JP2022530326A - 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械 - Google Patents

汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械 Download PDF

Info

Publication number
JP2022530326A
JP2022530326A JP2021560132A JP2021560132A JP2022530326A JP 2022530326 A JP2022530326 A JP 2022530326A JP 2021560132 A JP2021560132 A JP 2021560132A JP 2021560132 A JP2021560132 A JP 2021560132A JP 2022530326 A JP2022530326 A JP 2022530326A
Authority
JP
Japan
Prior art keywords
machine
vibration
plate
sensor arrangement
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021560132A
Other languages
English (en)
Other versions
JP7278412B2 (ja
Inventor
モーキ、ジャンニ
トラッロリ、パオロ
テンペスティーニ、マッシミリアーノ
ストリナーノ、ジュゼッペ
ベッティ、アレッサンドロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone Technologie SRL
Original Assignee
Nuovo Pignone Technologie SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone Technologie SRL filed Critical Nuovo Pignone Technologie SRL
Publication of JP2022530326A publication Critical patent/JP2022530326A/ja
Application granted granted Critical
Publication of JP7278412B2 publication Critical patent/JP7278412B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/008Monitoring fouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【解決手段】 センサ配設(200)は、機械内の汚染及び/又は浸食を測定するために使用され得る。第1の圧電変換器(210)、第1のプレート(230)、及び最終的には第1の支持部材(230)は、第1の振動質量(210+220+230)を形成する。第1の圧電変換器(210)を電気的に刺激した後、第1の振動質量(210+220+230)は機械的に振動し始め、その結果、第1の圧電変換器(210)は電気共鳴振動を発生させ、電気共鳴振動は、第1の振動質量(210+220+230)の質量に応じた共振周波数である。第1の振動質量(210+220+230)の質量が、例えば、機械内の作動流体の流れによる汚染及び/又は浸食に起因して変化する場合、電気共鳴振動周波数も変化し、このような振動周波数の変化が測定され得、対応する質量変化は、機械内の作動流体の流れに露出されない第2の振動質量(340+350+360)の振動周波数と比較することによって決定され得る。【選択図】図3

