WO2024070107A1 - 圧縮機システム - Google Patents

圧縮機システム Download PDF

Info

Publication number
WO2024070107A1
WO2024070107A1 PCT/JP2023/024420 JP2023024420W WO2024070107A1 WO 2024070107 A1 WO2024070107 A1 WO 2024070107A1 JP 2023024420 W JP2023024420 W JP 2023024420W WO 2024070107 A1 WO2024070107 A1 WO 2024070107A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
space
rotor
measurement target
gas
Prior art date
Application number
PCT/JP2023/024420
Other languages
English (en)
French (fr)
Inventor
英樹 永尾
大輔 木内
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Publication of WO2024070107A1 publication Critical patent/WO2024070107A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Definitions

  • the materials that make up the rotor and stator can deteriorate when exposed to the working fluid.
  • Examples of material deterioration include embrittlement and corrosion caused by the components of the working fluid.
  • Patent Document 1 discloses a method of monitoring the degree of erosion and corrosion of materials by placing a composite multi-electrode sensor (CMAS) probe, which can detect increases in electrical resistance over time, inside the compressor so that it is exposed to the working fluid.
  • CMAS composite multi-electrode sensor
  • the rotor of a compressor rotates at high speeds, and because the stress acting on it is greater due to centrifugal force than on a stator, it is more susceptible to deterioration such as embrittlement and corrosion than a stator. As a result, in the rotor, this stress combined with corrosion can cause defects such as stress corrosion cracking. Therefore, there is a demand for technology that can detect a wider variety of modes of deterioration and defects.
  • the present disclosure has been made to solve the above problems, and aims to provide a compressor system that can detect a wider variety of modes of deterioration and defects.
  • the compressor system disclosed herein comprises a compressor having a rotor and a stator that covers the rotor to form a flow path for the fluid to be compressed, and a sacrificial member that is disposed in a storage space that communicates with the flow path, and the sacrificial member is disposed in the storage space and has a measurement target portion that is distorted by the pressure of the fluid.
  • This disclosure provides a compressor system that can detect a wider variety of modes of degradation and defects.
  • FIG. 1 is a diagram showing a schematic configuration of a compressor system according to a first embodiment to a third embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a main portion of FIG. 1 and is a diagram for explaining the configuration of a sacrificial member according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a main portion of FIG. 1 and is a diagram for explaining the configuration of a sacrificial member according to a second embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a main portion of FIG. 1 and is a diagram for explaining the configuration of a sacrificial member according to a third embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a compressor system according to a first embodiment to a third embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a main portion of FIG. 1 and is a diagram for explaining the configuration of a sacrificial member according to the first embodiment of
  • FIG. 13 is a diagram showing a schematic configuration of a compressor system according to a fourth embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a schematic configuration of a compressor system according to a fifth embodiment of the present disclosure.
  • FIG. 7 is an enlarged view of a main portion of FIG. 6, illustrating the configuration of a sacrificial member and an inspection lid according to a fifth embodiment of the present disclosure.
  • FIG. 13 is a diagram for explaining the configuration of a sacrificial member and an inspection cover according to a sixth embodiment of the present disclosure, and corresponds to the portion shown in FIG. 7 .
  • 13A to 13C are diagrams for explaining the configuration of a sacrificial member and an inspection lid according to a seventh embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a schematic configuration of a compressor system according to another embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a schematic configuration of a compressor system according to another embodiment of the present disclosure.
  • the compressor system is a system for detecting deterioration or defects in a compressor operating in a plant.
  • the compressor system in this embodiment detects deterioration or defects in a rotor of the compressor.
  • the compressor system 1 includes a compressor 10, a sacrificial member 20, a strain gauge 30, and an inspection lid 40.
  • the compressor 10 is disposed, for example, inside a building in a chemical plant.
  • the compressor 10 is disposed in an atmospheric environment inside the building.
  • the compressor 10 compresses, for example, a process gas generated in the chemical plant as a working fluid, and supplies the compressed process gas to a reaction device (not shown) or the like disposed in the chemical plant.
  • the compressor 10 in this embodiment is a single-shaft multi-stage centrifugal compressor (multi-stage centrifugal compressor) that compresses hydrogen gas (H 2 ) as a process gas.
  • hydrogen gas H 2
  • gas G the process gas compressed by the compressor 10 will be simply referred to as “gas G” below.
  • the compressor 10 includes a rotor 11, a stator 12, a bearing portion 13, and a seal portion 14.
  • the rotor 11 is a part of the compressor 10 that rotates when the compressor 10 is driven.
  • the rotor 11 has a rotating shaft 110 and an impeller 111 .
  • the rotating shaft 110 is formed in a cylindrical shape centered on a virtual axis Ar that extends in one direction along the horizontal direction.
  • the direction in which this axis Ar extends is referred to as the "axial direction Da.”
  • one side (the left side in FIG. 1) is simply referred to as the “one side Dal,” and the opposite side (the right side in FIG. 1) is referred to as the "other side Dar.”
  • the circumferential direction of the rotating shaft 110 which extends around the axis Ar, is simply referred to as the "circumferential direction Dc.” Furthermore, the direction perpendicular to the axis Ar is referred to as the "radial direction.”
  • the rotating shaft 110 is formed, for example, from a metal material.
  • the impellers 111 are attached integrally to the outer circumferential surface 110s of the rotating shaft 110, and are arranged in multiple stages at intervals in the axial direction Da. In this embodiment, an example is shown in which five stages of impellers 111 are arranged at intervals in the axial direction Da.
  • the impeller 111 located on the furthest side Dal among the multiple impellers 111 will be referred to as the "front-stage impeller 111f,” and the impeller 111 located on the furthest side Dar among the multiple impellers 111 will be referred to as the "rear-stage impeller 111e.”
  • the impeller 111 of each stage rotates around the axis Ar together with the rotating shaft 110, generating centrifugal force to compress the gas G that has flowed into the impeller 111 from one side Dal and pump it radially outward. Therefore, the impeller 111 of each stage is exposed to the gas G.
  • Each impeller 111 has a disk 111a, blades 111b, and a cover 111c.
  • the impeller 111 is a so-called closed impeller.
  • the impeller 111 is made of, for example, a metal material.
  • the disk 111a When the disk 111a is attached to the rotating shaft 110, it is formed into a cylindrical shape that gradually expands from the axis Ar toward the other side Dar. Therefore, the disk 111a has a side surface (reference symbol omitted) that faces one side Dal as it approaches the other side Dar.
  • the disk 111a is fixed integrally to the rotating shaft 110 by fitting the inner peripheral surface (reference symbol omitted) of the disk 111a into the outer peripheral surface 110s of the rotating shaft 110.
  • the blades 111b are formed integrally with the above-mentioned side surface of the disk 111a.
  • the blades 111b are arranged so that multiple blades are evenly spaced in the circumferential direction Dc.
  • the blades 111b spread out so as to twist in the rotation direction Dr of the rotating shaft 110 as they move toward the other side Dar.
  • the rotation direction Dr of the rotating shaft 110 is the direction in which the rotating shaft 110 rotates clockwise when the rotating shaft 110 is viewed from one side Dal.
  • the cover 111c faces the disk 111a from one side Dal, with the blade 111b sandwiched between the cover 111c and the disk 111a in the axial direction Da.
  • the cover 111c is formed in a cylindrical shape that gradually expands as it approaches the other side Dar.
  • the cover 111c is formed integrally with the blade 111b.
  • a compression flow path 111p is defined between the cover 111c and the disk 111a, through which the gas G is compressed by the blade 111b.
  • the stator 12 is a part of the compressor 10 that remains stationary when the compressor 10 is driven.
  • the stator 12 covers the rotor 11 from the outside in the radial direction.
  • the stator 12 has a casing 120, a diaphragm 121, an inlet nozzle 122, and an outlet nozzle 123.
  • the casing 120 is the outer shell of the compressor 10 and houses various devices that constitute the compressor 10.
  • the casing 120 is formed, for example, in a cylindrical shape that extends in the axial direction Da and has both ends closed.
  • the outer surface 120s of the casing 120 that faces the outside of the compressor 10 is exposed to the atmosphere.
  • the casing 120 is formed, for example, from a metal material.
  • the casing 120 is formed with a casing inlet flow passage 120a through which gas G flows from the outside to the inside of the casing 120, and a casing outlet flow passage 120b through which gas G flows from the inside to the outside of the casing 120.
  • the casing inlet flow passage 120a and the casing outlet flow passage 120b are formed to penetrate the outer wall of the casing 120.
  • the casing inlet flow passage 120a and the casing outlet flow passage 120b are arranged spaced apart from each other in the axial direction Da.
  • the casing inlet flow passage 120a is arranged on one side Dal of the casing outlet flow passage 120b.
  • the diaphragm 121 is arranged to cover the impeller 111 of the rotor 11 from the outside in the radial direction and to cover the outer periphery of the rotating shaft 110 with a gap between it and the outer periphery 110s of the rotating shaft 110.
  • the diaphragm 121 is formed in a cylindrical shape extending about the axis Ar.
  • the diaphragm 121 is housed in the casing 120 and is fixed integrally with the casing 120 to the inner surface 120i of the casing 120.
  • the diaphragm 121 is fixed to the inner surface 120i of the casing 120 by a fastening member (not shown) such as a bolt.
  • the diaphragm 121 is formed, for example, from a metal material.
  • the diaphragm 121 has an opposing surface 121s on the inside as an inner peripheral surface that faces the outer peripheral surface 110s of the rotating shaft 110.
  • the diaphragm 121 also has a storage recess 121r formed therein that is recessed radially outward from the opposing surface 121s and is used to store the impeller 111 inside.
  • the storage recesses 121r are arranged in the axial direction Da in the same number as the impellers 111.
  • the diaphragm 121 is formed with a plurality of flow paths through which the gas G flows. Specifically, the diaphragm 121 is formed with a first flow path 121a for allowing the gas G to flow (intake) into the compression flow path 111p of the front-stage impeller 111f, a second flow path 121b for allowing the gas G to flow (discharge) out of the compression flow path 111p of the rear-stage impeller 111e, and a plurality of intermediate flow paths 121c that connect the compression flow paths 111p of adjacent impellers 111 between the first flow path 121a and the second flow path 121b.
  • the first flow path 121a is the flow path located on the most one side Dal among the multiple flow paths formed in the diaphragm 121.
  • the first flow path 121a is formed, for example, as an annular space centered on the axis Ar.
  • the first flow path 121a is connected to the casing inlet flow path 120a from the inside (inner side in the radial direction) of the casing 120.
  • the first flow path 121a is also connected to the compression flow path 111p of the front-stage impeller 111f from one side Dal.
  • the second flow path 121b is the flow path located on the other side Dar among the multiple flow paths formed in the diaphragm 121.
  • the second flow path 121b is formed, for example, as an annular space centered on the axis Ar.
  • the second flow passage 121b is connected to the compression flow passage 111p of the last stage impeller 111e from the other side Dar.
  • the second flow passage 121b is connected to the casing outlet flow passage 120b from the inside (inner side in the radial direction) of the casing 120.
  • the multiple intermediate flow paths 121c are arranged in the axial direction Da with a gap between the first flow path 121a and the second flow path 121b.
  • Each intermediate flow path 121c is a flow path that guides the gas G compressed in the compression flow path 111p of the impeller 111 arranged on one side Dal to the compression flow path 111p of the next stage impeller 111 arranged on the other side Dar of this impeller 111.
  • the intermediate flow passage 121c is composed of a diffuser flow passage 121d and a return flow passage 121e.
  • the diffuser flow passage 121d is a flow passage that guides the gas G compressed in the compression flow passage 111p of the impellers 111, excluding the final stage impeller 111e, outward in the radial direction.
  • One end of the diffuser flow passage 121d opens to the inner surface of the accommodation recess 121r.
  • One end of the diffuser flow passage 121d is positioned so that the opening portion faces the outlet of the compression flow passage 111p of the impeller 111 in the radial direction.
  • the return flow passage 121e is connected to the other end opposite to the one end of the diffuser flow passage 121d, and is a flow passage that guides the gas G that has flowed through the diffuser flow passage 121d radially inward and also guides this gas G to the compression flow passage 111p of the next stage impeller 111.
  • the compression flow path 111p of the impeller 111 and the intermediate flow path 121c composed of the diffuser flow path 121d and the return flow path 121e are alternately repeated.
  • the flow path of the gas G formed by the compression flow path 111p of the impeller 111 and the intermediate flow path 121c will be referred to as the "compression section" below.
  • the inlet nozzle 122 introduces gas G supplied from the outside into the inside of the casing 120. Therefore, the inlet nozzle 122 is the inlet portion of the compressor 10 for the gas G.
  • the inlet nozzle 122 is formed integrally with the casing 120.
  • the inlet nozzle 122 is formed, for example, from a metal material.
  • a suction passage 122a is formed inside the inlet nozzle 122. Gas G flows into this suction passage 122a through, for example, the suction pipe 100 that is connected to the inlet nozzle 122 and connects the inlet nozzle 122 to a device (not shown) such as a gas supply source outside the compressor 10.
  • the intake passage 122a is connected to a casing inlet passage 120a formed in the casing 120 from the outside (radially outside) of the casing 120. Therefore, the gas G flowing in the intake pipe 100 flows into the first passage 121a through the intake passage 122a and the casing inlet passage 120a.
  • the inlet flow path P1 through which the gas G flows before being compressed is constituted by the first flow path 121a of the diaphragm 121, the casing inlet flow path 120a of the casing 120, and the suction flow path 122a of the inlet nozzle 122.
  • the inlet flow path P1 is the flow path through which the gas G with the lowest pressure flows before being compressed by the compression section among the flow paths of the gas G in the compressor 10.
  • the outlet nozzle 123 allows the gas G compressed inside the casing 120 to flow out of the casing 120. Therefore, the outlet nozzle 123 is the outlet portion of the gas G in the compressor 10.
  • the outlet nozzle 123 is formed integrally with the casing 120.
  • the outlet nozzle 123 is disposed on the other side Dar than the inlet nozzle 122.
  • the outlet nozzle 123 is formed, for example, from a metal material.
  • a discharge flow passage 123a is formed inside the outlet nozzle 123.
  • This discharge flow passage 123a is connected to a casing outlet flow passage 120b formed in the casing 120 from the outside (outside in the radial direction) of the casing 120. Therefore, compressed gas G flows into the discharge flow passage 123a through the second flow passage 121b formed in the diaphragm 121 and also through the casing outlet flow passage 120b.
  • a discharge pipe 200 that connects the outlet nozzle 123 to a device outside the compressor 10 is connected to the discharge flow path 123a. Therefore, the gas G flowing through the discharge flow path 123a flows away (is discharged) through this discharge pipe 200 toward the device outside the compressor 10.
  • the second flow path 121b of the diaphragm 121, the casing outlet flow path 120b of the casing 120, and the discharge flow path 123a of the outlet nozzle 123 constitute the outlet flow path P2 through which the compressed gas G flows.
  • the outlet flow path P2 is the flow path through which the gas G compressed by the compression section with the highest pressure flows among the flow paths of the gas G in the compressor 10.
  • the bearing portion 13 is housed in a casing 120 .
  • the bearing portion 13 has a radial bearing 130 , a thrust bearing 131 , and a thrust collar 132 .
  • the radial bearings 130 rotatably support the rotating shaft 110 of the rotor 11.
  • a pair of radial bearings 130 are arranged spaced apart from each other in the axial direction Da.
  • the pair of radial bearings 130 are arranged so as to sandwich the diaphragm 121 between them in the axial direction Da.
  • the thrust bearing 131 prevents the rotating shaft 110 of the rotor 11 from being displaced in the axial direction Da as the gas G is compressed by the impeller 111.
  • the thrust bearing 131 prevents the rotating shaft 110 from being displaced in the axial direction Da by pressing a flange-shaped thrust collar 132 that is integrally attached to the rotating shaft 110 while supporting it in the axial direction Da.
  • each pair of thrust bearings 131 and thrust collars 132 are arranged spaced apart from each other in the axial direction Da. Furthermore, each pair of thrust bearings 131 and thrust collars is arranged between the diaphragm 121 and the radial bearing 130.
  • the thrust bearing 131 arranged on one side Dal of the pair of thrust bearings 131 supports the thrust collar 132 arranged on one side Dal of the pair of thrust collars 132 while pressing it from the one side Dal.
  • the thrust bearing 131 arranged on the other side Dar of the pair of thrust bearings 131 supports the thrust collar 132 arranged on the other side Dar of the pair of thrust collars 132 while pressing it from the other side Dar.
  • the seal portion 14 prevents air from flowing into the compression section from a gap between the rotating shaft 110 of the rotor 11 and the diaphragm 121 of the stator 12.
  • the seal portion 14 is disposed between the rotating shaft 110 and the diaphragm 121.
  • a pair of the seal portions 14 are disposed so as to sandwich a plurality of impellers 111 arranged in the axial direction Da therebetween.
  • the seal portion 14 arranged on the other side Dar of the pair of seal portions 14 prevents air from flowing from the other side Dar into the compression flow passage 111p of the final stage impeller 111e through the gap between the rotating shaft 110 and the diaphragm 121.
  • first seal portion 14a the seal portion 14 arranged on one side Dal of the pair of seal portions 14
  • second seal portion 14b the seal portion 14 arranged on the other side Dar of the pair of seal portions 14
  • the seal portion 14 in this embodiment is a labyrinth seal formed by, for example, arranging a plurality of rotor side fins formed to spread radially outward from the outer circumferential surface 110s of the rotating shaft 110 in a flange-like shape, and a plurality of stator side fins formed to spread radially inward from the opposing surface 121s of the diaphragm 121 in a flange-like shape, alternately in the axial direction Da.
  • a portion of the compressed gas G flowing through the discharge piping 200 is supplied to the seal portion 14 as a seal gas.
  • a portion of the compressed gas G flowing through the discharge pipe 200 is supplied, for example, from the other side Dar of the second seal portion 14b toward this second seal portion 14b.
  • compressed gas G flows through the gap between the outer peripheral surface 110s of the rotating shaft 110 and the opposing surface 121s of the diaphragm 121 on one side Dal of the first seal portion 14a and on the other side Dar of the second seal portion 14b. Therefore, the space in the gap between the diaphragm 121 and the rotating shaft 110 is maintained in a high-pressure state.
  • the rotating shaft 110 is rotated at a predetermined rotational speed in the rotation direction Dr by a driving source (not shown), such as an electric motor, while being supported by the bearing portion 13.
  • a driving source such as an electric motor
  • the impeller 111 which is integral with the rotating shaft 110, rotates at high speed together with the rotating shaft 110.
  • Gas G sent from a gas supply source arranged outside the compressor 10 through the intake pipe 100 toward the compressor 10 is sucked into the inside of the casing 120 through the inlet nozzle 122 as the rotor 11 rotates.
  • the gas G that flows into the first flow path 121a of the diaphragm 121 through the intake flow path 122a of the inlet nozzle 122 and the casing inlet flow path 120a of the casing 120 is compressed by the blades 111b rotating in the compression flow path 111p of the following forefront impeller 111f.
  • the uncompressed gas G flowing through the intake pipe 100 toward the compressor 10 is guided to the compression flow path 111p of the forefront impeller 111f through the inlet flow path P1 (the intake flow path 122a, the casing inlet flow path 120a, and the first flow path 121a) of the compressor 10.
  • the gas G compressed in the compression passage 111p of the front-stage impeller 111f is guided to the compression passage 111p of the next-stage impeller 111 through the subsequent diffuser passage 121d and return passage 121e, and is further compressed in the compression passage 111p of this impeller 111.
  • the gas G compressed in the compression passage 111p of the impeller 111 flows through the subsequent intermediate passage 121c (diffuser passage 121d and return passage 121e) and is further compressed in the next-stage impeller 111, repeating this step, until it reaches the compression passage 111p of the last-stage impeller 111e.
  • the gas G compressed in the compression flow passage 111p of the last stage impeller 111e is discharged into the second flow passage 121b of the following diaphragm 121, and flows into the discharge pipe 200 through the casing outlet flow passage 120b of the casing 120 and the discharge flow passage 123a of the outlet nozzle 123.
  • the compressed gas G that has passed through the compression flow passage 111p of the last stage impeller 111e is guided into the discharge pipe 200 through the outlet flow passage P2 (second flow passage 121b, casing outlet flow passage 120b, and discharge flow passage 123a) of the compressor 10.
  • the gas G that flows into the discharge pipe 200 is introduced, for example, into a reaction device (not shown) arranged outside the compressor 10, and is used as a reaction fluid.
  • the uncompressed gas G sucked into the compressor 10 from the suction piping 100 is guided to the compression passage 111p of the front-stage impeller 111f in the compression section through the inlet passage P1 (suction passage 122a, casing inlet passage 120a, and first passage 121a).
  • the gas G guided to the compression passage 111p of the front-stage impeller 111f is compressed over multiple stages in this compression section, which consists of each compression passage 111p of the multiple stages of impellers 111 and an intermediate passage 121c connecting these compression passages 111p, until it reaches a predetermined high-pressure state.
  • the gas G compressed by the compression section is discharged from the compression passage 111p of the final stage impeller 111e in this compression section through the outlet passage P2 (the second passage 121b, the casing outlet passage 120b, and the discharge passage 123a) into the discharge piping 200.
  • the sacrificial member 20 is a member capable of simulating the stress acting on the rotor 11 of the driven compressor 10, and the state of change and deterioration over time of the rotor 11 due to the rotor 11 being exposed to gas G as the working fluid.
  • the sacrificial member 20 in this embodiment is a member that is used, for example, to determine whether or not inspection and repair of the compressor 10 is necessary, and to determine the timing and frequency of such inspection and repair.
  • the casing 120 of the stator 12 of the compressor 10 described above has an accommodation space R for accommodating the sacrificial member 20.
  • the accommodation space R is a space defined by the inner surface of a recess 120d formed to be recessed from the outer surface 120s of the casing 120.
  • the accommodation space R opens to the outer surface 120s of the casing 120.
  • the accommodation space R is located, for example, on the other side Dar of the outlet flow path P2.
  • the storage space R is connected to the outlet flow path P2 by a connection flow path 12p formed in the casing 120.
  • the storage space R is connected (communicates) with the outlet flow path P2 through which the compressed gas G with the highest pressure flows via the connection flow path 12p.
  • connection flow passage 12p One end of the connection flow passage 12p opens into the storage space R.
  • the other end of the connection flow passage 12p opens into the casing outlet flow passage 120b at the outlet flow passage P2. Therefore, a portion of the gas G that flows through the outlet flow passage P2 after being compressed by the compression section is drawn out into the storage space R through this connection flow passage 12p.
  • the sacrificial member 20 is disposed in this storage space R. That is, when the compressor 10 is operating, the sacrificial member 20 is exposed to the gas G after it has been compressed by the compression section.
