JP6012306B2 - 応力腐食割れの予測方法 - Google Patents

応力腐食割れの予測方法 Download PDF

Info

Publication number
JP6012306B2
JP6012306B2 JP2012152856A JP2012152856A JP6012306B2 JP 6012306 B2 JP6012306 B2 JP 6012306B2 JP 2012152856 A JP2012152856 A JP 2012152856A JP 2012152856 A JP2012152856 A JP 2012152856A JP 6012306 B2 JP6012306 B2 JP 6012306B2
Authority
JP
Japan
Prior art keywords
test
stress
annular member
piece
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012152856A
Other languages
English (en)
Other versions
JP2014016200A (ja
Inventor
一也 堤
一也 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012152856A priority Critical patent/JP6012306B2/ja
Publication of JP2014016200A publication Critical patent/JP2014016200A/ja
Application granted granted Critical
Publication of JP6012306B2 publication Critical patent/JP6012306B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、金属材料に発生する応力腐食割れの試験に適用される多軸応力付加試験装置、及びこれを用いた応力腐食割れの予測方法に関するものである。
例えば発電設備用の機器などに用いられる金属部材においては、金属部材が晒される周辺環境、金属部材の材料、金属部材に加わる応力の三つの条件が重なり、応力腐食割れ(SCC:Stress Corrosion Cracking)が発生することが知られている。
ここで、多軸応力場では、単軸応力場と比べて結晶粒界に沿ってき裂が進展する粒界進展型の応力腐食割れが生じやすい可能性があることが報告されている。従って、多軸応力場での試験を行って応力腐食割れを予測することの必要性が増してくると思われるが、試験が容易でない等の理由から多軸応力場での試験はあまり多くは行われていないのが現状である。
ところで、このような多軸応力場での試験の一例として特許文献1には、試験片を第一試験治具と第二試験治具とで挟み込み、ボルトによって試験片を締め込む試験装置が開示されている。この装置では、ボルトによってZX面及びZY面から応力を与えることで、多軸応力試験を行うことが可能となっている。
特開2002−296161号公報
しかしながら、特許文献1に開示された試験装置では、ボルトによって応力の調節を行うこととなるため試験部における応力レベルを正確に管理することが困難な可能性がある。また、試験片が治具によって挟み込まれた状態で試験が行われるため視認性が悪く、き裂発生時を正確に把握することも容易ではない。さらに、高温度での試験中にはボルトの熱変形等によって、試験片の応力が緩和されてしまうリラクゼーションが発生してしまうおそれもある。
本発明はこのような事情を考慮してなされたものであり、多軸応力場での試験結果の信頼性向上を図る多軸応力付加試験装置、及び応力腐食割れの予測方法を提供することを目的とする。
上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係る多軸応力付加試験装置は、可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、
各前記アーム片に外嵌されて、前記環状部材に対して径方向に向かって押圧しながら該アーム片を固定するナット部材と、を備えることを特徴とする。
このような多軸応力試験装置によると、ナット部材を締め込むと、アーム片を介して本体片に引張り力及び圧縮力を加えることができる。この際、ナット部材の調節のみで引張り力及び圧縮力の調節を行い、試験片に任意の多軸応力を生じさせることが可能となる。
また、環状部材は可撓性を有することから、例えば試験中に試験片に熱変形等が発生した場合には、環状部材がこの熱変形に対抗するように弾性変形することでリラクゼーションの発生を防止できる。
また、前記環状部材と前記ナット部材との間に、前記環状部材の径方向への変形に抗するように該環状部材に付勢力を与えるバネ部材をさらに備えていてもよい。
このようなバネ部材によって、例えば試験中に試験片に熱変形等が発生した場合には、環状部材がこの熱応力に対抗するとともに、このバネ部材によっても対抗することができ、さらなるリラクゼーション発生の防止を図ることができる。
さらに、本発明に係る応力腐食割れの予測方法は、可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、各前記アーム片に外嵌されて、前記環状部材に対して径方向に向かって押圧しながら該アーム片を固定するナット部材とを備える多軸応力負荷試験装置を用いた応力腐食割れの予測方法であって、多軸応力場で前記応力腐食割れの試験を行い、試験データを取得する第一工程と、単軸応力場での前記応力腐食割れの試験データを準備する第二工程と、前記第一工程の試験データと前記第二工程の試験データとの比較を行い、相関関係を算出する第三工程とを備えることを特徴とする。
このような応力腐食割れの予測方法によると、多軸応力場での試験を多く行うことなく、第二工程で準備した単軸応力場での試験データと、第三工程での相関関係とから、さまざまな条件の多軸応力でのデータを得ることが可能となる。単軸応力場での試験はこれまで多く行われており試験データは豊富にあるため、これらの豊富な試験データを有効利用して信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。
本発明の多軸応力付加試験装置、及び応力腐食割れの予測方法によると、アーム片をナット部材によって環状部材に固定する構成としたことで、多軸応力場での試験結果の信頼性向上を図ることが可能となる。
本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、試験片に引張り応力を生じさせる場合を示す。 本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、図1の矢視Aを示すものである。 本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、試験片に圧縮応力を生じさせる場合を示す。 本発明の実施形態の第一変形例に係る多軸応力負荷試験装置の全体図である。 本発明の実施形態の第二変形例に係る多軸応力負荷試験装置の全体図である。 本発明の実施形態の第三変形例に係る多軸応力負荷試験装置の全体図である。 本発明の実施形態の第四変形例に係る多軸応力負荷試験装置の全体図である。 本発明の実施形態の第五変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のB−B断面を示すものである。 本発明の実施形態の第六変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のC−C断面を示すものである。 本発明の実施形態の第七変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のD−D断面を示すものである。 本発明の実施形態の第八変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のE−E断面を示すものである。 本発明の実施形態の第九変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のF−F断面を示すものである。 本発明の実施形態に係る多軸応力負荷試験装置に関し、単軸応力場及び多軸応力場における応力σと応力腐食割れ発生時間tとの関係を示すグラフである。
以下、本発明の第一実施形態に係る多軸応力負荷試験装置1について説明する。
多軸応力負荷試験装置1は、試験片6に二軸以上の荷重を同時に付与した状態で高温環境下や水中などに設置して、応力腐食割れの試験を行う装置である。
図1及び図2に示すように、多軸応力負荷試験装置1は、軸線Pを中心に環状をなす環状部材5と、この環状部材5に支持される試験片6と、試験片6を環状部材5に固定するナット部材14と、ナット部材14と環状部材5との間に設けられるバネ部材15とを備えている。
環状部材5は、可撓性を有する材料よりなり、例えばステンレス、ニッケル合金等の金属や、可撓性を有する樹脂等が用いられる。そしてこれらの材料以外にも、試験片6の熱膨張・熱収縮に対抗するように弾性変形可能な材料であれば様々な材料が適用可能である。
そしてこの環状部材5には、図2に示すように径方向から見た場合には、周方向にわたって間隔をあけて、径方向に貫通する貫通孔5aが形成されている。
試験片6は、環状部材5の径方向内側に配置される本体片11と、本体片11から径方向外側に延びる複数のアーム片12とを有している。
アーム片12は、本体片11の外周において、本実施形態では周方向に互いに90度の間隔をあけて四本が設けられている。そして、径方向外側の端部は棒状をなし、外周面に雄ネジが形成された雄ネジ部12aとされている。そして、この雄ネジ部12aとされた径方向外側の端部が環状部材5の貫通孔5aに挿通されている。
本体片11は、略菱形状をなし、環状部材5の径方向内側のちょうど中央部に配置されて、外周に各アーム片12が結合されている。本実施形態では本体片11での応力を生じさせ易くするよう、アーム片12に比べて環状部材5の軸線P方向の厚さ寸法が小さくなっている。
なお、この本体片11の厚さ寸法は、アーム片12の厚さ寸法に比べて必ずしも小さくなくてもよい。