Description

本明細書に開示される主題は、汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械に関する。
一般に、機械は、その動作中に汚染及び/又は浸食を受ける。
これは、動作中の汚染及び/又は浸食が、機械の内部流路内の作動流体の流れに少なくとも部分的に起因する、ターボ機械、具体的には、単段又は多段遠心圧縮機に、特に当てはまる。汚染及び浸食の両方は、流動性作動流体によって運ばれる材料によるものであり、流速が低い場合には、浸食も低い。流速が低下すると、汚れがより付着する傾向がある。
汚染(機械の1つ以上の内部位置での)が過剰なレベルに達すると、機械は、停止、洗浄、及び再開されるべきであり、実際に、機械内部の汚染は、例えば、機械の効率の損失を引き起こし得る。洗浄は、複雑で時間がかかり、したがって高価である機械を分解する必要があることが多い。したがって、少なくとも理想的には、このようなメンテナンス動作は、必要に応じて常に実行されるべきであるが、好ましくは必要な場合にのみ実行されるべきである。
浸食(機械の1つ以上の構成要素の)が過剰なレベルに達すると、機械は、停止、修理、及び再開されるべきであり、実際に、侵食された構成要素が破断しなければならない場合、機械への多大な損傷が発生し得る。いずれの場合も、機械内の浸食は、例えば、機械の効率の損失を引き起こし得る。修復は、複雑で時間がかかり、したがって高価である機械の分解を常に必要とする。したがって、少なくとも理想的には、このようなメンテナンス動作は、必要に応じて常に実行されるべきであるが、好ましくは必要な場合にのみ実行されるべきである。
したがって、過度に考慮される所定のレベルに到達するときに適切な工程を取るように、機械の1つ以上の内部場所での汚染及び/又は浸食を監視することが望ましいであろう。
一態様によれば、本明細書に開示される主題は、機械内の汚染及び/又は浸食を測定するためのセンサ配設に関する。センサ配設は、第1の圧電変換器及び第1のプレートを含み、第1のプレートは、第1の圧電変換器に固定連結されて、それによって第1の単一振動質量を形成する。第1の圧電変換器は、センサ配設に印加された電気信号によって刺激されるように配設される。第2の圧電変換器及び第2のプレートであって、第2の圧電変換器に固定連結されて、それによって第2の単一振動質量を形成する、第2のプレートを備える。第2の圧電変換器は、センサ配設に印加された電気信号によって刺激されるように配設される。センサ配設は、第1のプレートが機械内の作動流体の流れ(すなわち、機械の流路内)に露出される一方で、第2のプレートが作動流体に露出されるが、その流れには露出されない(すなわち、流体が静止しており、流速がゼロである)ように、機械内に設置されるように配設される。
別の態様によれば、本明細書に開示される主題は、機械の内部流路内を流れる作動流体を通って動作するように配設されている機械に関する。機械は、少なくとも1つのセンサ配設を含む。センサ配設は、第1の圧電変換器及び第1のプレートを含み、第1のプレートは、第1の圧電変換器に固定連結されて、それによって第1の単一振動質量を形成する。第1の圧電変換器は、センサ装置に印加された電気信号によって刺激されるように配設される。第2の圧電変換器及び第2のプレートであって、第2の圧電変換器に固定連結されて、それによって第2の単一振動質量を形成する、第2のプレートを備える。第2の圧電変換器は、センサ配設に印加された電気信号によって刺激されるように配設される。センサ配設は、第1のプレートが機械内の作動流体の流れ(すなわち、機械の流路内)に露出される一方で、第2のプレートが作動流体に露出されるが、その流れには露出されない(すなわち、流体が静止しており、流速がゼロである)ように、機械内に設置されるように配設される。第1のプレートは、流路の壁の一部分を形成する。
更に別の態様によれば、本明細書に開示される主題は、機械の内部流路の壁上の汚染及び/又は浸食を測定するための方法に関し、本方法は、A)第1の圧電変換器が第1の電気共振振動を生成するように、第1の刺激電気信号によって第1の圧電変換器を繰り返し刺激する工程であって、第1の圧電変換器が、当該壁に組み込まれた第1の振動質量の一部分である、刺激する工程と、B)第1の電気共鳴振動の共振周波数を繰り返し測定する工程と、C)第2の圧電変換器が第2の電気共振振動を生成するように、第2の刺激電気信号によって第2の圧電変換器を繰り返し刺激する工程であって、第2の圧電変換器が、当該第1の振動質量部に近接しているが、当該壁から離れて位置決めされた第2の振動質量の一部分である、刺激する工程と、D)当該第2の電気共鳴振動の共振周波数を繰り返し測定する工程と、E)当該第1の電気共鳴振動の当該共振周波数と当該第2の電気共鳴振動の当該共振周波数とを繰り返し比較する工程と、を含む。
本発明の開示された実施形態、及びその付随する利点の多くのより完全な理解は、添付図面と関連して考慮されるときに、以下の詳細な説明を参照することによって、より良く理解されるように、容易に取得されるであろう。
図1は、機械、特に多段遠心圧縮機の実施形態の概略縦断面図を示す。 図2は、汚染又は浸食を測定するためのセンサ配設の実施形態の簡略化された変形例の概略横断面図を示す。 図3は、機械内の汚染又は浸食を測定するためのセンサ配設の実施形態の概略断面図を示す。 図4は、機械内の汚染又は浸食を測定する方法の実施形態の簡略化された変形例のフローチャートを示す。 図5は、機械内の汚染又は浸食を測定する方法の一実施形態のフローチャートを示す。
本出願人は、機械内の汚染及び浸食が機械内部の質量変化を意味し、汚染の場合、材料の質量が、機械のある特定の場所(特に、機械の構成要素のある特定の場所)に付着される(すなわち、追加される)ことを考慮している。浸食の場合、材料の質量は、機械のある特定の場所(特に、機械の構成要素のある特定の場所)から除去される(すなわち減算される)。
したがって、出願人は、これらの現象のうちの1つ以上が発生する可能性が高い機械の1つ以上の場所での質量測定を繰り返すことによって、汚染及び/又は浸食を監視すると考えている。質量変化が検出された場合、これは、いくらかの汚染又は浸食が発生したことを意味する。
質量を測定する様々なアプローチがあるが、特に機械の作動流体が流れている内部位置において、動作機械内でそれを行うことは非常に困難である。
本出願人は、このような状況において特に効果的なアプローチ、すなわち、以下に簡単に説明するセンサ配設を介して実施される慣性バランス測定を特定した。
圧電変換器及びプレートは、振動質量を形成するように互いに固定される。圧電変換器を電気的に刺激した後、振動質量は、機械的に振動し始め、これは「自然共鳴」と呼ばれ、その結果、圧電変換器は、電気共鳴振動を発生させ、電気共鳴振動は、「自然共鳴周波数」と呼ばれる振動質量の全体質量に応じた周波数である。振動質量の全体的な質量が、例えば、機械内の汚染又は浸食に起因して変化する場合、また、電気振動周波数が変化し、すなわち、「自然共振周波数」が変化する。このような周波数変化を測定することができ、対応する質量変化を決定することができる。
上述の原理に従って動作するセンサ配設は、(機械のステータ構成要素又は機械のロータ構成要素のいずれかで)機械内に設置され得る。汚染が対象となる場合、センサ配設は、汚れ(作動流体流による)がプレート上に付着し、振動質量の全体的な質量を変化させるように位置決めされる。浸食が対象となる場合、センサ配設は、(作動流体の流れによる)浸食がプレートに作用し、振動質量の全体的な質量を変化させるように位置決めされる。
ここで、本開示の実施形態を詳細に参照し、これらのうちの1つ以上の実施例が図面に例解されている。各実施例は、本開示を限定するものではなく、本開示の説明によって提供される。実際に、本開示の範囲又は趣旨から逸脱することなく、本開示において様々な変更及び変形が行われることができることが、当業者にとって明らかであろう。本明細書全体を通して「一実施形態」又は「実施形態」又は「いくつかの実施形態」への言及は、実施形態に関連して説明される特定の特徴、構造、又は特性が、開示される主題の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書全体を通して様々な場所における「一実施形態では」又は「実施形態では」又は「いくつかの実施形態では」という句の出現は、必ずしも同じ実施形態を指すものではない。更に、特定の特徴、構造、又は特性は、1つ以上の実施形態において、任意の好適な様式で組み合わされ得る。
様々な実施形態の要素を提示する際、冠詞「a」、「an」、「the」、及び「said」は、要素のうちの1つ以上があることを意味することを意図している。「備える(comprising)」、「含む(including)」、及び「有する(having)」という用語は、非排他的であり、挙げられた要素以外に更に要素があってもよいと意味することを意図している。
ここで図面を参照すると、図1は、機械100、特に多段遠心圧縮機の実施形態の概略縦断面図を示す。機械100は、ロータ120と、ステータ110と、を備える。特に、ステータ110はロータ120を取り囲む。内部流路130は、ステータ110とロータ120との間に画定され、機械100の入口(図1の左側)から機械100の出口(図1の右側)に展開する。機械100の運転中、流路130は、機械100の入口に作動流体を受容し、機械130の出口から排出するように配設される。図1の実施形態では、特に、例えば、ロータ120の3つのインペラの流れチャネル内部の流路130に沿って流れることにより、作動流体はロータ120の回転を引き起こす。
流路130内の作動流体の流れにより、汚染及び/又は浸食は、ステータ110及び/又はロータ120の1つ以上の部分に生じ得る。
図1の実施形態では、汚染及び/又は浸食は、例えば、第1のセンサ配設200及び第2のセンサ配設300を通じて監視される。一般的に、このようなセンサ配設の数は、1つから、例えば、100まで変動し得る。
これらのセンサ配設は、(以下でより良好に説明されるように)流路130に隣接して位置決めされ、具体的にはセンサ配設の一部は、流路の壁の一部分を形成し、これらのセンサ配設のいずれも、ステータ110又はロータ120に取り付けられ得る。センサ配設200はロータ120に取り付けられ、その一部は壁132の一部分を形成する。センサ配設300は、ステータ110に取り付けられ、その一部は壁134の一部分を形成する。図1の実施形態では、センサ配設は、機械100の入口領域内に位置するが、代替的な実施形態では、センサ配設は、入口領域及び/又は出口領域内、及び/又は機械の中間領域内に位置し得ることを理解されたい。
例えば、センサ配設300のようなセンサ配設が機械のステータに取り付けられる場合、有線接続は、例えば、機械の測定又は監視電子ユニットにそれを接続するために使用される。
例えば、センサ配設200のようなセンサ配設が機械のロータに取り付けられる場合、無線接続は、例えば、機械の測定又は監視電子ユニットにそれを接続するために使用される。当業者であれば、無線接続が有線接続よりも複雑であることを理解する。
ここで図2を参照すると、センサ配設200は、汚染又は浸食を測定するように配設され、少なくとも第1の圧電変換器210及び第1のプレート220を備える。第1の圧電変換器210及び第1のプレート220は、第1の単一の振動質量を形成するように互いに固定連結される。図2のセンサ配設200は、図3のセンサ配設300の簡略化された変形例と見なされるべきであることに留意されたい。以下の説明は、図3の実施形態を理解するために有用である。
図3の実施形態の簡略化された変形例である図2の解決策では、センサ配設は、第1の支持部材230を更に備える。第1の単一振動質量が、第1の圧電変換器210、第1のプレート220、及び第1の支持部材230の組み合わせによって形成されるように、第1の圧電変換器210及び第1のプレート220は、第1の支持部材230に固定連結される。有利には、第1の圧電変換器210は、機械の流路(図2の130)から離れて設計された第1の支持部材230の第1の側に固定され、第1のプレート220は、機械の流路(図2の130)に近接するように設計された第1の支持部材230の第2の側に固定される。
第1の圧電変換器210は、センサ配設200に印加された電気信号によって刺激されるように配設される。例えば、図2は、第1の圧電変換器210の接点212に電気的に接続され、かつ第1の圧電変換器210に/から電気信号を供給するように配設されている、電気ケーブル214を示す。電気ケーブル214は、例えば、測定値から刺激電気信号を供給するように、又は電子ユニットを第1の圧電変換器210に監視するように配設されている。電気ケーブル214はまた、第1の圧電変換器210から、例えば、測定又は監視電子ユニットに、共振振動電気信号を供給するように配設されている。共振振動電気信号は、典型的には、以前の電気刺激の電気刺激の結果である。
図2に示すように、センサ配設200は、第1プレート220が機械内の作動流体の流れF(すなわち、機械の流路内)に露出するように、機械内に設置されるように配設される。好ましくは、第1のプレートは、流路130の壁132の一部分を形成する。好ましくは、センサ配設200の設置の直後(すなわち、任意の汚染及び/又は浸食前)、第1プレート220の表面は、壁132の周囲表面と位置合わせされる。
センサ配設200は、壁132の凹部133の内側に位置決めされ、壁132に固定される。図2の解決策によれば、環状部材280は、センサ配設200を壁132に固定するために使用される。例えば、第1の支持部材230の周辺部は、環状部材280によって保持され、環状部材280は、壁132の穴にねじ込まれるか、又は嵌合する。
図2に詳細に示されるセンサ配設200は、機械100の内部流路の壁上の汚染又は浸食を測定するために使用される。図2に示す解決策は、腐食を測定するためにも使用され得るが、しかしながら、この場合、正確には、図3の実施形態の簡略化された変形例ではない。図1では、センサ配設200は、ロータ壁に取り付けられているが、代替的に、同様のセンサ配設がステータ壁に取り付けられ得る。
センサ配設200又は同様のセンサ配設に基づいて汚染又は浸食を測定するための方法の一実施形態の簡略化された変形例、すなわち、図5の実施形態の簡略化された変形例を、図4のフローチャート400を参照して以下に説明する。
フローチャート400は、開始工程410及び終了工程490を含む。
フローチャート400による方法は、少なくとも第1の圧電変換器(例えば、図2の第1の圧電変換器210)及び第1のプレート(例えば、図2の第1のプレート220)のアセンブリによって形成された第1の単一振動質量を位置決めする予備工程420を含み、第1のプレートは、流路壁の一部分を形成する。
更に、フローチャート400による方法は、以下の工程を更に含む。
A)工程430:第1の圧電変換器(例えば、図2の第1の圧電変換器210)を第1の刺激電気信号によって繰り返し刺激し、そのため、第1の圧電変換器(例えば、図2の第1の圧電変換器210)が、第1の電気共振振動を生成すること。
B)工程440:当該第1の電気共鳴振動の共振周波数(「第1の共振周波数」と呼ばれ得る)を繰り返し測定すること。
工程430及び440で参照される繰り返しは、図4のフローチャート400のループL1に対応する。ループは、汚染及び浸食の進行が非常に遅いとき、好ましくは1時間より長く、好ましくは1日より短い期間で、繰り返され得る。繰り返し期間は厳密に一定である必要はなく、例えば、最大10%又は20%(又は更にはより多く)の変動が許容可能であることに留意されたい。
工程430及び440が、機械100の動作中に実施される(すなわち、それらが測定プロセスの一部である)間に、機械100を組み立てるときに、工程420が実施されることに留意されたい。ループL1は、機械100の始動から機械100の停止まで連続的に繰り返され得る。したがって、有利には、機械100が動作していないときにループL1が中断される。
好ましくは、第1の電気共鳴振動の共振周波数は、20KHz超である。
工程430及び440は、例えば、任意の図に示されておらず、かつセンサ配設200の電気ケーブル214に電気的に接続され得る、機械100の測定又は監視電子ユニットによって実施され得る。
上述の測定又は監視電子ユニットは、実施される周波数測定を処理し得る。例えば、周波数測定を行う任意の時間は、測定値を上限閾値及び/又は下限閾値と比較し得る。これらの閾値のうちのいずれかを超えた場合、そのような事象を、例えば、機械の電子制御ユニット及び/又はオペレータに信号伝達し得、そのような信号伝達は、電子指標(例えば、機械の電子制御ユニットに送信される電子メッセージ)及び/又は視覚的指標及び/又は音指標であり得る。周波数測定は、例えば、センサ配設の構成要素の現在の温度を考慮するために、閾値比較(複数可)の前に、いくらかの前処理を受けてもよいことに留意されたい。
ここで図3を参照すると、センサ配設300は、汚染又は浸食を測定するように配設され、少なくとも第1の圧電変換器310及び第1のプレート320を備える。第1の圧電変換器310及び第1のプレート320は、第1の単一の振動質量を形成するように互いに固定連結される。
図3の実施形態では、センサ配設は、第1の支持部材330を更に備える。第1の単一振動質量が、第1の圧電変換器310、第1のプレート320、及び第1の支持部材330の組み合わせによって形成されるように、第1の圧電変換器310及び第1のプレート320は、第1の支持部材330に固定連結される。有利には、第1の圧電変換器310は、機械の流路(図3の130)から離れて設計された第1の支持部材330の第1の側に固定され、第1のプレート320は、機械の流路(図3の130)に近接するように設計された第1の支持部材330の第2の側に固定される。
第1の圧電変換器310は、センサ配設300に印加された電気信号によって刺激されるように配設される。例えば、図3は、第1の圧電変換器310の接点312に電気的に接続され、かつ第1の圧電変換器310に/から電気信号を供給するように配設されている、電気ケーブル314を示す。電気ケーブル314は、例えば、測定値から刺激電気信号を供給するように、又は電子ユニットを第1の圧電変換器310に監視するように配設されている。電気ケーブル314はまた、第1の圧電変換器310から、例えば、測定又は監視電子ユニットに、共振振動電気信号を供給するように配設されている。共振振動電気信号は、典型的には、以前の電気刺激の電気刺激の結果である。
図3に示すように、センサ配設300は、第1プレート320が機械内の作動流体流れF(すなわち、機械の流路内)に露出するように、機械内に設置されるように配設される。好ましくは、第1のプレートは、流路130の壁133の一部分を形成する。好ましくは、センサ配設300の設置の直後(すなわち、任意の汚染及び浸食前)、第1プレート320の表面は、壁134の周囲表面と位置合わせされる。
センサ配設300は、少なくとも第2の圧電変換器340及び第2のプレート350を更に備える。第2の圧電変換器340及び第2のプレート350は、第2の単一振動質量を形成するように互いに固定連結される。
図3の実施形態では、センサ配設は、第2の支持部材360を更に備える。第2の単一振動質量が、第2の圧電変換器340、第2のプレート350、及び第2の支持部材360の組み合わせによって形成されるように、第2の圧電変換器340及び第2のプレート350は、第2の支持部材360に固定連結される。有利には、第2の圧電変換器340は、機械の流路(図3の130)に近接するように設計された第2の支持部材360の第1の側に固定され、第2のプレート350は、機械の流路(図3の130)から離れているように設計された第2の支持部材360の第2の側に固定される。
第2の圧電変換器340は、センサ配設300に印加された電気信号によって刺激されるように配設される。例えば、図3は、第2の圧電変換器340の接点342に電気的に接続され、かつ第2の圧電変換器340に/から電気信号を供給するように配設されている、電気ケーブル344を示す。電気ケーブル344は、例えば、測定値から刺激電気信号を供給するように、又は電子ユニットを第1の圧電変換器340に監視するように配設されている。電気ケーブル344はまた、第2の圧電変換器340から、例えば、測定又は監視電子ユニットに、共振振動電気信号を供給するように配設されている。共振振動電気信号は、典型的には、以前の電気刺激の電気刺激の結果である。
図3に示されるように、第2のプレート350が機械の作動流体(すなわち、静止している、又はゼロの流速)に露出されるが、機械内(すなわち、機械の流路内)の作動流体の流れFには露出されない(これは、汚染又は浸食を受けるべきではないことを意味する)ように、かつ、少なくとも第1の圧電変換器310、第1のプレート320、第2の圧電変換器340、及び第2のプレート350が、ほぼ同じ温度及び同じ圧力に露出されるように、センサ配設300は、機械内に設置されるように配設される。図3の実施形態では、第1の支持部材330及び第2の支持部材360は、ほぼ同じ温度及び同じ圧力に露出される。
図3の実施形態によれば、センサ配設300は、更に第1の空洞372を備え得る。第1の単一振動質量、すなわち、要素310+320+330の組み合わせは、第1の空洞372の第1の側に位置決めされ、一方、第2の単一振動質量、すなわち、要素340+350+360の組み合わせは、第1の空洞372の第2の側に位置決めされる。第2の側は、第1の側とは異なる。
好ましくは、図3に示されるように、第2の側は、第1の側と反対である。有利には、中空分離部材370は、第1の単一振動質量と第2の単一振動質量との間に嵌合し、部材370の横断面(図3には図示せず)は、円又は多角形の形状を有し得る。
有利には、分離壁構成要素(図3に図示せず)は、第1の空洞372の内側に位置し得る。このような分離壁構成要素は、望ましくない第1の振動質量と第2の振動質量との間の周波数相互作用を回避するか、又は少なくとも制限することを目的とする。このような分離壁構成要素は、例えば、ステンレス鋼で作製されたディスクの形態を採り得、中空分離部材370の境界に固定され得る。このようにして、第1の空洞372は、2つのサブ空洞に分割される。
図3の実施形態によれば、センサ配設300は、更に第2の空洞382を備え得る。第2の単一振動質量、すなわち、要素340+350+360の組み合わせは、第2の空洞382の側にも位置決めされる。
有利には、第1の空洞372は、機械の作動流体流路(図3の130)と流体連通するように配設され、このようにして、特に第2の圧電変換器340は、第1の圧電変換器310とほぼ同じ温度及び同じ圧力に露出される。
有利には、第2の空洞382は、機械の作動流体を受容するように配設され、このようにして、特に第2プレート350は、第1プレート320とほぼ同じ温度及び同じ圧力に露出される。図3の実施形態では、作動流体は、最初に環状管384を通過し(その後に読み取られ)、次いで、複数の孔管386を通過する(その後に読み取られる)。作動流体は、管384及び管386を通過する空洞382内にゆっくりと拡散することに留意されたい。このようにして、空洞382内部の作動流体は静止(又はほぼ静止)しており、したがってプレート350を浸食しない。このようにして、作動流体によって運ばれた汚れは、(適切な距離にある)管384の壁上に徐々に付着し、作動流体が空洞382内に入ると、それは、プレート350を汚染しないように、汚れがない(又はほとんどない)。
機械的観点から、センサ配設300は、機械の流路130の壁134の凹部135に嵌合するように配設されている管状シェル380を備え得る。管状シェル380は、第1の空洞372及び第2の空洞382の両方を取り囲む。分離部材370は、第1支持部材330の周辺部及び第2支持部材360の周辺部と共に、管状シェル380の内側環状凹部内に嵌合し得る。
有利には、管状シェル380は、内側凹部135を固定するように、その内側区域においてより大きな断面を有し、凹部135の内面と管状シェル380の外面との間に環状管384を画定するように、その外側区域において小さな断面を有する。更に、この場合、シェル380は、その外側区域において、環状管384から第2の空洞382まで延在する複数の孔管386を有する。
この実施形態によると、第2の空洞382は、機械の作動流体を受容するように配設されているので、例えば、第2の空洞382から液体を排出するように配設されている管状シェル380の内側端部に排水チャネル388を提供することが好ましい。このような液体は、作動流体の部分的な凝縮に起因し得る。
この実施形態によれば、第2の空洞382は、機械の作動流体を受容するように配設されているので、第2の空洞382内に位置決めされ、かつ、例えば、第2の空洞382内の液体が所定の量又はレベルを超えるときに検出するように配設されている、液体検出器390を提供することが好ましい。図3は、液体検出器390に電気的に接続され、かつ液体検出器390から、例えば、測定又は監視電子ユニットに電気信号を供給するように配設されている電気ケーブル394を示す。
図3に詳細に示されるセンサ配設300は、機械100の内部流路の壁上の汚染又は浸食を測定するために使用される。図1では、センサ配設300はステータ壁に取り付けられているが、代替的に、同様のセンサ配設がロータ壁に取り付けられ得る。
センサ配設300又は同様のセンサ配設に基づいて汚染又は浸食を測定するための方法の一実施形態を、図5のフローチャート500を参照して以下に説明する。
本実施形態による方法は、前述した方法と有意に類似している。実際には、前述した1つは、1つの振動質量を含むセンサ配設に基づくものであり、この実施形態は、2つの振動質量、すなわち、第1の振動質量及び第2の振動質量を含むセンサ配設に基づく。
フローチャート500は、開始工程510及び終了工程590を含む。
第1の振動質量に関する限り、フローチャート500による方法は、少なくとも第1の圧電変換器(例えば、図3の第1の圧電変換器310)及び第1のプレート(例えば、図3の第1のプレート320)のアセンブリによって形成された第1の単一振動質量を位置決めする予備工程520を含み、第1のプレートは、流路壁の一部分を形成する。
なお、第1の振動質量に関する限り、フローチャート500による方法は、以下の工程を更に含む。
A)工程530:第1の圧電変換器(例えば、図3の第1の圧電変換器310)を第1の刺激電気信号によって繰り返し刺激し、そのため、第1の圧電変換器(例えば、図3の第1の圧電変換器310)が、第1の電気共振振動を生成すること。
B)工程540:当該第1の電気共鳴振動の共振周波数(「第1の共振周波数」と呼ばれ得る)を繰り返し測定すること。
第2の振動質量に関する限り、フローチャート500による方法は、少なくとも第2の圧電変換器(例えば、図3の第2の圧電変換器340)及び第2のプレート(例えば、図3の第1のプレート350)のアセンブリによって形成された第2の単一振動質量を位置決めする予備工程550を含み、第2のプレートは、第1のプレートに近接するが、流路壁から離れている。具体的には、第1のプレートが機械内の作動流体の流れ(すなわち、機械の流路内)に露出される一方で、第2のプレートが作動流体に露出されるが、その流れには露出されない(すなわち、流体が静止しており、流速がゼロである)。
なお、第2の振動質量に関する限り、フローチャート500による方法は、以下の工程を更に含む。
C)工程560:第2の圧電変換器(例えば、図3の第2の圧電変換器340)を第2の刺激電気信号によって繰り返し刺激し、そのため、第2の圧電変換器(例えば、図3の第2の圧電変換器340)が、第2の電気共振振動を生成すること。
D)工程570:当該第2の電気共鳴振動の共振周波数(「第2の共振周波数」と呼ばれ得る)を繰り返し測定すること。
図5に示すように、上記の工程の好ましい順序は、工程520、工程550、工程530、工程560、工程540、工程570、及び工程580(以下に説明する)である。
工程530及び560及び540及び570が、機械100の動作中に実施される(すなわち、それらが測定プロセスの一部である)間に、機械100を組み立てるときに、工程520及び550が実施されることに留意されたい。
好ましくは、工程520における位置決め及び工程550における位置決めは、第1の単一振動質量及び第2の単一振動質量が、同じ温度(又はほぼ同じ温度)及び同じ圧力(又はほぼ同じ圧力)に露出されることにつながる。
有利には、フローチャート500による方法は、以下の工程を更に含む。
E)工程580:共振周波数、特に、第1の電気共鳴振動の共振周波数及び第2の電気共鳴振動の共振周波数を繰り返し比較すること。
工程530及び560及び540及び570及び580で参照される繰り返しは、図5のフローチャート500のループL2に対応する。ループは、汚染及び浸食の進行が非常に遅いとき、好ましくは1時間より長く、好ましくは1日より短い期間で、繰り返され得る。繰り返し期間は厳密に一定である必要はなく、例えば、最大10%又は20%(又は更にはより多く)の変動が許容可能であることに留意されたい。
ループL2は、機械100の始動から機械100の停止まで連続的に繰り返され得る。したがって、有利には、機械100が動作していないときにループL2が中断される。
好ましくは、第1の電気共鳴振動の共振周波数及び第2の電気共鳴振動の共振周波数は、第1の振動質量の質量と第2の振動質量の質量との間の相違により、常に同一でない場合であっても、20KHz超である。
第1の可能性によれば、第1のプレート(例えば、図3の第1のプレート320)が汚染を有しないか、又は侵食されていないとき、第1の電気共鳴振動の共振周波数と第2の電気共鳴振動の共振周波数とが同一(又はほぼ同一)である。周波数差が存在し、汚染又は浸食後に測定され得る。
第2の好ましい可能性によれば、第1のプレート(例えば、図3の第1のプレート320)が汚染を有しないか、又は侵食されていないとき、第1の電気共鳴振動の共振周波数と第2の電気共鳴振動の共振周波数とが異なる。この差は、好ましくは500Hz超である。周波数差は増加又は減少し、汚染又は浸食後に測定され得る。
工程530及び560及び540及び570は、例えば、任意の図に示されておらず、かつセンサ配設300の電気ケーブル314及び344に電気的に接続され得る、機械100の測定又は監視電子ユニットによって実施され得る。
上述の測定又は監視電子ユニットは、実施される周波数測定を処理し、並びに、例えば、測定された共振周波数を比較し得る(工程580を参照されたい)。例えば、第1の電気共鳴振動の共振周波数と第2の電気共振振動の共振周波数との間の周波数減算を行う任意の時間では、減算値を上限閾値及び/又は下限閾値と比較してもよい。これらの閾値のうちのいずれかを超えた場合、そのような事象を、例えば、機械の電子制御ユニット及び/又はオペレータに信号伝達し得、そのような信号伝達は、電子指標(例えば、機械の電子制御ユニットに送信される電子メッセージ)及び/又は視覚的指標及び/又は音指標であり得る。
有利には、2つの振動質量(好ましくは同じ温度及び圧力)の使用は、周波数測定の自動補償を可能にすることに留意されたい。したがって、閾値比較(1つ又は複数)の前の一部の前処理は、不要であり得る。
既に説明したように、センサ配設200及びセンサ配設300と同一又は類似のセンサ配設は、有利には、機械、好ましくはターボ機械、より好ましくは単段又は多段遠心圧縮機において設置及び使用され得る。
任意の機械は、1つ以上のそのようなセンサ配設を含み得る。
更に、このような機械は、測定若しくは監視電子ユニットを含み得るか、又は測定若しくは監視電子ユニットに関連付けられ得、同じユニットは、1つ以上のそのようなセンサ配設に(有線及び/又は無線接続を介して)接続され得る。
これらの場合、好ましくは、センサ配設の第1のプレートは、作動流体が流れる機械の流路の壁の一部分を形成する。浸食が測定又は監視される場合、第1のプレートがプレート材料で作製され、壁が壁材料で作製され、かつプレート材料及び壁材料が同じ材料であることが有利であり、第1のプレート、第2のプレート、及び壁の材料が同じであることが更に有利である。

Claims (15)

  1. 機械(100)内の汚染及び/又は浸食を測定するためのセンサ配設(200、300)であって、
    -第1の圧電変換器(210、310)と、
    -第1のプレート(220、320)であって、前記第1のプレート(220、320)が、前記第1の圧電変換器(210、310)に固定連結されて、それによって第1の単一振動質量(210+220+230、310+320+330)を形成する、第1のプレート(220、320)と、
    -第2の圧電変換器(340)と、
    -第2のプレート(350)であって、前記第2のプレート(350)が、前記第2の圧電変換器(340)に固定連結されて、それによって第2の単一振動質量(340+350+360)を形成する、第2のプレート(350)と、を備え、
    前記第1の圧電変換器(210、310)が、印加された電気信号(214、314)によってセンサ配設(200、300)に刺激されるように配設され、
    前記センサ配設(200、300)が、前記第1のプレート(220、230)が前記機械(100)内の作動流体の流れ(F)に露出されるように、前記機械(100)内に設置されるように配設され、
    前記第2の圧電変換器(340)が、前記センサ配設(300)に印加された電気信号(344)によって刺激されるように配設され、
    前記センサ配設(300)が、前記第2のプレート(350)が前記機械(100)の作動流体に露出され、かつ前記機械(100)内の前記作動流体の流れ(F)に露出されないように、前記機械(100)内に設置されるように配設され、
    前記第2の単一振動質量(340+350+360)が、前記第1の単一振動質量(310+320+330)に等しく、
    前記センサ配設(300)が、前記第1の圧電変換器(310)、前記第1のプレート(320)、前記第2の圧電変換器(340)、前記第2のプレート(350)が同じ温度及び同じ圧力に露出されるように、前記機械(100)内に設置されるように配設されている、センサ配設(200、300)。
  2. -第1の空洞(372)を更に備え、
    前記第1の単一振動質量(310+320+330)が、前記第1の空洞(372)の第1の側に位置決めされ、
    前記第2の単一振動質量(340+350+360)が、前記第1の空洞(372)の第2の側に位置決めされ、
    前記第2の側が、前記第1の側とは異なる、請求項1に記載のセンサ配設(300)。
  3. 前記第2の側が、前記第1の側と反対であり、
    中空部材(370)が、第1の単一振動質量(310+320+330)と第2の単一振動質量(340+350+360)との間に嵌合する、請求項2に記載のセンサ配設(300)。
  4. -第2の空洞(382)を更に備え、
    前記第2の単一振動質量(340+350+360)が、前記第2の空洞(382)の側にも位置決めされ、
    前記第2の空洞(382)が、前記機械(100)の前記作動流体を受容するように配設されている(384+386)、請求項2又は3に記載のセンサ配設(300)。
  5. 前記第1の空洞(372)が、前記機械(100)の作動流体流路と流体連通するように配設されている、請求項4に記載のセンサ配設(300)。
  6. -排水チャネル(388)を更に備え、
    前記排水チャネル(388)が、前記第2の空洞(382)に流体連結され、前記第2の空洞(382)から液体を排出するように配設されている、請求項4又は5に記載のセンサ配設(300)。
  7. -液体検出器(390)を更に備え、
    前記液体検出器(390)が、前記第2の空洞(382)内に位置決めされている、請求項4~6のいずれか一項に記載のセンサ配設(300)。
  8. -前記機械(100)の流路(130)の壁(134)の凹部(135)に嵌合するように配設されている管状シェル(380)を更に備える、請求項1~7のいずれか一項に記載のセンサ配設(300)。
  9. 前記機械の内部流路(130)内を流れる作動流体を通って動作するように配設されている機械(100)であって、
    -請求項1~8のいずれか一項に記載の少なくとも1つのセンサ配設(200、300)を備え、
    前記第1のプレート(220、320)が、前記流路(130)の壁(132、134)の一部分を形成する、機械(100)。
  10. 前記第1のプレート(220、320)が、プレート材料で作製され、
    前記壁(132)が、壁材料で作製され、
    前記プレート材料及び前記壁材料が、同じ材料である、請求項9に記載の機械(130)。
  11. ターボ機械、好ましくは、単段又は多段遠心圧縮機である、請求項9又は10に記載の機械(100)。
  12. 前記機械の内部流路の壁上の汚染及び/又は浸食を測定するための方法(400、500)であって、
    A)第1の圧電変換器が第1の電気共振振動を生成するように、第1の刺激電気信号によって前記第1の圧電変換器を繰り返し刺激する工程(430、530)であって、前記第1の圧電変換器が、前記壁に組み込まれた第1の振動質量の一部分である、刺激する工程(430、530)と、
    B)前記第1の電気共鳴振動の共振周波数を繰り返し測定する工程(440、540)と、
    C)第2の圧電変換器が第2の電気共振振動を生成するように、第2の刺激電気信号によって前記第2の圧電変換器を繰り返し刺激する工程(560)であって、前記第2の圧電変換器が、前記第1の振動質量部に近接しているが、前記壁から離れて位置決めされた第2の振動質量の一部分である、刺激する工程(560)と、
    D)前記第2の電気共鳴振動の共振周波数を繰り返し測定する工程(570)と、
    E)前記第1の電気共鳴振動の前記共振周波数と前記第2の電気共鳴振動の前記共振周波数とを繰り返し比較する工程(580)と、を含む、方法。
  13. 前記第1の電気共振振動の前記共振周波数が、20KHz超である、請求項12に記載の方法(400、500)。
  14. 前記第2の電気共振振動の前記共振周波数が、20KHz超である、請求項12又は13に記載の方法(500)。
  15. 前記第1の電気共鳴振動の前記共振周波数及び前記第2の電気共鳴振動の前記共振周波数が異なり、前記第1の電気共鳴振動の前記共振周波数と前記第2の電気共鳴振動の前記共振周波数との間の差が、500Hz超である、請求項12又は13又は14に記載の方法(500)。
JP2021560132A 2019-04-23 2020-04-20 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械 Active JP7278412B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102019000006274A IT201900006274A1 (it) 2019-04-23 2019-04-23 Disposizione con sensore e metodo per misurare sporcamento o erosione o corrosione, nonché macchina che monitorizza sporcamento o erosione o corrosione
IT102019000006274 2019-04-23
PCT/EP2020/025179 WO2020216469A1 (en) 2019-04-23 2020-04-20 Sensor arrangement and method for measuring fouling and/or erosion, and machine monitoring fouling and/or erosion

Publications (2)

Publication Number Publication Date
JP2022530326A true JP2022530326A (ja) 2022-06-29
JP7278412B2 JP7278412B2 (ja) 2023-05-19

Family

ID=67262964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021560132A Active JP7278412B2 (ja) 2019-04-23 2020-04-20 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械

Country Status (9)

Country Link
US (1) US20220196606A1 (ja)
EP (1) EP3959516A1 (ja)
JP (1) JP7278412B2 (ja)
KR (1) KR102546456B1 (ja)
CN (1) CN113785194B (ja)
AU (1) AU2020261165B2 (ja)
CA (1) CA3136839C (ja)
IT (1) IT201900006274A1 (ja)
WO (1) WO2020216469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070107A1 (ja) * 2022-09-29 2024-04-04 三菱重工コンプレッサ株式会社 圧縮機システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202115178D0 (en) * 2021-10-22 2021-12-08 Rolls Royce Plc Gas passage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236579A (ja) * 1996-01-17 1997-09-09 Inst Fr Petrole 水によるスケール形成程度の連続モニタリングの方法および装置
JP2007057289A (ja) * 2005-08-23 2007-03-08 Seiko Instruments Inc 分析用マイクロセンサ
JP2019082165A (ja) * 2017-09-28 2019-05-30 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. 機械における浸食および/または腐食を監視する方法、および機械

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2109937B (en) * 1981-11-09 1986-02-12 Joshua Creer Quayle Planar transducer for metal loss measurement
CH662421A5 (de) * 1983-07-13 1987-09-30 Suisse Horlogerie Rech Lab Piezoelektrischer kontaminationsdetektor.
SE8401581L (sv) * 1984-03-21 1985-09-22 Foersvarets Forskningsanstalt Metod och anordning for metning av vetskors korrosivitet eller reaktivitet mot fremst metaller
DE3476267D1 (en) * 1984-05-17 1989-02-23 Ssl Ltd Electrical resistance corrosion probe
CH683375A5 (de) * 1991-10-01 1994-02-28 Vibro Meter Ag Verfahren und Flüssigkeitsdetektor zur Erfassung der Anwesenheit, des Standes oder des Zustandes einer Flüssigkeit.
US6196059B1 (en) * 1997-08-11 2001-03-06 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Piezoelectric resonator, process for the fabrication thereof including its use as a sensor element for the determination of the concentration of a substance contained in a liquid and/or for the determination of the physical properties of the liquid
GB9925373D0 (en) * 1999-10-27 1999-12-29 Schlumberger Ltd Downhole instrumentation and cleaning system
FR2818380B1 (fr) * 2000-12-20 2003-04-04 Total Raffinage Distribution Procede de mesure du pouvoir entartrant d'un liquide et microbalance a quartz pour la mise en oeuvre de ce procede
US7866211B2 (en) * 2004-07-16 2011-01-11 Rosemount Inc. Fouling and corrosion detector for process control industries
GB0522312D0 (en) * 2005-11-01 2005-12-07 Cormon Ltd Monitoring particles in a fluid stream
US7723989B2 (en) * 2007-08-31 2010-05-25 Schlumberger Technology Corporation Transducer assemblies for subsurface use
CN101241125B (zh) * 2008-03-10 2013-02-13 施晓燕 一种用于液相测量的压电传感器及封装方法
CN102080972A (zh) * 2009-11-30 2011-06-01 西门子公司 外腔式光纤法布里-珀罗传感器及振动监测系统和方法
WO2012033772A2 (en) * 2010-09-07 2012-03-15 Sayir, Mahir Fluid properties measurement device having a symmetric resonator
CN102012251B (zh) * 2010-09-29 2012-08-15 西安东风机电有限公司 检测科氏流量计振动管管壁附加物、磨损或腐蚀的方法和装置
ES2749877T3 (es) * 2010-11-29 2020-03-24 Air Prod & Chem Método y aparato de medición del peso molecular de un gas
US20120264220A1 (en) * 2011-04-14 2012-10-18 Rahmathullah M Aflal Apparatus for Monitoring Corrosion and Method Thereof
US9488619B2 (en) * 2011-06-21 2016-11-08 Ohio University Device and method for monitoring interaction between a fluid and a wall
DE102011089808A1 (de) * 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
CN103398686B (zh) * 2013-08-20 2015-12-23 厦门大学 一种大口径非球面光学元件精密检测平台z轴配重装置
GB2547284B (en) * 2016-02-15 2019-11-06 Ft Tech Uk Ltd Acoustic resonator sensor for determining temperature
CN107688100B (zh) * 2017-09-22 2019-04-05 上海交通大学 一种基于涡激振动的管道流流速监测自供电传感器
CN108896745B (zh) * 2018-06-14 2020-11-10 上海建工集团股份有限公司 一种混凝土泵送超声导波监测装置及监测方法
CN109374729B (zh) * 2018-09-25 2021-02-19 深圳大学 一种声学微质量传感器及检测方法
CN109164004B (zh) * 2018-10-02 2023-12-19 吉林大学 基于bet重量法的多孔颗粒比表面积表征传感器及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236579A (ja) * 1996-01-17 1997-09-09 Inst Fr Petrole 水によるスケール形成程度の連続モニタリングの方法および装置
JP2007057289A (ja) * 2005-08-23 2007-03-08 Seiko Instruments Inc 分析用マイクロセンサ
JP2019082165A (ja) * 2017-09-28 2019-05-30 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. 機械における浸食および/または腐食を監視する方法、および機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070107A1 (ja) * 2022-09-29 2024-04-04 三菱重工コンプレッサ株式会社 圧縮機システム

Also Published As

Publication number Publication date
CA3136839A1 (en) 2020-10-29
US20220196606A1 (en) 2022-06-23
KR20210154824A (ko) 2021-12-21
AU2020261165B2 (en) 2023-05-25
WO2020216469A1 (en) 2020-10-29
CN113785194A (zh) 2021-12-10
KR102546456B1 (ko) 2023-06-22
JP7278412B2 (ja) 2023-05-19
IT201900006274A1 (it) 2020-10-23
CN113785194B (zh) 2023-11-17
EP3959516A1 (en) 2022-03-02
CA3136839C (en) 2024-01-30
AU2020261165A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP2022530326A (ja) 汚染及び/又は浸食を測定するためのセンサ配設及び方法、並びに汚染及び/又は浸食を監視する機械
TW201930835A (zh) 泵浦裝置、泵浦裝置之測試運轉方法、電動機組合體、及電動機組合體之異常振動的特定方法
JP4467431B2 (ja) ポンプ及びポンプシステムの状態モニタ
JP6151370B2 (ja) 凝縮液排水管の監視
JP4456579B2 (ja) 立軸ポンプ
JP2014530326A (ja) 凝縮液を加圧ガスシステムから自動的に排出するための向上された方法
JP2019120145A (ja) ポンプ装置およびポンプ装置の試験運転方法
KR101150695B1 (ko) 배관 가진 장치 및 배관 가진 방법
JP2002285975A (ja) 縦型ポンプの診断装置および診断方法
JP5283868B2 (ja) 立軸ポンプおよび立軸ポンプの点検方法
JP2019122065A (ja) 電動機組立体およびポンプ装置
JP5433601B2 (ja) ジェットポンプ及び沸騰水型原子炉
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
JP6918893B2 (ja) 異常検出装置
JP2003065839A (ja) 振動監視方法及びその装置
JP2006009581A (ja) 羽根車の損傷検出方法及び装置
JP2004108177A (ja) 縦型ポンプの監視診断方法および装置
JPH0210000A (ja) ポンプの寿命予測方法
JP2020183893A (ja) ねじり振動検出装置、該ねじり振動検出装置を備えた立軸ポンプ、およびねじり振動検出方法
US20230084695A1 (en) Stress estimation method for machine structure and monitoring method for machine structure
Marscher Centrifugal Pump Monitoring, Troubleshooting and Diagnosis Using Vibration Technologies
JPH0524448B2 (ja)
JP2023092082A (ja) 摩耗検知システム及び摩耗検知方法
JP2022174518A (ja) ポンプ機場系統配管の加振診断方法
JP2008216222A (ja) 差圧計測配管の振動監視装置及びその方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150