JP6003583B2 - Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method - Google Patents
Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method Download PDFInfo
- Publication number
- JP6003583B2 JP6003583B2 JP2012258512A JP2012258512A JP6003583B2 JP 6003583 B2 JP6003583 B2 JP 6003583B2 JP 2012258512 A JP2012258512 A JP 2012258512A JP 2012258512 A JP2012258512 A JP 2012258512A JP 6003583 B2 JP6003583 B2 JP 6003583B2
- Authority
- JP
- Japan
- Prior art keywords
- shape
- difference
- gap
- steel plate
- smoothing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 121
- 239000010959 steel Substances 0.000 title claims description 121
- 238000011156 evaluation Methods 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 35
- 238000012937 correction Methods 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005259 measurement Methods 0.000 claims description 80
- 238000009499 grossing Methods 0.000 claims description 48
- 238000012545 processing Methods 0.000 claims description 6
- 238000005316 response function Methods 0.000 description 30
- 239000002184 metal Substances 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Straightening Metal Sheet-Like Bodies (AREA)
Description
本発明は、例えば鋼板などの形状評価対象体の形状評価方法、鋼板の形状矯正方法、鋼板の製造方法に関し、例えば圧延工程或いは加熱冷却工程で鋼板に発生した反り、耳波、歪みなどの形状を圧延ライン横で矯正するのに好適なものである。 The present invention relates to, for example, a shape evaluation method for a shape evaluation object such as a steel plate, a shape correction method for a steel plate, and a method for manufacturing a steel plate, for example, a shape such as warpage, ear wave, distortion, etc. Is suitable for correcting the side of the rolling line.
鋼板の形状を自動計測する装置としては、例えば下記特許文献1に記載されるように、複数の光学系距離計からなる計測装置を鋼板の搬送ライン上に設置し、この計測装置を通過する鋼板からの光の反射状態から鋼板表面までの距離、即ち鋼板表面の高さを検出し、この高さを連続して鋼板表面の形状を計測するものがある。また、例えば下記特許文献2に記載されるように、単一のレーザ光源からのレーザ光を多軸回転操作して、搬送ライン上に静止した鋼板表面の形状を計測するものがある。また、計測されたデータが計測誤差を含む場合、その誤差を除去するためにデータを平滑化する方法は、下記特許文献3に記載されている。 As an apparatus for automatically measuring the shape of a steel plate, for example, as described in Patent Document 1 below, a measuring device composed of a plurality of optical distance meters is installed on a steel sheet conveyance line, and the steel plate passes through this measuring device. The distance from the light reflection state to the steel plate surface, that is, the height of the steel plate surface, is detected, and the shape of the steel plate surface is measured continuously with this height. For example, as described in Patent Document 2 below, there is one that measures the shape of the surface of a steel plate stationary on a conveyance line by performing multi-axis rotation operation of laser light from a single laser light source. In addition, when the measured data includes a measurement error, a method for smoothing the data to remove the error is described in Patent Document 3 below.
鋼板の製造では、一般に、コールドレベラー、ホットレベラーと呼ばれる複数のロールを上下に配置し、これらのロールの間に鋼板を搬送することで、製造時に発生した反り、耳波などの形状不良を矯正する。しかし、一般に厚物材と呼ばれる厚さ40mm以上の鋼板の場合や、先尾端部位の形状不良は、コールドレベラーやホットレベラーでは、形状を矯正しきれない。そのため、厚物材に形状不良が発生した場合には、鋼板をラインから外し、所謂オフラインで形状矯正を行う。 In the manufacture of steel plates, generally, multiple rolls called cold levelers and hot levelers are placed one above the other, and the steel plates are transported between these rolls, thereby correcting warp and ear waves and other defects that occur during manufacturing To do. However, in the case of a steel plate having a thickness of 40 mm or more, which is generally called a thick material, or the shape defect of the tip end portion cannot be corrected by a cold leveler or a hot leveler. Therefore, when a shape defect occurs in a thick material, the steel plate is removed from the line and the shape correction is performed off-line.
オフラインでは、鋼板を安定して高速に搬送することができないので、前記特許文献1のような形状計測装置では、測定時間が長くなり、測定するために鋼板を移動させる必要がある。また、仮に適用できても、複数の光学系距離計からなる計測装置は、構成が複雑な上に、鋼板の上方に設置するための門型の架台が必要となり、それが例えばクレーンの搬送時の障害となるなど、運用、コスト面でも不利である。 Since the steel sheet cannot be stably conveyed at high speed offline, the shape measuring apparatus as in Patent Document 1 requires a long measurement time, and the steel sheet needs to be moved for measurement. Even if it can be applied, the measuring device consisting of a plurality of optical rangefinders is complicated in configuration and requires a gate-type mount for installation above the steel plate, which is used when, for example, a crane is transported. It is also disadvantageous in terms of operation and cost.
これに対し、特許文献2の形状計測装置では、ライン外に設置された単一レーザ光源の計測器を用いて搬送テーブル上に静止した鋼板形状を測定するため、クレーンとの干渉がない。また、この方法において、静止した鋼板形状を計測するための測定器の計測精度が悪くても、特許文献3に記載された方法のデータ平滑化処理により形状認識精度を向上することが可能である。 On the other hand, in the shape measuring apparatus of patent document 2, since the steel plate shape stationary on a conveyance table is measured using the measuring device of the single laser light source installed outside the line, there is no interference with a crane. Moreover, in this method, even if the measurement accuracy of the measuring instrument for measuring the stationary steel plate shape is poor, the shape recognition accuracy can be improved by the data smoothing process of the method described in Patent Document 3. .
現状の形状測定作業では、オペレータ(作業者)が鋼板表面上に予め設定された長さの差金をあてがい、差金と鋼板との間の隙間を観察することで鋼板形状を認識している。そして、認識された鋼板表面の形状に基づいてオペレータがプレス矯正作業を行う。形状認識作業の詳細では、例えば差金の長さを変えることで、比較的波長(周期)の長い、つまり周波数の低い形状と、比較的波長(周期)の短い、つまり周波数の高い形状を個別に認識している。前記特許文献3では、形状の平滑化処理について述べられているだけで、形状を評価する場合の周波数については言及していない。 In the current shape measurement work, an operator (operator) applies a difference of a preset length on the surface of the steel sheet, and recognizes the shape of the steel sheet by observing a gap between the difference and the steel sheet. Then, the operator performs press correction work based on the recognized shape of the steel sheet surface. For details of the shape recognition work, for example, by changing the length of the difference, a shape with a relatively long wavelength (period), that is, a low frequency, and a shape with a relatively short wavelength (period), that is, a shape with a high frequency are individually It has recognized. Patent Document 3 only describes the shape smoothing process, and does not mention the frequency when evaluating the shape.
本発明は、上記のような問題点に着目してなされたものであり、形状評価の周波数を特定することで形状を適正に評価することができ、もって鋼板形状を適正に矯正することが可能な形状評価方法、鋼板形状矯正方法、鋼板製造方法を提供することを目的とするものである。 The present invention has been made paying attention to the above-mentioned problems, and it is possible to appropriately evaluate the shape by specifying the frequency of shape evaluation, and thus it is possible to properly correct the steel plate shape. An object of the present invention is to provide a simple shape evaluation method, a steel plate shape correction method, and a steel plate manufacturing method.
上記課題を解決するために、本発明の形状評価方法は、演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行うに際し、予め設定された長さの差金を前記形状評価対象体の形状測定面にあてがい、前記差金と前記形状測定面との間の隙間を計測するときの周波数応答特性を有するバンドパスフィルタを用い、前記形状評価対象体の形状測定面上の測定点の位置の点群データに前記バンドパスフィルタを作用させて前記隙間を求めることを特徴とするものである。 In order to solve the above problems, the shape evaluation method of the present invention uses a calculator having a calculation processing function to evaluate the shape of the shape measurement surface of the shape evaluation object, and to calculate the difference between the lengths set in advance. Using a bandpass filter having a frequency response characteristic when measuring the gap between the metal difference and the shape measurement surface, applied to the shape measurement surface of the shape evaluation object, on the shape measurement surface of the shape evaluation object The gap is obtained by applying the band-pass filter to point cloud data at the position of the measurement point.
本発明では、形状評価対象体、例えば鋼板の表面の曲がりのような形状を波と捉え、その波の単位長2πあたりの数を周波数と定義する。また、同様に、波長とは、表面形状の波の一周期の長さを意味する。
また、前記バンドパスフィルタは、前記形状測定面にあてがわれる差金長さ相当の平滑化度合で平滑化する平滑化処理及び前記平滑化処理によって平滑化された曲面を微分する微分処理によって前記形状測定面の曲率を求め、前記曲率を前記隙間に換算したときの当該隙間の周波数応答特性と前記差金を前記形状測定面にあてがって前記隙間を計測するときの周波数応答特性とを一致させて前記曲率から前記隙間を求めることを特徴とするものである。
In the present invention, a shape-like object, for example, a shape such as a bend of the surface of a steel plate is regarded as a wave, and the number per unit length 2π of the wave is defined as a frequency. Similarly, the wavelength means the length of one cycle of the surface-shaped wave.
In addition, the bandpass filter is formed by a smoothing process for smoothing at a smoothing degree corresponding to a difference length applied to the shape measurement surface, and a differentiation process for differentiating a curved surface smoothed by the smoothing process. The curvature of the measurement surface is obtained, and the frequency response characteristic of the gap when the curvature is converted into the gap is matched with the frequency response characteristic when the gap is measured by applying the difference to the shape measurement surface. The gap is obtained from the curvature.
また、前記バンドパスフィルタは、前記形状測定面にあてがわれる差金長さに相当する平滑化度合で前記点群データを平滑化して求めた平滑化スプライン曲面と、前記形状測定面にあてがわれる差金長さより短く且つ誤差を遮断するために予め設定された第2の差金長さに相当する平滑化度合で前記点群データを平滑化して求めた第2の平滑化スプライン曲面との差から前記隙間を求めることを特徴とするものである。 The bandpass filter is applied to a smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to a difference length applied to the shape measuring surface, and the shape measuring surface. From the difference from the second smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree shorter than the difference length and corresponding to the second difference length set in advance to cut off the error. It is characterized in that a gap is obtained.
また、本発明の鋼板形状矯正方法は、前記形状評価対象体が鋼板である場合、前記形状評価方法で求めた前記隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示することを特徴とするものである。
また、本発明の鋼板製造方法は、前記鋼板形状矯正方法を鋼板製造工程に用いたことを特徴とするものである。
Further, in the steel sheet shape correction method of the present invention, when the shape evaluation object is a steel plate, a position where the absolute value of the gap obtained by the shape evaluation method is equal to or more than a preset specified value is determined by a pressure ram. Presented as a press correction position.
The steel plate manufacturing method of the present invention is characterized in that the steel plate shape correcting method is used in a steel plate manufacturing process.
而して、本発明の形状評価方法によれば、演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行う場合に、予め設定された長さの差金を形状評価対象体の形状測定面にあてがい、差金と形状測定面との間の隙間を計測するときの周波数応答特性を有するバンドパスフィルタを用い、形状評価対象体の形状測定面上の測定点の位置の点群データにバンドパスフィルタを作用させて隙間を求める。このため、バンドパスフィルタを、形状測定面の曲率を求めるバンドパスフィルタとしたり、周波数の高いローパスフィルタの出力と周波数の低いローパスフィルタの出力との差を求めるバンドパスフィルタとしたりすることにより、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。 Thus, according to the shape evaluation method of the present invention, when performing shape evaluation of the shape measurement surface of the shape evaluation object using a computer having an arithmetic processing function, a difference in length of a preset length is evaluated. Use a bandpass filter that has frequency response characteristics when measuring the gap between the difference and the shape measurement surface to the shape measurement surface of the object, and measure the position of the measurement point on the shape measurement surface of the shape evaluation object. A gap is obtained by applying a bandpass filter to the point cloud data. For this reason, the bandpass filter is a bandpass filter for obtaining the curvature of the shape measurement surface, or a bandpass filter for obtaining the difference between the output of the low-pass filter having a high frequency and the output of the low-pass filter having a low frequency. A gap between the difference metal and the shape measuring surface can be accurately obtained, and thus the shape of the shape measuring surface can be properly evaluated.
また、バンドパスフィルタには、形状測定面にあてがわれる差金長さ相当の平滑化度合で平滑化する平滑化処理及び平滑化処理によって平滑化された曲面を微分する微分処理によって形状測定面の曲率を求め、曲率を差金と形状測定面との間の隙間に換算したときの当該隙間の周波数応答特性と差金を形状測定面にあてがって隙間を計測するときの周波数応答特性とを一致させて曲率から隙間を求めるバンドパスフィルタを用いる。このため、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。 In addition, the bandpass filter has a smoothing process for smoothing with a smoothing degree corresponding to the difference length applied to the shape measurement surface, and a differential process for differentiating the curved surface smoothed by the smoothing process. Obtain the curvature, and match the frequency response characteristics of the gap when the curvature is converted to the gap between the difference measurement and the shape measurement surface and the frequency response characteristic when the difference is applied to the shape measurement surface and the gap is measured. A band-pass filter that obtains the gap from the curvature is used. For this reason, the clearance gap between a difference metal and a shape measurement surface can be calculated | required correctly, and, thereby, the shape of a shape measurement surface can be evaluated appropriately.
また、バンドパスフィルタとして、形状測定面にあてがわれる差金長さに相当する平滑化度合で点群データを平滑化して求めた平滑化スプライン曲面と、形状測定面にあてがわれる差金長さより短く且つ誤差を遮断するために予め設定された第2の差金長さに相当する平滑化度合で点群データを平滑化して求めた第2の平滑化スプライン曲面との差から、差金と形状測定面との間の隙間を求める。このため、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。
また、形状評価対象体を鋼板とし、形状評価方法で求めた差金と形状測定面との間の隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示する。これにより、鋼板形状を適正の矯正することができる。
In addition, as a bandpass filter, a smoothed spline curved surface obtained by smoothing point cloud data with a smoothing degree corresponding to the difference length applied to the shape measurement surface, and shorter than the difference length applied to the shape measurement surface In addition, the difference between the second smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to the second difference length set in advance to cut off the error, and the shape measurement surface. Find the gap between. For this reason, the clearance gap between a difference metal and a shape measurement surface can be calculated | required correctly, and, thereby, the shape of a shape measurement surface can be evaluated appropriately.
Moreover, the shape evaluation object is a steel plate, and the position where the absolute value of the gap between the difference obtained by the shape evaluation method and the shape measurement surface is equal to or greater than a preset specified value is presented as the press correction position by the pressure ram. To do. Thereby, a steel plate shape can be corrected appropriately.
以下、本発明の実施形態に係る形状評価方法及び鋼板形状矯正方法を適用した鋼板形状矯正装置について図面を参照しながら説明する。図1は、本実施形態の鋼板形状矯正装置の概略構成を示す平面図である。この鋼板形状矯正装置は、鋼板Sを圧延ラインの側方においてオフラインで形状矯正するものである。図中の符号1は、鋼板Sの形状を矯正するプレス機であり、プレス機1の入側には入側ベッド3、プレス機1の出側には出側ベッド4が配設されている。ベッド3,4は、何れも鋼板Sを搬送するための多数のローラが配設されており、このローラの回転状態を制御することで鋼板Sの搬送状態を制御することができる。また、入側ベッド3及び出側ベッド4の側方には、鋼板Sの位置を検出する位置検出装置7が設けられている。位置検出装置7は、後述する形状計測装置と同様にレーザ光を鋼板Sの搬送方向に走査して鋼板Sの搬送方向への形状を計測し、その形状計測結果から鋼板Sがどの位置にあるかを検出する。 Hereinafter, a steel plate shape correction apparatus to which a shape evaluation method and a steel plate shape correction method according to an embodiment of the present invention are applied will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of the steel sheet shape correcting device of the present embodiment. This steel plate shape correcting device is for correcting the shape of the steel plate S off-line at the side of the rolling line. Reference numeral 1 in the drawing denotes a press machine that corrects the shape of the steel sheet S. An entrance bed 3 is disposed on the entry side of the press machine 1, and an exit bed 4 is disposed on the exit side of the press machine 1. . Each of the beds 3 and 4 is provided with a large number of rollers for transporting the steel sheet S, and the transport state of the steel sheet S can be controlled by controlling the rotation state of the rollers. In addition, a position detection device 7 that detects the position of the steel sheet S is provided on the sides of the entrance bed 3 and the exit bed 4. The position detection device 7 scans the laser beam in the conveyance direction of the steel plate S to measure the shape in the conveyance direction of the steel plate S, as in the shape measurement device described later, and from which position the steel plate S is located based on the shape measurement result. To detect.
本実施形態のプレス機1の場合、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメントを付与して鋼板の形状を矯正する。鋼板Sの形状は、後述する鋼板形状計測装置によって計測する。鋼板形状矯正のパラメータとしては、例えば鋼板Sの形状から求めた差金隙間、加圧ラム2による加圧力、シムと呼ばれる敷棒の位置と間隔、鋼板Sの位置、即ちベッド3,4による鋼板Sの搬送状態などが挙げられる。本実施形態のプレス機1による鋼板形状矯正は、後述するように、シムを用いて鋼板Sを加圧ラム2で加圧する。例えばプレス機1に搭載された鋼板Sが上に凸状に曲がっている場合、凸部を挟んだ鋼板Sの下に2本のシムを敷き、そのシムの間の凸部を加圧ラム2で加圧する。逆に、例えば鋼板Sが下に凸状に曲がっている場合、凸部の下に1本のシムを敷き、凸部を挟んだ鋼板Sの両側にシムを介在して加圧ラム2で加圧する。加圧ラム2による曲げモーメントは、シムの間の部分の鋼板Sにのみ生じる。この曲げモーメントによる鋼板Sの変形量と加圧開放時の戻り量、所謂スプリングバック量を加味して、前述した種々のパラメータを調整する。 In the case of the press machine 1 of the present embodiment, the steel plate S is pressurized from above with the pressurizing ram 2, and a bending moment is mainly applied to the steel plate S to correct the shape of the steel plate. The shape of the steel plate S is measured by a steel plate shape measuring device described later. The parameters for correcting the shape of the steel sheet include, for example, a differential gap obtained from the shape of the steel sheet S, a pressure applied by the pressure ram 2, a position and interval of a shim called a shim, a position of the steel sheet S, that is, the steel sheet S by the beds 3 and 4. The conveyance state of the is mentioned. In the steel plate shape correction by the press machine 1 of the present embodiment, the steel plate S is pressed with the pressure ram 2 using a shim, as will be described later. For example, when the steel plate S mounted on the press machine 1 is bent upwardly, two shims are laid under the steel plate S sandwiching the convex portion, and the convex portion between the shims is pressed with the pressure ram 2. Pressurize with. On the other hand, for example, when the steel sheet S is bent downward, a single shim is laid under the convex part, and the shim is interposed on both sides of the steel sheet S sandwiching the convex part. Press. The bending moment due to the pressure ram 2 is generated only in the steel plate S in the portion between the shims. The above-described various parameters are adjusted in consideration of the deformation amount of the steel sheet S due to this bending moment and the return amount when pressure is released, the so-called springback amount.
入側ベッド3の入側及び出側ベッド4の出側には形状計測装置5を、出側ベッド4の側方には制御装置6を設置した。このうち、形状計測装置5は、レーザ光によって検出点までの距離を検出するレーザ距離計と、レーザ距離計で検出された距離データから鋼板Sの形状を計測するコンピュータシステムを備えて構成される。形状計測装置5の具体的な鋼板形状計測方法は、本願出願人が先に提案した前記特許文献2と同様である。そのため、本実施形態の形状計測装置5は、3次元にレーザ光を走査して距離を計測するレーザ距離計を備えている。なお、鋼板Sは、一般に搬送方向に長手で、搬送方向と直交方向に短い。つまり、鋼板Sには長辺と短辺があり、本実施形態では、長辺方向を長手方向(x方向ともいう)とし、短辺方向を幅方向(y方向ともいう)と定義する。また、高さ方向をz方向ともいう。 A shape measuring device 5 was installed on the entry side of the entry bed 3 and the exit side of the exit bed 4, and a control device 6 was installed on the side of the exit bed 4. Among these, the shape measuring device 5 includes a laser distance meter that detects the distance to the detection point with a laser beam, and a computer system that measures the shape of the steel sheet S from the distance data detected by the laser distance meter. . The concrete steel plate shape measuring method of the shape measuring device 5 is the same as that of the Patent Document 2 previously proposed by the applicant of the present application. Therefore, the shape measuring apparatus 5 of the present embodiment includes a laser rangefinder that measures the distance by scanning the laser beam three-dimensionally. The steel sheet S is generally long in the transport direction and short in the direction orthogonal to the transport direction. That is, the steel sheet S has a long side and a short side, and in the present embodiment, the long side direction is defined as the longitudinal direction (also referred to as the x direction), and the short side direction is defined as the width direction (also referred to as the y direction). The height direction is also referred to as the z direction.
本実施形態のレーザ距離計は、図2に示すように、レーザ光源11を回転台12の上に搭載し、レーザ光源11のレーザ出射口に周知のガルバノミラー13を配設した。ガルバノミラー13の回転軸はレーザ光源11のレーザ出射口からのレーザ光に一致し、ガルバノミラー13の回転軸は回転台12の回転軸と直交する。本実施形態では、ガルバノミラー13を回転させることにより、レーザ光源11からのレーザ光を、例えば鋼板Sの長手方向、即ち図1の鋼板Sの搬送方向に偏光し、回転台12を回転させることにより、ガルバノミラー13から偏光されるレーザ光を、主として鋼板Sの幅方向、即ち図1の鋼板Sの搬送方向と直交方向に走査する。そのため、例えば鋼板Sの表面に向けて出射したレーザ光の反射光を受光することにより、その表面の測定点までの距離を求めることができる。この距離は、測定点の長手方向(x方向)の位置及び幅方向(y方向)の位置を規定すると、誤差を含む高さ方向(z方向)の位置情報に変換することができる。従って、鋼板Sの表面を形状測定面とすると、形状測定面上のx、y座標上の高さ(z)位置を形状測定面の形状として認識することができる。なお、本実施形態の形状計測装置5は、入側ベッド3上や出側ベッド4上だけでなく、プレス機1の加圧ラム2下でも鋼板Sの形状を計測することが可能である。また、前記位置検出装置7も、同様にして鋼板Sの形状を検出し、その形状がどこにあるのかで鋼板Sの位置を検出する。 As shown in FIG. 2, the laser distance meter of the present embodiment has a laser light source 11 mounted on a turntable 12, and a known galvanometer mirror 13 is disposed at the laser emission port of the laser light source 11. The rotation axis of the galvanometer mirror 13 coincides with the laser beam from the laser emission port of the laser light source 11, and the rotation axis of the galvanometer mirror 13 is orthogonal to the rotation axis of the turntable 12. In this embodiment, by rotating the galvanometer mirror 13, the laser light from the laser light source 11 is polarized in the longitudinal direction of the steel sheet S, that is, in the conveying direction of the steel sheet S in FIG. 1, and the turntable 12 is rotated. Thus, the laser beam polarized from the galvanometer mirror 13 is scanned mainly in the width direction of the steel sheet S, that is, in the direction orthogonal to the conveying direction of the steel sheet S in FIG. Therefore, for example, by receiving the reflected light of the laser beam emitted toward the surface of the steel sheet S, the distance to the measurement point on the surface can be obtained. This distance can be converted into position information in the height direction (z direction) including an error if the position in the longitudinal direction (x direction) and the position in the width direction (y direction) of the measurement point are defined. Accordingly, when the surface of the steel sheet S is the shape measurement surface, the height (z) position on the x and y coordinates on the shape measurement surface can be recognized as the shape of the shape measurement surface. In addition, the shape measuring apparatus 5 of this embodiment can measure the shape of the steel sheet S not only on the entry bed 3 and the exit bed 4 but also under the pressurization ram 2 of the press 1. Further, the position detection device 7 similarly detects the shape of the steel sheet S, and detects the position of the steel sheet S depending on where the shape is.
制御装置6は、ホストコンピュータなどのコンピュータシステムを備えて構築され、前記形状計測装置5によって鋼板S表面、即ち形状測定面の形状評価を行うと共に、プレス機1及びベッド3,4の稼動状態を制御して鋼板Sの形状矯正を行う。この演算処理は、例えば鋼板形状矯正開始指令と同時に行われ、まずステップS1で、入側ベッド3や出側ベッド4により鋼板Sをプレス機1の加圧ラム2の下に搬入する。次にステップS2に移行して、前記形状計測装置5によって鋼板Sの形状測定面である表面の形状評価を行う。次にステップS3に移行して、前記ステップS2で得られた鋼板Sの形状評価に基づき、プレス機1及びベッド3,4の稼働状態を制御して鋼板Sの形状矯正制御を行う。次にステップS4に移行して、鋼板Sの形状矯正が完了したことを判定する。次にステップS5に移行して、入側ベッド3や出側ベッド4により鋼板Sを加圧ラム2下から払い出し、制御を終了する。 The control device 6 is constructed with a computer system such as a host computer, and the shape measuring device 5 performs the shape evaluation of the surface of the steel sheet S, that is, the shape measuring surface, and the operating state of the press machine 1 and the beds 3 and 4. The shape of the steel sheet S is corrected by controlling. This arithmetic processing is performed simultaneously with, for example, a steel plate shape correction start command. First, in step S1, the steel plate S is carried under the pressurization ram 2 of the press 1 by the entry side bed 3 and the exit side bed 4. Next, it transfers to step S2 and the shape evaluation of the surface which is a shape measurement surface of the steel plate S is performed by the said shape measuring apparatus 5. FIG. Next, the process proceeds to step S3, and the shape correction control of the steel sheet S is performed by controlling the operating state of the press machine 1 and the beds 3 and 4 based on the shape evaluation of the steel sheet S obtained in the step S2. Next, it transfers to step S4 and it determines with the shape correction of the steel plate S having been completed. Next, the process proceeds to step S5, where the steel sheet S is discharged from below the pressurization ram 2 by the entry side bed 3 and the exit side bed 4, and the control is finished.
次に、前記形状計測装置5による鋼板Sの形状測定面、即ち表面の形状評価方法について説明する。この形状計測装置5では、前述したレーザ光の出射・受光によって、例えば図5に示すような位置データの点群データを取得することができる。位置データは、長手方向(x方向)、幅方向(y方向)が規定されており、高さ方向(z方向)に誤差を有する。このような点群データに対しては、例えば本願出願人が先に提案した前記特許文献3に記載の平滑化スプライン曲面を応用することができる。平滑化スプライン曲面は、スプライン次数l、平滑化パラメータγで点群データを平滑化したスプライン状の曲面であり、その周波数応答関数h(ω1,ω2)は下記式(1)で表れる。 Next, a shape measuring surface of the steel sheet S by the shape measuring device 5, that is, a surface shape evaluating method will be described. In this shape measuring apparatus 5, for example, point cloud data of position data as shown in FIG. 5 can be obtained by the above-described emission and reception of laser light. The position data has a longitudinal direction (x direction) and a width direction (y direction) defined, and has an error in the height direction (z direction). For such point cloud data, for example, the smoothed spline curved surface described in Patent Document 3 previously proposed by the applicant of the present application can be applied. The smoothed spline curved surface is a spline-shaped curved surface obtained by smoothing the point group data with the spline degree l and the smoothing parameter γ, and the frequency response function h (ω 1 , ω 2 ) is expressed by the following equation (1).
式中のω1は長手方向(鋼板Sの長手方向とは必ずしも一致しない)に対応する角周波数、ω2は幅方向(鋼板Sの幅方向とは必ずしも一致しない)に対応する角周波数である。式(1)から、平滑化スプライン曲面がローパスフィルタとして機能することが分かる。この平滑化スプライン曲面に対し、差金で形状評価することを考える。差金は、凡そその差渡し方向のみ形状評価するもので、この差金の差渡し方向を長手方向と考えると、長手方向と直行する幅方向は評価しない。従って、前記式(1)の幅方向の角周波数ω2を0とし、更にスプライン次数lを1として、差金長手方向の曲率を求める。曲率は、平滑化によって少なくとも1階微分可能な平滑化スプライン曲面を微分して傾きを求め、その傾きを再度微分すれば得られる。再度微分する前には、少なくとも1階部分可能なように平滑化する必要があるので、曲率算出の手順としては、点群データを平滑化してから微分し、その微分データを平滑化してから再度微分する。従って、幅方向の角周波数ω2が0、スプライン次数lが1であるとき、点群データから求めた長手方向の曲率の周波数応答関数κ1(ω1,ω2)(=κ1(ω1,0))は下記式(2)で表れる。なお、平滑化することは曲面化することと等価であるから、本実施形態では平滑化して求めた結果を曲面ともいう。 In the equation, ω 1 is an angular frequency corresponding to the longitudinal direction (not necessarily coincident with the longitudinal direction of the steel sheet S), and ω 2 is an angular frequency corresponding to the width direction (not necessarily coincident with the width direction of the steel sheet S). . From equation (1), it can be seen that the smoothed spline curved surface functions as a low-pass filter. Consider shape evaluation with a difference for this smoothed spline curved surface. The difference of the difference is evaluated only in the direction of the difference, and when the difference is considered as the longitudinal direction, the width direction perpendicular to the longitudinal direction is not evaluated. Accordingly, the curvature in the longitudinal direction of the difference is obtained by setting the angular frequency ω 2 in the width direction of the equation (1) to 0 and further setting the spline order l to 1. The curvature can be obtained by differentiating at least a first-order differentiated smoothed spline curved surface by smoothing to obtain a slope and differentiating the slope again. Before differentiating again, it is necessary to perform smoothing so that at least the first-order part can be obtained. As a procedure for calculating the curvature, the point cloud data is differentiated after being differentiated, the differentiated data is smoothed, and then again. Differentiate. Therefore, when the angular frequency ω 2 in the width direction is 0 and the spline degree l is 1, the frequency response function κ 1 (ω 1 , ω 2 ) (= κ 1 (ω 1 , 0)) is expressed by the following formula (2). In addition, since smoothing is equivalent to curved surface, in this embodiment, the result calculated | required by smoothing is also called a curved surface.
式(2)中のjは虚数単位である。次に、点群データから求めた前述の平滑化スプライン曲面に差金をあてがって差金と平滑化スプライン曲面、即ち形状測定面との間にできる隙間を差金隙間と定義すると、差金隙間は平滑化スプライン曲面の曲率をスカラー倍することで得られる。ここでは、βを正実数からなる補正係数とし、差金隙間の周波数応答関数g1(ω1,ω2)(=g1(ω1,0))を下記式(3)で定義する。 J in Formula (2) is an imaginary unit. Next, when a difference is defined as a difference gap between the difference and the smoothed spline curved surface, that is, a shape measurement surface, by applying a difference to the aforementioned smoothed spline curved surface obtained from the point cloud data, the difference gap is a smoothed spline. It is obtained by multiplying the curvature of the curved surface by a scalar. Here, β is a correction coefficient consisting of a positive real number, and the frequency response function g 1 (ω 1 , ω 2 ) (= g 1 (ω 1 , 0)) of the difference gap is defined by the following equation (3).
この式(3)で表れる差金隙間の周波数応答関数g1(ω1,ω2)は、周波数ω0が下記式(4)のとき、下記式(5)で表れる極大値をとる。 The frequency response function g 1 (ω 1 , ω 2 ) of the differential gap expressed by the equation (3) takes a maximum value expressed by the following equation (5) when the frequency ω 0 is the following equation (4).
また、前記式(3)で表れる差金隙間の周波数応答関数g1(ω1,ω2)はバンドパスフィルタでもある。このバンドパスフィルタの共振周波数は前記式(4)であり、最大利得は前記式(5)である。差金の長さ(差金長さ)をLとし、この差金長さLの差金を鋼板Sの表面(形状測定面)、即ち平滑化スプライン曲面にあてがって差金隙間を測定するときの周波数応答関数は、共振周波数が2π/Lのとき、最大利得が2になると考えることができる。即ち、鋼板の撓みをy(x)、差金隙間測定値をY(x)、差金長さをLとしたとき、図13の差金隙間測定モデルの模式図から、下記式(15)が成立する。 Further, the frequency response function g 1 (ω 1 , ω 2 ) of the difference gap expressed by the above equation (3) is also a band pass filter. The resonance frequency of this bandpass filter is the above equation (4), and the maximum gain is the above equation (5). The frequency response function when measuring the difference gap by applying the difference length L (difference length) to the surface of the steel sheet S (shape measuring surface), that is, the smoothed spline curved surface, is L. It can be considered that the maximum gain is 2 when the resonance frequency is 2π / L. That is, when y (x) is the deflection of the steel sheet, Y (x) is the difference gap measurement value, and L is the difference length, the following expression (15) is established from the schematic diagram of the difference gap measurement model in FIG. .
この式(15)をラプラス変換して下記式(16)を得る。 This formula (15) is Laplace transformed to obtain the following formula (16).
前記式(16)から、差金隙間測定値の伝達関数G(s)は下記式(17)で表れる。 From the equation (16), the transfer function G (s) of the difference gap measurement value is expressed by the following equation (17).
更に、差金隙間測定値の伝達関数G(s)の周波数応答関数G(ω)は下記式(18)で表れる。 Further, the frequency response function G (ω) of the transfer function G (s) of the difference gap measurement value is expressed by the following equation (18).
図14には、前記式(18)で表れる差金隙間測定値の周波数応答関数G(ω)の波長応答特性を示す。このモデルでは、波長が短い領域では、利得がギザギザになる。オペレータは、波長の短い凹凸をより短い長さの差金で測定しようとするので、この部分は無視してよい。従って、前記式(18)の周波数応答関数の共振周波数ω0は下記式(19)で、共振周波数ω0における最大利得は下記式(20)で表れる。 FIG. 14 shows the wavelength response characteristics of the frequency response function G (ω) of the differential gap measurement value expressed by the equation (18). In this model, the gain is jagged in the region where the wavelength is short. Since the operator intends to measure the short wavelength irregularities with a shorter length difference, this portion can be ignored. Therefore, the resonance frequency ω 0 of the frequency response function of the equation (18) is expressed by the following equation (19), and the maximum gain at the resonance frequency ω 0 is expressed by the following equation (20).
従って、オペレータが差金隙間を測定するときの周波数応答関数は、共振周波数が2π/Lのとき、最大利得が2になると考えられる。前記差金隙間の周波数応答関数と差金を鋼板表面にあてがって差金隙間を測定するときの周波数応答関数の特性を可能な限り一致させるためには、互いの共振周波数及び最大利得を一致させればよい。従って、下記式(6)、式(7)が成立する。 Therefore, the frequency response function when the operator measures the difference gap is considered to have a maximum gain of 2 when the resonance frequency is 2π / L. In order to match the frequency response function of the difference gap and the frequency response function when measuring the difference gap to the steel sheet surface as much as possible, the resonance frequency and the maximum gain should be matched. . Therefore, the following formulas (6) and (7) are established.
式(6)、式(7)から、適切な平滑化パラメータγは下記式(8)で、適切な補正係数βは下記(9)式で得られる。なお、以上の演算は、任意のスプライン次数lに対して一般化可能である。 From Equation (6) and Equation (7), an appropriate smoothing parameter γ is obtained by the following Equation (8), and an appropriate correction coefficient β is obtained by the following Equation (9). The above operation can be generalized for an arbitrary spline order l.
次に、別の差金隙間の求め方を考える。前述したように、前記式(1)で表れる平滑化スプライン曲面の周波数応答関数h(ω1,ω2)はローパスフィルタとして機能する。この周波数応答関数h(ω1,ω2)は、平滑化パラメータγを前記式(8)とした場合に、差金長さがLであるときのローパスフィルタであるから、これと長さの異なる差金長さのローパスフィルタの出力、即ち平滑化スプライン曲面と前記式(1)で表れる平滑化スプライン曲面との差は、即ちバンドパスフィルタの出力となる。例えば、点群データの誤差を遮断するための比較的短い差金長さLH、つまり前記差金長さLより短い差金長さLHの差金を考え、この差金長さLHの差金による平滑化スプライン曲面から前記式(1)で表れる差金長さLの差金による平滑化スプライン曲面を差し引いても差金隙間が得られる。この差金隙間の周波数応答関数をf1(ω1,ω2)とすると、周波数応答関数f1(ω1,ω2)は下記式(10)で表れる。なお、前記式(1)で表れる平滑化スプライン曲面の周波数応答関数h(ω1,ω2)は差金長さがLであるときのローパスフィルタであるから、この周波数応答関数h(ω1,ω2)の長手方向の角周波数ω1をLH/L倍すれば、差金長さLHの差金による平滑化スプライン曲面の周波数応答関数が得られる。 Next, let us consider another way to determine the difference gap. As described above, the frequency response function h (ω 1 , ω 2 ) of the smoothed spline curved surface expressed by the equation (1) functions as a low-pass filter. The frequency response function h (ω 1 , ω 2 ) is a low-pass filter when the difference length is L when the smoothing parameter γ is set to the above equation (8). The difference between the output of the low-pass filter having the difference length, that is, the difference between the smoothed spline curved surface and the smoothed spline curved surface expressed by the above equation (1) is the output of the bandpass filter. For example, consider a relatively short difference length L H for blocking an error in point cloud data, that is, a difference having a difference length L H shorter than the difference length L, and smoothing by the difference of the difference length L H The difference gap is also obtained by subtracting the smoothed spline curved surface by the difference of the difference length L expressed by the above formula (1) from the spline curved surface. Assuming that the frequency response function of the difference gap is f 1 (ω 1 , ω 2 ), the frequency response function f 1 (ω 1 , ω 2 ) is expressed by the following equation (10). Since the frequency response function h (ω 1 , ω 2 ) of the smoothed spline curved surface expressed by the above equation (1) is a low-pass filter when the difference length is L, this frequency response function h (ω 1 , If the angular frequency ω 1 in the longitudinal direction of ω 2 ) is multiplied by L H / L, the frequency response function of the smoothed spline curved surface by the difference length L H is obtained.
前記式(10)を展開すると、下記式(11)式が得られる。 When the formula (10) is expanded, the following formula (11) is obtained.
この式(11)に前記式(8)の平滑化パラメータγを代入すると、下記式(12)となる。 Substituting the smoothing parameter γ of equation (8) into equation (11) yields equation (12) below.
そして、幅方向の角周波数ω2=0とすると、差金隙間の周波数応答関数f1(ω1,ω2)(=f1(ω1,0)は下記式(13)で表れる。 Then, assuming that the angular frequency ω 2 = 0 in the width direction, the frequency response function f 1 (ω 1 , ω 2 ) (= f 1 (ω 1 , 0) of the differential gap is expressed by the following equation (13).
図4には、平滑化スプライン曲面の曲率から求めた差金隙間の周波数応答関数g1(ω1,ω2)と、2つの平滑化スプライン曲面の差から求めた差金隙間の周波数応答関数f1(ω1,ω2)の波長応答特性を示す。ここでは、差金長さLを2m、誤差を遮断するための差金長さLHを0.2mとして計算した。平滑化スプライン曲面の曲率から差金隙間を求めた場合の周波数応答関数g1(ω1,ω2)は、波長2mの近傍でのみ利得が大きくなっていることから、バンドパスフィルタの帯域幅が狭い。これに対し、2つの平滑化スプライン曲面の差から差金隙間を求めた場合の周波数応答関数f1(ω1,ω2)は、波長0.2m〜2mの範囲で利得が大きくなっていることから、バンドパスフィルタの帯域幅が広い。つまり、2つの平滑化スプライン曲面の差から差金隙間を求める方が、より鋭角な(細かい)凹凸(変形)を認識(評価)できることになる。主として鋼板Sを長手方向に搬送して形状矯正を行う形状矯正装置では、鋼板Sの長手方向の方がより細かい変形まで矯正できるという特性がある。そのため、鋼板Sの長手方向の形状評価(形状矯正)では、2つの平滑化スプライン曲面の差から差金隙間を求め、幅方向の形状評価(形状矯正)では、平滑化スプライン曲面の曲率から差金隙間を求めるのが適している。 FIG. 4 shows the frequency response function g 1 (ω 1 , ω 2 ) of the difference gap obtained from the curvature of the smoothed spline curved surface and the frequency response function f 1 of the difference gap obtained from the difference between the two smoothed spline curved surfaces. The wavelength response characteristics of (ω 1 , ω 2 ) are shown. Here, the calculation is made assuming that the difference length L is 2 m and the difference length L H for blocking the error is 0.2 m. The frequency response function g 1 (ω 1 , ω 2 ) when the difference gap is obtained from the curvature of the smoothed spline curved surface has a large gain only in the vicinity of a wavelength of 2 m. narrow. On the other hand, the frequency response function f 1 (ω 1 , ω 2 ) when the difference gap is obtained from the difference between the two smoothed spline curved surfaces has a large gain in the wavelength range of 0.2 m to 2 m. Therefore, the bandwidth of the bandpass filter is wide. In other words, a sharper (fine) unevenness (deformation) can be recognized (evaluated) by obtaining the difference gap from the difference between two smoothed spline curved surfaces. The shape correction apparatus that mainly corrects the shape by conveying the steel sheet S in the longitudinal direction has a characteristic that the longitudinal direction of the steel sheet S can be corrected to a finer deformation. Therefore, in the shape evaluation (shape correction) in the longitudinal direction of the steel sheet S, a difference gap is obtained from the difference between the two smoothed spline curved surfaces. In the shape evaluation (shape correction) in the width direction, the difference gap is determined from the curvature of the smoothed spline curved surface. Is suitable.
次に、具体的な鋼板Sの表面(形状測定面)の形状評価について説明する。図5は、形状計測装置5によって取得した点群データの一例である。点群データのデータ数は25691であった。この点群データを三角形メッシュで補間した鋼板形状を図6に示す。この図6の鋼板形状は、表面が「ぎざぎざ」しており、「ぎざぎざ」の原因は計測データの誤差である。この点群データに対し、誤差を遮断する差金長さLHの差金を用い、誤差を遮断して平滑化スプライン曲面を求める。前述のように、前記式(1)で表れる平滑化スプライン曲面の周波数応答関数h(ω1,ω2)の角周波数ω1をLH/L倍すれば、差金長さLHの差金による平滑化スプライン曲面の周波数応答関数が得られるので、差金長さLHの差金による平滑化スプライン曲面の周波数応答関数は、前記式(8)を用いて下記式(14)となる。 Next, the specific shape evaluation of the surface (shape measurement surface) of the steel sheet S will be described. FIG. 5 is an example of point cloud data acquired by the shape measuring apparatus 5. The number of point cloud data was 25691. A steel plate shape obtained by interpolating the point cloud data with a triangular mesh is shown in FIG. In the steel plate shape of FIG. 6, the surface is “gagged”, and the cause of “gagged” is an error in measurement data. With respect to this point cloud data, a difference having a difference length L H that cuts off the error is used to cut off the error and obtain a smoothed spline curved surface. As described above, if the angular frequency ω 1 of the frequency response function h (ω 1 , ω 2 ) of the smoothed spline curved surface expressed by the above equation (1) is multiplied by L H / L, the difference of the difference length L H depends on the difference. Since the frequency response function of the smoothed spline curved surface is obtained, the frequency response function of the smoothed spline curved surface by the difference of the difference length L H is expressed by the following expression (14) using the expression (8).
前記式(14)の周波数応答関数で点群データを平滑化した平滑化スプライン曲面が図7である。ここでは、誤差遮断のための差金長さ(誤差遮断波長)LHを0.2m、差金長さLを2mとした。図6の表面形状に対し、図7では、表面の「ぎざぎざ」が除去されていることが分かる。一方、図5の点群データに対し、前記式(12)の周波数応答関数f1(ω1,ω2)で求めた差金隙間を図8に示す。誤差遮断波長LHは0.2m、差金長さLは2mである。差金隙間の正値は凸、つまり上に凸、負値は凹、つまり下に凸を表しており、数値を二値化して示した。この差金隙間は、全体として鋼板の表面(形状測定面)の凹凸(変形)を認識しやすいが、オペレータにとっては、どの箇所をどの程度プレス矯正してよいか分かりにくい。そこで、差金隙間の二値化データを、長手方向及び幅方向の平面上に表したのが図9である。このようにして、差金隙間の絶対値が予め設定された規定値以上である箇所を、例えば白っぽく表したり黒っぽく表したりすることで、それらの箇所をプレス矯正すればよいことが分かる。 FIG. 7 shows a smoothed spline curved surface obtained by smoothing the point cloud data with the frequency response function of the equation (14). Here, the difference length (error cutoff wavelength) L H for error cutoff was 0.2 m, and the difference length L was 2 m. In contrast to the surface shape of FIG. 6, it can be seen in FIG. 7 that the “jagged edges” of the surface have been removed. On the other hand, FIG. 8 shows the difference gap obtained by the frequency response function f 1 (ω 1 , ω 2 ) of the equation (12) with respect to the point cloud data of FIG. The error cutoff wavelength L H is 0.2 m, and the difference length L is 2 m. The positive value of the difference gap is convex, that is, convex upward, and the negative value is concave, that is, convex downward, and the numerical value is binarized. The difference gap is easy to recognize the unevenness (deformation) of the surface (shape measurement surface) of the steel sheet as a whole, but it is difficult for the operator to know which part should be pressed and to what extent. FIG. 9 shows the binarized data of the difference gap on the plane in the longitudinal direction and the width direction. In this way, it can be seen that the portions where the absolute value of the difference gap is equal to or greater than a predetermined value set in advance, for example, are expressed whitish or blackish, and these portions may be press-corrected.
図10には、2つの平滑化スプライン曲面の差から差金隙間を求める方法の具体的な結果を示す。前述のように、本実施形態では、2つの平滑化スプライン曲面の差から差金隙間を求める方法は、鋼板の長手方向に採用しているので、ここでは長手方向の位置と高さ方向の位置を示す。同図に示す誤差遮断曲面は、誤差遮断のための差金長さ(誤差遮断波長)LHの差金で平滑化した平滑化スプライン曲面、基準曲面は、差金長さLの差金で平滑化した平滑化スプライン曲面であり、前者から後者を差し引くと差金隙間が求まる。このようにして求めた差金隙間を図11に示す。この差金隙間は、前記図9の差金隙間を鋼板の表面と平行な視点で表したものであり、正値は凸、負値は凹となっている。凸形状については、前述のように凸部を挟んだ鋼板の下に2本のシムを敷き、そのシムの間の凸部を加圧ラムで加圧する。凹形状については、凹部の下に1本のシムを敷き、凹部を挟んだ鋼板の両側にシムを介在して加圧ラムで加圧する。 FIG. 10 shows specific results of a method for obtaining a difference gap from the difference between two smoothed spline curved surfaces. As described above, in the present embodiment, the method of obtaining the difference gap from the difference between the two smoothed spline curved surfaces is employed in the longitudinal direction of the steel plate, so here the longitudinal direction position and the height direction position are determined. Show. The error cut-off curved surface shown in the figure is a smoothed spline surface smoothed with a difference length (error cut-off wavelength) L H for error cut-off, and the reference curved surface is smoothed with a difference length L difference. A spline curved surface, and the difference gap is obtained by subtracting the latter from the former. The difference gap thus obtained is shown in FIG. The difference gap is the difference gap shown in FIG. 9 expressed from a viewpoint parallel to the surface of the steel sheet. The positive value is convex and the negative value is concave. As for the convex shape, two shims are laid under the steel plate sandwiching the convex portions as described above, and the convex portions between the shims are pressurized with a pressure ram. As for the concave shape, a single shim is laid under the concave portion, and pressure is applied with a pressure ram with shims interposed on both sides of the steel plate sandwiching the concave portion.
図12には、計算によって求めた差金隙間とオペレータが差金を用いて測定した差金隙間との相関を示す。両者の差は、±0.3mm以内であり、良好な相関が見られる。そのため、オペレータが差金を用いて差金隙間を測定する代わりに、形状測定装置及び制御装置を用いて、差金隙間、即ち鋼板の形状を適正に評価することができ、その結果を用いて鋼板の形状を適正のプレス矯正することが可能となる。 FIG. 12 shows the correlation between the difference gap obtained by calculation and the difference gap measured by the operator using the difference. The difference between the two is within ± 0.3 mm, and a good correlation is observed. Therefore, instead of measuring the difference gap using the difference, the operator can properly evaluate the difference gap, that is, the shape of the steel sheet, using the shape measuring device and the control device, and using the result, the shape of the steel sheet Can be properly pressed.
このように本実施形態の形状評価方法及び鋼板形状矯正方法では、演算処理機能を有する計算機を用いて形状評価対象体の形状測定面の形状評価を行う場合に、予め設定された長さの差金を形状評価対象体の形状測定面にあてがい、差金と形状測定面との間の隙間を計測するときの周波数応答特性を有するバンドパスフィルタを用い、形状評価対象体の形状測定面上の測定点の位置の点群データにバンドパスフィルタを作用させて隙間を求める。このため、バンドパスフィルタを、形状測定面の曲率を求めるバンドパスフィルタとしたり、周波数の高いローパスフィルタの出力と周波数の低いローパスフィルタの出力との差を求めるバンドパスフィルタとしたりすることにより、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。 As described above, in the shape evaluation method and the steel plate shape correction method of the present embodiment, when the shape of the shape measurement surface of the shape evaluation object is evaluated using a computer having an arithmetic processing function, a difference in length set in advance is set. Is applied to the shape measurement surface of the shape evaluation object, and a measurement point on the shape measurement surface of the shape evaluation object using a bandpass filter having frequency response characteristics when measuring the gap between the difference and the shape measurement surface. A gap is obtained by applying a band pass filter to the point cloud data at the position. For this reason, the bandpass filter is a bandpass filter for obtaining the curvature of the shape measurement surface, or a bandpass filter for obtaining the difference between the output of the low-pass filter having a high frequency and the output of the low-pass filter having a low frequency. A gap between the difference metal and the shape measuring surface can be accurately obtained, and thus the shape of the shape measuring surface can be properly evaluated.
また、バンドパスフィルタには、形状測定面にあてがわれる差金長さ相当の平滑化度合で平滑化する平滑化処理及び平滑化処理によって平滑化された曲面を微分する微分処理によって形状測定面の曲率を求め、曲率を差金と形状測定面との間の隙間に換算したときの当該隙間の周波数応答特性と差金を形状測定面にあてがって隙間を計測するときの周波数応答特性とを一致させて曲率から隙間を求めるバンドパスフィルタを用いる。このため、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。 In addition, the bandpass filter has a smoothing process for smoothing with a smoothing degree corresponding to the difference length applied to the shape measurement surface, and a differential process for differentiating the curved surface smoothed by the smoothing process. Obtain the curvature, and match the frequency response characteristics of the gap when the curvature is converted to the gap between the difference measurement and the shape measurement surface and the frequency response characteristic when the difference is applied to the shape measurement surface and the gap is measured. A band-pass filter that obtains the gap from the curvature is used. For this reason, the clearance gap between a difference metal and a shape measurement surface can be calculated | required correctly, and, thereby, the shape of a shape measurement surface can be evaluated appropriately.
また、バンドパスフィルタとして、形状測定面にあてがわれる差金長さに相当する平滑化度合で点群データを平滑化して求めた平滑化スプライン曲面と、形状測定面にあてがわれる差金長さより短く且つ誤差を遮断するために予め設定された第2の差金長さに相当する平滑化度合で点群データを平滑化して求めた第2の平滑化スプライン曲面との差から、差金と形状測定面との間の隙間を求める。このため、差金と形状測定面との間の隙間を正確に求めることができ、これにより形状測定面の形状を適正に評価することができる。
また、形状評価対象体を鋼板とし、形状評価方法で求めた差金と形状測定面との間の隙間の絶対値が予め設定された規定値以上である位置を加圧ラムによるプレス矯正位置として提示する。これにより、鋼板形状を適正の矯正することができる。
In addition, as a bandpass filter, a smoothed spline curved surface obtained by smoothing point cloud data with a smoothing degree corresponding to the difference length applied to the shape measurement surface, and shorter than the difference length applied to the shape measurement surface In addition, the difference between the second smoothed spline curved surface obtained by smoothing the point cloud data with a smoothing degree corresponding to the second difference length set in advance to cut off the error, and the shape measurement surface. Find the gap between. For this reason, the clearance gap between a difference metal and a shape measurement surface can be calculated | required correctly, and, thereby, the shape of a shape measurement surface can be evaluated appropriately.
Moreover, the shape evaluation object is a steel plate, and the position where the absolute value of the gap between the difference obtained by the shape evaluation method and the shape measurement surface is equal to or greater than a preset specified value is presented as the press correction position by the pressure ram. To do. Thereby, a steel plate shape can be corrected appropriately.
なお、前記実施形態では、圧延ラインの側方でオフライン的に鋼板の形状を評価し、矯正する場合について説明したが、本発明の鋼板形状矯正方法は、圧延ラインの内部にオンライン的に適用することも可能である。
また、前記実施形態では、形状評価対象体として、圧延ラインで圧延された鋼板についてのみ詳述したが、本発明の形状評価方法は、鋼板に限らず、形状測定面上の測定点の位置の点群データを取得できる形状評価対象体であれば、如何様なものにも適用することができる。
In the above-described embodiment, the case where the shape of the steel sheet is evaluated and corrected offline at the side of the rolling line has been described. However, the steel sheet shape correcting method of the present invention is applied online inside the rolling line. It is also possible.
Moreover, in the said embodiment, although it explained in full detail only about the steel plate rolled by the rolling line as a shape evaluation object, the shape evaluation method of this invention is not restricted to a steel plate, but the position of the measurement point on a shape measurement surface. Any shape evaluation object that can acquire point cloud data can be applied.
1 プレス機
2 加圧ラム
3 入側ベッド
4 出側ベッド
5 形状計測装置
6 制御装置
7 位置検出装置
11 レーザ光源
12 回転台
13 ガルバノミラー
DESCRIPTION OF SYMBOLS 1 Press machine 2 Pressurization ram 3 Incoming bed 4 Outgoing bed 5 Shape measuring device 6 Control device 7 Position detection device 11 Laser light source 12 Turntable 13 Galvano mirror
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012258512A JP6003583B2 (en) | 2012-11-27 | 2012-11-27 | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012258512A JP6003583B2 (en) | 2012-11-27 | 2012-11-27 | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014104483A JP2014104483A (en) | 2014-06-09 |
JP6003583B2 true JP6003583B2 (en) | 2016-10-05 |
Family
ID=51026414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012258512A Active JP6003583B2 (en) | 2012-11-27 | 2012-11-27 | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6003583B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018140403A (en) * | 2017-02-27 | 2018-09-13 | Jfeスチール株式会社 | Steel plate shape corrector |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6376081B2 (en) * | 2015-08-31 | 2018-08-22 | Jfeスチール株式会社 | Method for calculating shape of object, method for correcting press of steel plate, and method for manufacturing steel plate |
CN106540994A (en) * | 2015-09-17 | 2017-03-29 | 鞍钢股份有限公司 | Method for improving shape of X70 pipeline steel plate with thickness of 21mm |
CN105598217B (en) * | 2015-12-30 | 2017-10-17 | 中国第二重型机械集团德阳万航模锻有限责任公司 | The constant temperature and pressure aligning method of titanium alloy die forging part warpage |
JP6477541B2 (en) * | 2016-02-26 | 2019-03-06 | Jfeスチール株式会社 | Steel plate shape correction method and steel plate manufacturing method |
JP6531752B2 (en) * | 2016-12-14 | 2019-06-19 | Jfeスチール株式会社 | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method |
JP6597679B2 (en) * | 2017-03-10 | 2019-10-30 | Jfeスチール株式会社 | Method for evaluating strain of steel sheet |
JP6597696B2 (en) * | 2017-03-29 | 2019-10-30 | Jfeスチール株式会社 | Steel plate shape measuring device and steel plate shape correcting device |
JP6580723B2 (en) * | 2018-01-16 | 2019-09-25 | 株式会社神鋼エンジニアリング&メンテナンス | Steel plate shape straightening device and shape straightening method |
JP7207448B2 (en) * | 2020-07-29 | 2023-01-18 | Jfeスチール株式会社 | Method for calculating corrected position of steel plate and method for manufacturing steel plate |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2544048B2 (en) * | 1991-12-06 | 1996-10-16 | 吉川工業株式会社 | Steel plate straightening device |
JPH05317969A (en) * | 1992-05-18 | 1993-12-03 | Toshiba Corp | Panel plate straightening device |
JP2813528B2 (en) * | 1993-08-16 | 1998-10-22 | 新日本製鐵株式会社 | Steel plate straightening device |
JP2000263391A (en) * | 1999-03-18 | 2000-09-26 | Nikon Corp | Surface shape evaluation method and high accuracy flatness polishing method using it |
JP2006162386A (en) * | 2004-12-06 | 2006-06-22 | Canon Inc | Three-dimensional model generation device, three-dimensional model generation system, and three-dimensional model generation program |
JP5245817B2 (en) * | 2008-12-27 | 2013-07-24 | Jfeスチール株式会社 | Steel plate shape measuring method and shape measuring device |
JP5983311B2 (en) * | 2012-10-29 | 2016-08-31 | Jfeスチール株式会社 | Steel plate shape correction method |
-
2012
- 2012-11-27 JP JP2012258512A patent/JP6003583B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018140403A (en) * | 2017-02-27 | 2018-09-13 | Jfeスチール株式会社 | Steel plate shape corrector |
Also Published As
Publication number | Publication date |
---|---|
JP2014104483A (en) | 2014-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6003583B2 (en) | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method | |
JP5412829B2 (en) | Steel plate shape straightening device | |
TWI457541B (en) | Method for detecting tilt angle of object surface, method for compensating thereof and system therefore | |
JP6148353B2 (en) | Cutting method of metal plate material | |
JP5245817B2 (en) | Steel plate shape measuring method and shape measuring device | |
JP6624121B2 (en) | Steel plate shape straightening device | |
JP5983311B2 (en) | Steel plate shape correction method | |
JP2014508042A (en) | Automated tube forming press with light source to measure tube inner contour | |
US7325427B2 (en) | Machine for bending of long products and a method to control such a machine | |
KR101379438B1 (en) | Monitorinr system and method for wire drawing machine | |
JP6531752B2 (en) | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method | |
JP6477541B2 (en) | Steel plate shape correction method and steel plate manufacturing method | |
JP6597679B2 (en) | Method for evaluating strain of steel sheet | |
JP7207448B2 (en) | Method for calculating corrected position of steel plate and method for manufacturing steel plate | |
JP6837361B2 (en) | Weld position detector, ultrasonic flaw detector, weld flaw detector method and weld position detection program | |
US6771363B1 (en) | Device and method for determining a bending angle of a sheet and the use thereof for the angle-bending of sheets | |
Denkena et al. | Fast inspection of larger sized curved surfaces by stripe projection | |
RU2655012C2 (en) | Method for measuring geometrical parameters of electric-welded pipes of various diameters and system for implementation thereof | |
JP2016024060A (en) | Measurement condition determination method and measurement device | |
CN111609795B (en) | Quality parameter detection method and system for cutting hot rolled steel plate | |
CN113787101B (en) | Plate type convexity control method and device for hot rolled strip steel | |
RU2788586C1 (en) | Method for control of steel sheets for surface defects using laser triangulation scanners | |
JP2019122981A (en) | Shape correction apparatus and shape correction method of steel plate | |
CN113744194B (en) | Steel plate defect detection method and computer readable storage medium | |
JPH0428416A (en) | Method for detecting welded point in continuous rolling and method for welding material to be rolled |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6003583 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |