JP2014163795A - 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法 - Google Patents

多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法 Download PDF

Info

Publication number
JP2014163795A
JP2014163795A JP2013035035A JP2013035035A JP2014163795A JP 2014163795 A JP2014163795 A JP 2014163795A JP 2013035035 A JP2013035035 A JP 2013035035A JP 2013035035 A JP2013035035 A JP 2013035035A JP 2014163795 A JP2014163795 A JP 2014163795A
Authority
JP
Japan
Prior art keywords
test piece
test
stress load
multiaxial
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013035035A
Other languages
English (en)
Inventor
Yuichiro Nomura
雄一郎 野村
Yuichi Fukuda
悠一 福田
Kazuya Tsutsumi
一也 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013035035A priority Critical patent/JP2014163795A/ja
Publication of JP2014163795A publication Critical patent/JP2014163795A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】試験片の表面を観察できる多軸応力負荷試験装置を提供する。
【解決手段】多軸応力負荷試験装置100は、平板状をなす試験片10の周縁部13を、該試験片10の周縁部13の内側の内側部14における表面11が露出するように固定する固定治具30と、試験片10の内側部14の裏面12を表面11側に向かって押圧する凸部24を有する押圧治具20と、を備える。これら固定治具30と押圧治具20とによって試験片10の内側部14を凸部24の形状に応じて湾曲させることで、試験片10に多軸応力場を生成する。
【選択図】図2

Description

本発明は、金属材料に発生する応力腐食割れの試験に適用される多軸応力負荷試験装置、多軸応力負荷試験方法、及び、これを用いた応力腐食割れの予測方法に関するものである。
例えば発電設備用の機器などに用いられる金属部材には、金属部材が晒される周辺環境、金属部材の材料、金属部材に加わる応力の三つの条件が重なることで、応力腐食割れ(SCC:Stress Corrosion Cracking)が発生することが知られている。
ここで、多軸応力場では、単軸応力場と比べて金属部材の結晶粒界に沿ってき裂が進展する粒界進展型の応力腐食割れが生じ易い可能性があることが報告されている。これを踏まえて、多軸応力場での試験を行って応力腐食割れを予測する重要性が増してくるが、試験が容易でない等の理由から多軸応力場での試験は多く行われていないのが現状である。
ところで、このような多軸応力場での試験の一例として例えば特許文献1には、試験片の両面を第一試験治具と第二試験治具とで全面にわたって挟み込み、ボルトによって試験片を締め込む試験装置が開示されている。この装置では、ボルトによってZX面及びZY面から応力を与えることで、多軸応力負荷試験を行うことが可能となっている。
特開2005−133807号公報
しかしながら、特許文献1に開示された試験装置では、第一試験治具と第二試験治具とで試験片の両面全面を挟み込むため、これら第一試験治具及び第二試験治具によって多軸の負荷が与えられている試験片の表面を観察することができない。
本発明はこのような課題に鑑みてなされたものであって、試験片の表面を観察できる多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法を提供することを特徴とする。
本発明は、上記課題を解決するため、以下の手段を採用している。
即ち、本発明に係る多軸応力負荷試験装置は、平板状をなす試験片の周縁部を、該試験片の前記周縁部の内側の内側部における表面が露出するように固定する固定部と、前記試験片の内側部の裏面を表面側に向かって押圧する凸部を有する押圧部と、を備えることを特徴とする。
このような特徴の多軸応力負荷試験装置によれば、固定部によって試験片の周縁部を固定し、該試験片の内側部を裏面側から凸部によって押圧することで、試験片の表面を露出させながら該試験片を表面側に向かって湾曲させることができる。これによって、容易に試験片に多軸応力場を生成することができる。
また、本発明に係る多軸応力負荷試験装置において、前記押圧部は、前記試験片の表面における周縁部に全周にわたって対向する当接部を有し、前記凸部は、前記当接部に囲まれるように該当接部の内側に設けられて、前記試験片の前記内側部に向かって前記当接部よりも突出ており、前記固定部は、前記試験片の表面の前記周縁部が全周にわたって前記当接部に当接するように、前記試験片を前記当接部に固定することが好ましい。
これによって、凸部の形状に応じて試験片に対して常に一定の負荷条件を与えることができる。即ち、試験片を固定部と押圧部とによって挟み込むようにするのみで多軸応力場を生成することができるため、凸部の形状が同一である限り、作業者の熟練度等によらず常に一定の多軸応力場を生成することができる。さらに、凸部の高さや形状を変えることによって様々な条件の多軸応力場を生成することができる。
さらに、本発明に係る多軸応力負荷試験装置においては、前記凸部が、前記当接部から前記試験片の中心に向かうにしたがって突出するように湾曲する曲面状をなしていることが好ましい。
これによって、試験片の内側部全域を曲面状に湾曲させることができるため、該内側部全域に多軸応力場を生成することができる。
また、本発明に係る多軸応力負荷試験装置においては、前記凸部が、前記試験片の裏面を押圧する針状をなしていてもよい。
これによって、試験片を容易に表面側に向かって変形させることができ、該試験片に多軸応力場を容易に生成することができる。
さらに本発明に係る多軸応力負荷試験装置においては、前記試験片の内側部の一部に、他の部分よりも厚さの小さい薄肉部が形成されていることが好ましい。
これによって、多軸応力場において試験片の薄肉部の厚さや形状に応じた種々の試験条件を実現できる。
また、本発明に係る多軸応力負荷試験装置においては、前記薄肉部が、前記試験片の内側部における前記凸部の最も突出した部分に対応する部位を囲む環状をなしていることが好ましい。
これによって、試験片における最も荷重がかかる周囲全域に、より容易に多軸応力場を生成することができる。
一方、本発明に係る多軸応力負荷試験方法は、平板状をなす試験片の周縁部を、該試験片の前記周縁部の内側の内側部における表面が露出するように固定する固定工程と、前記試験片の内側部の裏面を表面側に向かって押圧する押圧工程とを有する多軸応力負荷試験工程を備えることを特徴とする。
このような特徴の多軸応力負荷試験方法によれば、試験片の周縁部を固定し、該試験片の内側部を裏面側から凸部によって押圧することで、試験片の表面を露出させながら該試験片を表面側に向かって湾曲させることができる。
さらに、本発明に係る応力腐食割れの予測方法は、上記の多軸応力負荷試験方法を備え、前記多軸応力負荷試験工程は、前記固定工程と前記押圧工程とにより生成される多軸応力場での前記試験片の応力腐食割れ試験データを取得する第一試験データ取得工程とさらに有し、単軸応力場での前記試験片の応力腐食割れ試験データを取得する第二試験データ取得工程と、前記第一試験データ取得工程と前記第二試験データ取得工程との各前記応力腐食割れ試験データの比較を行い、これらの相関関係を算出する相関関係取得工程と、をさらに備えることを特徴とする。
このような応力腐食割れの予測方法によれば、多軸応力場での試験を多く行うことなく、第二試験データ取得工程で取得した単軸応力場での応力腐食割れ試験データと、相関関係取得工程で取得した相関関係とから、さまざまな条件の多軸応力でのデータを得ることが可能となる。単軸応力場での試験はこれまで多く行われており試験データは豊富にあるため、これらの豊富な試験データを有効利用して信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。
本発明の多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法によれば、試験片の表面を露出させながら試験片に多軸応力場を生成することができるため、多軸応力負荷試験を試験片の表面を観察しながら行うことが可能となる。
第一実施形態に係る多軸応力負荷試験装置の分解縦断面図である。 第一実施形態に係る多軸応力負荷試験装置の縦断面図である。 第一実施形態に係る多軸応力負荷試験装置の平面図である。 第一実施形態の変形例に係る試験片の斜視図である。 試験片における溝部(薄肉部)の縦断面図である。 第一実施形態に係る多軸応力負荷試験装置の斜視図である。 第一実施形態に係る多軸応力負荷試験装置の斜視図である。 第三実施形態に係る応力腐食割れの予測方法のフローチャートである。 単軸応力場及び多軸応力場における応力と応力腐食割れ発生時間との関係を示すグラフである。
以下、本発明の第一実施形態に係る多軸応力負荷試験装置100について説明する。
図1に示すように、多軸負荷試験装置は、試験片10に二軸以上の荷重を同時に付与した状態で高温環境下や水中等に設置して、応力腐食割れの試験を行う装置であって、押圧治具20(押圧部)と固定治具30(固定部)とを備えている。
試験片10は、図1〜図3に示すように、金属から形成された平板状をなしており、本実施形態では、平面視にて軸線Oを中心とした円形をなす円板状をなしている。この試験片10の表面11と裏面12とは互いに平行をなしており、試験片10の周縁部13には、軸線Oの周方向に間隔をあけて複数(本実施形態では8つ)のボルト挿通孔16が形成されている。このボルト挿通孔16は、試験片10の表面11と裏面12とにわたって貫通している。
押圧治具20は、試験片10の裏面12側に配置される治具であって、基台21と凸部24とを有している。この押圧治具20は例えばステンレスやニッケル合金等の金属から形成されている。
基台21は、軸線Oを中心とした円板状をなしている。凸部24は、基台21と一体をなしており、基台21における試験片10の裏面12側を向く表面から該試験片10の裏面12に向かって突出するように形成されている。この凸部24は、基台21の表面における該基台21の外周から一定距離離間した位置から、軸線Oの径方向内側に向かうに従って漸次隆起するように形成されている。本実施形態の凸部24は、基台21の表面から突出する球面状をなしており、即ち、凸部24の表面は球面25とされている。そして、該球面25の頂部を軸線Oが通過するように構成されている。
基台21の表面における凸部24が形成されている領域よりも該基台21における外周側の領域、即ち、基台21における表面及び外周面によって形成される稜線と凸部24の外縁とによって囲まれる領域は、軸線Oを中心とした環状をなして試験片10の周縁部13が当接可能な当接面23(当接部)とされている。この当接面23は軸線Oに直交する平坦状をなしている。また、基台21の当接面23には、該当接面23から軸線Oに平行に凹むようにしてボルト固定孔22が形成されている。このボルト固定孔22は、基台21の当接面23に軸線Oの周方向に間隔をあけて複数(本実施形態では8つ)が形成されている。なお、ボルト固定孔22の内周面32には雌ネジが形成されている。
以上のように、押圧部120の表面は、球面状に突出する凸部24と該凸部24の外周側に形成された平坦状をなす当接面23とから構成されている。
なお、試験片10の周縁部13は、該試験片10の外周側の領域のうち押圧治具20の当接面23に対応する領域とされている。また、試験片10の周縁部13の内側の領域、即ち、押圧治具20の凸部24における球面25に対応する領域は、内側部14とされている。
固定治具30は、試験片10の表面11側に配置され、試験片10を押圧治具20に対して固定するための治具である。この固定治具30は、固定リング31とボルト34とを有している。
固定リング31は、軸線Oを中心としたリング状をなす部材である。この固定リング31は、試験片10の内側部14に対応する領域が軸線O方向にくり抜かれたリング状をなしており、即ち、該試験片10の内周面32の内径は試験片10の内側の内径、及び、押圧治具20の凸部24の外縁の直径と同一に設定されている。また、固定リング31の外径は、試験片10及び押圧治具20と同一に設定されている。
固定リング31における試験片10の表面11側を向く裏面は環状をなしており、軸線Oの周方向全域にわたって試験片10の周縁部13に当接可能とされている。即ち、該固定リング31の裏面は、試験片10の周縁部13と同一の面積をなしており、その全面が試験片10の周縁部13に当接する。
また、固定リング31には、周方向に間隔をあけて該固定リング31を軸線O方向に貫通するボルト貫通孔33が複数(本実施形態では8つ)形成されている。このボルト貫通孔33は、試験片10のボルト挿通孔16、押圧治具20のボルト固定孔22と対応する位置に形成されている。
ボルト34は、試験片10を固定リング31と押圧治具20とで挟み込んだ状態でこれらを固定するための部材である。このボルト34は、頭部35と軸部36とを有している。軸部36は軸状をなしており、該軸部36の先端外周面には雄ネジが形成されている。この軸部36は、固定リング31のボルト貫通孔33と試験片10のボルト挿通孔16に通された状態で、該軸部36の先端が押圧治具20のボルト固定孔22に螺合する。また、頭部35は、ボルト固定孔22に螺合した軸部36におけるボルト固定孔22とは反対側の端部に一体に設けられており、該軸部36よりも一回り拡径した形状をなしている。この頭部35は、軸部36がボルト固定孔22に螺合した状態で、固定リング31における試験片10とは反対側を向く表面に当接する。
次に、上記構成の多軸応力負荷試験装置100の使用方法について説明する。この多軸応力負荷試験装置100により試験片10に多軸応力場を生成する際には、図1に示すように、押圧治具20、試験片10、固定治具30の順に配置する。
即ち、押圧治具20における当接面23と試験片10の裏面12における周縁部13が互いに軸線O方向に対向するように、かつ、押圧治具20における凸部24の球面25と試験片10の裏面12における内側部14が互いに軸線O方向に対向するように配置する。さらに、試験片10の表面11における周縁部13に固定リング31の裏面が対向するように配置する。
そして、この状態で固定リング31側から、各固定リング31のボルト貫通孔33、試験片10のボルト挿通孔16に各ボルト34の軸部36を通し、該軸部36の先端を押圧治具20のボルト固定孔22に螺合させる。これによって、押圧治具20に対して試験片10、固定リング31を仮止めする。そして、この状態から、各ボルト34をねじ込んでいくと、固定リング31の表面がボルト34の頭部35によって押圧されることにより、試験片10の周縁部13が押圧治具20の当接面23に近接していく。なお、この際に複数のボルト34を均等にねじ込んでいくことにより、試験片10の周縁部13全周が当接面23に近接する。
これと同時に、当初凸部24の球面25の頂部のみに当接していた試験片10の裏面12の内側部14が、該凸部24の球面25の曲率にしたがって湾曲していく。即ち、試験片10の周縁部13が押圧治具20の当接面23に近接していくことに伴って、試験片10の裏面12の内側部14は、凸部24の球面25との接触面積を徐々に拡大するようにして該凸部24の形状にしたがって湾曲していく。そして、ボルト34のねじ込みにより試験片10の周縁部13が押圧治具20の当接面23全域にわたって当接した段階、即ち、試験片10の周縁部13が押圧治具20の当接面23と固定リング31の裏面とによって完全に挟み込まれた段階で、試験片10の内側部14全域が凸部24の球面25と接触する。これによって、最終的に、試験片10の内側部14はその全域において凸部24の球面25の曲率に応じて湾曲した状態となる。
このように試験片10が湾曲すると、該試験片10の内側部14には、図3の矢印に示すように多軸応力場が生成される。即ち、試験片10が三次元的に湾曲されるように該試験片10に荷重が付与される結果、試験片10には周方向及び径方向に向かっての多軸での応力が発生する。なお、このように試験片10に多軸応力場が生成された状態においても、固定治具30の固定リング31は試験片10の表面11における内側部14を全面にわたって軸線O方向に露出させている。
以上のように、本実施形態によれば、平板状をなす試験片10の周縁部13を固定治具30によって内側部14における表面11が露出するように押圧治具20に固定した際に、該試験片10の内側部14の裏面12が押圧治具20の凸部24によって表面11側に押圧されることで、試験片10に容易に多軸応力場を生成することができる。
また、凸部24の高さや形状を変えることによって様々な条件の多軸応力場を生成することができる。
さらに、試験片10を固定治具30と押圧治具20とによって完全に挟み込むようにするのみで多軸応力場を生成することができるため、凸部24の形状が同一である限り、作業者の熟練度等によらず常に一定の多軸応力場を生成することができる。
また、凸部24が曲面状をなしており、特に本実施形態では球面25であるため、試験片10の内側部14全域を湾曲させることができ、多軸応力場を広範囲にわたって生成することができる。
また、特に本実施形態では、固定治具30と押圧治具20とによって試験片10を湾曲させた状態でも、該試験片10の表面11は固定リング31の内側領域を介して外部に露出しているため、多軸応力場が生成された試験片10を外部から容易に観察することができる。したがって、試験片10に多軸応力場を生成し、その後に応力腐食割れが発生するまでの経過を持続的かつ確実に観察することができる。
さらに、例えば試験片10として冷間加工材を用いれば、変形が小さく破断し難い試験の実施が可能となる。
また、試験片10の破断やき裂長さ、深さ等を分析することで、応力腐食割れの発生時間を容易に把握することができる。
なお、試験片10の厚さを変化させることによっても、複雑な種々の多軸応力場を模擬することができる。このような多軸応力の程度は、事前のひずみゲージの計測、残留応力測定、解析により取得する。
ここで、例えば第一実施形態の変形例として、例えば図4に示すように、試験片10の表面11に溝部15(薄肉部)が形成されていてもよい。
即ち、この変形例では、試験片10の表面11に軸線Oを中心とした円形状をなす溝部15が形成されている。このように溝部15を形成することで、試験片10における該溝部15が形成された領域は他の領域に比べて厚さが小さくなる。これによって、溝部15が応力集中場となるため、上記押圧治具20と固定治具30とによって試験片10を固定することで、該試験片10の溝部15に応力が大きく集中した状態を生成することができる。したがって、より柔軟に様々な条件の多軸応力場を形成することができる。
さらに、円形状の溝部15の形状(深さ、軸線Oからの距離、切欠き形状、底部の曲率)を変化させれば、切欠き効果により種々の多軸応力場を容易に実現できる。また、このような切欠き効果により、局所的に単軸の試験よりも高応力を付加することができる。
なお、溝部15における該溝部15の延在方向に直交する断面形状としては、例えば図5(a)に示すようにV字状をなしていてもよいし、図5(b)に示すように矩形状をなしていてもよい。また、溝部15の当該断面形状をこれら以外の他の形状としてもよい。このように溝部15の形状を種々変更することによって、様々な条件の多軸応力場を生成することができる。
また、溝部15は試験片10の表面11に形成されるのみならず試験片10の裏面12に形成されていてもよく、溝部15の形状は円形状(真円状)に限られず、楕円形状、多角形状、ライン状等、いずれの形状であってもよい。
このような溝部15の負荷力と溝部15の最大応力は、解析及びX線残留応力測定等により予め取得しておくことがえきる。
さらに、試験片10の表面11又は裏面12から凹む凹部(薄肉部)を溝部15に代えて、または溝部15とともに形成してもよい。このような凹部は、ランダムに複数配置してもよいし、軸線Oを中心として周方向に間隔をあけて複数配置してもよい。
また、試験片10に、溝部15、凹部に限られず、厚さの小さい領域である薄肉部を形成してもよい。これによって薄肉部には該薄肉部以外の他の部分に比べて応力が大きく集中するため、上記同様、種々の条件の多軸応力場を形成することができる。
さらに、試験片10の厚さを場所によって変更することによっても、種々の条件の多軸応力場を形成することができる。
次に本発明の第二実施形態について図6及び図7を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
この第二実施形態の試験片10は第一実施形態の変形例と同様、即ち、表面11に溝部15が形成された試験片10を採用している。また、第二実施形態の多軸応力負荷試験装置200は、固定部110と押圧部120とを備えている。
固定部110は、図6に示すように、試験片10の周縁部13を固定する。図6では、固定部110として、例えば試験片10の周縁部13を全周にわたって表面11及び裏面12から挟み込むように支持する構成を採用している。
なお、固定部110としては、試験片10の周縁部13を不動に固定できれば、他の構成を採用してもよい。
押圧部120は、一方向に延びる棒状をなす部材であって、該棒状部材の先端には、該先端に向かうに従って漸次縮径するテーパ状をなして先端が尖った針状部121(凸部)とされている。
次に、以上の構成の第二実施形態の多軸応力負荷試験装置200の使用方法について説明する。
まず、固定部110によって試験片10の周縁部13を固定する。これによって試験片10の周縁部13に外力が作用しても移動不能となる。この状態で、試験片10の中心を通過する軸線Oに沿って、押圧部120を試験面の裏面12に近接させるように移動させる。これにより、押圧部120の先端の針状部121が試験片10の裏面12の内側部14における中央に当接する。そして、この状態で押圧部120の針状部121によって試験片10の裏面12を表面11側に向かって押圧すると、図7に示すように、試験片10の内側部14が押圧力に抗して表面11側に湾曲する。なお。この際、試験片10の周縁部13は固定されているため、該試験片10の内側部14のみが表面11側に湾曲する。
試験片10が湾曲すると、該試験片10の内側部14には多軸応力場が生成される。即ち、第一実施形態と同様に、試験片10が三次元的に湾曲されるように該試験片10に荷重が付与される結果、試験片10には周方向及び径方向に向かっての多軸での応力が発生する。
なお、本実施形態では、押圧部120を周期的に試験片10に接触させることで、周期的な負荷を付与することができるという利点がある。
以上のように、本実施形態でも第一実施形態同様、試験片10の裏面12が表面11側に押圧されて該試験片10が凸状に変形する結果、試験片10に容易に多軸応力場を生成することができる。また、試験片10の表面11側には、周縁部13に固定部110が存在するのみなので、多軸応力場が生成された試験片10の表面11を容易に観察することができる。
また、第一実施形態の変形例同様、試験片10に溝部15が形成されていることで、該溝部15の形状に応じて種々の多軸応力場を生成することができる。さらに、試験片10が押圧される該試験片10の中心を囲むように環状の溝部15が形成されていることで、試験片10に押圧部120からの押圧力が作用した際に該試験片10を容易に湾曲させることができる。
次に本発明の第三実施形態に係る応力腐食割れの予測方法について図8及び図9を参照して説明する。本実施形態の応力腐食割れの予測方法は、多軸応力負荷試験工程S1と、単軸応力負荷試験工程S2と、相関関係取得工程S3とを備えている。
多軸応力負荷試験工程S1は、固定工程S11、押圧工程S12、及び第一試験データ取得工程S13を有している。
固定工程S11は、平板状をなす試験片10の周縁部13を、該試験片10の周縁部13の内側の内側部14における表面11が露出するように固定する。押圧工程S12は、試験片10の内側部14の裏面12を表面11側に向かって押圧する。即ち、これら固定工程S11及び押圧工程S12は、第一実施形態及び第二実施形態の多軸応力負荷試験装置100,200を用いて行われる。これら固定工程S11及び押圧工程S12によって、試験片10に多軸応力場を生成する。
次いで、多軸応力負荷試験工程S1では、第一試験データ取得工程S13が行われる。第一試験データ取得工程S13では、上記のように試験片10に多軸応力場が生成された状態で、該試験片10の応力σと応力腐食割れの発生時間tとの試験データを取得し、近似曲線を作成する。このような試験データは、例えば試験片10の応力をひずみゲージによって時間とともに計測することで取得することができる。
このような多軸応力負荷試験工程S1と並列して単軸応力負荷試験工程S2が行われる。本実施形態の単軸応力負荷試験工程S2は、単軸応力場での応力腐食割れの発生時間との関係について、既に得られた試験片10の応力σと応力腐食割れの発生時間tとの試験データを準備する(第二試験データ取得工程S21)。このような単軸応力場での試験は過去に多く行われており、試験データも豊富に存在している。
以上の多軸応力負荷試験工程S1及び単軸応力負荷試験工程S2の後に相関関係取得工程S3が行われる。この相関関係取得工程S3では、第一試験データ取得工程S13での試験データと、第二データデータ取得工程S21での試験データとを比較する。そして。図9に示すように、単軸応力場の試験データと多軸応力場の試験データとの間の相関関係βを算出する。
このようにすることで、条件を変えて多軸応力場での膨大な量の試験を行うことなく、既に蓄積されている単軸応力場での試験データに相関関係βを適用して、多くの多軸応力場の条件下での応力腐食割れを予測することが可能となる。これにより信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。
以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
10 試験片
11 表面
12 裏面
13 周縁部
14 内側部
15 溝部(薄肉部)
16 ボルト挿通孔
20 押圧治具(押圧部)
21 基台
22 ボルト固定孔
23 当接面(当接部)
24 凸部
25 球面
30 固定治具(固定部)
31 固定リング
32 内周面
33 ボルト貫通孔
34 ボルト
35 頭部
36 軸部
100 多軸応力負荷試験装置
110 固定部
120 押圧部
121 針状部(凸部)
200 多軸応力負荷試験装置
S1 多軸応力負荷試験工程
S11 固定工程
S12 押圧工程
S13 第一試験データ取得工程
S2 単軸応力負荷試験工程
S21 第二試験データ取得工程
S3 相関関係取得工程
O 軸線

Claims (8)

  1. 平板状をなす試験片の周縁部を、該試験片の前記周縁部の内側の内側部における表面が露出するように固定する固定部と、
    前記試験片の内側部の裏面を表面側に向かって押圧する凸部を有する押圧部と、
    を備えることを特徴とする多軸応力負荷試験装置。
  2. 前記押圧部は、前記試験片の表面における周縁部に全周にわたって対向する当接部を有し、
    前記凸部は、前記当接部に囲まれるように該当接部の内側に設けられて、前記試験片の前記内側部に向かって前記当接部よりも突出ており、
    前記固定部は、前記試験片の表面の前記周縁部が全周にわたって前記当接部に当接するように、前記試験片を前記当接部に固定することを特徴とする請求項1に記載の多軸応力負荷試験装置。
  3. 前記凸部は、前記当接部から前記試験片の中心に向かうにしたがって突出するように湾曲する曲面状をなしていることを特徴とする請求項2に記載の多軸応力負荷試験装置。
  4. 前記凸部は、前記試験片の裏面を押圧する針状をなしていることを特徴とする請求項1に記載の多軸応力負荷試験装置。
  5. 前記試験片の内側部の一部に、他の部分よりも厚さの小さい薄肉部が形成されていることを特徴とする請求項1から4のいずれか一項に記載の多軸応力負荷試験装置。
  6. 前記薄肉部は、前記試験片の内側部における前記凸部の最も突出した部分に対応する部位を囲む環状をなしていることを特徴とする請求項5に記載の多軸応力負荷試験装置。
  7. 平板状をなす試験片の周縁部を、該試験片の前記周縁部の内側の内側部における表面が露出するように固定する固定工程と、前記試験片の内側部の裏面を表面側に向かって押圧する押圧工程とを有する多軸応力負荷試験工程を備えることを特徴とする多軸応力負荷試験方法。
  8. 請求項7に記載の多軸応力負荷試験方法を備え、
    前記多軸応力負荷試験工程は、前記固定工程と前記押圧工程とにより生成される多軸応力場での前記試験片の応力腐食割れ試験データを取得する第一試験データ取得工程とさらに有し、
    単軸応力場での前記試験片の応力腐食割れ試験データを取得する第二試験データ取得工程と、
    前記第一試験データ取得工程と前記第二試験データ取得工程との各前記応力腐食割れ試験データの比較を行い、これらの相関関係を算出する相関関係取得工程と、
    をさらに備えることを特徴とする応力腐食割れの予測方法。
JP2013035035A 2013-02-25 2013-02-25 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法 Pending JP2014163795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035035A JP2014163795A (ja) 2013-02-25 2013-02-25 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035035A JP2014163795A (ja) 2013-02-25 2013-02-25 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法

Publications (1)

Publication Number Publication Date
JP2014163795A true JP2014163795A (ja) 2014-09-08

Family

ID=51614535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035035A Pending JP2014163795A (ja) 2013-02-25 2013-02-25 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法

Country Status (1)

Country Link
JP (1) JP2014163795A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376009A (zh) * 2021-06-24 2021-09-10 滁州学院 一种架空电力线路电力金具制造强度检测装置及检测方法
WO2024070107A1 (ja) * 2022-09-29 2024-04-04 三菱重工コンプレッサ株式会社 圧縮機システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376009A (zh) * 2021-06-24 2021-09-10 滁州学院 一种架空电力线路电力金具制造强度检测装置及检测方法
CN113376009B (zh) * 2021-06-24 2024-04-19 滁州学院 一种架空电力线路电力金具制造强度检测装置及检测方法
WO2024070107A1 (ja) * 2022-09-29 2024-04-04 三菱重工コンプレッサ株式会社 圧縮機システム

Similar Documents

Publication Publication Date Title
CN102589995B (zh) 一种压入硬度预测材料单轴本构关系的方法
CN103776565B (zh) 用于残余应力压入测试方法检验的标准预应力加载装置
KR100938831B1 (ko) 소형 실배관 시편
KR102047065B1 (ko) 미세홈이 있는 소형시편을 이용한 크리프 균열성장 물성 측정 장치 및 방법
US6405600B1 (en) Test specimen design incorporating multiple fracture sites and multiple strain state material fractures
Burlat et al. Effect of local cold working on the fatigue life of 7475-T7351 aluminium alloy hole specimens
JP5304683B2 (ja) 脆性き裂停止破壊靱性の測定方法
Sunde et al. Experimental and numerical fretting fatigue using a new test fixture
CN116738780B (zh) 考虑裂纹偏折的紧凑拉伸试样疲劳裂纹扩展长度及速率计算方法
JP2014163795A (ja) 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法
JP2012163420A (ja) 疲労限度特定システムおよび疲労限度特定方法
JP5752061B2 (ja) 配管の寿命の評価基準設定方法及び配管の寿命評価方法
JP2018059843A (ja) 材料試験装置及び材料試験方法
CN109490334B (zh) 一种运用残余应力预测模型的t字型锻件无损测试方法
US11391311B2 (en) Method for manufacturing joined body and quality management method for plate-shaped member
Milot Establishing correlations for predicting tensile properties based on the shear punch test and Vickers microhardness data
Han et al. Relation between ASTM E606 specimen geometry and misalignment in strain-controlled fatigue testing
Bradaï et al. Study of crack propagation under fatigue equibiaxial loading
RU2324918C1 (ru) Способ оценки предельной деформации при локальной листовой штамповке
KR20130077923A (ko) 예압분포 산출방법
Nenadic et al. Seeding cracks using a fatigue tester for accelerated gear tooth breaking
JP2014016200A (ja) 多軸応力付加試験装置、及び応力腐食割れの予測方法
KR102280732B1 (ko) 반복하중에 따른 엘보우 배관의 변형 및 손상 거동 분석용 링 시편과 이를 이용한 시험방법
Petzová et al. Application of small punch testing methods for thermal ageing monitoring at primary circuit components in nuclear power plant
KR102043517B1 (ko) 수소지연파괴 평가방법