  • the sacrificial member 20 is illustrated in FIG. 1 as a dotted rectangle. The configuration and shape of the sacrificial member 20 will be described in detail with reference to FIG. 2.
  • the sacrificial member 20 in this embodiment has a C-ring portion 210 and a pressure retaining portion 21.
  • the C-ring portion 210 is formed of a metal material having the same composition as the metal material forming the rotor 11 of the compressor 10.
  • the C-ring portion 210 is formed of a metal material having the same composition as the metal material forming the impeller 111 of the rotor 11.
  • the term "same composition" as used herein means that the material is the same as the material used to manufacture the rotor 11, for example.
  • the C-ring portion 210 is formed with a measurement target portion 21x that distorts when subjected to the pressure of the gas G drawn out from the outlet flow path P2.
  • the C-ring portion 210 is a plate-like member that is curved so as to be convex and arranged in a C-shape.
  • the convex portion of the C-ring portion 210 is the measurement target portion 21x.
  • the C-ring portion 210 is arranged in a C-shape as described above, forming one end 210a and the other end 210b that are close to each other.
  • the one end 210a and the other end 210b of the C-ring portion 210 may be collectively referred to as "both ends”.
  • the pressing and holding portion 21 holds both ends (one end 210a and the other end 210b) of the C-ring portion 210 in a pressed state so as to approach each other.
  • the pressing and holding portion 21 is composed of a bolt portion 22 and a pair of nuts 23.
  • the bolt portion 22 is formed in a columnar shape, and the nut portion 23 can be screwed into it.
  • the bolt portion 22 penetrates both a portion of the C-ring portion 210 close to one end 210a and a portion of the C-ring portion 210 close to the other end 210b.
  • a stud bolt which is a bolt without a head, is used for the bolt portion 22.
  • the pair of nut portions 23 are screwed onto the bolt portion 22 so as to sandwich the C-ring portion 210 therebetween.
  • the C-ring portion 210 is held in a pressed state in a direction sandwiching the C-ring portion 210 therebetween.
  • each of the pair of nut portions 23 is disposed on the outside of the C-ring portion 210 in the direction in which the bolt portion 22 extends, in a state where it is screwed onto the bolt portion 22, and applies pressure to the C-ring portion 210 such that one end 210a and the other end 210b of the C-ring portion 210 are brought closer to each other.
  • the pair of nut parts 23 apply a stress to the C-ring part 210 in a direction sandwiching the C-ring part 210 therebetween that is higher than the maximum stress acting on the rotor 11 during rated operation of the compressor 10.
  • the pair of nut parts 23 apply a stress to the C-ring part 210 that is higher than the maximum stress acting on the impeller 111 during rated operation of the compressor 10.
  • the tightening torque of the pair of nut parts 23 is set so that a stress higher than the maximum stress acting on the impeller 111 of the rotor 11 during rated operation of the compressor 10 is applied to the measurement target portion 21x of the C-ring part 210.
  • the “maximum stress” here means, for example, the maximum magnitude of the stress acting on the last stage impeller 111e when the compressor 10 is operating at rated speed.
  • the magnitude and direction of the stress acting on the impeller 111 of the rotor 11, as well as the distribution thereof, are previously grasped by, for example, finite element analysis (FEM analysis) or the like.
  • the surrounding area of the measurement target area 21x is pulled toward one end 210a and the other end 210b from the measurement target area 21x as a base point by the pair of nuts 23 applying pressure to the C-ring portion 210. In other words, tensile stress is generated in the measurement target area 21x.
  • the strain gauge 30 is a sensor that detects the amount of strain in the measurement target portion 21x.
  • the strain gauge 30 is attached (attached) to the measurement target portion 21x of the C-ring portion 210.
  • the strain gauge 30 is electrically connected to, for example, a monitoring device (not shown) disposed outside the compressor 10.
  • the strain gauge 30 detects the amount of strain in the measurement target portion 21x and transmits a signal indicating this amount of strain to the monitoring device. This allows the monitoring device to monitor, for example, the amount of strain over time in the measurement target portion 21x of the C-ring portion 210.
  • the inspection lid 40 is a lid member that closes the opening of the recess 120d formed in the casing 120, thereby making the storage space R a closed space.
  • the inspection lid 40 is detachable from the outer surface 120s of the casing 120. Specifically, the inspection lid 40 is detachable from the outer surface 120s of the casing 120 by a fastening member B such as a bolt.
  • the inspection lid 40 closes the opening of the storage space R by being fixed to the outer surface 120s of the casing 120 by the fastening member B, and opens the storage space R by being removed when the fastening member B is loosened.
  • the inspection lid 40 is formed, for example, from a metal material.
  • the inspection lid 40 is attached to the outer surface 120s of the casing 120 when the compressor 10 is operating. By attaching the inspection lid 40 to the outer surface 120s of the casing 120, the storage space R is airtightly isolated from the atmosphere. Furthermore, the inspection lid 40 is removed from the outer surface 120s of the casing 120 when the sacrificial member 20 is removed from the storage space R by an operator or repairman of the compressor 10. This allows the operator or repairman of the compressor 10 to remove and observe the sacrificial member 20 from outside the compressor 10.
  • the amount of strain which is an index of the deterioration degree of the C-ring portion 210, can be detected from the measurement target portion 21x.
  • the members constituting the compressor 10 are not only simply deteriorated by corrosion or the like due to the properties of the gas G, but are also greatly affected by deterioration due to the pressure received by being exposed to the high-pressure gas G while rotating like the rotor 11.
  • distorting the sacrificial member 20 due to the pressure of the gas G it is possible to detect not only the properties of the gas G but also the effect of deterioration due to the pressure of the gas G.
  • the C-ring portion 210 is formed from the same metal material as that forming the impeller 111 of the rotor 11 .
  • the sacrificial member 20 is removed from the accommodation space R, and the surface of the C ring part 210 is observed, whereby it is possible to confirm the progress of embrittlement (hydrogen embrittlement) caused by the gas G on the surface of the C ring part 210, the presence or absence of defects, etc.
  • embrittlement which is one index of the deterioration degree of the C ring part 210
  • the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be estimated.
  • the above-mentioned sacrificial member 20 in the storage space R that is connected to the flow path of the fluid compressed by the compressor 10, it is possible to detect more deterioration and defects that may occur in the rotor 11 (impeller 111) of the compressor 10 compared to, for example, using a sacrificial member that does not have a measurement target portion, or a sacrificial member that has a measurement target portion that is not formed from a metal material of the same composition as the metal material that forms the rotor 11.
  • the accommodation space R in which the sacrificial member 20 is accommodated is connected to the outlet flow passage P2 through which the gas G having the highest pressure flows after being compressed by the compression section.
  • a larger pressure is applied from the gas G to the C ring portion 210 compared to the case where the gas G before compression or the gas G during compression is drawn into the storage space R.
  • hydrogen gas is used as the process gas
  • the members exposed to the hydrogen gas are strongly affected by hydrogen embrittlement. Hydrogen embrittlement is more likely to occur as a higher pressure is applied.
  • the sacrificial member 20 in the storage space R connected to the outlet flow path P2 through which the gas G with the highest pressure flows, the members in the compressor 10 that are most affected by hydrogen embrittlement can be simulated with high accuracy by the sacrificial member 20. Therefore, the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be more accurately estimated.
  • the convex portion of the C ring portion 210 is the measurement target portion 21x that is distorted by the pressure of the gas G. Furthermore, the bolt portion 22 penetrates through a portion of the C ring portion 210 close to one end 210a and a portion of the C ring portion 210 close to the other end 210b, and a pair of nuts 23 screwed onto the bolt portion 22 apply a stress higher than the maximum stress generated in the rotor 11 (impeller 111) to the C ring portion 210 in a direction sandwiching the C ring portion 210 therebetween. As a result, while the compressor 10 is in operation (rated operation), a stress higher than the maximum stress acting on the rotor 11 continues to act on the C ring portion 210.
  • the accommodation space R in which the sacrificial member 20 is accommodated is formed in the stator 12 (casing 120 ) of the compressor 10 .
  • the compressor 10 it is not necessary to provide the compressor 10 with a member for defining the accommodation space R. Therefore, an increase in the number of parts of the compressor 10 can be suppressed.
  • the strain gauge 30 is attached to the measurement target portion 21x. This makes it possible, for example, to transmit a signal indicating the amount of strain detected by the strain gauge 30 to the outside of the compressor 10, and makes it possible to monitor, from the outside of the compressor 10, the change over time in the amount of strain of the measurement target portion 21x in the C-ring portion 210 while the compressor 10 is operating. Therefore, based on the amount of strain at the measurement target portion 21x of the C-ring portion 210 detected by the strain gauge 30, the rotor 11 of the compressor 10 can be inspected and repaired at an appropriate time.
  • the opening of the accommodation space R in the outer surface 120 s of the casing 120 is closed by the removable inspection cover 40 .
  • the sacrificial member 20 can be removed from the accommodation space R.
  • the accommodation space R can be airtightly isolated from the atmosphere. Therefore, when removing the sacrificial member 20 from the accommodation space R, for example, there is no need to disassemble the compressor 10. Therefore, the deteriorated state of the C-ring portion 210 can be easily confirmed.
  • a second embodiment of the sacrificial member according to the present disclosure will be described with reference to Fig. 3.
  • components common to the first embodiment are denoted by the same reference numerals in the drawings, and descriptions thereof will be omitted.
  • the configuration of the sacrificial member is different from the configuration of the sacrificial member described in the first embodiment.
  • the storage space R is formed as a cylindrical space. That is, the recess 120d is formed so as to be recessed from the outer surface 120s of the casing 120 into a circular cross section. Also, the inspection cover 40 in this embodiment is formed with an air vent hole 40h that penetrates the inspection cover 40 to communicate between the atmosphere outside the compressor 10 and the storage space R.
  • the sacrificial member 20 includes a diaphragm plate 211 .
  • the diaphragm plate 211 is formed in a disk shape having a predetermined thickness.
  • the diaphragm plate 211 has one surface 211a and another surface 211b facing the opposite side to the one surface 211a.
  • the diaphragm plate 211 divides the accommodation space R into two spaces.
  • the diaphragm plate 211 divides the storage space R into a space arranged on the side of the first surface 211a and a space arranged on the side of the second surface 211b, with the diaphragm plate 211 as the boundary.
  • the diaphragm plate 211 is also arranged in the storage space R in a state in which these two spaces are airtightly isolated from each other.
  • the diaphragm plate 211 is fixed to the inner surface of the recess 120d.
  • One of the two spaces defined by the diaphragm plate 211 (the space located on the side of one surface 211a) is connected to the outlet flow path P2 through the connection flow path 12p.
  • the other of the two spaces defined by the diaphragm plate 211 (the space located on the side of the other surface 211b) is open to the atmosphere through an atmosphere vent hole 40h formed in the inspection cover 40.
  • first space R1 the space that is connected to the outlet flow path P2
  • second space R2 the space that is open to the atmosphere
  • the other surface 211b of the diaphragm plate 211 facing the second space R2 is the measurement target area 21x.
  • the first space R1 is in a state of high pressure compared to the second space R2 which is open to the atmosphere, as the compressed gas G is drawn from the outlet flow path P2 into the first space R1 through the connecting flow path 12p. In other words, a pressure difference is generated between the first space R1 and the second space R2.
  • One surface 211a of the diaphragm plate 211 is distorted by this pressure difference so as to become convex toward the second space R2 within the first space R1.
  • the other surface 211b which is the measurement target portion 21x, is pushed out in the direction in which the one surface 211a becomes convex (toward the second space R2) by the above pressure difference, and is distorted so as to become convex toward the second space R2.
  • compressive stress is generated in the measurement target portion 21x of the diaphragm plate 211 when the compressor 10 is operating.
  • strain gauge 30 in this embodiment is attached (adhered) to the center portion of the other surface 211b of the diaphragm plate 211, which is the measurement target portion 21x.
  • the amount of strain which is an index of the degree of deterioration of the diaphragm plate 211, can be detected from the measurement target portion 21x. Therefore, it is possible to confirm the degree of stress acting on the diaphragm plate 211 as the pressure from the gas G acts on the diaphragm plate 211. As a result, it is possible to estimate the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10.
  • the diaphragm plate 211 is made of a metal material having the same composition as the metal material forming the impeller 111 of the rotor 11 .
  • the progress of embrittlement which is an index of the deterioration of the diaphragm plate 211
  • the progress of embrittlement which is an index of the deterioration of the diaphragm plate 211
  • the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be estimated.
  • the diaphragm plate 211 is pushed toward the second space R2 and bent by the pressure difference generated between the first space R1 and the second space R2, and as a result, the measurement target portion 21x is distorted by the compressive stress.
  • This allows the strain gauge 30 to detect the amount of strain caused by compressive stress repeatedly occurring in the diaphragm plate 211 during, for example, short-period start and stop (DSS: Daily Start and Stop) operations of the compressor 10. Therefore, in comparison with the configuration of the sacrificial member 20 described in the first embodiment, for example, it is possible to confirm not only the magnitude of strain constantly occurring in the rotor 11 during rated operation of the compressor 10, but also changes in the amount of strain repeatedly occurring when the compressor 10 is started and stopped. As a result, the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be more accurately estimated.
  • the strain gauge 30 is disposed on the other surface 211b facing the second space R2 that is open to the atmosphere. As a result, the strain gauge 30 is not exposed to the gas G, and therefore the strain gauge 30 is not damaged by the pressure of the gas G.
  • the second space R2 is open to the atmosphere through the atmospheric vent hole 40h formed in the inspection lid 40. This makes it possible to prevent the gas G from leaking excessively from the storage space R to the outside of the compressor 10 all at once, in comparison to a case where the compressor system 1 does not have the inspection lid 40, for example, when the diaphragm plate 211 is damaged and the first space R1 and the second space R2 are connected to each other. As a result, it is possible to prevent the pressure of the gas G flowing through the outlet flow path P2 from decreasing.
  • a third embodiment of the sacrificial member according to the present disclosure will be described with reference to Fig. 4.
  • the configurations common to the first and second embodiments are given the same reference numerals in the drawings, and the description thereof will be omitted.
  • the configuration of the sacrificial member described in the third embodiment is different from the configuration of the sacrificial member described in the first and second embodiments.
  • the sacrificial member 20 in this embodiment has a piston ring portion 24 , a fixing plate portion 25 , and a rod portion 212 .
  • the piston ring portion 24 is formed in a disk shape having a predetermined thickness.
  • the piston ring portion 24 has a first surface 24a and a second surface 24b facing opposite to the first surface 24a.
  • the piston ring portion 24 divides the accommodation space R into two spaces.
  • the piston ring portion 24 divides the accommodation space R into a space arranged on the side of the first surface 24a and a space arranged on the side of the second surface 24b, with the piston ring portion 24 as the boundary. Furthermore, the piston ring portion 24 is arranged in the accommodation space R in a state in which these two spaces are airtightly isolated from each other.
  • the piston ring portion 24 is arranged so as to be movable in the direction in which the storage space R extends while in sliding contact with the inner surface of the recess 120d.
  • One of the two spaces partitioned by the piston ring portion 24 (the space arranged on the side of the first surface 24a) is connected to the outlet flow passage P2 through the connecting flow passage 12p.
  • the other of the two spaces partitioned by the piston ring portion 24 (the space arranged on the side of the second surface 24b) is open to the atmosphere through an atmosphere vent hole 40h formed in the inspection lid 40.
  • first space R1 the space that is connected to the outlet flow passage P2
  • second space R2 the space that is open to the atmosphere
  • the first space R1 is in a state of high pressure compared to the second space R2, which is open to the atmosphere, as gas G is drawn from the outlet flow path P2 into the first space R1 through the connecting flow path 12p. In other words, a pressure difference is generated between the first space R1 and the second space R2.
  • the fixed plate 25 is formed in a disk shape having a predetermined thickness.
  • the fixed plate 25 is disposed in the first space R1.
  • the fixed plate 25 is fixed in an immovable state to the inner surface of the recess 120d.
  • the fixing plate portion 25 has a main surface 25a and a back surface 25b that faces away from the main surface 25a and faces the first surface 24a of the piston ring portion 24.
  • the fixing plate portion 25 has a plurality of communication holes 25h formed therein, penetrating from the main surface 25a to the back surface 25b.
  • the communication holes 25h are arranged in a circular ring shape at equal intervals in the direction in which the main surface 25a and the back surface 25b extend.
  • the communication holes 25h connect the space on the first surface 24a side and the space on the second surface 24b side of the first space R1 when the fixed plate portion 25 is used as a boundary.
  • the rod portion 212 is formed in a cylindrical shape. One end of the rod portion 212 is fixed to a central portion of the back surface 25b of the fixing plate portion 25. Specifically, one end of the rod portion 212 is fixed to a portion of the back surface 25b that is more inward than each opening of the plurality of communication holes 25h. The other end of the rod portion 212 is fixed to a central portion of the first surface 24a of the piston ring portion 24.
  • the rod portion 212 extends between the fixed plate portion 25 and the piston ring portion 24 while connecting them.
  • the side surface 212s of the rod portion 212 is the measurement target portion 21x.
  • the piston ring portion 24 moves to reduce the volume of the second space R2 due to the pressure difference between the first space R1 and the second space R2.
  • the side surface 212s of the rod portion 212 which is the measurement target portion 21x, is distorted so as to be stretched in the extension direction of the rod portion 212 as the piston ring portion 24 moves. In other words, tensile stress is generated in the measurement target portion 21x when the compressor 10 is operating.
  • strain gauge 30 in this embodiment is attached (adhered) to the center portion of the side surface 212s, which is the measurement target portion 21x of the rod portion 212.
  • the amount of strain which is an index of the deterioration degree of the rod portion 212
  • the degree of stress acting on the rod portion 212 can be detected from the measurement target portion 21x. Therefore, it is possible to confirm the degree of stress acting on the rod portion 212 as the pressure from the gas G acts on the rod portion 212. As a result, it is possible to estimate the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10.
  • the rod portion 212 is formed from a metal material having the same composition as the metal material forming the impeller 111 of the rotor 11 .
  • the rod portion 212 is removed from the accommodation space R, and the side surface 212s of the rod portion 212 is observed, whereby it is possible to check the progress of embrittlement (hydrogen embrittlement) caused by the gas G on the side surface 212s of the rod portion 212, the presence or absence of defects, etc.
  • the progress of embrittlement which is one index of the deterioration degree of the rod portion 212, can be detected from the side surface 212s of the rod portion 212.
  • the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be estimated.
  • the measurement target portion 21x of the rod portion 212 is distorted by the pressure difference generated between the first space R1 and the second space R2. At that time, the rod portion 212 expands and contracts due to the change in pressure of the gas G flowing into the first space R1. As a result, the measurement target portion 21x is distorted by the tensile stress. This allows the strain gauge 30 to detect the amount of strain caused by tensile stress that repeatedly occurs in the rod portion 212 during operations such as short-period start and stop (DSS: Daily Start and Stop) of the compressor 10, for example.
  • DSS Daily Start and Stop
  • tensile stress is generated in the rotor 11 due to the action of centrifugal force during operation of the compressor 10. Therefore, according to the above configuration, it is possible to confirm the change in the amount of strain due to the same stress mode (tensile stress). As a result, the degree of deterioration of the rotor 11 (impeller 111) of the compressor 10 can be more accurately estimated.
  • the gas G to be compressed by the compressor 10 in this embodiment is not hydrogen gas (H 2 ) but a corrosive gas, for example, hydrogen sulfide gas (H 2 S).
  • the storage space R is a space defined by the inner surface of a recess 120d formed to be recessed from the outer surface 120s of the casing 120. In other words, the storage space R opens to the outer surface 120s of the casing 120.
  • the storage space R is disposed, for example, on one side Dal of the inlet flow path P1.
  • the storage space R is also connected to the inlet flow passage P1 by a connection flow passage 12p formed in the casing 120.
  • the storage space R is connected (communicates) with the inlet flow passage P1, through which the uncompressed gas G flows, via the connection flow passage 12p.
  • connection flow passage 12p one end of the connection flow passage 12p opens into the storage space R.
  • the other end of the connection flow passage 12p opens into the casing inlet flow passage 120a in the inlet flow passage P1. Therefore, a portion of the gas G flowing through the inlet flow passage P1 before being compressed by the compression section is drawn into the storage space R through this connection flow passage 12p.
  • the sacrificial member 20 is disposed in this storage space R. That is, when the compressor 10 is operating, the sacrificial member 20 is exposed to the gas G before it is compressed by the compression section. Note that in FIG. 5, due to space limitations, the sacrificial member 20 is illustrated as a dotted rectangle.
  • the sacrificial member 20 in this embodiment may be any of the sacrificial members 20 described in the first to third embodiments above.
  • the strain gauge 30 is attached (attached) to the measurement target portion 21x of the sacrificial member 20.
  • the measurement target portion 21x is exposed to the gas G before compression, which has a higher concentration of corrosive components, compared to when the measurement target portion 21x is exposed to the gas G during compression or the gas G after compression, and is therefore subjected to a greater corrosive action from the gas G.
  • a fifth embodiment of the compressor system 1 according to the present disclosure will be described with reference to Fig. 6 and Fig. 7.
  • components common to the first, second, and third embodiments are denoted by the same reference numerals in the drawings, and descriptions thereof will be omitted.
  • the configuration of the sacrificial member is different from the configuration of the sacrificial member described in the first, second, and third embodiments.
  • the compressor system 1 in the fifth embodiment does not include a strain gauge 30. Moreover, the gas G to be compressed by the compressor 10 in the present embodiment is hydrogen gas (H 2 ).
  • the storage space R is a space defined by the inner surface of the recess 120d formed to recess from the inner surface of the storage recess 121r that stores the last-stage impeller 111e in the diaphragm 121 to the other side Dar.
  • the accommodation space R opens to the inner surface of the accommodation recess 121r that accommodates the last-stage impeller 111e, and is connected to the compression flow passage 111p of the last-stage impeller 111e.
  • the recess 120d is formed in an annular shape that surrounds the rotating shaft 110 of the rotor 11.
  • the accommodation space R is formed as an annular space that surrounds the rotating shaft 110 of the rotor 11.
  • the sacrificial member 20 in this embodiment has a columnar portion 213 .
  • the columnar portion 213 is formed in a columnar shape and is attached integrally to the disk 111a of the last-stage impeller 111e of the rotor 11.
  • the columnar portion 213 extends from the disk 111a to the other side Dar. That is, when the compressor 10 is in operation, the columnar portion 213 revolves in the accommodation space R around the axis Ar in accordance with the rotation of the last-stage impeller 111e.
  • the columnar portion 213 has a recess 213a that is recessed so as to be constricted from the outer surface.
  • the recess 213a is located in the center portion in the direction in which the columnar portion 213 extends (axial direction Da).
  • the cross-sectional area of the columnar portion 213 in a direction perpendicular to the direction in which the columnar portion 213 extends is smaller than the portion other than this recess 213a.
  • the cross-sectional area decreases from the beginning of the most one side Dal toward the other side Dar, and from the beginning of the most other side Dar toward the most one side Dal, and then merges.
  • the stator 12 is formed with a scope hole 12h that extends from the accommodation space R to the outer surface 120s of the casing 120 and opens onto the outer surface 120s of the casing 120. Specifically, one end of the scope hole 12h opens onto the inner surface of the recess 120d, and the other end of the scope hole 12h opens onto the outer surface 120s of the casing 120.
  • the scope hole 12h is formed as a single continuous hole spanning the diaphragm 121 and the casing 120.
  • the inspection lid 40 is a lid member that airtightly isolates the accommodation space R from the atmosphere by closing the opening 12h' of the scope hole 12h in the outer surface 120s of the casing 120.
  • the inspection lid 40 is detachable from the outer surface 120s of the casing 120.
  • the inspection lid 40 is detachable from the outer surface 120s of the casing 120 by fastening members B such as bolts.
  • the inspection lid 40 closes the opening 12h' of the scope hole 12h in the outer surface 120s of the casing 120 when fixed to the outer surface 120s of the casing 120 by fastening members B, and exposes the opening 12h' of the scope hole 12h when removed by loosening the fastening members B.
  • the inspection lid 40 is attached to the outer surface 120s of the casing 120 when the compressor 10 is operating.
  • the inspection lid 40 is also removed from the outer surface 120s of the casing 120 when, for example, the operator or repairman of the compressor 10 checks the condition of the columnar portion 213.
  • the operator or repairman of the compressor 10 checks the outer surface of the columnar portion 213 and the condition of the recess 213a using, for example, an industrial endoscope Bs (borescope).
  • a scope hole 12h is formed in the stator 12 to enable access to the columnar portion 213 arranged in the storage space R from outside the compressor 10 by using, for example, an industrial endoscope Bs, and an inspection lid 40 that is detachable from the outer surface 120s of the casing 120 blocks the opening 12h' of the scope hole 12h on the outer surface 120s of the casing 120.
  • the storage space R is a space defined by the inner surface of the recess 120d that is recessed radially outward from the opposing surface 121s of the diaphragm 121.
  • the storage space R opens into the gap between the diaphragm 121 and the rotating shaft 110 of the rotor 11.
  • the storage space R is located on the other side Dar of the second seal portion 14b.
  • the recess 120d is formed in an annular shape that surrounds the rotating shaft 110 of the rotor 11.
  • the storage space R is formed as an annular space that surrounds the rotating shaft 110 of the rotor 11.
  • the sacrificial member 20 in this embodiment has a columnar portion 213 .
  • the columnar portion 213 is formed in a columnar shape and is attached integrally to the rotating shaft 110 of the rotor 11.
  • the columnar portion 213 extends radially outward from the outer circumferential surface 110s of the rotating shaft 110. That is, when the compressor 10 is in operation, the columnar portion 213 revolves around the axis line Ar in association with the rotation of the rotating shaft 110.
  • the columnar portion 213 has a recess 213a that is recessed so as to be constricted from the outer surface.
  • the recess 213a is located in the center in the direction in which the columnar portion 213 extends (radial direction).
  • the cross-sectional area of the columnar portion 213 in a direction perpendicular to the direction in which the columnar portion 213 extends is smaller than the portion other than this recess 213a.
  • the cross-sectional area decreases from the radially innermost starting point toward the outside, and from the radially outermost starting point toward the inside, and then merges together.
  • the columnar portion 213 is attached to the rotating shaft 110 in a state where it extends in the radial direction.
  • the direction of the centrifugal force generated by the rotation of the rotor 11 coincides with the direction of the tensile stress acting on the columnar portion 213 . Therefore, compared to the configuration described in the fifth embodiment above, the columnar portion 213 can simulate the stress acting on the rotor 11 with higher accuracy.
  • a seventh embodiment of the compressor system 1 according to the present disclosure will be described with reference to Fig. 9.
  • components common to the fifth embodiment are denoted by the same reference numerals in the drawing, and descriptions thereof will be omitted.
  • the gas G to be compressed by the compressor 10 in this embodiment is not hydrogen gas (H 2 ) but a corrosive gas, for example, hydrogen sulfide gas (H 2 S).
  • the storage space R is a space defined by the inner surface of the recess 120d formed to be recessed to one side Dal from the inner surface of the storage recess 121r that houses the front-stage impeller 111f in the diaphragm 121.
  • the storage space R opens to the inner surface of the storage recess 121r that houses the front-stage impeller 111f, and is connected to the compression flow passage 111p of the front-stage impeller 111f.
  • the recess 120d is formed in an annular shape that surrounds the rotating shaft 110 of the rotor 11. That is, the storage space R is formed as an annular space that surrounds the rotating shaft 110 of the rotor 11.
  • the sacrificial member 20 in this embodiment has a columnar portion 213 .
  • the columnar portion 213 is formed in a columnar shape and is attached integrally to the cover 111c of the forefront impeller 111f of the rotor 11.
  • the columnar portion 213 extends from the cover 111c to one side Dal. That is, when the compressor 10 is in operation, the columnar portion 213 revolves within the accommodation space R around the axis Ar in accordance with the rotation of the forefront impeller 111f.
  • the columnar portion 213 has a recess 213a that is recessed so as to be constricted from the outer surface.
  • the recess 213a is located in the center portion in the direction in which the columnar portion 213 extends (axial direction Da).
  • the cross-sectional area of the columnar portion 213 in a direction perpendicular to the direction in which the columnar portion 213 extends is smaller than the portion other than this recess 213a.
  • the cross-sectional area decreases from the beginning of the most one side Dal toward the other side Dar, and from the beginning of the most other side Dar toward the most one side Dal, and then merges.
  • the columnar portion 213 revolves around the axis Ar in the accommodation space R formed as an annular space surrounding the rotating shaft 110 in accordance with the rotation of the forefront impeller 111f in the rotor 11.
  • the columnar portion 213 receives the pressure of the gas G while rotating about the axis Ar, whereby the recess 213a serving as the measurement target portion 21x is distorted. Therefore, for example, in comparison with the configuration described in the above fourth embodiment, the conditions for stress corrosion cracking of the rotor 11 can be simulated with higher accuracy.
  • the accommodation space R for accommodating the sacrificial member 20 described in the above embodiment does not have to be formed in the stator 12.
  • the compressor system 1 may further include an inspection chamber 50 defining the accommodation space R therein.
  • the inspection chamber 50 is attached to, for example, the outer surface 120s of the casing 120.
  • the inspection chamber 50 is formed, for example, in a cylindrical shape with one end open.
  • the inspection lid 40 described above is attached to the inspection chamber 50 so as to close the opening of the inspection chamber 50. In this case, the inspection lid 40 only needs to be detachable from the inspection chamber 50.
  • the storage space R inside the inspection chamber 50 only needs to be connected to the outlet flow path P2 through the connection flow path 12p formed in the stator 12.
  • the storage space R inside the inspection chamber 50 may also be connected to the inlet flow path P1 through the connection flow path 12p. This eliminates the need to form the accommodation space R in the stator 12. Therefore, when arranging the accommodation space R, it is possible to suppress a decrease in the degree of freedom in designing the stator 12.
  • the compressor system 1 may further include an inlet pipe 60 that connects the storage space R inside the inspection chamber 50 to the inside of the discharge pipe 200 and introduces a portion of the gas G flowing in the discharge pipe 200 into the inspection chamber 50.
  • the flow path length L between the inlet which is the connection part between the inlet pipe 60 and the discharge pipe 200, and the connection part between the second flow path 121b and the compression flow path 111p of the last stage impeller 111e (the beginning part of the second flow path 121b)
  • the inlet of the inlet pipe 60 is not limited to being connected to the discharge pipe 200, and may be the outlet nozzle 123.
  • the inlet pipe 60 may introduce the compressed gas G flowing in the discharge flow path 123a of the outlet nozzle 123 into the inspection chamber 50.
  • each of the pair of nut portions 23 described in the first embodiment above may be disposed inside the C-ring portion 210 in the direction in which the bolt portion 22 extends, in a state where it is screwed onto the bolt portion 22, and pressure may be applied to the C-ring portion 210 so as to separate one end 210a and the other end 210b of the C-ring portion 210 from each other.
  • the gas G to be compressed by the compressor 10 described in the first to third, fifth, and sixth embodiments is not limited to hydrogen gas (H 2 ).
  • the corrosive gas G to be compressed by the compressor 10 described in the fourth and seventh embodiments is not limited to hydrogen sulfide gas (H 2 S).
  • connection flow passage 12p described in the first to third embodiments is not limited to being connected to the casing outlet flow passage 120b, and may be connected to, for example, the discharge flow passage 123a or the second flow passage 121b.
  • the other end of the connection flow passage 12p described in the fourth embodiment is not limited to being connected to the casing inlet flow passage 120a, and may be connected to, for example, the intake flow passage 122a or the first flow passage 121a.
  • the other end of the connection flow passage 12p is not limited to being connected to the inlet flow passage P1 and the outlet flow passage P2, and may be connected to, for example, the intermediate flow passage 121c.
  • the intermediate flow passage 121c may be used as the outlet flow passage, and the gas G may be drawn into the storage space R through the connection flow passage 12p.
  • this flow passage may be used as the inlet flow passage, and the gas G may be drawn into the storage space R through the connection flow passage 12p.
  • the compressor system 1 described in the first to fourth embodiments above does not necessarily need to include a strain gauge 30.
  • multiple strain gauges 30 as described in the first to fourth embodiments above may be attached to the measurement target portion 21x. In this way, even if, for example, one strain gauge 30 breaks down, the amount of strain in the measurement target portion 21x can be measured by the other strain gauges 30.
  • strain gauge 30 described in the second and third embodiments above does not necessarily have to be attached to the center of the measurement target area 21x.
  • the storage space R described in the second and third embodiments above is not limited to being formed in a cylindrical shape, and may be formed in a square prism shape, for example.
  • the diaphragm plate 211 described in the second embodiment, and the piston ring portion 24 and the fixing plate portion 25 described in the third embodiment may be formed in a flat plate shape (rectangular plate shape).
  • a plurality of the columnar portions 213 described in the above first embodiment and the fifth to seventh embodiments may be arranged in the accommodation space R.
  • a plurality of the sacrificial members 20 described in the fifth to seventh embodiments are arranged in the accommodation space R, they may be attached to the rotor 11 so as to be arranged at equal intervals in the circumferential direction Dc of the rotating shaft 110, for example.
  • Dc circumferential direction
  • the sacrificial members 20 can be removed to check the state of the measurement target portion 21x. Therefore, it is possible to grasp the change and deterioration over time of the measurement target portion 21x according to the length of the period, and further the change and deterioration over time of the rotor 11.
  • the storage space described in the first to third embodiments above does not have to open to the outer surface 120s of the casing 120.
  • a scope hole 12h extending from the storage space R to the outer surface 120s of the casing 120 and opening to the outer surface 120s of the casing 120 is formed in the stator 12, and the inspection lid 40 that is detachable from the outer surface 120s of the casing 120 closes the scope hole 12h, thereby airtightly isolating the storage space R from the atmosphere.
  • the storage space R is not limited to being formed in the casing 120, and may be formed in the diaphragm 121, for example.
  • the other surface 211b of the diaphragm plate 211 is the measurement target area 21x, but this is not limited to this.
  • one surface 211a of the diaphragm plate 211 may be the measurement target area 21x. Therefore, it is sufficient that at least a portion of the diaphragm plate 211 is the measurement target area 21x.
  • the compressor system 1 described in the second and third embodiments above does not necessarily have to include, for example, the inspection lid 40.
  • the second space R2 described in the second and third embodiments above does not necessarily have to be open to the atmosphere.
  • the second space R2 may, for example, be sealed with a gas that is kept at a lower pressure than the first space R1 while being airtightly isolated from the outside.
  • the columnar portion 213 described in the fifth and seventh embodiments may be attached to the impeller 111, for example, at a slight incline with respect to the horizontal plane.
  • the columnar portion 213 described in the sixth embodiment may be attached to the rotating shaft 110 at a slight incline with respect to a virtual plane perpendicular to the axis Ar.
  • the recess 213a of the columnar portion 213 described in the fifth and seventh embodiments above does not have to be located in the center in the direction in which the columnar portion 213 extends.
  • the compressor system 1 described in the fifth to seventh embodiments may further include a contact prevention mechanism that prevents the broken pieces from contacting the rotor 11 when, for example, the columnar portion 213 breaks at the recess 213a as the rotor 11 rotates.
  • the contact prevention mechanism is, for example, disposed in the storage space R so as not to interfere with the columnar portion 213.
  • each accommodation space R may accommodate a sacrificial member 20.
  • the measurement target portion 21x described in the first to seventh embodiments above does not necessarily have to be formed of a metal material having the same composition as the metal material forming the rotor 11, and the measurement target portion 21x may be formed of another metal material different from the rotor 11.
  • the other metal material include a metal material newly applied to the rotor 11 and a metal material of a member other than the rotor 11 (e.g., the stator 12).
  • the compressor 10 in the above first to seventh embodiments is not limited to a single-shaft multi-stage centrifugal compressor (multi-stage centrifugal compressor), but may be, for example, a single-shaft single-stage centrifugal compressor (single-stage centrifugal compressor).
  • the configurations of the compressor system 1 described in the first to seventh embodiments above are not limited to independent configurations.
  • the compressor system 1 may be configured by appropriately combining the components described in each embodiment.
  • the compressor system 1 includes a compressor 10 having a rotor 11 and a stator 12 that covers the rotor 11 to form a flow path for the fluid (gas G) to be compressed, and a sacrificial member 20 that is arranged in a storage space R that communicates with the flow path, and the sacrificial member 20 is arranged in the storage space R and has a measurement target portion 21x that is distorted by the pressure of the fluid.
  • the sacrificial member 20 can be removed from the accommodation space R to check the amount of strain in the measurement target portion 21x.
  • the measurement target portion 21x it is possible to check the degree of deterioration of the measurement target portion 21x due to the fluid, the presence or absence of defects, and the like.
  • the compressor system 1 according to the second aspect is the compressor system 1 according to the first aspect, and the measurement target portion 21x may be formed from a metal material having the same composition as the metal material forming the rotor 11.
  • the compressor system 1 according to the third aspect is the compressor system 1 according to the first or second aspect, in which the fluid is hydrogen gas, and the storage space R may be connected to an outlet flow path.
  • the compressor system 1 according to the fourth aspect is the compressor system 1 according to the third aspect, and the outlet flow path P2 may be a flow path through which the compressed fluid with the highest pressure flows among the flow paths.
  • the measurement target portion 21x of the sacrificial member 20 receives a greater pressure from the hydrogen gas. In other words, it is possible to confirm the state of the measurement target portion 21x that has deteriorated under more severe embrittlement conditions.
  • the compressor system 1 according to the fifth aspect is the compressor system 1 according to the first or second aspect, in which the fluid is a corrosive gas, and the storage space R may be connected to an inlet flow path.
  • the compressor system 1 according to the sixth aspect may be the compressor system 1 according to the fifth aspect, in which the fluid having the lowest pressure before compression flows among the flow paths.
  • the measurement target portion 21x is subjected to a greater corrosive effect from the fluid than when, for example, the measurement target portion 21x of the sacrificial member 20 is exposed to a corrosive gas during compression or after compression. In other words, it is possible to confirm the state of the measurement target portion 21x that has deteriorated under more severe stress corrosion cracking conditions.
  • the compressor system 1 according to the seventh aspect is a compressor system 1 according to any one of the first to sixth aspects, and may further include an inspection lid 40 that is detachable from the stator 12 and closes the opening of the storage space R, and that opens to the outer surface 120s of the stator 12 facing the outside.
  • the sacrificial member 20 can be taken out from the accommodation space R. Moreover, by closing the inspection lid 40, the accommodation space R can be air-tightly isolated from the outside. Therefore, when removing the sacrificial member 20 from the accommodation space R, for example, there is no need to disassemble the compressor 10.
  • the compressor system 1 according to the eighth aspect is the compressor system 1 according to any one of the first to seventh aspects, and may further include a strain gauge 30 attached to the measurement target portion 21x and capable of detecting the amount of strain in the measurement target portion 21x.
  • the compressor system 1 according to the ninth aspect is the compressor system 1 according to any one of the first to eighth aspects, and the sacrificial member 20 has a plate-shaped C-ring portion 210 curved to be convex and arranged in a C-shape, and a pressing and holding portion 21 that holds both ends (one end 210a and the other end 210b) of the C-ring portion 210 in a pressed state so as to bring them closer to each other, and the convex portion of the C-ring portion 210 is the measurement target portion 21x, and the pressing and holding portion 21 may press the C-ring portion 210 with the measurement target portion 21x disposed therebetween so as to apply a stress to the measurement target portion 21x that is higher than the maximum stress acting on the rotor 11 during rated operation of the compressor 10.
  • the compressor system 1 according to the tenth aspect is the compressor system 1 according to any one of the first to eighth aspects, in which the sacrificial member 20 has a diaphragm plate 211 that divides the storage space R into a first space R1 that communicates with the flow path and a second space R2 that is open to the atmosphere, and at least a portion of the diaphragm plate 211 may be the measurement target area 21x.
  • the measurement target portion 21x of the diaphragm plate 211 is distorted by the pressure difference occurring between the first space R1 and the second space R2, it is possible to detect the amount of distortion due to compressive stress generated in the diaphragm plate 211 during operations such as short-periodic starting and stopping of the compressor 10.
  • the compressor system 1 according to the eleventh aspect is the compressor system 1 according to any one of the first to eighth aspects, and the sacrificial member 20 has a piston ring portion 24 that divides the storage space R into a first space R1 that communicates with the flow path and a second space R2 that is open to the atmosphere, a fixed plate portion 25 that is arranged in an immovable state in the first space R1, and a rod portion 212 that is formed in a columnar shape and connects the piston ring portion 24 and the fixed plate portion 25, and at least a portion of the rod portion 212 may be the measurement target portion 21x.
  • the compressor system 1 according to the twelfth aspect is the compressor system 1 according to the first or second aspect, in which the storage space R is formed in the stator 12 in a ring shape surrounding the rotating shaft 110 of the rotor 11, the sacrificial member 20 has a columnar portion 213 fixed to the rotor 11, and the columnar portion 213 may have a recess 213a as the measurement target portion 21x that is recessed so as to be constricted from the outer surface.
  • the columnar portion 213 arranged in the accommodation space R rotates around the axis Ar within the accommodation space R in accordance with the rotation of the rotor 11 while being exposed to the fluid.
  • the recess 213a as the measurement target portion 21x of the columnar portion 213 is distorted. Therefore, compared to the above configuration, the columnar portion 213 can simulate the stress acting on the rotor 11 with higher accuracy.
  • the compressor system 1 according to the thirteenth aspect is the compressor system 1 according to the twelfth aspect, in which the fluid is hydrogen gas, the rotor 11 is rotatably attached to the rotating shaft 110, and has multiple stages of impellers 111 arranged in the extension direction of the rotating shaft 110 to compress the fluid, and the storage space R may be connected to the compression flow path 111p of the last stage impeller (last stage impeller 111e) of the multiple stages of the impellers 111.
  • the columnar portion 213 receives a greater pressure from the hydrogen gas than when it is connected to the compression flow passage 111p of the impeller 111 in the preceding stage rather than the last stage impeller 111, for example. In other words, it is possible to confirm the state of the columnar portion 213 that has deteriorated under more severe embrittlement conditions.
  • the compressor system 1 according to the 14th aspect is the compressor system 1 according to the 12th aspect, in which the fluid is a corrosive gas, the rotor 11 is rotatably attached to the rotating shaft 110, and has multiple stages of impellers 111 arranged in the extension direction of the rotating shaft 110 to compress the fluid, and the storage space R may be connected to the compression flow path 111p of the front-stage impeller (front-stage impeller 111f) of the multiple stages of impellers 111.
  • the columnar portion 213 is subjected to a greater corrosive effect from the corrosive gas than when, for example, the columnar portion 213 is connected to the compression flow passage 111p of a rear-stage impeller 111 rather than the front-stage impeller 111. In other words, it is possible to confirm the state of the columnar portion 213 that has deteriorated under more severe stress corrosion cracking conditions.
  • the compressor system 1 according to the fifteenth aspect is the compressor system 1 according to any one of the first to fourteenth aspects, and the stator 12 is formed with a scope hole 12h that extends from the storage space R to the outer surface 120s of the stator 12 and opens to the outer surface 120s of the stator 12, and may further include an inspection lid 40 that is detachable from the outer surface 120s of the stator 12 and closes the opening 12h' of the scope hole 12h.
  • This disclosure relates to a compressor system capable of detecting a wider variety of modes of deterioration and defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本開示の圧縮機システムは、ロータ、および該ロータを覆うことで圧縮する流体の流路を形成するステータを備える圧縮機と、流路と連通する収容空間に配置された犠牲部材と、を備え、犠牲部材は、収容空間に配置されて、流体の圧力の変化によってひずむ測定対象部位を有する。

Description

圧縮機システム
 本開示は、圧縮機システムに関する。
 本願は、2022年9年29日に出願された特願2022-156117号に対して優先権を主張し、その内容をここに援用する。
 遠心圧縮機などのターボ機械の分野では、ロータやステータを形成する材料が作動流体にさらされることにより劣化する場合がある。この材料の劣化の例として、例えば、作動流体の成分に起因する脆化や腐食などが挙げられる。
 例えば、特許文献1には、経時的な電気抵抗の増加を検出可能な多電極複合センサ(CMAS)プローブを作動流体にさらされるように圧縮機の内部に配置することで、材料の侵食・腐食の具合を測定しながら監視する方法が開示されている。
特開2019-82165号公報
 ところで、高速回転する圧縮機のロータには、遠心力に起因する応力が作用し、ステータよりも作用する応力が大きいため、ステータと比較して脆化や腐食などの劣化が進行しやすい。そのため、ロータでは、この応力が腐食とあいまって、例えば応力腐食割れなどの欠陥が発生する場合がある。したがって、より多様なモードの劣化や欠陥を検出することができる技術が要求される。
 本開示は上記課題を解決するためになされたものであって、より多様なモードの劣化や欠陥を検出可能な圧縮機システムを提供することを目的とする。
 上記課題を解決するために、本開示に係る圧縮機システムは、ロータ、および該ロータを覆うことで圧縮する流体の流路を形成するステータを備える圧縮機と、前記流路と連通する収容空間に配置された犠牲部材と、を備え、前記犠牲部材は、前記収容空間に配置されて、前記流体の圧力によってひずむ測定対象部位を有する。
 本開示によれば、より多様なモードの劣化や欠陥を検出可能な圧縮機システムを提供することができる。
本開示の第1実施形態から第3実施形態に係る圧縮機システムの概略構成を示した図である。 図1の要部を拡大したものであり、本開示の第1実施形態に係る犠牲部材の構成を説明するための図である。 図1の要部を拡大したものであり、本開示の第2実施形態に係る犠牲部材の構成を説明するための図である。 図1の要部を拡大したものであり、本開示の第3実施形態に係る犠牲部材の構成を説明するための図である。 本開示の第4実施形態に係る圧縮機システムの概略構成を示した図である。 本開示の第5実施形態に係る圧縮機システムの概略構成を示した図である。 図6の要部を拡大したものであり、本開示の第5実施形態に係る犠牲部材、および点検用蓋の構成を説明するための図である。 本開示の第6実施形態に係る犠牲部材、および点検用蓋の構成を説明するための図であり、図7で示した部分に対応した図である。 本開示の第7実施形態に係る犠牲部材、および点検用蓋の構成を説明するための図である。 本開示のその他の実施形態に係る圧縮機システムの概略構成を示した図である。 本開示のその他の実施形態に係る圧縮機システムの概略構成を示した図である。
 以下、添付図面を参照して、本開示による圧縮機システムを実施するための形態を説明する。
<第1実施形態>
[圧縮機システム]
 圧縮機システムは、プラント内で稼働する圧縮機の劣化や欠陥を検出するためのシステムである。本実施形態における圧縮機システムは、圧縮機のロータの劣化や欠陥を検出する。
 図1に示すように、圧縮機システム1は、圧縮機10と、犠牲部材20と、ひずみゲージ30と、点検用蓋40とを備えている。
(圧縮機)
 圧縮機10は、例えば、化学プラント内における建屋などの内部に配置されている。圧縮機10は、この建屋内部の大気環境下に配置されている。圧縮機10は、例えば、化学プラント内で発生するプロセスガスを作動流体として圧縮するとともに、圧縮したプロセスガスを化学プラント内に配置されている反応用装置(図示省略)などに供給する。
 本実施形態における圧縮機10は、水素ガス(H)をプロセスガスとして圧縮する一軸多段式の遠心圧縮機(多段遠心圧縮機)である。以下、説明の便宜上、圧縮機10が圧縮の対象とするプロセスガスを単に「ガスG」と称する。
 圧縮機10は、ロータ11と、ステータ12と、軸受部13と、シール部14とを備えている。
 (ロータ)
 ロータ11は、圧縮機10が駆動された際に回転する圧縮機10の一部分である。
 ロータ11は、回転軸110と、インペラ111とを有している。
 回転軸110は、水平方向に沿った一方向に延びる仮想的な軸線Arを中心とした円柱状に形成されている。本実施形態では、説明の便宜上、この軸線Arが延びる方向を「軸線方向Da」と称する。また、この軸線方向Daの両側のうち、一方の側(図1における左側)を単に「一方側Dal」と称し、その反対(図1における右側)を「他方側Dar」と称する。
 また、軸線Arを中心に延びるこの回転軸110の周方向を単に「周方向Dc」と称する。さらに、軸線Arに対して垂直な方向を「径方向」と称する。本実施形態における回転軸110は、例えば、金属材料によって形成されている。
 インペラ111は、回転軸110の外周面110sにこの回転軸110と一体に取り付けられており、軸線方向Daに間隔をあけて複数段が配置されている。本実施形態では、5段のインペラ111が軸線方向Daに間隔をあけて配置されている場合を一例として示している。
 以下、説明の便宜上、複数のインペラ111のうち最も一方側Dalに配置されたインペラ111を「最前段インペラ111f」と称し、複数のインペラ111のうち最も他方側Darに配置されたインペラ111を「最後段インペラ111e」と称する。
 各段のインペラ111は、回転軸110と共に軸線Ar回りに回転することで発生する遠心力を利用して、一方側Dalからインペラ111の内部に流入したガスGを圧縮するとともに径方向の外側に向かって圧送する。したがって、各段のインペラ111は、ガスGにさらされている。
 各インペラ111は、ディスク111aと、ブレード111bと、カバー111cとを有している。本実施形態におけるインペラ111は、いわゆるクローズドインペラである。インペラ111は、例えば、金属材料によって形成されている。
 ディスク111aは、回転軸110に取り付けられた際、軸線Arを中心にして他方側Darに向かうにしたがって漸次に拡大する円筒状に形成されている。したがって、ディスク111aには、他方側Darに向かうにしたがって一方側Dalを向く側面(符号の図示省略)が形成されている。また、ディスク111aは、このディスク111aの内周面(符号の図示省略)が回転軸110の外周面110sに嵌り込むことによって、回転軸110に一体に固定されている。
 ブレード111bは、ディスク111aにおける上記側面と一体に形成されている。ブレード111bは、複数が周方向Dcに等間隔に並ぶように配置されている。ブレード111bは、例えば、他方側Darに向かうにしたがって回転軸110の回転方向Drにねじれるように広がっている。
 なお、本実施形態における回転軸110の回転方向Drは、一方側Dalから回転軸110を見た時に、この回転軸110が時計回りに回る方向である。
 カバー111cは、ディスク111aと共にブレード111bを軸線方向Daに挟んだ状態でディスク111aに一方側Dalから対向している。カバー111cは、他方側Darに向かうにしたがって漸次に拡大する円筒状に形成されている。
 カバー111cは、ブレード111bと一体に形成されている。このカバー111cがブレード111bと一体に形成されることで、カバー111cとディスク111aとの間には、ブレード111bによってガスGが圧縮される圧縮流路111pが画定されている。
 (ステータ)
 ステータ12は、圧縮機10が駆動された際に静止している圧縮機10の一部分である。ステータ12は、ロータ11を径方向の外側から覆っている。
 ステータ12は、ケーシング120と、ダイアフラム121と、入口ノズル122と、出口ノズル123とを有している。
 ケーシング120は、圧縮機10の外殻であり、圧縮機10を構成する各種装置を収容している。本実施形態におけるケーシング120は、例えば、軸線方向Daに延びた状態で両端が閉塞された筒状に形成されている。ケーシング120における圧縮機10の外部に面する外面120sは、大気にさらされている。ケーシング120は、例えば、金属材料によって形成されている。
 ケーシング120には、このケーシング120の外側から内側に向かってガスGが流入させるためのケーシング入口流路120aと、ケーシング120の内側から外側に向かってガスGが流出させるためのケーシング出口流路120bとが形成されている。
 これらケーシング入口流路120aおよびケーシング出口流路120bは、ケーシング120の外壁を貫通するように形成されている。また、ケーシング入口流路120aとケーシング出口流路120bとは、軸線方向Daに互いに離間して配置されている。具体的には、ケーシング入口流路120aは、ケーシング出口流路120bよりも一方側Dalに配置されている。
 ダイアフラム121は、ロータ11のインペラ111を径方向の外側から覆った状態、かつ回転軸110の外周面110sと隙間をあけた状態で回転軸110を外周側から覆うように配置されている。ダイアフラム121は、軸線Arを中心に延びる円筒状に形成されている。
 ダイアフラム121は、ケーシング120に収容されており、ケーシング120の内面120iにこのケーシング120と一体に固定されている。ダイアフラム121は、例えば、ボルトなどの締結部材(図示省略)によってケーシング120の内面120iに固定されている。ダイアフラム121は、例えば、金属材料によって形成されている。
 ダイアフラム121は、回転軸110の外周面110sに対向する内周面としての対向面121sを内側に有している。また、ダイアフラム121には、この対向面121sから径方向の外側に凹み、インペラ111を内側に収容するための収容凹部121rが形成されている。収容凹部121rは、インペラ111の数と同一の数が軸線方向Daに並んで配置されている。
 ダイアフラム121には、ガスGが流れる複数の流路が形成されている。具体的に説明すると、ダイアフラム121には、最前段インペラ111fの圧縮流路111pにガスGを流入(吸入)させるための第1流路121aと、最後段インペラ111eの圧縮流路111pからガスGを流出(吐出)させるための第2流路121bと、これら第1流路121aと第2流路121bとの間で隣り合うインペラ111の圧縮流路111p同士を互いに接続する複数の中間流路121cとが形成されている。
 第1流路121aは、ダイアフラム121に形成された複数の流路のうち最も一方側Dalに配置された流路である。第1流路121aは、例えば、軸線Arを中心とした環状の空間として形成されている。
 第1流路121aは、ケーシング入口流路120aにケーシング120の内側(径方向の内側)から接続されている。また、第1流路121aは、最前段インペラ111fの圧縮流路111pに一方側Dalから接続されている。
 第2流路121bは、ダイアフラム121に形成された複数の流路のうち最も他方側Darに配置された流路である。第2流路121bは、例えば、軸線Arを中心とした環状の空間として形成されている。
 第2流路121bは、最後段インペラ111eの圧縮流路111pに他方側Darから接続されている。また、第2流路121bは、ケーシング出口流路120bにケーシング120の内側(径方向の内側)から接続されている。
 複数の中間流路121cは、これら第1流路121aおよび第2流路121bの間で間隔をあけた状態で軸線方向Daに並ぶように配置されている。各中間流路121cは、一方側Dalに配置されたインペラ111の圧縮流路111pで圧縮されたガスGをこのインペラ111よりも他方側Darに配置された次段のインペラ111の圧縮流路111pに案内する流路である。
 本実施形態における中間流路121cは、ディフューザ流路121dと、戻り流路121eとによって構成されている。
 ディフューザ流路121dは、複数のインペラ111のうち最後段インペラ111eを除くインペラ111の圧縮流路111pで圧縮されたガスGを径方向の外側に導く流路である。ディフューザ流路121dの一端は、収容凹部121rの内面に開口している。ディフューザ流路121dの一端は、開口部分がインペラ111の圧縮流路111pの出口に径方向に対向するように配置されている。
 戻り流路121eは、このディフューザ流路121dの一端とは反対の他端に接続されており、ディフューザ流路121dを流れたガスGを径方向の内側に導くとともに、このガスGを次段のインペラ111の圧縮流路111pに導く流路である。
 したがって、第1流路121aと第2流路121bとの間のガスGの流路では、インペラ111の圧縮流路111pと、ディフューザ流路121dおよび戻り流路121eで構成される中間流路121cとが交互に繰り返されている。
 以下、説明の便宜上、インペラ111の圧縮流路111pと中間流路121cとによって構成されているガスGの流路を「圧縮部」と称する。
 なお、収容凹部121rの内面とインペラ111のディスク111aとの間の隙間、および収容凹部121rの内面とインペラ111のカバー111cとの間の隙間には、インペラ111の回転に伴って圧縮されたガスGの一部が流入する。したがって、これらの隙間は、インペラ111の圧縮流路111pに連通している。
 入口ノズル122は、外部から供給されるガスGをケーシング120の内部に導入する。したがって、入口ノズル122は、圧縮機10におけるガスGの入口部分である。入口ノズル122は、ケーシング120と一体に形成されている。なお、入口ノズル122は、例えば、金属材料によって形成されている。
 入口ノズル122の内部には、吸入流路122aが形成されている。この吸入流路122aには、例えば、入口ノズル122に接続され、この入口ノズル122と圧縮機10外部のガス供給源などの装置(図示省略)とをつなぐ吸入配管100の内部を流れてきたガスGが流入する。
 吸入流路122aは、ケーシング120に形成されたケーシング入口流路120aにケーシング120の外側(径方向の外側)から接続されている。したがって、吸入配管100内を流れるガスGは、吸入流路122aおよびケーシング入口流路120aを通じて第1流路121aに流入する。
 本実施形態では、上述したダイアフラム121の第1流路121a、ケーシング120のケーシング入口流路120a、および入口ノズル122の吸入流路122aによって、圧縮される前のガスGが流れる入口流路P1が構成されている。入口流路P1は、圧縮機10におけるガスGの流路のうち、圧縮部によって圧縮される前の最も圧力の低いガスGが流れる流路である。
 出口ノズル123は、ケーシング120の内部で圧縮されたガスGをケーシング120の外部に流出させる。したがって、出口ノズル123は、圧縮機10におけるガスGの出口部分である。出口ノズル123は、ケーシング120と一体に形成されている。出口ノズル123は、入口ノズル122よりも他方側Darに配置されている。なお、出口ノズル123は、例えば、金属材料によって形成されている。
 出口ノズル123の内部には、吐出流路123aが形成されている。この吐出流路123aは、ケーシング120に形成されたケーシング出口流路120bにケーシング120の外側(径方向の外側)から接続されている。したがって、吐出流路123aには、ダイアフラム121に形成された第2流路121bを流れるとともに、ケーシング出口流路120bを通じて圧縮後のガスGが流入する。
 また、吐出流路123aには、出口ノズル123と圧縮機10外部の装置とをつなぐ吐出配管200が接続されている。したがって、吐出流路123aを流れるガスGは、この吐出配管200を通じて圧縮機10外部の装置に向かって流れ去る(吐出される)。
 本実施形態では、上述したダイアフラム121の第2流路121b、ケーシング120のケーシング出口流路120b、および出口ノズル123の吐出流路123aによって、圧縮された後のガスGが流れる出口流路P2が構成されている。出口流路P2は、圧縮機10におけるガスGの流路のうち、圧縮部によって圧縮された最も圧力の高いガスGが流れる流路である。
 (軸受部)
 軸受部13は、ケーシング120に収容されている。
 本実施形態における軸受部13は、ラジアル軸受130と、スラスト軸受131と、スラストカラー132とを有している。
 ラジアル軸受130は、ロータ11の回転軸110を回転可能に支持している。ラジアル軸受130は、例えば、一対が軸線方向Daに互いに離間した状態で配置されている。一対のラジアル軸受130は、ダイアフラム121を軸線方向Daに間に挟むように配置されている。
 スラスト軸受131は、インペラ111によるガスGの圧縮に伴ってロータ11の回転軸110が軸線方向Daに変位することを抑制している。スラスト軸受131は、回転軸110に一体に取り付けられたフランジ状のスラストカラー132を軸線方向Daに支持した状態で押圧することで、回転軸110が軸線方向Daに変位することを抑制している。
 具体的には、これらスラスト軸受131およびスラストカラー132は、例えば、それぞれ一対が軸線方向Daに互いに離間した状態で配置されている。また、一対のスラスト軸受131およびスラストカラーのそれぞれは、ダイアフラム121とラジアル軸受130との間に配置されている。
 一対のスラスト軸受131のうち一方側Dalに配置されたスラスト軸受131は、一対のスラストカラー132のうち一方側Dalに配置されたスラストカラー132を一方側Dalから押圧した状態で支持している。
 一方で、一対のスラスト軸受131のうち他方側Darに配置されたスラスト軸受131は、一対のスラストカラー132のうち他方側Darに配置されたスラストカラー132を他方側Darから押圧した状態で支持している。
 (シール部)
 シール部14は、ロータ11の回転軸110とステータ12のダイアフラム121との間の隙間から圧縮部に空気が流入することを抑制している。シール部14は、回転軸110とダイアフラム121との間に配置されている。シール部14は、例えば、一対が軸線方向Daに並ぶ複数のインペラ111を間に挟むように配置されている。
 一対のシール部14のうち一方側Dalに配置されたシール部14は、空気が回転軸110とダイアフラム121との間の隙間を通じて一方側Dalから最前段インペラ111fの圧縮流路111pに流入することを抑制している。
 一方で、一対のシール部14のうち他方側Darに配置されたシール部14は、空気が回転軸110とダイアフラム121との間の隙間を通じて他方側Darから最後段インペラ111eの圧縮流路111pに流入することを抑制している。
 以下、説明の便宜上、一対のシール部14のうち一方側Dalに配置されたシール部14を「第1シール部14a」と称し、一対のシール部14のうち他方側Darに配置されたシール部14を「第2シール部14b」と称する。
 詳細な図示は省略するが、本実施形態におけるシール部14(第1シール部14aおよび第2シール部14b)は、例えば、回転軸110の外周面110sから径方向の外側にフランジ状に広がるように形成された複数のロータ側フィンと、ダイアフラム121における対向面121sから径方向の内側にフランジ状に広がるように形成された複数のステータ側フィンとが軸線方向Daに交互に配列されることによって構成されたラビリンスシールである。シール部14には、例えば、吐出配管200内を流れる圧縮後のガスGの一部がシールガスとして供給されている。
 詳細な図示は省略するが、吐出配管200内を流れる圧縮後のガスGの一部は、例えば、第2シール部14bよりも他方側Darからこの第2シール部14bに向かうように供給される。
 これによって、第1シール部14aよりも一方側Dal、および第2シール部14bよりも他方側Darにおける回転軸110の外周面110sとダイアフラム121の対向面121sとの間の隙間には、圧縮後のガスGが流通している。したがって、ダイアフラム121と回転軸110との間の隙間の空間は、高圧の状態に維持されている。
 以下、圧縮機10によるガスGの圧縮の流れの一例を説明する。
 回転軸110は、軸受部13によって支持された状態で、例えば電動機などの駆動源(図示省略)によって所定の回転速度で回転方向Drに高速回転される。回転軸110の回転に伴って回転軸110と一体のインペラ111がこの回転軸110と共に高速回転する。
 吸入配管100を通じて圧縮機10外部に配置されたガス供給源から圧縮機10に向かって送気されたガスGは、ロータ11が回転駆動することで、入口ノズル122を通じてケーシング120の内部に吸入される。入口ノズル122の吸入流路122aおよびケーシング120のケーシング入口流路120aを通じて、ダイアフラム121の第1流路121aに流入したガスGは、後続の最前段インペラ111fの圧縮流路111p内で回転するブレード111bによって圧縮される。つまり、圧縮機10に向かって吸入配管100内を流れる圧縮前のガスGは、圧縮機10の入口流路P1(吸入流路122a、ケーシング入口流路120a、および第1流路121a)を通じて最前段インペラ111fの圧縮流路111pに導かれる。
 最前段インペラ111fの圧縮流路111p内で圧縮されたガスGは、後続のディフューザ流路121dおよび戻り流路121eを通じて次段のインペラ111の圧縮流路111pに導かれ、このインペラ111の圧縮流路111p内で更に圧縮される。インペラ111の圧縮流路111pで圧縮されたガスGは、後続の中間流路121c(ディフューザ流路121dおよび戻り流路121e)を流れるとともに、次段のインペラ111で更に圧縮されるステップを繰り返すことで、最後段インペラ111eの圧縮流路111pに到る。
 最後段インペラ111eの圧縮流路111pで圧縮されたガスGは、後続のダイアフラム121の第2流路121bに吐出されるとともに、ケーシング120のケーシング出口流路120bおよび出口ノズル123の吐出流路123aを通じて、吐出配管200内に流入する。つまり、最後段インペラ111eの圧縮流路111pを経た圧縮後のガスGは、圧縮機10の出口流路P2(第2流路121b、ケーシング出口流路120b、および吐出流路123a)を通じて吐出配管200内に導かれる。吐出配管200内に流入したガスGは、例えば、圧縮機10外部に配置された反応用装置(図示省略)に導入されるとともに、反応用の流体として利用される。
 まとめると、吸入配管100から圧縮機10に吸入された圧縮前のガスGは、入口流路P1(吸入流路122a、ケーシング入口流路120a、および第1流路121a)を通じて、圧縮部における最前段インペラ111fの圧縮流路111pに導かれる。
 最前段インペラ111fの圧縮流路111pに導かれたガスGは、複数段のインペラ111の各圧縮流路111pと、これら圧縮流路111p同士を接続する中間流路121cとから成るこの圧縮部で複数段にわたって所定の高圧状態になるまで圧縮される。
 圧縮部によって圧縮された圧縮後のガスGは、この圧縮部における最後段インペラ111eの圧縮流路111pから出口流路P2(第2流路121b、ケーシング出口流路120b、および吐出流路123a)を通じて吐出配管200内に吐出される。
(犠牲部材)
 犠牲部材20は、駆動する圧縮機10のロータ11に作用する応力、およびロータ11が作動流体としてのガスGにさらされることによるロータ11の経時変化・経年劣化の状態を模擬可能な部材である。
 本実施形態における犠牲部材20は、例えば、圧縮機10の点検および修繕の必要有無の判定、ならびに、これら点検および修繕のタイミングや周期などの決定に用いられる部材である。
 ここで、図1に示すように、上述した圧縮機10のステータ12のケーシング120には、この犠牲部材20を収容するための収容空間Rが形成されている。本実施形態における収容空間Rは、ケーシング120の外面120sから凹むように形成された凹所120dの内面によって画定された空間である。すなわち、収容空間Rは、ケーシング120の外面120sに開口している。本実施形態における収容空間Rは、例えば、出口流路P2よりも他方側Darに配置されている。
 収容空間Rは、ケーシング120に形成された接続流路12pによって出口流路P2に接続されている。つまり、収容空間Rは、接続流路12pを介して、圧縮後の最も圧力の高いガスGが流れる出口流路P2につながっている(連通している)。
 接続流路12pの一端は、収容空間Rに開口している。接続流路12pの他端は、出口流路P2におけるケーシング出口流路120bに開口している。したがって、圧縮部によって圧縮された後に出口流路P2を流れるガスGの一部は、この接続流路12pを通じて収容空間Rに引き出されている。
 犠牲部材20は、この収容空間Rに配置されている。すなわち、犠牲部材20は、圧縮機10が稼動している際、圧縮部によって圧縮された後のガスGにさらされる。なお、図1では、図示の都合上、この犠牲部材20を点線の四角形で図示している。犠牲部材20の構成および形状などは、図2を用いて詳細に説明する。
 図2に示すように、本実施形態における犠牲部材20は、Cリング部210と、押圧保持部21とを有している。
 (Cリング部)
 Cリング部210は、圧縮機10のロータ11を形成する金属材料と同一組成の金属材料で形成されている。本実施形態におけるCリング部210は、ロータ11のうちインペラ111を形成する金属材料と同一組成の金属材料で形成されている。
 ここでいう「同一組成」は、例えば、ロータ11を製造する際に使用される材料と同一の材料であることを意味する。
 Cリング部210には、出口流路P2から引き出されたガスGの圧力を受けることによってひずむ測定対象部位21xが形成されている。
 Cリング部210は、板状の部材であり、凸となるように湾曲してC字状に配置されている。本実施形態では、Cリング部210の凸となる部分が上記の測定対象部位21xとされている。Cリング部210は、上記の如くC字状に配置されることで互いに近接し合う一端210aおよび他端210bが形成されている。以下、Cリング部210の一端210aおよび他端210bをまとめて「両端」と称する場合がある。
 (押圧保持部)
 押圧保持部21は、Cリング部210の両端(一端210aおよび他端210b)を互いに近づけるように押圧した状態で保持する。押圧保持部21は、ボルト部22および一対のナット部23によって構成されている。
 ボルト部22は、柱状に形成されており、ナット部23が螺合可能とされている。ボルト部22は、Cリング部210における一端210aに近い部分と、Cリング部210における他端210bに近い部分とのそれぞれを貫通している。ボルト部22には、例えば、頭部を有さないボルトであるスタッドボルトなどが採用される。
 一対のナット部23は、Cリング部210を間に挟むようにボルト部22に螺合している。一対のナット部23は、ボルト部22に螺合することで、Cリング部210を間に挟む方向でCリング部210を押圧した状態で保持されている。
 具体的には、一対のナット部23のそれぞれは、ボルト部22の延びる方向におけるCリング部210の外側で、ボルト部22に螺合した状態で配置されており、Cリング部210の一端210aと他端210bとを互いに近接させるような圧力をCリング部210に付与している。
 この際、一対のナット部23は、圧縮機10の定格運転時にロータ11に作用する最大応力よりも高い応力を、Cリング部210を間に挟む方向でCリング部210に付与している。本実施形態における一対のナット部23は、圧縮機10の定格運転時にインペラ111に作用する最大応力よりも高い応力をCリング部210に付与している。言い換えれば、一対のナット部23の締め付けトルクは、圧縮機10の定格運転時にロータ11のインペラ111に作用する最大応力よりも高い応力がCリング部210の測定対象部位21xに付与されるように設定されている。
 ここでいう「最大応力」は、例えば、圧縮機10の定格運転時に最後段インペラ111eに作用する応力の大きさのうち、最大の大きさを意味する。
 なお、ロータ11のインペラ111に作用する応力の大きさおよび向き、ならびにこれらの分布などは、例えば、有限要素法解析(FEM解析)などがなされることによって予め把握されている。
 測定対象部位21xを含むこの測定対象部位21xの周辺部分は、一対のナット部23がCリング部210に圧力を付与することによって、測定対象部位21xを基点に一端210aおよび他端210bの側に引っ張られる。つまり、測定対象部位21xには、引張応力が発生している。
(ひずみゲージ)
 ひずみゲージ30は、測定対象部位21xのひずみ量を検出するセンサである。ひずみゲージ30は、Cリング部210の測定対象部位21xに取り付けられている(貼設されている)。ひずみゲージ30は、例えば、圧縮機10の外部に配置された監視装置など(図示省略)に電気的に接続されている。
 ひずみゲージ30は、測定対象部位21xのひずみ量を検出するとともに、このひずみ量を示す信号を上記監視装置に送信する。これによって、監視装置は、例えば、Cリング部210の測定対象部位21xの経時的なひずみ量を監視(モニタリング)することができる。
(点検用蓋)
 点検用蓋40は、ケーシング120に形成された凹所120dの開口を閉塞することで、収容空間Rを閉空間にする蓋部材である。点検用蓋40は、ケーシング120の外面120sに対して着脱可能とされている。具体的には、点検用蓋40は、ボルトなどの締結部材Bによってケーシング120の外面120sに対して着脱可能とされている。
 つまり、点検用蓋40は、締結部材Bによってケーシング120の外面120sに固定されることで収容空間Rの開口を閉塞し、締結部材Bが緩められた際に取り外されることで収容空間Rを開放する。点検用蓋40は、例えば、金属材料によって形成されている。
 点検用蓋40は、圧縮機10運転の際にケーシング120の外面120sに取り付けられる。点検用蓋40は、ケーシング120の外面120sに取り付けられることで、収容空間Rを大気と気密に隔離する。また、点検用蓋40は、圧縮機10の運転員や補修員などによって犠牲部材20が収容空間Rから取り出される際に、ケーシング120の外面120sから取り外される。これによって、圧縮機10の運転員や補修員が、圧縮機10の外部から犠牲部材20を取り出すことや観察することができる。
(作用・効果)
 上記構成では、圧縮機10の稼動中(定格運転中)に圧縮されたガスG(H)の一部が収容空間Rに引き出されるとともに、収容空間Rに配置された犠牲部材20がこの引き出されたガスGにさらされる。犠牲部材20がガスGにさらされることで、この犠牲部材20が有するCリング部210は、ガスGの圧力を受けることによってひずむ。
 これにより、例えば、圧縮機10の運転を停止した際にこの犠牲部材20を収容空間Rから取り出すことで、Cリング部210における測定対象部位21xのひずみ量を確認することができる。すなわち、Cリング部210の劣化具合の一指標であるひずみ量を測定対象部位21xから検出することができる。圧縮機10を構成する部材では、単純にガスGの性質による腐食等の劣化だけでなく、高圧のガスGに対してロータ11のように回転しながら曝されることで受ける圧力による劣化の影響も大きい。これに対し、犠牲部材20がガスGの圧力によってひずむことで、ガスGの性質だけでなく、ガスGの圧力による劣化の影響を検出することができる。
 したがって、Cリング部210にガスGからの圧力が作用するに伴い、Cリング部210に応力がどの程度作用したかを確認することができる。その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 さらに、上記構成では、Cリング部210がロータ11のインペラ111を形成する金属材料と同一の金属材料で形成されている。
 これにより、例えば、圧縮機10の運転を停止した際に犠牲部材20を収容空間Rから取り出すとともに、Cリング部210の表面を観察することで、ガスGによるCリング部210の表面に発生した脆化(水素脆化)の進行具合や、欠陥の有無などを確認することができる。つまり、Cリング部210の劣化具合の一指標である脆化の進行具合をCリング部210の表面から検出することができる。
 その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 以上をまとめると、上記の犠牲部材20を圧縮機10が圧縮する流体の流路につながる収容空間Rに配置することで、例えば、測定対象部位を有さない犠牲部材、またはロータ11を形成する金属材料と同一組成の金属材料で形成されていない測定対象部位を有する犠牲部材を用いる場合と比較して、圧縮機10のロータ11(インペラ111)に生じる可能性のある劣化や欠陥をより多く検出することができる。
 また、上記構成では、犠牲部材20が収容される収容空間Rが、圧縮部によって圧縮された後の最も圧力の高いガスGが流れる出口流路P2につながっている。
 これにより、圧縮される前のガスGまたは圧縮途中のガスGを収容空間Rに引き出す場合と比較して、ガスGからより大きな圧力がCリング部210に付与される。つまり、より過酷な脆化条件のもとで劣化したCリング部210の状態を確認することができる。 特に、プロセスガスとして水素ガスを使用する場合、水素ガスにさらされる部材は水素脆化の影響を強く受ける。水素脆化は、高い圧力が付与されるほど生じやすくなる。そのため、最も圧力の高いガスGが流れる出口流路P2とつながった収容空間Rに犠牲部材20を配置することで、圧縮機10において最も水素脆化の影響を受けた部材を犠牲部材20によって高い精度で模擬することができる。
 したがって、圧縮機10のロータ11(インペラ111)の劣化具合をより適正に推定することができる。
 また、上記構成では、Cリング部210における凸となる部分がガスGの圧力によってひずむ測定対象部位21xとされている。さらに、ボルト部22が、Cリング部210における一端210aに近い部分および他端210bに近い部分のそれぞれを貫通し、ボルト部22に螺合した一対のナット部23が、ロータ11(インペラ111)に生じる最大応力よりも高い応力を、Cリング部210を間に挟む方向でCリング部210に付与している。
 これにより、圧縮機10の稼動中(定格運転中)には、ロータ11に作用する最大応力よりも常に高い応力がCリング部210に作用し続ける。そのため、ロータ11がガスGにさらされながら回転する圧縮流路111pの環境よりも過酷な脆化条件のもとで劣化したCリング部210の状態を確認することができる。
 したがって、圧縮機10のロータ11(インペラ111)の劣化具合をより適正に推定することができる。
 また、上記構成では、犠牲部材20が収容される収容空間Rが、圧縮機10のステータ12(ケーシング120)に形成されている。
 これにより、例えば、収容空間Rを画定するための部材などを圧縮機10に追設する必要がない。したがって、圧縮機10の部品点数が増加することを抑制することができる。
 また、上記構成では、測定対象部位21xにひずみゲージ30が取り付けられている。これにより、例えば、ひずみゲージ30によって検出されたひずみ量を示す信号を圧縮機10の外部に送信することが可能となり、圧縮機10運転中のCリング部210における測定対象部位21xのひずみ量の経時的な変化を圧縮機10の外部から監視(モニタリング)することができる。
 したがって、ひずみゲージ30によって検出されたCリング部210の測定対象部位21xにおけるひずみ量に基づいて、適切なタイミングで圧縮機10のロータ11を点検・修繕することができる。
 また、上記構成では、ケーシング120の外面120sにおける収容空間Rの開口が、着脱可能な点検用蓋40によって閉塞されている。
 これにより、点検用蓋40を取り外すことで犠牲部材20を収容空間Rから取り出すことができる。また、点検用蓋40を閉じることで収容空間Rを大気と気密に隔離することができる。そのため、犠牲部材20を収容空間Rから取り出す際に、例えば、圧縮機10を分解する必要がない。
 したがって、劣化したCリング部210の状態を容易に確認することができる。
<第2実施形態>
 続いて、本開示に係る犠牲部材の第2実施形態について図3を用いて説明する。以下に説明する第2実施形態では、上記の第1実施形態と共通する構成については図中に同符号を付して、その説明を省略する。第2実施形態では、犠牲部材の構成が、上記の第1実施形態で説明した犠牲部材の構成と異なっている。
 本実施形態における収容空間Rは、円柱状の空間として形成されている。すなわち、凹所120dは、ケーシング120の外面120sから断面円形状に凹むように形成されている。また、本実施形態における点検用蓋40には、圧縮機10外部の大気と収容空間R内とを連通させるように貫通した大気開放孔40hが形成されている。
(犠牲部材)
 本実施形態における犠牲部材20は、ダイアフラム板211を有している。
 (ダイアフラム板)
 ダイアフラム板211は、所定の厚みを有した円板状に形成されている。ダイアフラム板211は、一面211aと、この一面211aとは反対を向く他面211bとを有している。ダイアフラム板211は、収容空間Rを2つの空間に区画している。
 すなわち、ダイアフラム板211は、このダイアフラム板211を境にして一面211aの側に配置された空間と、他面211bの側に配置された空間とに収容空間Rを二分している。また、ダイアフラム板211は、これら2つの空間を互いに気密に隔離した状態で収容空間Rに配置されている。
 具体的には、ダイアフラム板211は、凹所120dの内面に固定されている。ダイアフラム板211によって区画された2つの空間のうち一方の空間(一面211aの側に配置された空間)は、接続流路12pを通じて出口流路P2に連通している。ダイアフラム板211によって区画された2つの空間のうち他方の空間(他面211bの側に配置された空間)は、点検用蓋40に形成された大気開放孔40hを通じて大気開放されている。
 以下、説明の便宜上、ダイアフラム板211が区画する2つの空間のうち、出口流路P2に連通した空間を「第1空間R1」と称する。また、ダイアフラム板211が区画する2つの空間のうち、大気開放された空間を「第2空間R2」と称する。
 本実施形態では、例えば、ダイアフラム板211における第2空間R2を向く他面211bが測定対象部位21xとされている。第1空間R1は、接続流路12pを通じて第1空間R1に出口流路P2から圧縮後のガスGが引き出されることで、大気開放されている第2空間R2と比較して高圧の状態になる。すなわち、第1空間R1と第2空間R2との間には差圧が生じている。
 ダイアフラム板211の一面211aは、この差圧によって、第1空間R1内で第2空間R2に向かって凸となるようにひずむ。同時に、測定対象部位21xとしての他面211bは、上記の差圧によって一面211aが凸となる方向(第2空間R2の側)に押し出され、第2空間R2に向かって凸となるようにひずむ。つまり、圧縮機10運転時のダイアフラム板211の測定対象部位21xには、圧縮応力が発生している。
(ひずみゲージ)
 本実施形態におけるひずみゲージ30は、ダイアフラム板211の測定対象部位21xである他面211bの中央部分に取り付けられている(貼設されている)。
(作用・効果)
 上記構成では、圧縮機10の稼動中に圧縮されたガスG(H)の一部が収容空間Rの第1空間R1に引き出されるとともに、収容空間Rに配置された犠牲部材20のダイアフラム板211がこの引き出されたガスGにさらされる。ダイアフラム板211は、ガスGの圧力を受けることによってひずむ。
 これにより、例えば、圧縮機10の運転を停止した際にこの犠牲部材20を収容空間Rから取り出すことで、ダイアフラム板211における測定対象部位21xのひずみ量を確認することができる。つまり、ダイアフラム板211の劣化具合の一指標であるひずみ量を測定対象部位21xから検出することができる。
 したがって、ダイアフラム板211にガスGからの圧力が作用するに伴い、ダイアフラム板211に応力がどの程度作用したかを確認することができる。その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 さらに、上記構成では、ダイアフラム板211がロータ11のインペラ111を形成する金属材料と同一組成の金属材料で形成されている。
 これにより、例えば、圧縮機10の運転を停止した際に犠牲部材20を収容空間Rから取り出すとともに、ダイアフラム板211の一面211aを観察することで、ガスGによるダイアフラム板211の一面211aに発生した脆化(水素脆化)の進行具合や、欠陥の有無などを確認することができる。つまり、ダイアフラム板211の劣化具合の一指標である脆化の進行具合をダイアフラム板211の一面211aから検出することができる。
 その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 また、上記構成では、ダイアフラム板211が第1空間R1と第2空間R2との間に生じた差圧によって、第2空間R2に向かって押されて湾曲する。その結果、測定対象部位21xが圧縮応力によってひずむ。
 これにより、例えば、圧縮機10の短周期的な始動や停止など(DSS:Daily Start and Stop)のオペレーションの際にダイアフラム板211に繰り返し発生する圧縮応力によるひずみ量をひずみゲージ30によって検出することができる。したがって、例えば、第1実施形態で説明した犠牲部材20の構成と比較して、圧縮機10の定格運転時にロータ11に恒常的に発生するひずみの大きさの確認に留まらず、圧縮機10の始動時および停止時に繰り返し発生するひずみ量の変化を確認することができる。
 その結果、圧縮機10のロータ11(インペラ111)の劣化具合をより適正に推定することができる。
 また、上記構成では、大気開放された第2空間R2を向く他面211bにひずみゲージ30が配置されている。
 これにより、ひずみゲージ30がガスGにさらされることがないため、ひずみゲージ30がガスGの圧力を受けることによって故障することがない。
 また、上記構成では、第2空間R2が、点検用蓋40に形成された大気開放孔40hによって大気開放されている。これにより、例えば、圧縮機システム1が点検用蓋40を備えない場合と比較して、ダイアフラム板211が破損することで第1空間R1と第2空間R2とが連通した場合に、ガスGが収容空間Rから圧縮機10の外部に一度に過剰に漏出してしまうことを抑制することができる。その結果、出口流路P2を流れるガスGの圧力が低下してしまうことを抑制することができる。
<第3実施形態>
 続いて、本開示に係る犠牲部材の第3実施形態について図4を用いて説明する。以下に説明する第3実施形態では、上記の第1実施形態および第2実施形態と共通する構成については図中に同符号を付して、その説明を省略する。第3実施形態で説明する犠牲部材の構成は、第1実施形態および第2実施形態で説明した犠牲部材の構成と異なっている。
(犠牲部材)
 本実施形態における犠牲部材20は、ピストンリング部24と、固定板部25と、ロッド部212とを有している。
 (ピストンリング部)
 ピストンリング部24は、所定の厚みを有した円板状に形成されている。ピストンリング部24は、第1面24aと、この第1面24aとは反対を向く第2面24bとを有している。ピストンリング部24は、収容空間Rを2つの空間に区画している。
 すなわち、ピストンリング部24は、このピストンリング部24を境にして第1面24aの側に配置された空間と、第2面24bの側に配置された空間とに収容空間Rを二分している。また、ピストンリング部24は、これら2つの空間を互いに気密に隔離した状態で収容空間Rに配置されている。
 具体的には、ピストンリング部24は、凹所120dの内面に摺接した状態で収容空間Rが延びる方向に移動可能に配置されている。ピストンリング部24によって区画された2つの空間のうち一方の空間(第1面24aの側に配置された空間)は、接続流路12pを通じて出口流路P2に連通している。ピストンリング部24によって区画された2つの空間のうち他方の空間(第2面24bの側に配置された空間)は、点検用蓋40に形成された大気開放孔40hを通じて大気開放されている。
 以下、説明の便宜上、ピストンリング部24が区画する2つの空間のうち、出口流路P2に連通した空間を「第1空間R1」と称する。また、ピストンリング部24が区画する2つの空間のうち、大気開放された空間を「第2空間R2」と称する。
 第1空間R1は、接続流路12pを通じて第1空間R1に出口流路P2からガスGが引き出されることで、大気開放されている第2空間R2と比較して高圧の状態になる。すなわち、第1空間R1と第2空間R2との間には差圧が生じている。
 (固定板部)
 固定板部25は、所定の厚みを有した円板状に形成されている。固定板部25は、第1空間R1に配置されている。固定板部25は、凹所120dの内面に移動不能な状態で固定されている。
 固定板部25は、主面25aと、この主面25aとは反対を向いた状態でピストンリング部24の第1面24aと対向する裏面25bとを有している。
 固定板部25には、主面25aから裏面25bにかけて貫通した複数の連通孔25hが形成されている。複数の連通孔25hは、これら主面25aおよび裏面25bが広がる方向で互いに等しい間隔をあけて円環状に並ぶように配置されている。
 本実施形態では、固定板部25に4つの連通孔25hが形成されている場合を一例として示している。連通孔25hは、固定板部25を境にした時の第1空間R1における第1面24aの側の空間と、第2面24bの側の空間とを互いに連通させている。
 (ロッド部)
 ロッド部212は、円柱状に形成されている。ロッド部212の一端は、固定板部25の裏面25bの中央部分に固定されている。具体的には、ロッド部212の一端は、裏面25bにおける複数の連通孔25hの各開口よりも内側の部分に固定されている。ロッド部212の他端は、ピストンリング部24の第1面24aの中央部分に固定されている。
 すなわち、ロッド部212は、固定板部25とピストンリング部24とをつないだ状態でこれら固定板部25およびピストンリング部24の間で延びている。本実施形態では、ロッド部212における側面212sが測定対象部位21xとされている。
 ピストンリング部24は、第1空間R1と第2空間R2との間に生じた差圧によって、第2空間R2の容積を減らすように移動する。同時に、測定対象部位21xとしてのロッド部212の側面212sは、ピストンリング部24の移動に伴ってロッド部212の延びる方向に引き延ばされるようにひずむ。つまり、圧縮機10運転時の測定対象部位21xには、引張応力が発生している。
(ひずみゲージ)
 本実施形態におけるひずみゲージ30は、ロッド部212の測定対象部位21xである側面212sの中央部分に取り付けられている(貼設されている)。
(作用・効果)
 上記構成では、圧縮機10の稼動中に圧縮されたガスG(H)の一部が収容空間Rの第1空間R1に引き出されるとともに、収容空間Rに配置された犠牲部材20がこの引き出されたガスGにさらされる。犠牲部材20のピストンリング部24がガスGによって第2空間R2側に押されるに伴って、この犠牲部材20が有するロッド部212は、このロッド部212が延びる方向にひずむ(引っ張られる)。
 これにより、例えば、圧縮機10の運転を停止した際にこのロッド部212を収容空間Rから取り出すことで、ロッド部212における測定対象部位21xのひずみ量を確認することができる。つまり、ロッド部212の劣化具合の一指標であるひずみ量を測定対象部位21xから検出することができる。
 したがって、ロッド部212にガスGからの圧力が作用するに伴い、ロッド部212に応力がどの程度作用したかを確認することができる。その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 さらに、上記構成では、ロッド部212がロータ11のインペラ111を形成する金属材料と同一組成の金属材料で形成されている。
 これにより、例えば、圧縮機10の運転を停止した際にロッド部212を収容空間Rから取り出すとともに、ロッド部212の側面212sを観察することで、ガスGによるロッド部212の側面212sに発生した脆化(水素脆化)の進行具合や、欠陥の有無などを確認することができる。つまり、ロッド部212の劣化具合の一指標である脆化の進行具合をロッド部212の側面212sから検出することができる。
 その結果、圧縮機10のロータ11(インペラ111)の劣化具合を推定することができる。
 また、上記構成では、第1実施形態で説明した構成と比較して、ロッド部212の測定対象部位21xが第1空間R1と第2空間R2との間に生じた差圧によってひずむ。その際、ロッド部212は、第1空間R1に流れ込むガスGの圧力の変化によって、伸び縮みする。その結果、測定対象部位21xが引張応力によってひずむ。
 これにより、例えば、圧縮機10の短周期的な始動や停止など(DSS:Daily Start and Stop)のオペレーションの際にロッド部212に繰り返し発生する引張応力によるひずみ量をひずみゲージ30が検出することができる。
 ここで、圧縮機10運転時におけるロータ11には、遠心力の作用に伴って引張応力が発生する。そのため、上記構成によれば、同一の応力モード(引張応力)によるひずみ量の変化を確認することができる。
 その結果、圧縮機10のロータ11(インペラ111)の劣化具合をより適正に推定することができる。
<第4実施形態>
 続いて、本開示に係る圧縮機システム1の第4実施形態について図5を用いて説明する。以下に説明する第4実施形態では、上記の第1実施形態、第2実施形態、および第3実施形態と共通する構成については図中に同符号を付して、その説明を省略する。
 本実施形態における圧縮機10が圧縮の対象とするガスGは、水素ガス(H)ではなく、腐食性のガスである。本実施形態における圧縮機10が圧縮の対象とするガスGは、例えば硫化水素ガス(HS)である。
 本実施形態における収容空間Rは、ケーシング120の外面120sから凹むように形成された凹所120dの内面によって画定された空間である。すなわち、収容空間Rは、ケーシング120の外面120sに開口している。収容空間Rは、例えば、入口流路P1よりも一方側Dalに配置されている。
 また、収容空間Rは、ケーシング120に形成された接続流路12pによって入口流路P1に接続されている。つまり、収容空間Rは、接続流路12pを介して、圧縮される前のガスGが流れる入口流路P1につながっている(連通している)。
 本実施形態における接続流路12pの一端は、収容空間Rに開口している。接続流路12pの他端は、入口流路P1におけるケーシング入口流路120aに開口している。したがって、圧縮部によって圧縮される前の入口流路P1を流れるガスGの一部は、この接続流路12pを通じて収容空間Rに引き出される。
 犠牲部材20は、この収容空間Rに配置されている。すなわち、犠牲部材20は、圧縮機10が稼動している際、圧縮部によって圧縮される前のガスGにさらされる。なお、図5では、紙面の都合上、この犠牲部材20を点線の四角形で図示している。
 本実施形態における犠牲部材20には、上記の第1実施形態から第3実施形態で説明した犠牲部材20のうち、いずれの犠牲部材20を採用してもよい。この際、ひずみゲージ30は、犠牲部材20が有する測定対象部位21xに取り付けられている(貼設されている)。
(作用・効果)
 上記構成では、圧縮機10の稼動中(定格運転中)に圧縮される前のガスG(HS)の一部が収容空間Rに引き出されるとともに、収容空間Rに配置された犠牲部材20がこの引き出されたガスGにさらされる。犠牲部材20がガスGにさらされることで、この犠牲部材20の測定対象部位21xは、ガスGの圧力を受けることによってひずむ。同時に、測定対象部位21xが圧縮機10のロータ11を形成する金属材料と同一組成の金属材料で形成されているため、測定対象部位21xは、圧縮機10のロータ11と同様にガスGによる腐食作用を受ける。この際、測定対象部位21xは、例えば、測定対象部位21xが圧縮途中のガスGまたは圧縮後のガスGにさらされる場合と比較して、腐食成分の濃度が高い圧縮前のガスGにさらされるため、より大きな腐食作用をガスGから受ける。つまり、ロータ11がガスGにさらされながら回転する圧縮流路111pの環境よりも過酷な応力腐食割れ条件のもとで劣化した測定対象部位21xの状態を確認することができる。
 したがって、圧縮機10のロータ11の劣化具合をより適正に推定することができる。
<第5実施形態>
 続いて、本開示に係る圧縮機システム1の第5実施形態について図6および図7を用いて説明する。以下に説明する第5実施形態では、上記の第1実施形態、第2実施形態、および第3実施形態と共通する構成については図中に同符号を付して、その説明を省略する。第5実施形態では、犠牲部材の構成が第1実施形態、第2実施形態、および第3実施形態で説明した犠牲部材の構成と異なっている。
 第5実施形態における圧縮機システム1は、ひずみゲージ30を備えていない。また、本実施形態における圧縮機10が圧縮の対象とするガスGは、水素ガス(H)である。
 本実施形態における収容空間Rは、ダイアフラム121における最後段インペラ111eを収容する収容凹部121rの内面から他方側Darに凹むように形成された凹所120dの内面によって画定された空間である。
 すなわち、収容空間Rは、最後段インペラ111eを収容する収容凹部121rの内面に開口しており、最後段インペラ111eの圧縮流路111pにつながっている。凹所120dは、ロータ11の回転軸110を囲むような環状に形成されている。すなわち、収容空間Rは、ロータ11の回転軸110を囲む環状の空間として形成されている。
(犠牲部材)
 図7に示すように、本実施形態における犠牲部材20は、柱状部213を有している。
 (柱状部)
 柱状部213は、柱状に形成されており、ロータ11における最後段インペラ111eのディスク111aに一体に取り付けられている。柱状部213は、このディスク111aから他方側Darに延びている。すなわち、圧縮機10運転時における柱状部213は、最後段インペラ111eの回転に伴って、軸線Ar回りに収容空間R内を旋回する。
 柱状部213は、外表面からくびれるように凹む凹部213aを有している。凹部213aは、柱状部213の延びる方向(軸線方向Da)における中央部分に配置されている。凹部213aでは、柱状部213の延びる方向に対して直交する方向の柱状部213の断面積が、この凹部213a以外の部分よりも小さい。
 具体的には、凹部213aでは、断面積が、最も一方側Dalの始まり部分から他方側Darに向かって、および、最も他方側Darの始まり部分から一方側Dalに向かって縮小し合った後に合一している。
 ここで、ステータ12には、収容空間Rからケーシング120の外面120sに延び、このケーシング120の外面120sに開口するスコープ孔12hが形成されている。具体的には、スコープ孔12hの一端は、上記凹所120dの内面に開口しており、スコープ孔12hの他端は、ケーシング120の外面120sに開口している。スコープ孔12hは、ダイアフラム121とケーシング120とにわたって連続的な1つの孔として形成されている。
(点検用蓋)
 点検用蓋40は、ケーシング120の外面120sにおけるスコープ孔12hの開口12h´を閉塞することで、収容空間Rを大気と気密に隔離する蓋部材である。点検用蓋40は、ケーシング120の外面120sに対して着脱可能とされている。
 具体的には、点検用蓋40は、ボルトなどの締結部材Bによってケーシング120の外面120sに対して着脱可能である。つまり、点検用蓋40は、締結部材Bによってケーシング120の外面120sに固定されることでケーシング120の外面120sにおけるスコープ孔12hの開口12h´を閉塞し、締結部材Bが緩められた際に取り外されることでスコープ孔12hの開口12h´を露出させる。
 点検用蓋40は、圧縮機10運転の際にケーシング120の外面120sに取り付けられる。また、点検用蓋40は、例えば、圧縮機10の運転員や補修員などによって柱状部213の状態が確認される際に、ケーシング120の外面120sから取り外される。点検用蓋40がケーシング120の外面120sから取り外された際、圧縮機10の運転員や補修員は、例えば工業用内視鏡Bs(ボアスコープ)などを用いて、柱状部213の外表面や、凹部213aの状態などを確認する。
(作用・効果)
 上記構成では、圧縮機10の稼動中(定格運転中)に圧縮されたガスG(H)の一部が収容空間Rに引き出されるとともに、収容空間Rに配置された柱状部213がこの引き出されたガスGにさらされる。同時に、柱状部213は、ロータ11における最後段インペラ111eの回転に伴って、回転軸110を囲む環状の空間として形成された収容空間R内で軸線Ar回りに旋回する。柱状部213が軸線Ar回りに旋回しながらガスGの圧力を受けることによって、この柱状部213の測定対象部位21xとしての凹部213aがひずむ。
 したがって、上記の各実施形態で説明した構成と比較して、ロータ11に作用する応力を柱状部213がより高精度に模擬することができる。
 また、上記構成では、例えば工業用内視鏡Bsなどを用いることで、圧縮機10の外部から収容空間Rに配置された柱状部213にアクセス可能にするスコープ孔12hがステータ12に形成されており、ケーシング120の外面120sに対して着脱可能な点検用蓋40がケーシング120の外面120sにおけるスコープ孔12hの開口12h´を閉塞している。
 これにより、柱状部213の状態を確認する際に、例えば、圧縮機10を分解する必要がない。
 したがって、劣化した柱状部213の状態を容易に確認することができる。
<第6実施形態>
 続いて、本開示に係る圧縮機システム1の第6実施形態について図8を用いて説明する。以下に説明する第6実施形態では、上記の第5実施形態と共通する構成については図中に同符号を付して、その説明を省略する。
 本実施形態における収容空間Rは、ダイアフラム121の対向面121sから径方向の外側に凹むように形成された凹所120dの内面によって画定された空間である。
 すなわち、収容空間Rは、ダイアフラム121とロータ11の回転軸110との間の隙間の空間に開口している。収容空間Rは、第2シール部14bよりも他方側Darに配置されている。凹所120dは、ロータ11の回転軸110を囲むような環状に形成されている。すなわち、収容空間Rは、ロータ11の回転軸110を囲む環状の空間として形成されている。
(犠牲部材)
 本実施形態における犠牲部材20は、柱状部213を有している。
 (柱状部)
 柱状部213は、柱状に形成されており、ロータ11の回転軸110に一体に取り付けられている。柱状部213は、この回転軸110の外周面110sから径方向の外側に延びている。すなわち、圧縮機10運転時における柱状部213は、回転軸110の回転に伴って、軸線Ar回りに旋回する。
 柱状部213は、外表面からくびれるように凹む凹部213aを有している。凹部213aは、柱状部213の延びる方向(径方向)における中央部分に配置されている。凹部213aでは、柱状部213の延びる方向に対して直交する方向の柱状部213の断面積が、この凹部213a以外の部分よりも小さい。
 具体的には、凹部213aでは、断面積が、径方向の最も内側の始まり部分から外側に向かって、および、径方向の最も外側の始まり部分から内側に向かって縮小し合った後に合一している。
(作用・効果)
 上記構成によっても、第5実施形態で説明した構成の作用・効果と同様の作用・効果を奏することができる。
 また、上記構成では、柱状部213が径方向に延びた状態で回転軸110に取り付けられている。
 これにより、ロータ11の回転に伴う遠心力の作用方向と、柱状部213に作用する引張応力の方向とが一致する。
 したがって、上記の第5実施形態で説明した構成と比較して、ロータ11に作用する応力を柱状部213がより高精度に模擬することができる。
<第7実施形態>
 続いて、本開示に係る圧縮機システム1の第7実施形態について図9を用いて説明する。以下に説明する第7実施形態では、上記の第5実施形態と共通する構成については図中に同符号を付して、その説明を省略する。
 本実施形態における圧縮機10が圧縮の対象とするガスGは、水素ガス(H)ではなく、腐食性のガスである。本実施形態における圧縮機10が圧縮の対象とするガスGは、例えば硫化水素ガス(HS)である。
 本実施形態における収容空間Rは、ダイアフラム121における最前段インペラ111fを収容する収容凹部121rの内面から一方側Dalに凹むように形成された凹所120dの内面によって画定された空間である。
 すなわち、収容空間Rは、最前段インペラ111fを収容する収容凹部121rの内面に開口しており、最前段インペラ111fの圧縮流路111pにつながっている。凹所120dは、ロータ11の回転軸110を囲むような環状に形成されている。すなわち、収容空間Rは、ロータ11の回転軸110を囲む環状の空間として形成されている。
(犠牲部材)
 本実施形態における犠牲部材20は、柱状部213を有している。
 (柱状部)
 柱状部213は、柱状に形成されており、ロータ11における最前段インペラ111fのカバー111cに一体に取り付けられている。柱状部213は、このカバー111cから一方側Dalに延びている。すなわち、圧縮機10運転時における柱状部213は、最前段インペラ111fの回転に伴って、軸線Ar回りに収容空間R内を旋回する。
 柱状部213は、外表面からくびれるように凹む凹部213aを有している。凹部213aは、柱状部213の延びる方向(軸線方向Da)における中央部分に配置されている。凹部213aでは、柱状部213の延びる方向に対して直交する方向の柱状部213の断面積が、この凹部213a以外の部分よりも小さい。
 具体的には、凹部213aでは、断面積が、最も一方側Dalの始まり部分から他方側Darに向かって、および、最も他方側Darの始まり部分から一方側Dalに向かって縮小し合った後に合一している。
(作用・効果)
 上記構成では、圧縮機10の稼動中(定格運転中)に最前段インペラ111fによって圧縮されたガスG(HS)の一部が収容空間Rに引き出されるとともに、収容空間Rに配置された柱状部213がこの引き出されたガスGにさらされる。そして、柱状部213は、圧縮機10のロータ11と同様にガスGによる腐食作用を受ける。この際、柱状部213は、最前段インペラ111fの圧縮流路111pで圧縮されたガスGにさらされるため、例えば、この最前段インペラ111fよりも後段のインペラ111によって圧縮されたガスGにさらされる場合と比較して、より大きな腐食作用をガスGから受ける。同時に、柱状部213は、ロータ11における最前段インペラ111fの回転に伴って、回転軸110を囲む環状の空間として形成された収容空間R内で軸線Ar回りに旋回する。柱状部213は、軸線Ar回りに旋回しながらガスGの圧力を受けることによって、測定対象部位21xとしての凹部213aがひずむ。
 したがって、例えば、上記の第4実施形態で説明した構成と比較して、ロータ11の応力腐食割れの条件をより高精度に模擬することができる。
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は実施形態の構成に限られることはなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、およびその他の変更が可能である。
 上記実施形態で説明した犠牲部材20を収容する収容空間Rは、ステータ12に形成されていなくてもよい。例えば、図10に示すように、圧縮機システム1は、内側に収容空間Rを画定する点検室50を更に備えてもよい。
 点検室50は、例えば、ケーシング120の外面120sに取り付けられている。点検室50は、例えば、一方の端部が開口した筒状に形成されている。点検室50には、上述した点検用蓋40がこの点検室50の開口を閉塞するように取り付けられている。この際、点検用蓋40は、点検室50に対して着脱可能であればよい。またこの際、点検室50内部の収容空間Rは、ステータ12に形成された接続流路12pを通じて出口流路P2に連通していればよい。なお、点検室50内部の収容空間Rは、接続流路12pを通じて入口流路P1に連通していてもよい。
 これにより、ステータ12に収容空間Rを形成する必要がない。したがって、収容空間Rを配置するにあたって、ステータ12の設計の自由度が低下することを抑制することができる。
 また例えば、図11に示すように、圧縮機システム1は、点検室50内部の収容空間Rと、吐出配管200内とを接続し、吐出配管200内を流れるガスGの一部を点検室50内に導く導入管60を更に備えてもよい。この際、導入管60と吐出配管200との接続部分である導入口と、第2流路121bと最後段インペラ111eの圧縮流路111pとの接続部分(第2流路121bの始まり部分)との間における流路長Lは、ガスGの圧力損失との関係上、例えば10m以内であることが望ましい。なお、導入管60の導入口が接続されるのは、吐出配管200に限定されることはなく、出口ノズル123であってもよい。つまり、導入管60は、出口ノズル123の吐出流路123a内を流れる圧縮後のガスGを点検室50内に導入してもよい。
 また、上記の第1実施形態で説明した一対のナット部23のそれぞれは、ボルト部22の延びる方向におけるCリング部210の内側で、ボルト部22に螺合した状態で配置され、Cリング部210の一端210aと他端210bとを互いに離間させるような圧力をCリング部210に付与していてもよい。
 また、上記の第1実施形態から第3実施形態、第5実施形態、および第6実施形態で説明した圧縮機10が圧縮の対象とするガスGは、水素ガス(H)に限定されることはない。また、上記の第4実施形態および第7実施形態で説明した圧縮機10が圧縮の対象とする腐食性のガスGは、硫化水素ガス(HS)に限定されることはない。
 また、上記の第1実施形態から第3実施形態で説明した接続流路12pの他端は、ケーシング出口流路120bに接続されている場合に限定されることはなく、例えば、吐出流路123aや第2流路121bに接続されていてもよい。また、第4実施形態で説明した接続流路12pの他端は、ケーシング入口流路120aに接続されている場合に限定されることはなく、例えば、吸入流路122aや第1流路121aに接続されていてもよい。また、接続流路12pの他端は、入口流路P1および出口流路P2に接続されている場合に限定されることはなく、例えば、中間流路121cに接続されてもよい。この場合、中間流路121cを出口流路とし、接続流路12pを通じてガスGを収容空間Rに引き出せばよい。また、例えば、中間流路121cにガスGが直接供給される流路が形成されている場合、この流路を入口流路とし、接続流路12pを通じてガスGを収容空間Rに引き出してもよい。
 また、上記の第1実施形態から第4実施形態で説明した圧縮機システム1は、ひずみゲージ30を必ずしも備えていなくてもよい。
 また、上記の第1実施形態から第4実施形態で説明したひずみゲージ30は、例えば、複数が測定対象部位21xに取り付けられていてもよい。これにより、例えば、一のひずみゲージ30が故障した場合であっても、他のひずみゲージ30によって、測定対象部位21xのひずみ量を測定することができる。
 また、上記の第2実施形態および第3実施形態で説明したひずみゲージ30は、測定対象部位21xにおける中央部分に必ずしも取り付けられていなくてもよい。
 また、上記の第2実施形態および第3実施形態で説明した収容空間Rは、円柱状に形成されている場合に限定されることはなく、例えば、四角柱状に形成されてもよい。この場合、第2実施形態で説明したダイアフラム板211、ならびに、第3実施形態で説明したピストンリング部24および固定板部25は、平板状(矩形板状)に形成されていればよい。
 また、上記の第1実施形態、および第5実施形態から第7実施形態で説明した柱状部213は、複数が収容空間Rに配置されてもよい。第5実施形態から第7実施形態で説明した犠牲部材20が収容空間R内に複数配置される場合、例えば、回転軸110の周方向Dcに等間隔に並ぶようにロータ11に取り付けられていればよい。
 これにより、例えば、所定の期間が経過するごとに、1つずつまたは複数ずつ犠牲部材20を取り出して、測定対象部位21xの状態を確認することができる。したがって、期間の長さに応じた測定対象部位21xの経時変化・経年劣化、ひいてはロータ11の経時変化・経年劣化を把握することができる。
 また、上記の第1実施形態から第3実施形態で説明した収容空間は、ケーシング120の外面120sに開口していなくてもよい。この場合、この収容空間Rからケーシング120の外面120sに延びてこのケーシング120の外面120sに開口するスコープ孔12hがステータ12に形成され、ケーシング120の外面120sに対して着脱可能とされた点検用蓋40がこのスコープ孔12hを閉塞することで収容空間Rを大気と気密に隔離していればよい。なお、この場合、収容空間Rは、ケーシング120に形成されている場合に限定されることはなく、例えば、ダイアフラム121に形成されてもよい。
 これにより、犠牲部材20における測定対象部位21xの状態を確認する際に、例えば、圧縮機10を分解する必要がない。
 また、上記の第2実施形態では、ダイアフラム板211における他面211bが測定対象部位21xとされているが、これに限定されることはない。例えば、ダイアフラム板211における一面211aが測定対象部位21xとされてもよい。したがって、ダイアフラム板211の少なくとも一部が測定対象部位21xとされていればよい。
 また、上記の第2実施形態および第3実施形態で説明した圧縮機システム1は、例えば、点検用蓋40を必ずしも備えていなくてもよい。
 また、上記の第2実施形態および第3実施形態で説明した第2空間R2は、必ずしも大気開放されていなくてもよい。第2空間R2は、例えば、外部とは気密に隔離された状態で、第1空間R1よりも圧力が低い状態に維持されたガスが封入されていてもよい。
 また、上記の第5実施形態および第7実施形態で説明した柱状部213は、例えば、水平面に対して多少傾斜した状態でインペラ111に取り付けられていてもよい。また、上記の第6実施形態で説明した柱状部213は、軸線Arに垂直な仮想面に対して多少傾斜した状態で回転軸110に取り付けられていてもよい。
 また、上記の第5実施形態および第7実施形態で説明した柱状部213の凹部213aは、柱状部213が延びる方向における中央部分に配置されなくてもよい。
 また、上記の第5実施形態から第7実施形態で説明した圧縮機システム1は、例えば、ロータ11の回転に伴って柱状部213が凹部213aを基点に破断した際に、破断片がロータ11に接触することを防止する接触防止機構を更に備えていてもよい。接触防止機構は、例えば、柱状部213に干渉しないように収容空間Rに配置されている。
 また、上記の第1実施形態から第7実施形態で説明した収容空間Rは、複数がステータ12に形成されてもよい。この場合、各収容空間Rが、犠牲部材20を収容していてよい。
 また、上記の第1実施形態から第7実施形態で説明した測定対象部位21xは、必ずしも、ロータ11を形成する金属材料と同一組成の金属材料で形成されていなくてもよく、測定対象部位21xは、ロータ11とは異なる他の金属材料で形成されてもよい。この場合、他の金属材料には、例えば、ロータ11に新たに適用される金属材料や、ロータ11以外の部材(例えばステータ12)の金属材料などを挙げることができる。
 また、上記の第1実施形態から第7実施形態における圧縮機10は、一軸多段式の遠心圧縮機(多段遠心圧縮機)に限定されることはなく、例えば、一軸単段式の遠心圧縮機(単段遠心圧縮機)であってもよい。
 また、上記の第1実施形態から第7実施形態で説明した圧縮機システム1の構成は、それぞれ独立した構成に留まることはない。各実施形態に記載の構成要素を適宜組み合わせて圧縮機システム1を構成してよい。
<付記>
 各実施形態に記載の圧縮機システムは、例えば以下のように把握される。
(1)第1の態様に係る圧縮機システム1は、ロータ11、および該ロータ11を覆うことで圧縮する流体(ガスG)の流路を形成するステータ12を備える圧縮機10と、前記流路と連通する収容空間Rに配置された犠牲部材20と、を備え、前記犠牲部材20は、前記収容空間Rに配置されて、前記流体の圧力によってひずむ測定対象部位21xを有する。
 これにより、例えば、圧縮機10の運転を停止した際に、この犠牲部材20を収容空間Rから取り出すことで、測定対象部位21xのひずみ量を確認することができる。
 また、例えば、測定対象部位21xを観察することで、流体による測定対象部位21xの劣化具合や、欠陥の有無などを確認することができる。
(2)第2の態様に係る圧縮機システム1は、前記第1の態様に係る圧縮機システム1であって、前記測定対象部位21xは、前記ロータ11を形成する金属材料と同一組成の金属材料で形成されていてもよい。
(3)第3の態様に係る圧縮機システム1は、前記第1又は第2の態様に係る圧縮機システム1であって、前記流体は、水素ガスであり、前記収容空間Rは、出口流路につながっていてもよい。
(4)第4の態様に係る圧縮機システム1は、前記第3の態様に係る圧縮機システム1であって、前記出口流路P2は、前記流路のうち圧縮された最も圧力の高い前記流体が流れる流路であってもよい。
 これにより、例えば、圧縮される前の水素ガスまたは圧縮途中の水素ガスを収容空間Rに引き出す場合と比較して、犠牲部材20の測定対象部位21xは、水素ガスからより大きな圧力を受ける。
 つまり、より過酷な脆化条件のもとで劣化した測定対象部位21xの状態を確認することができる。
(5)第5の態様に係る圧縮機システム1は、前記第1又は第2の態様に係る圧縮機システム1であって、前記流体は、腐食性のガスであり、前記収容空間Rは、入口流路につながっていてもよい。
(6)第6の態様に係る圧縮機システム1は、前記第5の態様に係る圧縮機システム1であって、前記流路のうち圧縮される前の最も圧力の低い前記流体が流れる流路であってもよい。
 これにより、例えば、犠牲部材20の測定対象部位21xが圧縮途中の腐食性のガスまたは圧縮後の腐食性のガスにさらされる場合と比較して、測定対象部位21xは、より大きな腐食作用を流体から受ける。
 つまり、より過酷な応力腐食割れ条件のもとで劣化した測定対象部位21xの状態を確認することができる。
(7)第7の態様に係る圧縮機システム1は、前記第1から第6のいずれかの態様に係る圧縮機システム1であって、前記収容空間Rは、前記ステータ12において外部に面する外面120sで開口しており、前記ステータ12に対して着脱可能とされ、前記収容空間Rの開口を閉塞する点検用蓋40を更に備えてもよい。
 これにより、点検用蓋40を取り外すことで、犠牲部材20を収容空間Rから取り出すことができる。また、点検用蓋40を閉じることで、収容空間Rを外部と気密に隔離することができる。
 そのため、犠牲部材20を収容空間Rから取り出す際に、例えば、圧縮機10を分解する必要がない。
(8)第8の態様に係る圧縮機システム1は、前記第1から第7のいずれかの態様に係る圧縮機システム1であって、前記測定対象部位21xに取り付けられ、該測定対象部位21xのひずみ量を検出可能なひずみゲージ30を更に備えてもよい。
 これにより、例えば、ひずみゲージ30によって検出されたひずみ量を示す信号を圧縮機10の外部に送信することが可能となる。
 したがって、例えば、圧縮機10運転中の測定対象部位21xにおけるひずみ量の経時的な変化を圧縮機10の外部から監視することができる。
(9)第9の態様に係る圧縮機システム1は、前記第1から第8のいずれかの態様に係る圧縮機システム1であって、前記犠牲部材20は、凸となるように湾曲してC字状に配置された板状のCリング部210と、前記Cリング部210の両端(一端210aおよび他端210b)を互いに近づけるように押圧した状態で保持する押圧保持部21と、を有し、前記Cリング部210は、前記凸となる部分が前記測定対象部位21xとされ、前記押圧保持部21は、前記測定対象部位21xが間に配置された状態で、前記圧縮機10の定格運転時に前記ロータ11に作用する最大応力よりも高い応力を前記測定対象部位21xに付与するように、前記Cリング部210を押圧していてもよい。
 これにより、上記作用をより高精度に実現することができる。また、ロータ11が流体にさらされながら回転する流路の環境よりも過酷な条件のもとで劣化したCリング部210の状態を確認することができる。
 したがって、圧縮機10のロータ11の劣化具合をより適正に推定することができる。
(10)第10の態様に係る圧縮機システム1は、前記第1から第8のいずれかの態様に係る圧縮機システム1であって、前記犠牲部材20は、前記流路に連通した第1空間R1と、大気開放された第2空間R2とに前記収容空間Rを区画するダイアフラム板211を有し、前記ダイアフラム板211の少なくとも一部が前記測定対象部位21xとされてもよい。
 これにより、上記作用をより高精度に実現することができる。
 また、ダイアフラム板211の測定対象部位21xが第1空間R1と第2空間R2との間に生じる差圧によってひずむため、例えば、圧縮機10の短周期的な始動や停止などのオペレーションの際にダイアフラム板211に発生する圧縮応力によるひずみ量を検出することができる。
(11)第11の態様に係る圧縮機システム1は、前記第1から第8のいずれかの態様に係る圧縮機システム1であって、前記犠牲部材20は、前記流路に連通した第1空間R1と、大気開放された第2空間R2とに前記収容空間Rを区画するピストンリング部24と、前記第1空間R1に移動不能な状態で配置された固定板部25と、柱状に形成されて、前記ピストンリング部24と前記固定板部25とをつなぐロッド部212と、を有し、前記ロッド部212の少なくとも一部が前記測定対象部位21xとされてもよい。
 これにより、上記作用をより高精度に実現することができる。
 また、ロータ11に発生する応力と同一の応力モード(引張応力)によるロッド部212における測定対象部位21xのひずみ量の変化を確認することができる。その結果、圧縮機10のロータ11の劣化具合をより適正に推定することができる。
(12)第12の態様に係る圧縮機システム1は、前記第1又は第2の態様に係る圧縮機システム1であって、前記収容空間Rは、前記ロータ11の回転軸110を囲む環状に前記ステータ12に形成されており、前記犠牲部材20は、前記ロータ11に固定された柱状部213を有し、前記柱状部213は、外表面からくびれるように凹む前記測定対象部位21xとしての凹部213aを有してもよい。
 これにより、収容空間Rに配置された柱状部213が流体にさらされながらロータ11の回転に伴って、収容空間R内で軸線Ar回りに旋回する。柱状部213が軸線Ar回りに旋回しながら流体の圧力を受けることによって、この柱状部213の測定対象部位21xとしての凹部213aがひずむ。
 したがって、上記の構成と比較して、ロータ11に作用する応力を柱状部213がより高精度に模擬することができる。
(13)第13の態様に係る圧縮機システム1は、前記第12の態様に係る圧縮機システム1であって、前記流体は、水素ガスであり、前記ロータ11は、前記回転軸110に回転可能に取り付けられ、前記回転軸110の延びる方向に並んだ状態で前記流体を圧縮する複数段のインペラ111を有し、前記収容空間Rは、複数段の前記インペラ111のうち最後段のインペラ(最後段インペラ111e)の圧縮流路111pにつながっていてもよい。
 これにより、例えば、最後段のインペラ111よりも前段のインペラ111の圧縮流路111pにつながる場合と比較して、柱状部213は、水素ガスからより大きな圧力を受ける。
 つまり、より過酷な脆化条件のもとで劣化した柱状部213の状態を確認することができる。
(14)第14の態様に係る圧縮機システム1は、前記第12の態様に係る圧縮機システム1であって、前記流体は、腐食性のガスであり、前記ロータ11は、前記回転軸110に回転可能に取り付けられ、前記回転軸110の延びる方向に並んだ状態で前記流体を圧縮する複数段のインペラ111を有し、前記収容空間Rは、複数段の前記インペラ111のうち最前段のインペラ(最前段インペラ111f)の圧縮流路111pにつながっていてもよい。
 これにより、例えば、最前段のインペラ111よりも後段のインペラ111の圧縮流路111pにつながる場合と比較して、柱状部213は、より大きな腐食作用を腐食性のガスから受ける。
 つまり、より過酷な応力腐食割れ条件のもとで劣化した柱状部213の状態を確認することができる。
(15)第15の態様に係る圧縮機システム1は、前記第1から第14のいずれかの態様に係る圧縮機システム1であって、前記ステータ12には、前記収容空間Rから前記ステータ12の外面120sに延び、該ステータ12の外面120sに開口するスコープ孔12hが形成されており、前記ステータ12の外面120sに対して着脱可能とされ、前記スコープ孔12hの開口12h´を閉塞する点検用蓋40を更に備えてもよい。
 これにより、点検用蓋40をステータ12の外面120sから取り外すとともに、例えば工業用内視鏡などをスコープ孔12hに挿入することで、犠牲部材20における測定対象部位21xの状態を確認することができる。
 つまり、測定対象部位21xの状態を確認するにあたって圧縮機10を分解する必要がない。
 本開示は、より多様なモードの劣化や欠陥を検出可能な圧縮機システムに関する。
 1…圧縮機システム
 10…圧縮機
 11…ロータ
 12…ステータ
 12h…スコープ孔
 12h´…開口
 12p…接続流路
 13…軸受部
 14…シール部
 14a…第1シール部
 14b…第2シール部
 20…犠牲部材
 21…押圧保持部
 21x…測定対象部位
 22…ボルト部
 23…ナット部
 24…ピストンリング部
 24a…第1面
 24b…第2面
 25…固定板部
 25a…主面
 25b…裏面
 25h…連通孔
 30…ひずみゲージ
 40…点検用蓋
 40h…大気開放孔
 50…点検室
 60…導入管
 60a…導入孔
 100…吸入配管
 110…回転軸
 110s…外周面
 111…インペラ
 111a…ディスク
 111b…ブレード
 111c…カバー
 111e…最後段インペラ
 111f…最前段インペラ
 111p…圧縮流路
 120…ケーシング
 120a…ケーシング入口流路
 120b…ケーシング出口流路
 120d…凹所
 120i…内面
 120s…外面
 121…ダイアフラム
 121a…第1流路
 121b…第2流路
 121c…中間流路
 121d…ディフューザ流路
 121e…戻り流路
 121r…収容凹部
 121s…対向面
 122…入口ノズル
 122a…吸入流路
 123…出口ノズル
 123a…吐出流路
 130…ラジアル軸受
 131…スラスト軸受
 132…スラストカラー
 200…吐出配管
 210…Cリング部
 210a…一端
 210b…他端
 211…ダイアフラム板
 211a…一面
 211b…他面
 212…ロッド部
 212s…側面
 213…柱状部
 213a…凹部
 Ar…軸線
 B…締結部材
 Bs…工業用内視鏡
 Da…軸線方向
 Dal…一方側
 Dar…他方側
 Dc…周方向
 Dr…回転方向
 G…ガス
 L…流路長
 P1…入口流路
 P2…出口流路
 R…収容空間
 R1…第1空間
 R2…第2空間