ナット部材14は、各アーム片12に環状部材5の径方向外側から設けられ、環状部材5の貫通孔5aに挿入されたアーム片12の雄ネジ部12aに螺合されて、アーム片12を環状部材5に固定している。そしてこのナット部材14の締め付けによって、バネ部材15を介して環状部材5を押圧するとともに、アーム片12に対して径方向外側に向かって引張り力を作用させるようにしている。
バネ部材15は、ナット部材14と環状部材5との間において、各々のアーム片12に外周側から嵌め込まれて環状部材5を径方向に付勢するコイルバネである。
このような多軸応力負荷試験装置においては、ナット部材14の締め込むことによって、アーム片12を環状部材5に対して径方向外側に引っ張ることができる。より具体的には、雄ネジ部12a及びナット部材14が右ネジである場合には、径方向外側から見て、ナット部材14を右回りに回転させる。このようにして、アーム片12を介して試験片6に引張り力を作用させることができる。
またこの際、ナット部材14の締め付け量によって、試験片6に作用させる引張り力を調節することができる。即ちナット部材14の調節のみで引張り力の調節を行い、試験片6に任意の多軸(本実施形態では二軸)の引張り応力を生じさせることが可能となる。
ここで、例えば、試験を行う前に、試験片6にひずみゲージを設置して、ナットの締め付け量と試験片6に発生するひずみとの関係を予め取得して、校正曲線を作成しておいてもよい。このようにすることで、試験時にひずみゲージを設置して応力管理を行う必要がなくなり、試験作業の効率化を図ることができる。
さらに、アーム片12毎に引張り力を調節することが可能となるため、応力条件を容易に変更でき、さまざまな多軸応力場の試験条件に対応することができる。
また、例えばオートクレーブ内において試験を行う場合など、過酷な温度条件での試験中には試験片6の熱変形が想定される。この点、環状部材5は可撓性を有しているため、環状部材5の弾性による復元力によって試験片6の熱変形を抑制でき、即ち環状部材5が試験片6の熱変形に対抗することで、試験片6に生じるリラクゼーションを防止できる。
さらに、例えば試験中に試験片6に熱変形等が発生した場合には、環状部材5によってこの熱変形に対抗するとともにこのバネ部材15によっても対抗することができ、さらなるリラクゼーション発生の防止を図ることができる。
ここで、図3に示すように、ナット部材14を環状部材5の径方向内側からアーム片12の雄ネジ部12aに締結することによって、アーム片12を径方向内側に向けて圧縮することができる。より具体的には、雄ネジ部12a及びナット部材14が右ネジである場合には、径方向内側から見て、ナット部材14を右回りに回転させる。このようにして、アーム片12を介して試験片6に圧縮力を作用させることができる。
そして、引張り力を試験片6に作用させる場合と同様に、ナット部材14の締め付け量によって圧縮力を調節でき、さらに、ナット部材14の締結位置をアーム片12毎に異ならせることで、引張り力と圧縮力とを同時に試験片6に作用させることも可能となる。
さらに、試験片6に引張り力及び圧縮力を作用させる際には、ナット部材14の締め付けによって応力調節を行っており、大掛かりな装置は不要となる。この結果、試験片6を含めた装置全体のコンパクト化が可能となり、コストを抑えることができる。従って、多くの試験片6を作成して一度に多くの応力腐食割れ試験を行うことができ、一度に多くの試験データを取得することが可能となる。
本実施形態の多軸応力負荷試験装置によると、環状部材5にナット部材14を用いて試験片6を固定して保持することで、試験片6にさまざまな条件の多軸応力を生じさせ、リラクゼーションの発生を防止でき、試験結果の信頼性の向上を図ることが可能となる。
なお、必ずしもバネ部材15は設けられていなくともよい。この場合にはナット部材14は環状部材5に接触して設けられて、試験片6からの反力は環状部材5のみによって受けることとなる。
また、環状部材5に形成された貫通孔5aは、少なくともアーム片12が貫通可能となっていればよく、周方向の開口寸法は、上述の実施形態に限定されない。例えば、アーム片12の雄ネジ部12aと比べて開口寸法が周方向に大きくなっていてもよい。
また、図4及び図5に示すように、環状部材20、30は円環状に限定されず、例えば外形が四角形、三角形等の多角形状であってもよい。この場合には、環状部材20、30の各辺の中央部で、ナット部材14によって試験片21、31のアーム片22、32が固定されていることが好ましく、即ち、最も撓み易い位置で固定されていることが好ましい。なお、環状部材20、30の各頂点にアーム片22、32を固定することも可能である。
さらに、図6及び図7に示すように、試験片41、51のアーム片42、52は必ずしも周方向に90度の間隔をあけて設けられていなくともよく、試験条件に応じてアーム片42、52の数量、アーム片42、52同士の周方向の間隔は適宜変更可能である。
また、図8に示すように、環状部材60は、軸線P方向に二つに分割されて第一部材61と第二部材62とから構成されていてもよい。この場合、貫通孔5a(図1参照)に代えて、第一部材61及び第二部材62には表面から軸線P方向に凹む凹部61a、62aが設けられており、これら凹部61a、62a同士を対向させて試験片6のアーム片12がこれら凹部61a、62a内に位置するように挟み込まれて固定可能となっている。このようにすることで、より試験片6を環状部材60に設置し易くすることができ、試験を容易に行うことが可能となる。
なお、図9に示すように、環状部材70は第一部材71と第二部材72とから構成され、第二部材72のみに凹部72aが設けられていてもよい。そしてこの凹部72aの形状は、アーム片12を挿入可能であればよく、例えば図9に示す半円状とすることも可能である。
そして第一部材61、71と第二部材62、72とは互いにボルト65、ナット66等によって固定されている。ここで、図10に示す環状部材80のように、例えば第一部材81の軸線P方向を向く表面に突起部81bを設け、第二部材82の軸線P方向を向く表面から軸線P方向に凹む溝部82bを、突起部81bが嵌合可能となるように設けてもよい。
このようにすることで、第一部材81と第二部材82との位置合わせ、及び凹部81aと凹部82aの位置合わせがより確実に可能となり、試験片6を確実に挟み込んで固定することができる。なお、この突起部81b及び溝部82bは周方向全域にわたって設けられている場合に限定されず、第一部材81及び第二部材82の上記表面の一部に設けられていてもよい。そして、突起部81bが溝部82bに嵌合可能となっていれば、これら突起部81b及び溝部82bの形状は適宜選択可能である。
さらに、図11に示すように、環状部材90は、軸線P方向に複数の部材91、92、93、94をボルト95、ナット66等で結合して構成されることで円柱状をなしていてもよい。このような環状部材90によって、同時に複数の試験片6を固定することができ、試験片6毎に異なる引張り力及び圧縮力を作用させることができる。また、凹部91a、92a、92b、93a、93b、94aの形状を適宜選択することで、試験片6自体の形状も異なったものを環状部材90にセットして同時に試験を行うことも可能である。即ち、より複雑な条件下での試験を行うことができる。
また、図12に示すように、環状部材100において、上記貫通孔5a(図1参照)に代えて、環状部材100の軸線P方向を向く表面から軸線P方向に向かって凹む凹部100a、100bが設けられ、これら凹部100a、100bに試験片6のアーム片12が嵌まり込んで固定されていてもよい。
具体的には、本実施形態のようにアーム片12が四本となっている場合には、周方向に隣り合う二本のアーム片12が嵌まり込む二つの凹部100aが軸線P方向の一方側を向く表面に設けられ、残りの二つの凹部100bが軸線P方向の他方側を向く表面である裏面に設けられていることが好ましい。なお、これら凹部100a、100bが一方側と他方側のいずれの表面に設けられるかはアーム片12の数量、設置位置によって適宜変更可能である。
このようにすることで、試験片6を環状部材100に捩じ込むように取り付けて固定することができる。
次に、上述の実施形態の多軸応力負荷試験装置を用いた応力腐食割れの予測方法について説明する。
応力腐食割れの予測方法は、多軸応力負荷試験装置によって多軸応力場での試験データを取得する多軸データ取得工程(第一工程)と、予め蓄積されている単軸応力場での試験データを準備する単軸データ準備工程(第二工程)と、これらの試験データを比較して相関関係を算出する割れ予測工程(第三工程)とを備えている。
多軸データ取得工程は、代表的な複数の多軸応力場での試験を行って、試験片6、21、31、41、51に生じる応力σと、応力腐食割れの発生時間tとの関係についての試験データを取得し、近似曲線を作成する。
単軸データ取得工程は、単軸応力場での応力腐食割れの発生時間との関係について、既に得られた試験データを準備する。なお、単軸応力場での試験は過去に多く行われており、試験データも豊富に存在している。
割れ予測工程は、多軸データ取得工程での試験データと、単軸データ取得工程での試験データとを比較する。そして図13に示すように、単軸応力場の試験データと多軸応力場の試験データとの間の相関関係βを算出する。
このようにすることで、条件を変えて多軸応力場での膨大な量の試験を行うことなく、既に蓄積されている単軸応力場での試験データに相関関係βを適用して、多くの多軸応力場の条件下での応力腐食割れを予測することが可能となる。このようにして信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
例えば、上述の実施形態及び変形例で示した試験片、環状部材等は適宜組み合わせても構わない。
1…多軸応力負荷試験装置 5…環状部材 5a…貫通孔 6…試験片 11…本体片 12…アーム片 12a…雄ネジ部 14…ナット部材 15…バネ部材 P…軸線 20…環状部材 21…試験片 22…アーム片 30…環状部材 31…試験片 32…アーム片 41…試験片 42…アーム片 51…試験片 52…アーム片 60…環状部材 61…第一部材 62…第二部材 65…ボルト 66…ナット 70…環状部材 71…第一部材 80…環状部材 81…第一部材 81b…突起部 82…第二部材 82b…溝部 90…環状部材 95…ボルト 100…環状部材

Claims (1)

  1. 可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、各前記アーム片に外嵌されて、該アーム片を前記環状部材に対して径方向に向かって押圧しながら固定するナット部材とを備える多軸応力負荷試験装置を用いた応力腐食割れの予測方法であって、
    多軸応力場で前記応力腐食割れの試験を行い、試験データを取得する第一工程と、
    単軸応力場での前記応力腐食割れの試験データを準備する第二工程と、
    前記第一工程の試験データと前記第二工程の試験データとの比較を行い、相関関係を算出する第三工程とを備えることを特徴とする応力腐食割れの予測方法。
JP2012152856A 2012-07-06 2012-07-06 応力腐食割れの予測方法 Expired - Fee Related JP6012306B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152856A JP6012306B2 (ja) 2012-07-06 2012-07-06 応力腐食割れの予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152856A JP6012306B2 (ja) 2012-07-06 2012-07-06 応力腐食割れの予測方法

Publications (2)

Publication Number Publication Date
JP2014016200A JP2014016200A (ja) 2014-01-30
JP6012306B2 true JP6012306B2 (ja) 2016-10-25

Family

ID=50111020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152856A Expired - Fee Related JP6012306B2 (ja) 2012-07-06 2012-07-06 応力腐食割れの予測方法

Country Status (1)

Country Link
JP (1) JP6012306B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388003B (zh) * 2015-10-16 2018-08-31 西安航空动力股份有限公司 一种发动机导向叶片组件螺帽推力测定工装及方法
CN114813337A (zh) * 2022-04-06 2022-07-29 北京科技大学 一种用于管片在持续受力下的应力腐蚀试验装置及方法
CN117804890B (zh) * 2024-02-29 2024-06-04 上海核工程研究设计院股份有限公司 一种管件应力腐蚀试验装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767842A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5767843A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5979833A (ja) * 1982-10-30 1984-05-09 Shimadzu Corp 十字引張圧縮試験機
JPS59117952U (ja) * 1983-01-31 1984-08-09 株式会社東京衡機製造所 定荷重載荷装置
JPS63293441A (ja) * 1987-05-27 1988-11-30 Fuji Electric Co Ltd 応力腐食割れ試験方法
JP2744942B2 (ja) * 1988-02-22 1998-04-28 株式会社日立製作所 欠陥発生予測装置
JPH01152239U (ja) * 1988-04-14 1989-10-20
JPH05297181A (ja) * 1992-04-16 1993-11-12 Hitachi Ltd 構造物の応力腐食割れ寿命予測方法及びその試験装置
JP3073354B2 (ja) * 1993-02-12 2000-08-07 三菱重工業株式会社 クロス荷重負荷装置
JP2000180323A (ja) * 1998-12-10 2000-06-30 Ohbayashi Corp 一定荷重付与装置
JP4249403B2 (ja) * 2001-03-29 2009-04-02 株式会社東芝 多軸応力負荷試験装置
JP5668532B2 (ja) * 2011-03-04 2015-02-12 横浜ゴム株式会社 シミュレーション方法および材料パラメータ同定方法

Also Published As

Publication number Publication date
JP2014016200A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6012306B2 (ja) 応力腐食割れの予測方法
Li et al. Research on preload of bolted joints tightening sequence-related relaxation considering elastic interaction between bolts
CN108732035B (zh) 一种榫连接结构的高温微动疲劳寿命测试方法
Zhu et al. Analytical evaluation of elastic interaction in bolted flange joints
JP2009092662A (ja) ジェットポンプ感知ラインのtボルトクランプアセンブリ
JP5812815B2 (ja) フレッティング疲労試験治具、フレッティング疲労試験装置、及び、フレッティング疲労強度評価方法
US20050244245A1 (en) Method and devices to limit a creep of mechanical fasteners
KR20090061800A (ko) 소형 실배관 시편
Zhu et al. Elastic interaction in bolted flange joints: an analytical model to predict and optimize bolt load
CN106198265B (zh) 一种隔片零件疲劳测试试验装置及试验方法
JP5920851B2 (ja) タービンのための固定装置および固定を提供するための方法
Zakavi et al. Evaluation of combined hardening model in ratcheting behavior of pressurized piping elbows subjected to in-plane moments
Zhang et al. Invention of smart tightening tool for directly controlling the preload of bolted joints
JP2014163795A (ja) 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法
Hu et al. Analytical studies of full-scale steel T-stub connections using delicate 3D finite element methods
Karvelas et al. Strong cyclic loading of an industrial piping system
FUJII et al. Non-destructive estimation of three-dimensional inelastic strain via nonlinear inverse analysis using displacement
Xue et al. Behaviour and mathematical model for semi-rigid threaded-sleeve connection
CN210426963U (zh) 一种挡板类零件试验用紧度调节装置
Adhreena et al. A Review on the Application of Fiber Bragg Grating Sensors in Bolted Joints Health Monitoring
Bobrenko et al. Loading analysis of detachable joints by the acoustic method
Muresan et al. Finite element analysis of an extended end-plate connection using the T-stub approach
Richardson Study of Simplified Assembly Patterns With Load-Based Feedback and Preemptive Elastic Interaction Compensation
Grzejda Impact of nonlinearity of the contact layer between elements joined in a preloaded bolted flange joint on operational forces in the bolts
Mayura Guru et al. Intelligent fastening with A‐BOLTTM technology and sensor networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R151 Written notification of patent or utility model registration

Ref document number: 6012306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees