2−1において正孔輸送性化合物No.2−1を表7に示した化合物に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0156】
(実施例2−24)
実施例2−1において正孔輸送性化合物No.2−1の量を48部とし、更に構造式(19)に示されるアクリルモノマーを12部添加した以外は、実施例2−1と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0157】
(実施例2−25)
実施例2−4において正孔輸送性化合物No.2−24の量を48部とし、更に下記構造式(23)に示されるアクリルモノマーを12部添加した以外は、実施例2−4と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0158】
【化46
【0159】
(実施例2−26)
実施例2−1において正孔輸送性化合物No.2−1の量を48部とし、更に構造式(20)に示されるアクリルオリゴマーを12部添加した以外は、実施例2−1と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0160】
(実施例2−27〜2−31)
実施例2−1において電子線の照射条件を表8に示した様に代えた以外は、実施例2−1と同様にして電子写真感光体を作製し、評価した。結果は、削れ量、耐久性は良好であったが、線量を上げることで初期の電子写真特性において、若干の感度の低下や残留電位の上昇が見られた。その結果を表6に示す。
【0161】
(実施例2−32)
実施例2−1において電荷発生層を形成した後、構造式(21)に示されるスチリル化合物20部及び構造式(22)に示される繰り返し単位を有するポリカーボネート樹脂10部をモノクロロベンゼン50部/ジクロロメタン20部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。この時の電荷輸送層の膜厚は10μmであった。
【0162】
次いで、正孔輸送性化合物No.2−1 60部をモノクロロベンゼン50部/ジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調製した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、加速電圧150kV、線量20Mradの条件で電子線を照射し樹脂を硬化し、膜厚が5μmの表面保護層を形成し、電子写真感光体を得た。この電子写真感光体を実施例2−1と同様にして評価した。その結果を表6に示す。
【0163】
(実施例2−33)
実施例2−32において正孔輸送性化合物No.2−1を化合物No.2−46に代えた以外は、実施例2−32と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0164】
(実施例2−34)
実施例2−32において正孔輸送性化合物No.2−1を30部とし、構造式(19)に示されるアクリルモノマー30部を添加した以外は、実施例2−32と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0165】
(実施例2−35)
実施例2−32において正孔輸送性化合物No.2−1を30部とし、構造式(20)に示されるアクリルオリゴマーを用いた以外は、実施例2−32と同様にして電子写真感光体を作製し、評価した。その結果を表6に示す。
【0166】
表6
【0167】
表7
【0168】
【表8】
【0169】
(比較例1)
実施例1−1において電荷発生層を形成した後、構造式(21)に示されるスチリル化合物15部及び下記構造式(24)に示される繰り返し単位を有するポリメチルメタクリレート樹脂15部をモノクロロベンゼン50部/ジクロロメタン20部の混合溶媒中に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に塗布し、110℃で1時間乾燥することによって、電荷輸送層を形成した。この時の電荷輸送層の膜厚は15μmであった。
【0170】
【化47
【0171】
この電子写真感光体を実施例1−1と同様にして評価した結果、14日後に析出が見られた。一方初期の電子写真特性は良好であったが、耐久での表面層の削れ量が多く、かぶり、傷等の画像欠陥が発生している。更に、8000枚以降は削れによって電荷輸送層の膜厚が薄くなり、帯電不良が発生し、画像形成が不可能となった。その結果を表9に示す。
【0172】
(比較例2)
比較例1において構造式(24)で示されるポリメチルメタクリレート樹脂の代わりに構造式(22)で示されるポリカーボネート樹脂を用いた以外は、比較例1と同様にして電子写真感光体を作製し、評価した結果、30日後に析出が観察された。また、ポリメチルメタクリレート樹脂の場合に比べて耐久性は若干向上したものの十分ではなく、やはり耐久後の画像欠陥は発生した。その結果を表9に示す。
【0173】
(比較例3)
比較例2において構造式(21)で示されるスチリル化合物10部及び構造式(22)で示されるポリカーボネート樹脂15部とした以外は、比較例2と同様にして電子写真感光体を作製し、評価した結果、比較例2に比べて耐久性は向上したものの、電荷輸送材料間の距離が広がったことによって電荷輸送能が低下し、感度低下及び残留電位の上昇が見られた。その結果画像においては、ゴーストの発生が見られた。その結果を表9に示す。
【0174】
(比較例4)
実施例1−29において電荷輸送層を形成した後、構造式(21)で示されるスチリル化合物10部及び構造式(22)で示されるポリカーボネート樹脂15部をモノクロロベンゼン50部/ジクロロメタン30部の混合溶媒中に溶解し、表面保護層用塗料を調製した。この塗料をスプレーコーティング法により先の電荷輸送層上に塗布し、120℃にて1時間乾燥することによって、膜厚が5μmの表面保護層を形成した。比較例3に対して、電荷輸送能の高い電荷輸送層が下層にあるために感度低下、残留電位上昇は軽微ではあり、削れ量も向上したが、耐久後の画像にはまだ傷/かぶりが発生しており、十分な耐久性は確保できなかった。その結果を表9に示す。
【0175】
(比較例5)
実施例1−1における正孔輸送性化合物No.1−13の代わりに、特開平5−216249号公報に開示されている下記構造式(25)に示される化合物を用いた以外は、実施例1−1と同様にして電子写真感光体を作製し、評価した。結果は初期の電子写真特性は良好であったが、実施例1−1に対して耐久性が大幅に低下した。その結果を表9に示す。
【0176】
【化48
【0177】
(比較例6)
実施例1−22における正孔輸送性化合物No.1−13の代わりに、構造式(25)に示される化合物を用いた以外は、実施例1−22と同様にして電子写真感光体を作製し、評価した。結果初期の電子写真特性は良好であったが、実施例1−22と比較して耐久性が大幅に低下した。その結果を表9に示す。
【0178】
(比較例7)
実施例1−1において電荷発生層を形成した後、特開平8−248649号公報のP10〜11に記載されている製造法に従って合成した下記構造式(26)に示されるポリカーボネート樹脂20部をテトラヒドロフラン80部に溶解して調製した電荷輸送層用塗料を用いて、前記電荷発生層上に電荷輸送層を形成した。この時の電荷輸送層の膜厚は15μmであった。この電子写真感光体を実施例1−1と同様にして評価した結果、比較例1及び2に対して機械的強度は向上したものの十分な耐久性が確保できなかった。その結果を表9に示す。
【0179】
【化49
【0180】
【表9】
【0181】
【発明の効果】
本発明の電子写真感光体は、耐析出性、耐磨耗性及び耐傷性に優れた効果を有する。更に、感度、残留電位等の電子写真特性も非常に良好であり、また繰り返し使用時にも安定した性能を発揮することができる。また、電子写真感光体の効果は、その電子写真感光体を有するプロセスカートリッジ及び電子写真装置においても当然に発揮され、長期間高画質が維持される。
【図面の簡単な説明】
【図1】 本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 レール
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an electrophotographic photosensitive member, a process cartridge having an electrophotographic photosensitive member, and an electrophotographic apparatus, and more specifically, an electrophotographic photosensitive member having a surface layer containing a specific resin, a process cartridge having the electrophotographic photosensitive member, and The present invention relates to an electrophotographic apparatus.
[0002]
[Prior art]
  Conventionally, inorganic materials such as selenium, cadmium sulfide and zinc oxide have been known as photoconductive materials used for electrophotographic photoreceptors. On the other hand, polyvinylcarbazole, phthalocyanine, and azo pigments, which are organic materials, are attracting attention for advantages such as high productivity and non-pollution, and tend to be inferior in terms of photoconductive properties and durability compared to inorganic materials. It has come to be widely used.
[0003]
  These electrophotographic photoreceptors are often used as function-separated electrophotographic photoreceptors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical characteristics. On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, optical characteristics, and durability characteristics according to the applied electrophotographic process.
[0004]
  Especially in electrophotographic photoreceptors that are used repeatedly, electrical and mechanical external forces such as charging, image exposure, toner development, transfer to paper, and cleaning treatment are directly applied to the surface of the electrophotographic photoreceptor. Durability against them is required. Specifically, durability against surface wear and scratches caused by rubbing is required, and durability against surface deterioration due to charging is also required.
[0005]
  In general, the surface of the electrophotographic photosensitive member is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins and polycarbonate resins have been put to practical use as resins that satisfy the above-mentioned conditions to some extent, but not all of the above-mentioned characteristics are satisfied with these resins, and in particular, electrophotographic photoreceptors. It is difficult to say that the coating film hardness of the resin is sufficiently high in order to achieve high durability. Even when these resins are used as the resin for forming the surface layer, there is a problem that the surface layer is worn during repeated use, and further scratches are generated.
[0006]
  Furthermore, due to the recent demand for higher sensitivity of organic electrophotographic photoreceptors, low molecular weight compounds such as charge transport materials are often added in a relatively large amount. In this case, due to the plasticizer action of these low molecular weight materials. The film strength is remarkably lowered, and there is a problem that the surface layer is worn or scratched during repeated use. Further, when the electrophotographic photosensitive member is stored for a long period of time, the above-mentioned low molecular weight component is precipitated, resulting in a problem of layer separation.
[0007]
  As means for solving these problems, an attempt to use a curable resin as a resin for a charge transport layer is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-127852. Thus, the mechanical strength is increased by curing and crosslinking the charge transport layer using a curable resin as the charge transport layer resin, and the abrasion resistance and scratch resistance during repeated use are greatly improved. However, even if a curable resin is used, the low molecular weight component acts as a plasticizer in the binder resin to the last, so the problems of precipitation and layer separation as described above are not fundamental solutions.
[0008]
  In addition, in charge transport layers composed of organic charge transport materials and binder resins, the dependency of charge transport ability on the resin is large. For example, curable resins with sufficiently high hardness do not have sufficient charge transport ability and are used repeatedly. At the same time, the residual potential has been increased, and both have not been satisfied. In JP-A-5-216249, JP-A-7-72640, etc., the charge transport layer contains a monomer having a carbon-carbon double bond, and the carbon-carbon double bond of the charge transport material and the heat Alternatively, an electrophotographic photoreceptor in which a charge transport layer cured film is formed by reacting with the energy of light is disclosed, but the charge transport material is only immobilized in a pendant form on the polymer main skeleton, and the above-mentioned plastic The mechanical strength is not sufficient because the mechanical action cannot be sufficiently eliminated. In addition, if the concentration of the charge transport material is increased to improve the charge transport capability, the crosslink density is lowered and sufficient mechanical strength cannot be ensured.
[0009]
  As another solution, for example, JP-A-8-248649 discloses an electrophotographic photoreceptor in which a charge transport layer is formed by introducing a group having a charge transport ability into a thermoplastic polymer main chain. However, compared with conventional molecular dispersion type charge transport layer, it is effective for precipitation and layer separation, and mechanical strength is improved, but it is a thermoplastic resin to the last. There is a limit, and it is difficult to say that handling and productivity including resin solubility are sufficient. As described above, the conventional systems have not achieved both high mechanical strength and charge transport ability.
[0010]
[Problems to be solved by the invention]
  The object of the present invention is to solve the problems of conventional electrophotographic photoreceptors using a resin as a surface layer, to improve the wear resistance and scratch resistance by increasing the film strength, and An object of the present invention is to provide an electrophotographic photosensitive member having good precipitation properties.
[0011]
  Another object of the present invention is to provide an electrophotographic photosensitive member that exhibits very little change or deterioration in electrophotographic photosensitive member characteristics such as an increase in residual potential during repeated use, and that can exhibit stable performance even during repeated use. It is to provide.
[0012]
  Still another object of the present invention is to improve the wear resistance and scratch resistance of the surface layer of the electrophotographic photosensitive member, and to provide a long-life and high-quality electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and electrophotography. To provide an apparatus.
[0013]
[Means for Solving the Problems]
  According to the present invention, in an electrophotographic photoreceptor having a photosensitive layer on a conductive support, the photosensitive layer has a positive chain having two or more chain polymerizable functional groups in the same molecule as represented by the following general formula (1). An electrophotographic photoreceptor comprising a compound obtained by polymerizing a hole transporting compound is provided.
[0014]
[Chemical 9]
[0015]
  In the formula, A represents a hole transporting group; P1And P2Represents a chain polymerizable functional group of the following general formula (11) or general formula (12);1And P2Z may be the same or different; Z represents an organic residue which may have a substituent; a, b and d represent 0 or an integer of 1 or more; a + b × d represents an integer of 2 or more; If a is 2 or more, P1May be the same or different, and when d is 2 or more, P2May be the same or different, and when b is 2 or more, Z and P2May be the same or different.
[0016]
Embedded image
[0017]
  In the above general formula (1), A and P1And a hole transporting compound in which the bonding site to Z is replaced by a hydrogen atom is represented by the following general formula (2) or general formula (4).
[0018]
Embedded image
[0019]
  Where R1 ,R2 And Ar 1 IsMay have a substituentPhenylGroup R1And R2Same or different.
However, the general formula (2) has one or more groups represented by the following general formula (3).
[0020]
Embedded image
[0021]
  Where R4 as well asAr2May have a substituentPhenylIndicates a group.
[0022]
Embedded image
[0023]
  Where Ar3 , Ar4 And R 5 May have a substituentPhenylIndicates a group, Ar3And Ar4May be the same or different.
However, the compound represented by the general formula (4) has one group represented by the following general formula (5).
[0024]
Embedded image
[0025]
  Where R7 as well asAr5May have a substituentPhenylIndicates a group.
[0026]
  In addition, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member are provided.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail.
[0028]
  First, the chain polymerizable functional group in the present invention will be described. The chain polymerization in the present invention refers to the former polymerization reaction mode when the polymer formation reaction is largely divided into chain polymerization and sequential polymerization. For details, see, for example, “Basic Chemistry Resin Chemistry” by Tadahiro Miwa. (New Edition) ”July 25, 1995 (1 edition, 8 prints) As described in FIG. 24, it means unsaturated polymerization, ring-opening polymerization, isomerization polymerization, etc. in which the reaction proceeds mainly via intermediates such as radicals or ions.
[0029]
  Chain-polymerizable functional group P in the general formula (1)1And P2Means a functional group capable of the above-described reaction form, and here, a specific example of an unsaturated polymerization or ring-opening polymerizable functional group that occupies most of the functional group and has a wide application range.
[0030]
  Unsaturated polymerization is a reaction in which unsaturated groups such as C═C, C≡C, C═O, C═N, and C≡N are polymerized by radicals, ions, etc., but mainly C═C. It is. Specific examples of the unsaturated polymerizable functional group are shown in Table 1, but are not limited thereto.
[0031]
[Table 1]
[0032]
  In the table, R has an alkyl group such as a methyl group, an ethyl group and a propyl group which may have a substituent, an aralkyl group such as a benzyl group and a phenethyl group which may have a substituent, and a substituent. An aryl group such as a phenyl group, a naphthyl group and an anthryl group, or a hydrogen atom may be used.
[0033]
  Ring-opening polymerization means that unstable cyclic structures with distortions such as carbocycles, oxo rings, and nitrogen heterocycles are activated by the action of a catalyst, and at the same time, the polymerization is repeated to produce a chain polymer. In this case, most of the reactions basically have ions acting as active species. Specific examples of the ring-opening polymerizable functional group are shown in Table 2, but are not limited thereto.
[0034]
[Table 2]
[0035]
  In the table, R has an alkyl group such as a methyl group, an ethyl group and a propyl group which may have a substituent, an aralkyl group such as a benzyl group and a phenethyl group which may have a substituent, and a substituent. An aryl group such as a phenyl group, a naphthyl group and an anthryl group, or a hydrogen atom may be used.
[0036]
  Among the chain polymerizable functional groups according to the present invention as described above, an acryloyloxy group of the following general formula (11) or a methacryloyloxy group of the general formula (12) is used from the viewpoint of polymerization characteristics and the like.
[0037]
Embedded image
[0038]
  In the present invention, the “hole transportable compound having a chain polymerizable functional group” means that the chain polymerizable group described above is chemically bonded to the hole transportable compound described above as a functional group in two or more. Compounds are shown. In this case, the chain polymerizable functional groups may be the same or different. The hole transporting compound having two or more of those chain polymerizable functional groups is represented by the general formula (1).
[0039]
  In general formula (1), “when a is 2 or more P1May be the same or different ”means that each of n different types of chain polymerizable functional groups is represented by P11, P12, P13, P14, P15.... P1nFor example, when a = 3, the chain polymerizable functional group P directly bonded to the hole transporting compound A1May be the same for all three, but the same for two but different for one (for example, P11And P11And P12However, each of the three is different (for example, P12And P15And P17Or the like) (If “d is 2 or more, P2May be the same or different. ”When b is 2 or more, Z and P2"May be the same or different" means the same thing).
[0040]
  A in the general formula (1) represents a hole transporting group, and P1Examples of the hydrogenation compound (hole transport compound) in which the bonding site between Z and Z is replaced with a hydrogen atom include the following general formulas (2) and (4).
[0041]
Embedded image
[0042]
  However, the general formula (2) has one or more groups represented by the following general formula (3).
[0043]
Embedded image
[0044]
  In the general formulas (2) and (3), Ar1 , Ar 2 , R 1 , R 2 And R 4 Is optionally substituted phenylGroupShow. R1And R2May be the same or different.
[0045]
  MaR1Or R2Or Ar1Any two of them, or Ar2And R4May be bonded directly or via a bonding group, and examples of the bonding group include alkylene groups such as methylene group, ethylene group and propylene group, heteroatoms such as oxygen and sulfur atoms, or CH═CH group. It is done.
[0046]
Embedded image
[0047]
  In the general formula (4), the compound represented by the general formula (4) has one group represented by the following general formula (5).
[0048]
Embedded image
[0049]
  In the general formulas (4) and (5), Ar3, Ar4 , Ar 5 , R 5 And R 7 Is optionally substituted phenylGroupShow. Ar3And Ar4May be the same or different.
[0050]
  MaR5Or Ar3Or Ar4Any two of them, or Ar5And R7May be bonded directly or via a bonding group, and examples of the bonding group include alkylene groups such as methylene group, ethylene group and propylene group, heteroatoms such as oxygen and sulfur atoms, or CH═CH group. It is done.