Claims (15)

  1.  ロータ、および該ロータを覆うことで圧縮する流体の流路を形成するステータを備える圧縮機と、
     前記流路と連通する収容空間に配置された犠牲部材と、
    を備え、
     前記犠牲部材は、前記収容空間に配置されて、前記流体の圧力によってひずむ測定対象部位を有する圧縮機システム。
  2.  前記測定対象部位は、前記ロータを形成する金属材料と同一組成の金属材料で形成されている、請求項1に記載の圧縮機システム。
  3.  前記流体は、水素ガスであり、
     前記収容空間は、出口流路につながっている、請求項1または請求項2に記載の圧縮機システム。
  4.  前記出口流路は、前記流路のうち圧縮された最も圧力の高い前記流体が流れる流路である、請求項3に記載の圧縮機システム。
  5.  前記流体は、腐食性のガスであり、
     前記収容空間は、入口流路につながっている、請求項1または請求項2に記載の圧縮機システム。
  6.  前記入口流路は、前記流路のうち圧縮される前の最も圧力の低い前記流体が流れる流路である、請求項5に記載の圧縮機システム。
  7.  前記収容空間は、前記ステータにおいて外部に面する外面で開口しており、
     前記ステータに対して着脱可能とされ、前記収容空間の開口を閉塞する点検用蓋を更に備える、請求項1または請求項2に記載の圧縮機システム。
  8.  前記測定対象部位に取り付けられ、該測定対象部位のひずみ量を検出可能なひずみゲージを更に備える、請求項1または請求項2に記載の圧縮機システム。
  9.  前記犠牲部材は、
     凸となるように湾曲してC字状に配置された板状のCリング部と、
     前記Cリング部の両端を互いに近づけるように押圧した状態で保持する押圧保持部と、を有し、
     前記Cリング部は、前記凸となる部分が前記測定対象部位とされ、
     前記押圧保持部は、前記測定対象部位が間に配置された状態で、前記圧縮機の定格運転時に前記ロータに作用する最大応力よりも高い応力を前記測定対象部位に付与するように、前記Cリング部を押圧している、請求項1または請求項2に記載の圧縮機システム。
  10.  前記犠牲部材は、前記流路に連通した第1空間と、大気開放された第2空間とに前記収容空間を区画するダイアフラム板を有し、
     前記ダイアフラム板の少なくとも一部が前記測定対象部位とされた、請求項1または請求項2に記載の圧縮機システム。
  11.  前記犠牲部材は、
     前記流路に連通した第1空間と、大気開放された第2空間とに前記収容空間を区画するピストンリング部と、
     前記第1空間に移動不能な状態で配置された固定板部と、
     柱状に形成されて、前記ピストンリング部と前記固定板部とをつなぐロッド部と、
    を有し、
     前記ロッド部の少なくとも一部が前記測定対象部位とされた、請求項1または請求項2に記載の圧縮機システム。
  12.  前記収容空間は、前記ロータの回転軸を囲む環状に前記ステータに形成されており、 前記犠牲部材は、前記ロータに固定された柱状部を有し、
     前記柱状部は、外表面からくびれるように凹む前記測定対象部位としての凹部を有する、請求項1または請求項2に記載の圧縮機システム。
  13.  前記流体は、水素ガスであり、
     前記ロータは、前記回転軸に回転可能に取り付けられ、前記回転軸の延びる方向に並んだ状態で前記流体を圧縮する複数段のインペラを有し、
     前記収容空間は、複数段の前記インペラのうち最後段のインペラの圧縮流路につながっている、請求項12に記載の圧縮機システム。
  14.  前記流体は、腐食性のガスであり、
     前記ロータは、前記回転軸に回転可能に取り付けられ、前記回転軸の延びる方向に並んだ状態で前記流体を圧縮する複数段のインペラを有し、
     前記収容空間は、複数段の前記インペラのうち最前段のインペラの圧縮流路につながっている、請求項12に記載の圧縮機システム。
  15.  前記ステータには、前記収容空間から前記ステータの外面に延び、該ステータの外面に開口するスコープ孔が形成されており、
     前記ステータの外面に対して着脱可能とされ、前記スコープ孔の開口を閉塞する点検用蓋を更に備える、請求項12に記載の圧縮機システム。
PCT/JP2023/024420 2022-09-29 2023-06-30 圧縮機システム WO2024070107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156117 2022-09-29
JP2022156117A JP2024049715A (ja) 2022-09-29 2022-09-29 圧縮機システム

Publications (1)

Publication Number Publication Date
WO2024070107A1 true WO2024070107A1 (ja) 2024-04-04

Family

ID=90476889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024420 WO2024070107A1 (ja) 2022-09-29 2023-06-30 圧縮機システム

Country Status (2)

Country Link
JP (1) JP2024049715A (ja)
WO (1) WO2024070107A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297181A (ja) * 1992-04-16 1993-11-12 Hitachi Ltd 構造物の応力腐食割れ寿命予測方法及びその試験装置
JPH10252688A (ja) * 1997-03-14 1998-09-22 Hitachi Ltd 遠心圧縮機装置及びその運転方法
JP2011033024A (ja) * 2009-07-30 2011-02-17 General Electric Co <Ge> ガスタービン部品の腐食をオンライン監視するシステム及び方法
JP2014163795A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法
CN210513920U (zh) * 2019-07-26 2020-05-12 西南石油大学 一种可模拟现场腐蚀环境的恒应变应力腐蚀试验装置
JP2022530326A (ja) * 2019-04-23 2022-06-29 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297181A (ja) * 1992-04-16 1993-11-12 Hitachi Ltd 構造物の応力腐食割れ寿命予測方法及びその試験装置
JPH10252688A (ja) * 1997-03-14 1998-09-22 Hitachi Ltd 遠心圧縮機装置及びその運転方法
JP2011033024A (ja) * 2009-07-30 2011-02-17 General Electric Co <Ge> ガスタービン部品の腐食をオンライン監視するシステム及び方法
JP2014163795A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 多軸応力負荷試験装置、多軸応力負荷試験方法及び応力腐食割れの予測方法
JP2022530326A (ja) * 2019-04-23 2022-06-29 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械
CN210513920U (zh) * 2019-07-26 2020-05-12 西南石油大学 一种可模拟现场腐蚀环境的恒应变应力腐蚀试验装置

Also Published As

Publication number Publication date
JP2024049715A (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
US9200977B2 (en) Coupling for rotor balancing
EP2386763B1 (en) Multistage compressor with balancing pistons
GB2463453A (en) Turbocharger rotor assembly
US9938983B2 (en) Compressor with thrust balancing and method thereof
US7240536B2 (en) Test-gas leak detector
US20130104516A1 (en) Method of monitoring an operation of a compressor bleed valve
CN113358260B (zh) 一种转-静盘腔轴向气动推力测试试验台
WO2014167905A1 (ja) インペラの締結検査方法、インペラの締結方法、インペラの締結検査装置、およびインペラの締結装置
WO2024070107A1 (ja) 圧縮機システム
JP2019082165A (ja) 機械における浸食および/または腐食を監視する方法、および機械
CN1742195A (zh) 具有一个入口的检漏仪
CN102519684B (zh) 一种动密封试验装置及密封间隙调整方法
US20110219784A1 (en) Compressor section with tie shaft coupling and cantilever mounted vanes
US20090010760A1 (en) Method of correcting balance of gas turbine
US9863426B2 (en) Seal of a compressor rotor
JP2011111923A (ja) 遠心圧縮機羽根車の寿命予測方法
CN115434930A (zh) 真空泵及检漏仪
CN213540849U (zh) 压气机以及机匣
KR20190104771A (ko) 압축 장치 시험 시스템
US11719120B2 (en) Vacuum testing a seal within a gas turbine engine structure
US20170023000A1 (en) Compact backup seal for a turbomachine housing
US20170058910A1 (en) Housing of a fluid energy machine
CN118056076A (zh) 涡轮机中具有密封组件的转子结构和与其相关的方法
EP4381197A1 (en) In a turbomachine, rotor structure with seal assembly and method in connection with same
CN118150042A (zh) 一种超临界二氧化碳叶轮机械动平衡试验系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871351

Country of ref document: EP

Kind code of ref document: A1