[0051]
  Z in the general formula (1) is an alkylene group which may have a substituent, an arylene group which may have a substituent, CR8= CR9(R8And R9Represents an alkyl group, an aryl group or a hydrogen atom, R8And R9May be the same or different), C = O, S = O, SO2Represents an organic residue in which one or any combination of an oxygen atom or a sulfur atom is combined. Among them, those represented by the following general formula (6) are preferable, and those represented by the following general formula (7) are particularly preferable.
[0052]
Embedded image
[0053]
Embedded image
[0054]
  In the general formula (6), X1~ X3Is an alkylene group having 20 or less carbon atoms such as methylene group, ethylene group and propylene group which may have a substituent, (CR10= CR11)m, C = O, S = O, SO2Represents an oxygen atom or a sulfur atom, Ar6And Ar7Is an arylene group which may have a substituent (benzene, naphthalene, anthracene, phenanthrene, pyrene, thiophene, pyridine, quinoline, benzoquinoline, carbazole, phenothiazine, benzofuran, benzothiophene, dibenzofuran and dibenzothiophene. A group from which atoms are removed). R10And R11Represents an alkyl group such as a methyl group, an ethyl group and a propyl group which may have a substituent, an aryl group such as a phenyl group, a naphthyl group and a thiophenyl group which may have a substituent, or a hydrogen atom;10And R11May be the same or different. m represents an integer of 1 to 5, pt represents 0 or an integer of 1 to 10 (provided that pt is not simultaneously 0).
[0055]
  In the general formula (7), X4And X5Is (CH2)g, (CH = CR12)h, C = O, or an oxygen atom, Ar5Is an arylene group which may have a substituent (benzene, naphthalene, anthracene, phenanthrene, pyrene, thiophene, pyridine, quinoline, benzoquinoline, carbazole, phenothiazine, benzofuran, benzothiophene, dibenzofuran and dibenzothiophene. A group from which atoms are removed). R12Represents an alkyl group such as a methyl group, an ethyl group and a propyl group which may have a substituent, an aryl group such as a phenyl group, a naphthyl group and a thiophenyl group which may have a substituent, or a hydrogen atom. g is an integer of 1 to 10, h is an integer of 1 to 5, u to w are 0 or an integer of 1 to 10 (in particular, 0 or an integer of 1 to 5 is preferred, provided that u to w are It is never 0 at the same time).
[0056]
  In the above general formulas (1) to (7), R1, R2, R4, R5, R7~ R12, Ar1~ Ar8, X1~ X5And Z each may have a halogen atom such as fluorine, chlorine, bromine and iodine; or a nitro group or a cyano group or a hydroxyl group; or an alkyl such as a methyl group, an ethyl group, a propyl group and a butyl group. An alkoxy group such as a methoxy group, an ethoxy group and a propoxy group; or an aryloxy group such as a phenoxy group and a naphthoxy group; or an aralkyl group such as a benzyl group, a phenethyl group, a naphthylmethyl group, a furfuryl group and a thienyl group; Aryl groups such as phenyl, naphthyl, anthryl and pyrenyl; or substituted amino groups such as dimethylamino, diethylamino, dibenzylamino, diphenylamino and di (p-tolyl) amino; styryl and Aryl vinyl groups such as naphthyl vinyl group, etc. That it is preferable that the other.
[0057]
  In addition, the hole transporting compound having two or more chain polymerizable functional groups in the same molecule in the present invention preferably has an oxidation potential of 1.2 (V) or less, 0.4 to 1.2 (V) is more preferable. It has an oxidation potential of 1.2 (V)TheIf exceeded, injection of charges (holes) from the charge generating material is difficult to occur, and problems such as increase in residual potential, deterioration in sensitivity, and increase in potential fluctuation during repeated use are likely to occur, and below 0.4 (V) In addition to problems such as a decrease in charging ability, the compound itself is easily oxidized and thus easily deteriorates, resulting in problems such as sensitivity deterioration, image blurring, and potential fluctuation during repeated use. Because.
[0058]
  The oxidation potential described here is measured by the following method.
[0059]
  (Measurement method of oxidation potential)
  Saturated calomel electrode as reference electrode and 0.1N (n-Bu) as electrolyte4N+ClO4 Using an acetonitrile solution, the potential applied to the working electrode (platinum) was swept by a potential sweeper, and the potential when the obtained current-potential curve showed a peak was taken as the oxidation potential. Specifically, the sample is 0.1N (n-Bu)4N+ClO4 Dissolve in acetonitrile solution to a concentration of about 5-10 mmol%. Then, a voltage is applied to the sample solution with the working electrode, and a current change when the voltage is linearly changed from a low potential (0 V) to a high potential (+1.5 V) is measured to obtain a current-potential curve. In this current-potential curve, the potential at the peak top position when the current value showed a peak (or the first peak when there are a plurality of peaks) was defined as the oxidation potential.
[0060]
  Furthermore, the hole transporting compound having the chain polymerizable functional group has a hole transporting ability of 1 × 10-7(Cm2/ V. (sec) or higher drift mobility is preferable (however, the applied electric field: 5 × 104V / cm). 1 × 10-7(Cm2/ V. If it is less than (sec), holes may not sufficiently move from the post-exposure development to the electrophotographic photosensitive member, so that the apparent sensitivity may be reduced and the residual potential may be increased.
[0061]
  Although the typical example of the hole transportable compound which has a chain polymerizable functional group concerning this invention below is given, it is not limited to these.
[0062]
[22]
[0063]
[Chemical23]
[0064]
[24]
[0065]
[Chemical25]
[0066]
[Chemical26]
[0067]
[27]
[0068]
[Chemical28]
[0069]
[Chemical29]
[0070]
[Chemical30]
[0071]
[Chemical31]
[0072]
[32]
[0073]
[Chemical33]
[0074]
[Chemical34]
[0075]
[Chemical35]
[0076]
[36]
[0077]
[Chemical37]
[0078]
  In the present invention, a typical synthesis method of a hole transporting compound having a chain polymerizable functional group is shown below.
[0079]
  (Synthesis Example 1: Synthesis of Compound No. 1-13)
  Synthesized according to the following route.
[0080]
[Chemical38]
[0081]
  1 (50 g: 0.173 mol), 2 (7.5 g: 81 mmol), anhydrous potassium carbonate (47.8 g) and copper powder (55 g) together with 200 g of 1,2-dichlorobenzene at 180-190 ° C. while heating and stirring. Went for hours. After filtering the reaction solution, the solvent was removed under reduced pressure, and the residue was purified using a silica gel column to obtain 58 g of 3.
[0082]
  After cooling 35 g of N, N-dimethylformamide (DMF) to 0 to 5 ° C., phosphorus oxychloride (18.4 g: 0.12 mol) was slowly added dropwise so as not to exceed 10 ° C. After stirring for 15 minutes after completion of the dropping, a solution of 3 (50.0 g: 0.12 mol) / DMF 50 g was slowly added dropwise. After completion of dropping, the mixture was stirred as it was for 30 minutes, then returned to room temperature, stirred for 1 hour, further heated to 80 to 85 ° C. and stirred for 5 hours. The reaction solution was poured into 800 g of about 15% sodium acetate aqueous solution and stirred for 12 hours. After neutralization, extraction was performed using toluene, the organic layer was dried over anhydrous sodium sulfate, the solvent was removed, and the residue was subjected to column purification using a silica gel column to obtain 37.8 g of 4.
[0083]
  4 (25 g: 56 mmol) was added to 200 ml of ethanol, and 1,1-diphenylhydrazine hydrochloride (35 g: 159 mmol) was added thereto. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then further heated and stirred at 50 ° C. for 2 hours. The reaction solution was cooled, poured into water, extracted with toluene, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 24.5 g of 5.
[0084]
  5 (20 g: 33 mmol) was added to 200 g of methyl cellosolve, and sodium methylate (12.0 g) was slowly added while stirring at room temperature. After completion of the addition, the mixture was stirred at room temperature for 1 hour, and further heated and stirred at 40 to 50 ° C. for 8 hours. The reaction solution was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was subjected to column purification using a silica gel column to obtain 7.1 g of 6.
[0085]
  6 (7.0 g: 11 mmol) and triethylamine (3.5 g: 35 mmol) were added to 100 ml of dry tetrahydrofuran (THF), cooled to 0-5 ° C., and then acryloyl chloride (2.5 g: 28 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 4 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 2.8 g of 7 (Compound No. 1-13) (oxidation potential: 0.69 V).
[0086]
  (Synthesis Example 2: Synthesis of Compound No. 2-1)
  Synthesized according to the following route.
[0087]
[Chemical39]
[0088]
  1 (50 g: 0.173 mol), 2 (8.0 g: 86 mmol), anhydrous potassium carbonate (47.8 g), and copper powder (55 g) together with 200 g of 1,2-dichlorobenzene at 180 to 190 ° C. while heating and stirring. Went for hours. After the reaction solution was filtered, the solvent was removed under reduced pressure, and the residue was recrystallized twice with an acetone / methanol mixed solvent to obtain 51 g of 3.
[0089]
  After cooling 35 g of DMF to 0 to 5 ° C., phosphorus oxychloride (18.4 g: 0.12 mol) was slowly added dropwise so as not to exceed 10 ° C. After stirring for 15 minutes after completion of dropping, a solution of 3 (50.0 g: 0.12 mol) / DMF 50 g was slowly added dropwise. After completion of dropping, the mixture was stirred as it was for 30 minutes, then returned to room temperature, stirred for 1 hour, further heated to 80 to 85 ° C. and stirred for 5 hours. The reaction solution was poured into 800 g of about 15% sodium acetate aqueous solution and stirred for 12 hours. After neutralization, extraction was performed using toluene, the organic layer was dried over anhydrous sodium sulfate, the solvent was removed, and the residue was subjected to column purification using a silica gel column to obtain 37.8 g of 4.
[0090]
  4 (30 g: 67 mmol) and 1,1-diphenylmethyldiethyl phosphate (20.5 g: 67 mmol) were dissolved in 200 ml of dry THF, and then oily sodium hydride (about 60%: 2.97 g: about 74 mmol) at room temperature. Was added slowly. After completion of the addition, the mixture was stirred at room temperature for 30 minutes and then heated and stirred for 3 hours. The reaction solution was cooled, poured into water, extracted with toluene, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 21.1 g of 5.
[0091]
  5 (20 g: 33.6 mmol) was added to 200 g of methyl cellosolve, and sodium methylate (7.0 g) was slowly added while stirring at room temperature. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then further heated and stirred at 70 to 80 ° C. for 12 hours. The reaction solution was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified using a silica gel column to obtain 15.1 g of 6.
[0092]
  6 (15 g: 29.3 mmol) and triethylamine (8.88 g: 87.9 mmol) were added to 100 ml of dry THF and cooled to 0 to 5 ° C., and then acryloyl chloride (8.0 g: 88.4 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature, and the mixture was stirred at room temperature for 6 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 9.8 g of 7 (Compound No. 2-1) (oxidation potential: 0.76 V).
[0093]
  (Synthesis Example 3: Synthesis of Compound No. 2-34)
  Synthesized according to the following route.
[0094]
[Chemical40]
[0095]
  1 (50 g: 0.173 mol), 8 (31.7 g: 0.173 mol), anhydrous potassium carbonate (50 g) and copper powder (65 g) together with 250 g of 1,2-dichlorobenzene and stirring with heating at 180-190 ° C. 10 Went for hours. After filtering the reaction solution, the solvent was removed under reduced pressure, and the residue was subjected to column purification using a silica gel column to obtain 49 g of 9.
[0096]
  After cooling DMF40g to 0-5 degreeC, the phosphorus oxychloride (19.9g: 0.13mol) was dripped slowly so that it might not exceed 10 degreeC. After completion of the dropwise addition, the mixture was stirred as it was for 15 minutes, and then a 9 (45 g: 0.013 mol) / DMF 60 g solution was slowly added dropwise. After completion of dropping, the mixture was stirred as it was for 30 minutes, then returned to room temperature, stirred for 1 hour, further heated to 80 to 85 ° C. and stirred for 5 hours. The reaction solution was poured into 1 kg of about 15% sodium acetate aqueous solution and stirred for 12 hours. After neutralization, extraction was performed using toluene, the organic layer was dried over anhydrous sodium sulfate, the solvent was removed, and the residue was purified using a silica gel column to obtain 33 g of 10.
[0097]
  10 (30 g: 80 mmol) and 1-phenyl-1- (p-methoxyphenyl) methyldiethyl phosphate (27 g: 80.7 mmol) were dissolved in 200 ml of dry THF, where oily sodium hydride (about 60%: 3.8 g: about 95 mmol) was added slowly. After completion of the addition, the mixture was stirred for 30 minutes at room temperature and then heated and stirred for 3 hours. The reaction mixture was cooled, poured into water, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 28.1 g of 11.
[0098]
  11 (20 g: 36 mmol) was added to 150 g of methyl cellosolve, and sodium methylate (8.0 g) was slowly added while stirring at room temperature. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then further heated and stirred at 90 to 100 ° C. for 20 hours. The reaction solution was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified using a silica gel column to obtain 15.8 g of 12.
[0099]
  12 (15 g: 23 mmol) and triethylamine (7.0 g: 69 mmol) were added to 100 ml of dry THF and cooled to 0-5 ° C., and then acryloyl chloride (6.3 g: 70 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature and stirred at room temperature for 6 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified using a silica gel column to obtain 5.85 g of 13 (Compound No. 2-34) (oxidation potential: 0.78 V).
[0100]
  In the present invention, by polymerizing a hole transporting compound having two or more chain-polymerizable functional groups in the same molecule, the compound having a hole transporting ability is crosslinked in the photosensitive layer. A three-dimensional crosslinked structure is formed with points. The hole transporting compound can be polymerized / crosslinked only, or can be mixed with a compound having another chain polymerizable group, and the kind / ratio thereof is arbitrary. As used herein, the compound having another chain polymerizable group includes any monomer or oligomer / polymer having a chain polymerizable group.
[0101]
  When the functional group of the hole transporting compound and the functional group of the other chain polymerizable compound are the same group or a group that can be polymerized with each other, they both have a three-dimensional cross-linked copolymer structure via a covalent bond. Is possible. When both functional groups are functional groups that do not polymerize with each other, the photosensitive layer is a mixture of two or more three-dimensional cured products, or other chain-polymerizable compound monomer or its component in a three-dimensional cured product as a main component. Although it is comprised as what contains hardened | cured material, it is also possible to form IPN (Inter Penetrating Network), ie, an interpenetrating network structure, by controlling the compounding ratio / film forming method well.
[0102]
  Further, a photosensitive layer may be formed from a monomer or oligomer / polymer having no chain polymerizable group and a monomer or oligomer / polymer having a polymerizable group other than the chain polymerizable group. Good.
[0103]
  Further, in some cases, it is possible to contain a hole transporting compound that is not chemically bonded to the three-dimensional crosslinked structure, that is, does not have a chain polymerizable functional group. Further, other various additives, a lubricant such as fluorine atom-containing resin fine particles, and the like may be contained.
[0104]
  The electrophotographic photosensitive member of the present invention has a structure in which a charge generating layer containing a charge generating material and a charge transporting layer containing a charge transporting material are laminated in this order on a conductive support, or vice versa. It is possible to adopt any configuration including a single layer in which the charge generation material and the charge transport material are dispersed in the same layer. In the former stacked type, the charge transport layer may be composed of two or more layers. In the latter single layer type, the charge transport layer may be further formed on the photosensitive layer containing the same charge generating material and charge transport material. Further, a protective layer can be formed on the charge generation layer or the charge transport layer.
[0105]
  In any of these cases, the photosensitive layer only needs to contain one or both of a hole transporting compound having a chain polymerizable group and a polymer obtained by polymerizing, crosslinking, or curing the previous hole transporting compound. However, from the viewpoint of characteristics as an electrophotographic photoreceptor, particularly electrical characteristics such as residual potential, and durability, a function-separated photoreceptor structure in which a charge generation layer / charge transport layer are laminated in this order is preferable. The advantage is that the surface layer can be made highly durable without lowering the charge transport ability.
[0106]
  Next, a method for producing an electrophotographic photoreceptor according to the present invention will be specifically described.
[0107]
  The support of the electrophotographic photosensitive member may have any conductivity, for example, a metal or alloy such as aluminum, copper, chromium, nickel, zinc and stainless steel formed into a drum or sheet, aluminum and Metal foil such as copper laminated on plastic film, aluminum, indium oxide and tin oxide deposited on plastic film, metal with conductive layer applied alone or with binder resin, plastic Examples include films and paper.
[0108]
  In the present invention, an undercoat layer having a barrier function and an adhesive function can be provided on the conductive support. The undercoat layer is used for improving the adhesion of the photosensitive layer, improving the coatability, protecting the support, covering defects on the support, improving the charge injection from the support, and protecting the photosensitive layer from electrical breakdown. Formed for.
[0109]
  Materials for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue and gelatin Etc. are known. These are dissolved in a solvent suitable for each and coated on a support. The film thickness at that time is preferably 0.1 to 2 μm.
[0110]
  When the electrophotographic photoreceptor of the present invention is a function-separated type electrophotographic photoreceptor, a charge generation layer and a charge transport layer are laminated. Examples of charge generation materials used in the charge generation layer include selenium-tellurium, pyrylium, thiapyrylium dyes, various central metals and crystal systems, such as α, β, γ, ε, and X-type crystals. Type phthalocinine compounds, anthanthrone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, monoazo pigments, indigo pigments, quinacridone pigments, asymmetrical quinocyanine pigments, quinocyanines and JP-A No. 54-143645 Amorphous silicon and the like.
[0111]
  In the case of a function-separated type electrophotographic photosensitive member, the charge generation layer comprises a homogenizer, an ultrasonic dispersion, a ball mill, a vibration ball mill, a sand mill, an attritor, and a roll mill together with the charge generation material 0.3 to 4 times the binder resin and solvent. The film is well dispersed by a method such as the above, and a dispersion is applied and dried, or is formed as a single composition film such as a vapor deposition film of the charge generation material. The film thickness is preferably 5 μm or less, and particularly preferably in the range of 0.1 to 2 μm.
[0112]
  When using a binder resin, for example, polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic ester, methacrylic ester, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate , Polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin and epoxy resin.
[0113]
  In the present invention, the hole transporting compound having a chain polymerizable functional group has a charge transport layer formed on the charge generation layer or a charge transport layer made of a charge transport material and a binder resin on the charge generation layer. Later, it can be used as a surface protective layer having a hole transporting ability (this surface protective layer also has a hole transporting ability and is therefore a photosensitive layer). In any case, the surface layer is generally formed by applying a solution containing the hole transporting compound, followed by a polymerization / crosslinking reaction. It is also possible to form a surface layer using a material obtained by reacting to obtain a cured product and then again dispersing or dissolving in a solvent. As a method for applying these solutions, for example, a dip coating method, a spray coating method, a curtain coating method, a spin coating method, and the like are known. From the viewpoint of efficiency and productivity, the dip coating method is preferable. Also, vapor deposition, plasma, and other known film forming methods can be appropriately selected.
[0114]
  In the present invention, the hole transporting compound having a chain polymerizable group is preferably polymerized and crosslinked by radiation. The greatest advantage of radiation polymerization is that it does not require a polymerization initiator, which makes it possible to produce a very high-purity three-dimensional photosensitive layer matrix and ensure good electrophotographic properties. . In addition, because it is a short and efficient polymerization reaction, the productivity is high, and further, because of its good radiation transmission, it inhibits curing when a thick film or a shielding material such as an additive is present in the film. The influence of the is very small. However, depending on the type of the chain polymerizable group and the type of the central skeleton, the polymerization reaction may not easily proceed, and in this case, the polymerization initiator can be added within a range that does not affect the polymerization reaction. The radiation used at this time is an electron beam and a gamma ray.
[0115]
  As an accelerator for electron beam irradiation, any type such as a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type can be used. In the case of irradiating an electron beam, the irradiation condition is very important in the electrophotographic photosensitive member of the present invention in order to develop electric characteristics and durability. In the present invention, the acceleration voltage is preferably 300 kV or less, and optimally 150 kV or less. The dose is preferably in the range of 1 Mrad to 100 Mrad, more preferably in the range of 3 Mrad to 50 Mrad. When the acceleration voltage exceeds 300 kV, the damage of the electron beam irradiation on the electrophotographic photosensitive member characteristics tends to increase. In addition, it should be noted that when the dose is less than 1 Mrad, the crosslinking tends to be insufficient, and when the dose exceeds 100 Mrad, the electrophotographic photosensitive member characteristics are likely to deteriorate.
[0116]
  The amount of the hole transporting compound when the hole transporting compound having the chain polymerizable group is used as a charge transporting layer is the above general formula (with respect to the total mass of the charge transporting layer film after polymerization crosslinking). The hydrogenated product of the hole transporting group A having a chain polymerizable functional group represented by 1) is preferably 20% by mass or more, and more preferably 40% by mass or more. If it is less than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential are likely to occur. In this case, the thickness of the charge transport layer is preferably 1 to 50 μm, and particularly preferably 3 to 30 μm.
[0117]
  When the hole transporting compound is used as a surface protective layer on the charge generation layer / charge transport layer, the charge transport layer corresponding to the lower layer is formed of a suitable charge transport material such as poly-N-vinylcarbazole and polystyrylanthracene. A polymer compound having a heterocyclic ring or condensed polycyclic aromatic, a heterocyclic compound such as pyrazoline, imidazole, oxazole, triazole and carbazole, a triarylalkane derivative such as triphenylmethane, a triarylamine derivative such as triphenylamine, A solution in which a low molecular weight compound such as a phenylenediamine derivative, an N-phenylcarbazole derivative, a stilbene derivative, or a hydrazone derivative is dispersed / dissolved in a solvent together with an appropriate binder resin (which can be selected from the aforementioned resin for charge generation layer) is described above. Apply and dry by known methods It can be formed.
[0118]
  In this case, the ratio of the charge transport material to the binder resin is suitably selected so that the mass of the charge transport material is preferably from 30 to 100, more preferably from 50 to 100, assuming that the total mass of both is 100. When the amount of the charge transport material is less than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential are likely to occur. The film thickness of the charge transport layer is determined so that the total film thickness combined with the upper surface protective layer is 1 to 50 μm, and is preferably adjusted in the range of 5 to 30 μm.
[0119]
  In the present invention, in any of the cases described above, the charge transport material can be contained in the photosensitive layer containing the cured product of the hole transport compound. In the case of a single-layer type photosensitive layer, a charge generation material is simultaneously contained in the solution containing the hole transporting compound, and this solution may be provided with an appropriate undercoat layer or intermediate layer. The hole transporting compound formed on a single layer type photosensitive layer formed of a charge generating material and a charge transporting material provided on a conductive support, when formed by polymerization and crosslinking after coating on the support Any of the cases of polymerizing and cross-linking after applying a solution containing sucrose is possible.
[0120]
  Various additives can be added to the photosensitive layer in the invention. Additives include anti-degradation agents such as antioxidants and ultraviolet absorbers, and lubricants such as fluorine atom-containing resin fine particles.
[0121]
  FIG. 1 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
[0122]
  In the figure, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotated about a shaft 2 in the direction of an arrow at a predetermined peripheral speed. In the rotating process, the electrophotographic photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on the peripheral surface thereof by the primary charging unit 3, and then from an exposure unit (not shown) such as slit exposure or laser beam scanning exposure. Exposure light 4 is received. In this way, electrostatic latent images are sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1.
[0123]
  The formed electrostatic latent image is then developed with toner by the developing unit 5, and the developed toner image is transferred between the electrophotographic photosensitive member 1 and the transfer unit 6 from a paper supply unit (not shown). The transfer means 6 sequentially transfers the transfer material 7 taken out in synchronization with the rotation of the paper and fed.
[0124]
  The transfer material 7 that has received the image transfer is separated from the surface of the electrophotographic photosensitive member, introduced into the fixing means 8, and subjected to fixing to be printed out as a copy (copy).
[0125]
  After the image transfer, the surface of the electrophotographic photosensitive member 1 is cleaned by removing the transfer residual toner by the cleaning unit 9, and is further subjected to charge removal processing by the pre-exposure light 10 from the pre-exposure unit (not shown). Used repeatedly for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.
[0126]
  In the present invention, a plurality of components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 9 described above are integrally coupled as a process cartridge. May be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body using guide means such as a rail 12 of the apparatus main body. A flexible process cartridge 11 can be obtained.
[0127]
  Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is a reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and a laser beam scanning performed in accordance with this signal, Light emitted by driving the LED array, driving the liquid crystal shutter array, or the like.
[0128]
  The electrophotographic photosensitive member of the present invention can be used not only in electrophotographic copying machines but also widely in electrophotographic application fields such as laser beam printers, CRT printers, LED printers, liquid crystal printers, FAX and laser plate making. .
[0129]
【Example】
  Hereinafter, the present invention will be described in more detail with reference to examples. “Part” means part by mass.
[0130]
  (Example 1-1)
  First, the coating material for conductive layers was prepared by the following procedure. 50 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of phenol resin, 20 parts of methyl cellosolve, 5 parts of methanol and silicone oil (polydimethylsiloxane polyoxyalkylene copolymer, average 0.002 part of molecular weight 3000) was prepared by dispersing for 2 hours in a sand mill using 1 mmφ glass beads. This paint was applied onto a 30 mmφ aluminum cylinder by a dip coating method and dried at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 20 μm.
[0131]
  Next, 5 parts of N-methoxymethylated nylon was dissolved in 95 parts of methanol to prepare an intermediate layer coating material. This paint was applied on the conductive layer by a dip coating method and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.6 μm.
[0132]
  Next, 5 parts of a bisazo pigment represented by the following structural formula (18), 2 parts of polyvinyl butyral resin and 35 parts of cyclohexanone are dispersed in a sand mill apparatus using 1 mmφ glass beads for 24 hours, and tetrahydrofuran is further added to form a charge generation layer. The paint was used. This paint was applied onto the intermediate layer by a dip coating method and dried at 100 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.2 μm.
[0133]
[Chemical41]
[0134]
  Compound Example No. 60 parts of the 1-13 hole transporting compound was dissolved in a mixed solvent of 30 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a charge transport layer coating material. This paint is coated on the charge generation layer, and the resin is cured by irradiating with an electron beam under the conditions of an acceleration voltage of 150 kV and a dose of 30 Mrad to form a charge transport layer having a film thickness of 15 μm to obtain an electrophotographic photosensitive member. It was.
[0135]
  The produced electrophotographic photoreceptor was evaluated for precipitation with time, electrophotographic characteristics, and durability. With respect to precipitation over time, a urethane rubber cleaning blade for a copying machine was pressed against the surface of the electrophotographic photosensitive member, stored at 75 ° C., and an accelerated test for precipitation was performed. In the evaluation, the surface of the electrophotographic photosensitive member was observed with a microscope after 14 days, and the presence or absence of precipitation was determined. When there was no precipitation, the test was continued until 30 days later.
[0136]
  The electrophotographic characteristics and durability were evaluated by mounting the electrophotographic photosensitive member on LBP-SX manufactured by Canon Inc. Initial electrophotographic characteristics [dark portion potential Vd, light attenuation sensitivity (light amount necessary for light attenuation to −150 V when dark portion potential −700 V is set) and residual potential Vsl (light amount three times the light attenuation sensitivity light amount) )), And further, a 10,000 sheet passing durability test was performed to visually observe the presence or absence of image defects, the amount of shaving of the electrophotographic photosensitive member, and the electrophotographic characteristics after the durability, The respective change values ΔVd and ΔVl (the amount of change in Vl when an amount of light equal to the amount of light at which Vl initially becomes −150 V after irradiation) and ΔVsl were obtained.
[0137]
  The results are shown in Table 3. No precipitation occurs in the electrophotographic photosensitive member of the present invention, the electrophotographic characteristics are good, the amount of abrasion is small, and the electrophotographic characteristics are hardly changed even in the durability. It shows very stable and good characteristics such as
[0138]
  (Example 1-2, 1-5, 1-10~ 1-12, 1-18)
  In Example 1-1, the hole transporting compound No. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-1 except that 1-13 was replaced with the compounds shown in Table 4. The results are shown in Table 3.
[0139]
  (Example 1-22)
  In Example 1-1, the hole transporting compound No. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1-1 except that the amount of 1-13 was 48 parts and 12 parts of an acrylic monomer represented by the following structural formula (19) was added. The results are shown in Table 3.
[0140]
[Chemical42]
[0141]
  (Example 1-23)
  In Example 1-1, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1-1 except that the amount of 1-13 was 48 parts and 12 parts of an acrylic oligomer represented by the following structural formula (20) was added. The results are shown in Table 3.
[0142]
[Chemical43]
[0143]
  (Examples 1-24 to 1-28)
  An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1-1 except that the irradiation conditions of the electron beam in Example 1-1 were changed as shown in Table 5. As a result, the shaving amount and durability were good, but a slight decrease in sensitivity and an increase in residual potential were observed in the initial electrophotographic characteristics by increasing the dose. The results are shown in Table 3.
[0144]
  (Example 1-29)
  After forming the charge generation layer in Example 1-1, 20 parts of a styryl compound represented by the following structural formula (21) and 10 parts of a polycarbonate resin having a repeating unit represented by the following structural formula (22) were mixed with 50 parts of monochlorobenzene. A charge transport layer was formed on the charge generation layer using a charge transport layer coating material prepared by dissolving in 20 parts of a mixed solvent / dichloromethane. At this time, the thickness of the charge transport layer was 10 μm.
[0145]
[Chemical44]
[0146]
[Chemical45]
[0147]
  Subsequently, the hole transporting compound No. 60 parts of 1-13 were dissolved in a mixed solvent of 50 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a coating material for the surface protective layer. This paint is applied onto the previous charge transport layer by spray coating, and the resin is cured by irradiating with an electron beam under the conditions of an acceleration voltage of 150 kV and a dose of 30 Mrad to form a surface protective layer having a thickness of 5 μm. A photoreceptor was obtained. This electrophotographic photosensitive member was evaluated in the same manner as in Example 1-1. The results are shown in Table 3.
[0148]
  (Example 1-30)
  In Example 1-29, the hole transporting compound No. 1-13 is compound No. 1-13. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-29 except that 1-34 was used. The results are shown in Table 3.
[0149]
  (Example 1-31)
  In Example 1-29, the hole transporting compound No. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-29 except that 1-13 was changed to 30 parts and 30 parts of the acrylic monomer represented by the structural formula (19) was added. The results are shown in Table 3.
[0150]
  (Example 1-32)
  In Example 1-29, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1-29 except that 1-13 was changed to 30 parts and the acrylic oligomer represented by the structural formula (20) was used. The results are shown in Table 3.
[0151]
[Table 3]
[0152]
[Table 4]
[0153]
[Table 5]
[0154]
  (Example 2-1)
  In Example 1-1, the hole transporting compound No. 1-13 is compound No. 1-13. Instead of 2-1, an electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 1-1 except that the electron beam was irradiated under the conditions of an acceleration voltage of 150 kV and a dose of 20 Mrad. The results are shown in Table 6.
[0155]
  (Example 2-22-5, 2-122-14, 2-20)
  In Example 2-1, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-1, except that 2-1 was replaced with the compounds shown in Table 7. The results are shown in Table 6.
[0156]
  (Example 2-24)
  In Example 2-1, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-1, except that the amount of 2-1 was 48 parts and 12 parts of an acrylic monomer represented by the structural formula (19) was added. The results are shown in Table 6.
[0157]
  (Example 2-25)
  In Example 2-4, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-4 except that the amount of 2-24 was 48 parts and 12 parts of an acrylic monomer represented by the following structural formula (23) was added. The results are shown in Table 6.
[0158]
[Chemical46]
[0159]
  (Example 2-26)
  In Example 2-1, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-1, except that the amount of 2-1 was 48 parts and 12 parts of an acrylic oligomer represented by the structural formula (20) was further added. The results are shown in Table 6.
[0160]
  (Examples 2-27 to 2-31)
  An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-1, except that the electron beam irradiation conditions in Example 2-1 were changed as shown in Table 8. As a result, the shaving amount and durability were good, but a slight decrease in sensitivity and an increase in residual potential were observed in the initial electrophotographic characteristics by increasing the dose. The results are shown in Table 6.
[0161]
  (Example 2-32)
  After forming the charge generation layer in Example 2-1, 20 parts of a styryl compound represented by the structural formula (21) and 10 parts of a polycarbonate resin having a repeating unit represented by the structural formula (22) were mixed with 50 parts of monochlorobenzene / dichloromethane. A charge transport layer was formed on the charge generation layer using a charge transport layer coating prepared by dissolving in 20 parts of a mixed solvent. At this time, the thickness of the charge transport layer was 10 μm.
[0162]
  Subsequently, the hole transporting compound No. 2-1 60 parts was dissolved in a mixed solvent of 50 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a coating for the surface protective layer. This paint is applied onto the previous charge transport layer by spray coating, and the resin is cured by irradiating an electron beam under the conditions of an acceleration voltage of 150 kV and a dose of 20 Mrad to form a surface protective layer having a thickness of 5 μm. A photoreceptor was obtained. This electrophotographic photoreceptor was evaluated in the same manner as in Example 2-1. The results are shown in Table 6.
[0163]
  (Example 2-33)
  In Example 2-32, the hole transporting compound No. 2-1, compound no. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2-32, except that 2-46 was used. The results are shown in Table 6.
[0164]
  (Example 2-34)
  In Example 2-32, the hole transporting compound No. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2-32, except that 2-1 was 30 parts and 30 parts of the acrylic monomer represented by the structural formula (19) was added. The results are shown in Table 6.
[0165]
  (Example 2-35)
  In Example 2-32, the hole transporting compound No. An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2-32, except that 2-1 was 30 parts and the acrylic oligomer represented by the structural formula (20) was used. The results are shown in Table 6.
[0166]
[Table 6]
[0167]
[Table 7]
[0168]
[Table 8]
[0169]
  (Comparative Example 1)
  After forming the charge generation layer in Example 1-1, 15 parts of a styryl compound represented by the structural formula (21) and 15 parts of a polymethyl methacrylate resin having a repeating unit represented by the following structural formula (24) were added to monochlorobenzene 50. A charge transport layer was formed by coating on the charge generation layer using a paint for charge transport layer prepared by dissolving in a mixed solvent of 20 parts by weight / dichloromethane and drying at 110 ° C. for 1 hour. The thickness of the charge transport layer at this time was 15 μm.
[0170]
[Chemical47]
[0171]
  As a result of evaluating this electrophotographic photoreceptor in the same manner as in Example 1-1, precipitation was observed after 14 days. On the other hand, the initial electrophotographic characteristics were good, but the amount of abrasion of the surface layer in durability was large, and image defects such as fogging and scratches occurred. Further, after 8000 sheets, the thickness of the charge transport layer was reduced by scraping, resulting in poor charging and image formation became impossible. The results are shown in Table 9.
[0172]
  (Comparative Example 2)
  An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 1 except that the polycarbonate resin represented by the structural formula (22) was used instead of the polymethyl methacrylate resin represented by the structural formula (24) in Comparative Example 1. As a result of evaluation, precipitation was observed after 30 days. Further, although the durability was slightly improved as compared with the case of the polymethyl methacrylate resin, it was not sufficient, and an image defect after durability was generated. The results are shown in Table 9.
[0173]
  (Comparative Example 3)
  An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Comparative Example 2 except that 10 parts of the styryl compound represented by Structural Formula (21) and 15 parts of the polycarbonate resin represented by Structural Formula (22) were used in Comparative Example 2. As a result, although the durability was improved as compared with Comparative Example 2, the charge transport ability was reduced due to the increase in the distance between the charge transport materials, and the sensitivity was lowered and the residual potential was increased. As a result, generation of ghost was observed in the image. The results are shown in Table 9.
[0174]
  (Comparative Example 4)
  After forming the charge transport layer in Example 1-29, 10 parts of the styryl compound represented by the structural formula (21) and 15 parts of the polycarbonate resin represented by the structural formula (22) were mixed in 50 parts of monochlorobenzene / 30 parts of dichloromethane. It melt | dissolved in the solvent and prepared the coating material for surface protection layers. This paint was applied onto the previous charge transport layer by spray coating and dried at 120 ° C. for 1 hour to form a surface protective layer having a thickness of 5 μm. Compared to Comparative Example 3, since the charge transport layer having a high charge transport capability is in the lower layer, the sensitivity decreased, the residual potential increased slightly, and the amount of scraping was improved, but the image after durability still has scratches / fogging. It occurred, and sufficient durability could not be secured. The results are shown in Table 9.
[0175]
  (Comparative Example 5)
  Hole transporting compound No. 1 in Example 1-1. An electrophotographic photosensitive member was produced in the same manner as in Example 1-1 except that a compound represented by the following structural formula (25) disclosed in JP-A-5-216249 was used instead of 1-13. And evaluated. As a result, the initial electrophotographic characteristics were good, but the durability was significantly reduced compared to Example 1-1. The results are shown in Table 9.
[0176]
[Chemical48]
[0177]
  (Comparative Example 6)
  Hole transporting compound No. 1 in Example 1-22 An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1-22 except that the compound represented by the structural formula (25) was used instead of 1-13. Results The initial electrophotographic characteristics were good, but the durability was significantly reduced as compared with Example 1-22. The results are shown in Table 9.
[0178]
  (Comparative Example 7)
  After forming the charge generation layer in Example 1-1, 20 parts of a polycarbonate resin represented by the following structural formula (26) synthesized according to the production method described in P10 to 11 of JP-A-8-248649 was added to tetrahydrofuran. A charge transport layer was formed on the charge generation layer using a charge transport layer coating prepared by dissolving in 80 parts. The thickness of the charge transport layer at this time was 15 μm. As a result of evaluating this electrophotographic photosensitive member in the same manner as in Example 1-1, the mechanical strength was improved as compared with Comparative Examples 1 and 2, but sufficient durability could not be ensured. The results are shown in Table 9.
[0179]
[Chemical49]
[0180]
[Table 9]
[0181]
【The invention's effect】
  The electrophotographic photosensitive member of the present invention has an effect excellent in precipitation resistance, abrasion resistance and scratch resistance. Furthermore, electrophotographic characteristics such as sensitivity and residual potential are very good, and stable performance can be exhibited even during repeated use. In addition, the effect of the electrophotographic photosensitive member is naturally exhibited in a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member, and high image quality is maintained for a long time.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member of the present invention.
[Explanation of symbols]
1 Electrophotographic photoreceptor
2 axis
3 Charging means
4 exposure light
5 Development means
6 Transfer means
7 Transfer material
8 Fixing means
9 Cleaning means
10 Pre-exposure light
11 Process cartridge
12 rails

Claims (9)

導電性支持体上に感光層を有する電子写真感光体において、該感光層が下記一般式(1)で示すような同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合した化合物を含有することを特徴とする電子写真感光体。
{(式中、Aは正孔輸送性基を示す;P及びPは下記一般式(11)あるいは一般式(12)のいずれかの連鎖重合性官能基を示す;PとPは同一でも異なってもよい;Zは置換基を有してもよい有機残基を示す;a、b及びdは0又は1以上の整数を示し、a+b×dは2以上の整数を示す;また、aが2以上の場合Pは同一でも異なってもよく、dが2以上の場合Pは同一でも異なってもよく、またbが2以上の場合、Z及びPは同一でも異なってもよい)
尚、上記一般式(1)で、AとP及びZとの結合部位を水素原子に置きかえた正孔輸送性化合物は、下記一般式(2)又は一般式(4)で示される。
(式中、R 及びAr は置換基を有してもよいフェニル基を示し、R及びR 同一でも異なってもよい)
但し、上記一般式(2)は、下記一般式(3)で示される基を一つ以上有する。
(式中、R 及びArは置換基を有してもよいフェニル基を示す)
(式中、Ar Ar 及びR は置換基を有してもよいフェニル基を示し、Ar及びArは同一でも異なってもよい)
但し、一般式(4)で示される化合物は、下記一般式(5)で示される基を一つ有する。
(式中、R 及びArは置換基を有してもよいフェニル基を示す)}
An electrophotographic photosensitive member having a photosensitive layer on a conductive support, wherein the photosensitive layer has two or more chain polymerizable functional groups in the same molecule as represented by the following general formula (1) An electrophotographic photosensitive member comprising a compound obtained by polymerizing the above.
{(In the formula, A represents a hole transporting group; P 1 and P 2 represent a chain-polymerizable functional group of the following general formula (11) or general formula (12); P 1 and P 2 Z may be the same or different; Z represents an organic residue which may have a substituent; a, b and d represent 0 or an integer of 1 or more; a + b × d represents an integer of 2 or more; When a is 2 or more, P 1 may be the same or different. When d is 2 or more, P 2 may be the same or different. When b is 2 or more, Z and P 2 are the same or different. May be)
In the above general formula (1), the hole transporting compound in which the bonding site between A, P 1 and Z is replaced with a hydrogen atom is represented by the following general formula (2) or general formula (4).
(Wherein, R 1, R 2 and Ar 1 is a phenyl group which may have a location substituent, R 1 and R 2 but it may also be the same or different)
However, the general formula (2) has one or more groups represented by the following general formula (3).
(In the formula, R 4 and Ar 2 represent a phenyl group which may have a substituent)
(Wherein, Ar 3, Ar 4 and R 5 is a phenyl group which may have a substituent, Ar 3 and Ar 4 but it may also be the same or different)
However, the compound represented by the general formula (4) has one group represented by the following general formula (5).
(Wherein R 7 and Ar 5 represent a phenyl group which may have a substituent)}
上記一般式(1)で、AとP及びZとの結合部位を水素原子に置きかえた正孔輸送性化合物が、上記一般式(2)で示される請求項1に記載の電子写真感光体。In the above general formula (1), a hole transporting compound was replaced the binding site of the A and P 1 and Z a hydrogen atom, an electrophotographic photosensitive according to claim 1 represented by the above following general formula (2) body. 上記一般式(1)で、AとP及びZとの結合部位を水素原子に置き換えた正孔輸送性化合物が上記一般式(4)で示される請求項1に記載の電子写真感光体。The electrophotographic photoreceptor according to claim 1, wherein the hole transporting compound in which the bonding site of A, P 1 and Z is replaced with a hydrogen atom in the general formula (1) is represented by the general formula (4). 上記一般式(1)のZが、置換基を有してもよいアルキレン基、置換基を有してもよいアリーレン基、CR=CR(R及びRは置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は水素原子を示し、R及びRは同一でも異なってもよい)、C=O、S=O、SO、酸素原子又は硫黄原子より一つあるいは任意に組み合わされた有機残基を示す請求項1〜3のいずれかに記載の電子写真感光体。Z in the general formula (1) is an alkylene group which may have a substituent, an arylene group which may have a substituent, CR 8 = CR 9 (R 8 and R 9 have a substituent, An alkyl group which may have a substituent, an aryl group which may have a substituent, or a hydrogen atom, and R 8 and R 9 may be the same or different), C═O, S═O, SO 2 , oxygen atom or sulfur The electrophotographic photosensitive member according to any one of claims 1 to 3, which shows an organic residue which is one or arbitrarily combined with atoms. 上記一般式(1)のZが下記一般式(6)で示される請求項1〜4のいずれかに記載の電子写真感光体。
(式中、X〜Xは置換基を有してもよいアルキレン基、(CR10=CR11、C=O、S=O、SO、酸素原子又は硫黄原子を示し、Ar及びArは置換基を有してもよいアリーレン基を示す;R10及びR11は置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は水素原子を示し、R10及びR11は同一でも異なってもよい;mは1〜5の整数、p〜tは0又は1〜10の整数を示す;但しp〜tは同時に0であることはない)
The electrophotographic photosensitive member according to claim 1, wherein Z in the general formula (1) is represented by the following general formula (6).
(Wherein, X 1 to X 3 is an alkylene group which may have a substituent, (CR 10 = CR 11) m, C = O, S = O, SO 2, an oxygen atom or a sulfur atom, Ar 6 and Ar 7 represent an arylene group which may have a substituent; R 10 and R 11 represent an alkyl group which may have a substituent, an aryl group which may have a substituent, or a hydrogen atom. , R 10 and R 11 may be the same or different; m represents an integer of 1 to 5, p to t represents 0 or an integer of 1 to 10; provided that p to t are not 0 at the same time)
上記一般式(1)のZが下記一般式(7)で示される請求項1〜4のいずれかに記載の電子写真感光体。
(式中、Arは置換基を有してもよいアリーレン基を示す;X及びXは(CH、(CH=CR12、C=O又は酸素原子を示す;R12は置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は水素原子を示し、gは1〜10の整数、hは1〜5の整数、u〜wは0又は1〜10の整数を示す;但しu〜wは同時に0であることはない)
The electrophotographic photoreceptor according to claim 1, wherein Z in the general formula (1) is represented by the following general formula (7).
(In the formula, Ar 8 represents an arylene group which may have a substituent; X 4 and X 5 represent (CH 2 ) g , (CH═CR 12 ) h , C═O or an oxygen atom; R 12 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a hydrogen atom, g is an integer of 1 to 10, h is an integer of 1 to 5, and u to w are 0. Or an integer of 1 to 10; provided that u to w are not 0 at the same time)
同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物の酸化電位が0.4〜1.2(V)である請求項1〜のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to any one of claims 1 to 6 , wherein the hole transporting compound having two or more chain polymerizable functional groups in the same molecule has an oxidation potential of 0.4 to 1.2 (V). body. 請求項1〜のいずれかに記載の電子写真感光体を、該電子写真感光体を帯電させる帯電手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段、及び転写工程後の電子写真感光体上に残余するトナーを回収するクリーニング手段からなる群より選ばれた少なくとも一つの手段と共に一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。The electrophotographic photosensitive member according to any one of claims 1 to 7 , a charging means for charging the electrophotographic photosensitive member, a developing means for developing the electrophotographic photosensitive member on which an electrostatic latent image is formed with toner, and a transfer Process cartridge characterized in that it is integrally supported with at least one means selected from the group consisting of cleaning means for collecting toner remaining on the electrophotographic photosensitive member after the process, and is detachable from the electrophotographic apparatus main body. . 請求項1〜のいずれかに記載の電子写真感光体、該電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体に対し露光を行い静電潜像を形成する露光手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段、及び転写材上のトナー像を転写する転写手段を備えることを特徴とする電子写真装置。The electrophotographic photosensitive member according to any one of claims 1 to 7 charging means for charging the electrophotographic photoreceptor, exposing means for forming an electrostatic latent image was exposed to the charged electrophotographic photosensitive member, electrostatic An electrophotographic apparatus comprising: a developing unit that develops an electrophotographic photosensitive member having a latent image formed thereon with toner; and a transfer unit that transfers a toner image on a transfer material.
JP32465999A 1998-11-13 1999-11-15 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Expired - Fee Related JP4365961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32465999A JP4365961B2 (en) 1998-11-13 1999-11-15 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32308498 1998-11-13
JP10-323084 1998-11-13
JP32465999A JP4365961B2 (en) 1998-11-13 1999-11-15 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008025303A Division JP2008112206A (en) 1998-11-13 2008-02-05 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2000206716A JP2000206716A (en) 2000-07-28
JP4365961B2 true JP4365961B2 (en) 2009-11-18

Family

ID=26571052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32465999A Expired - Fee Related JP4365961B2 (en) 1998-11-13 1999-11-15 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP4365961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652713B2 (en) 2009-09-11 2014-02-18 Ricoh Company, Ltd. Furan derivative and electrophotographic photoconductor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164175B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member
JP4165843B2 (en) * 1998-11-13 2008-10-15 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2000206718A (en) * 1998-11-13 2000-07-28 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic device
JP4365960B2 (en) * 1998-11-13 2009-11-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4164176B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP2000206717A (en) * 1998-11-13 2000-07-28 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic device
JP4164174B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Method for producing electrophotographic photosensitive member
US7008743B2 (en) * 2003-10-31 2006-03-07 Samsung Electronics Co., Ltd. Organophotoreceptor with charge transport material having a vinyl ether group
JP4593199B2 (en) * 2004-08-16 2010-12-08 株式会社リコー Acrylic ester compound and method for producing the same
WO2006121187A1 (en) 2005-05-10 2006-11-16 Ricoh Company, Ltd. Acrylic ester compound and manufacturing intermediate thereof, method for manufacturing acrylic ester compound, and latent electrostatic image bearing member, image forming method, image forming apparatus and process cartridge
CN101189558B (en) 2005-06-02 2010-12-08 佳能株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2008242305A (en) * 2007-03-28 2008-10-09 Ricoh Co Ltd Electrophotographic photoreceptor, image-forming apparatus, and process cartridge for image-forming apparatus
JP5594587B2 (en) * 2009-09-11 2014-09-24 株式会社リコー Furan derivative
JP5418981B2 (en) * 2010-02-18 2014-02-19 株式会社リコー Electrophotographic photoreceptor
JP5875455B2 (en) 2011-05-24 2016-03-02 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, method for producing electrophotographic photoreceptor, and urea compound
JP5697629B2 (en) 2011-05-24 2015-04-08 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5680015B2 (en) 2011-05-24 2015-03-04 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5546574B2 (en) 2011-11-30 2014-07-09 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5535268B2 (en) 2011-11-30 2014-07-02 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6218519B2 (en) 2012-10-12 2017-10-25 キヤノン株式会社 Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and particles adsorbing compound

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119924A (en) * 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
US4818650A (en) * 1987-06-10 1989-04-04 Xerox Corporation Arylamine containing polyhydroxy ether resins and system utilizing arylamine containing polyhydroxyl ether resins
JPH02214867A (en) * 1989-02-16 1990-08-27 Mitsubishi Kasei Corp Electrophotographic sensitive body
JPH0484180A (en) * 1990-07-27 1992-03-17 Canon Inc Electrophotographic device
JPH04195062A (en) * 1990-11-28 1992-07-15 Konica Corp Photosensitive body
JP2584930B2 (en) * 1991-03-18 1997-02-26 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit using the same
JP3194392B2 (en) * 1992-01-31 2001-07-30 株式会社リコー Electrophotographic photoreceptor
JPH06266136A (en) * 1993-03-10 1994-09-22 Ricoh Co Ltd Single layer type electrophotographic sensitive body
JPH06289629A (en) * 1993-04-07 1994-10-18 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JPH06317915A (en) * 1993-04-30 1994-11-15 Canon Inc Electrophotosensitive body and electrophotographic device
JP3738048B2 (en) * 1995-02-24 2006-01-25 新電元工業株式会社 Electrophotographic photoreceptor
JP3465096B2 (en) * 1995-04-04 2003-11-10 株式会社リコー Electrophotographic photoreceptor
JPH09127713A (en) * 1995-08-31 1997-05-16 Ricoh Co Ltd Electrophotographic photoreceptor
JP3267519B2 (en) * 1995-11-06 2002-03-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and image forming apparatus
JPH09138512A (en) * 1995-11-15 1997-05-27 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH09204053A (en) * 1996-01-26 1997-08-05 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP3262488B2 (en) * 1996-02-19 2002-03-04 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit using the same
JPH09304958A (en) * 1996-05-10 1997-11-28 Fuji Electric Co Ltd Electrophotographic photoreceptor
JPH09311490A (en) * 1996-05-20 1997-12-02 Ricoh Co Ltd Image forming device
JPH09316012A (en) * 1996-05-23 1997-12-09 Fuji Photo Film Co Ltd Electron charge transporting material
JPH09329904A (en) * 1996-06-12 1997-12-22 Fuji Electric Co Ltd Electrophotographic photoreceptor
JP3899600B2 (en) * 1996-07-17 2007-03-28 富士ゼロックス株式会社 Silane compound and method for producing the same
JPH1097122A (en) * 1996-09-20 1998-04-14 Canon Inc Electrophotographic device
JPH1097090A (en) * 1996-09-20 1998-04-14 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH10111576A (en) * 1996-10-08 1998-04-28 Mitsubishi Paper Mills Ltd Electrophotographic photoreceptor
JPH10142817A (en) * 1996-11-08 1998-05-29 Konica Corp Electrophotographic photoreceptor
JPH10213914A (en) * 1997-01-28 1998-08-11 Ricoh Co Ltd Electrophotographic photoreceptor
JPH10232500A (en) * 1997-02-18 1998-09-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPH10239880A (en) * 1997-02-27 1998-09-11 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH10260543A (en) * 1997-03-17 1998-09-29 Mitsubishi Chem Corp Electrophotographic photoreceptor
JP3685581B2 (en) * 1997-03-19 2005-08-17 三菱製紙株式会社 Organic photoconductive material and electrophotographic photoreceptor using the same
JPH10282698A (en) * 1997-04-04 1998-10-23 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH11148067A (en) * 1997-11-18 1999-06-02 Fuji Photo Film Co Ltd Triphenylene derivative, charge carrying material by utilizing the same and photoconductive material
JP3743590B2 (en) * 1997-11-18 2006-02-08 富士写真フイルム株式会社 Charge transport material and photoconductive material
JP3684068B2 (en) * 1998-05-01 2005-08-17 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3755856B2 (en) * 1998-06-26 2006-03-15 キヤノン株式会社 Electrophotographic photoreceptor
JP4365960B2 (en) * 1998-11-13 2009-11-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2000206718A (en) * 1998-11-13 2000-07-28 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic device
JP4165843B2 (en) * 1998-11-13 2008-10-15 キヤノン株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4164176B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP4164174B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP4164175B2 (en) * 1998-11-13 2008-10-08 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652713B2 (en) 2009-09-11 2014-02-18 Ricoh Company, Ltd. Furan derivative and electrophotographic photoconductor

Also Published As

Publication number Publication date
JP2000206716A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP4365960B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4011791B2 (en) Method for producing electrophotographic photosensitive member
JP4011790B2 (en) Method for producing electrophotographic photosensitive member
EP0964309B1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and process for producing the same photosensitive member
EP1001316B1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP4365961B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4115056B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4585930B2 (en) Method for producing electrophotographic photosensitive member
JP4208367B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4164176B2 (en) Method for producing electrophotographic photosensitive member
JP4769848B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and method for manufacturing electrophotographic photosensitive member
JP4217360B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP4164175B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member
JP2000147814A5 (en)
JP4136238B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2000206717A (en) Electrophotographic photoreceptor and process cartridge and electrophotographic device
JP4165843B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2000147813A5 (en)
JP4115055B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4289859B2 (en) Electrophotographic photosensitive member, process cartridge having the same, and electrophotographic apparatus
JP2007192905A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2000206718A (en) Electrophotographic photoreceptor and process cartridge and electrophotographic device
JP4115057B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2008165248A (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP4115058B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080325

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees