JP5983311B2 - Steel plate shape correction method - Google Patents

Steel plate shape correction method Download PDF

Info

Publication number
JP5983311B2
JP5983311B2 JP2012238159A JP2012238159A JP5983311B2 JP 5983311 B2 JP5983311 B2 JP 5983311B2 JP 2012238159 A JP2012238159 A JP 2012238159A JP 2012238159 A JP2012238159 A JP 2012238159A JP 5983311 B2 JP5983311 B2 JP 5983311B2
Authority
JP
Japan
Prior art keywords
steel plate
shape
correction
steel sheet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012238159A
Other languages
Japanese (ja)
Other versions
JP2014087813A (en
Inventor
青江 信一郎
信一郎 青江
林 宏優
宏優 林
高礎 藤原
高礎 藤原
佳徳 弓削
佳徳 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012238159A priority Critical patent/JP5983311B2/en
Publication of JP2014087813A publication Critical patent/JP2014087813A/en
Application granted granted Critical
Publication of JP5983311B2 publication Critical patent/JP5983311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Description

本発明は、鋼板の形状矯正方法に関し、特に鋼板の歪みなどの形状をオフラインで矯正するのに好適なものである。   The present invention relates to a method for correcting the shape of a steel plate, and is particularly suitable for correcting a shape such as distortion of a steel plate offline.

鋼板の形状を自動計測する装置としては、例えば下記特許文献1に記載されるように、複数の光学系距離計からなる計測装置を鋼板の搬送ライン上に設置し、この計測装置を通過する鋼板からの光の反射状態から鋼板表面までの距離、即ち鋼板表面の高さを検出し、この高さを連続して鋼板表面の形状を計測するものがある。しかしながら、この鋼板形状計測装置は、オフラインでの形状計測に適さないとして、本願出願人は下記特許文献2に記載される鋼板形状計測装置を伴う形状矯正装置を提案した。この特許文献2に記載される形状計測装置は、一つのレーザ光源からのレーザ光を偏光し、偏光されたレーザ光を走査して、静止した鋼板上の所定の検出点群を測定し、それらの検出群データからの鋼板の形状を計測するものである。そのため、オフラインで鋼板が静止している状態でも鋼板の形状を計測することができる。   As an apparatus for automatically measuring the shape of a steel plate, for example, as described in Patent Document 1 below, a measuring device composed of a plurality of optical distance meters is installed on a steel sheet conveyance line, and the steel plate passes through this measuring device. The distance from the light reflection state to the steel plate surface, that is, the height of the steel plate surface, is detected, and the shape of the steel plate surface is measured continuously with this height. However, since this steel plate shape measuring device is not suitable for off-line shape measurement, the applicant of the present application has proposed a shape correction device with a steel plate shape measuring device described in Patent Document 2 below. The shape measuring apparatus described in Patent Document 2 polarizes laser light from one laser light source, scans the polarized laser light, measures a predetermined group of detection points on a stationary steel plate, The shape of the steel plate is measured from the detected group data. Therefore, the shape of the steel plate can be measured even when the steel plate is stationary offline.

特開平5−237546号公報JP-A-5-237546 特開2010−155272号公報JP 2010-155272 A

しかしながら、前記特許文献2に記載の鋼板形状矯正装置では、計測された鋼板の形状を用いてどのような手順で形状矯正を行うのか具体的に記載されていない。例えば鋼板の形状矯正はプレス機の加圧ラムによって行う場合、形状矯正中の加圧ラム下の鋼板形状を計測するべきであり、その計測結果に基づいてどの位置をどういった条件で加圧矯正するのかといった手順が求められている。
本発明は、上記のような問題点に着目してなされたものであり、形状矯正中の加圧ラム下の鋼板形状から鋼板を効率よく形状矯正することが可能な鋼板形状矯正方法を提供することを目的とするものである。
However, in the steel plate shape correction device described in Patent Document 2, it is not specifically described in what procedure the shape correction is performed using the measured shape of the steel plate. For example, when correcting the shape of a steel sheet using a press ram of a press machine, the shape of the steel plate under the pressure ram during shape correction should be measured, and which position is pressed under what conditions based on the measurement result. There is a need for a procedure to correct it.
This invention is made paying attention to the above problems, and provides the steel plate shape correction method which can correct a steel plate efficiently from the steel plate shape under the pressurization ram during shape correction. It is for the purpose.

上記課題を解決するために、本発明の鋼板形状矯正方法は、加圧ラムを備えたプレス機と、前記プレス機の入出側に設けられ且つ鋼板を搬送する搬送装置と、前記搬送装置で搬送される鋼板の位置を検出する位置検出装置と、一つのレーザ光源からのレーザ光を偏光し、偏光されたレーザ光を走査して、前記鋼板上の所定の検出点群を測定し、それらの検出群データからの鋼板の形状を計測する鋼板形状計測装置とを備えた鋼板形状矯正方法であって、前記位置検出装置で検出された鋼板の位置情報に基づいて前記加圧ラム下の鋼板の形状を前記鋼板形状計測装置で計測し、計測された鋼板の形状計測結果から当該鋼板の形状評価を行って当該鋼板の形状矯正位置及び形状矯正条件を求め、求めた形状矯正位置が前記加圧ラム下になるように搬送装置で鋼板を搬送し、前記求めた形状矯正条件で前記加圧ラムにより当該鋼板の形状矯正を行うことを特徴とするものである。   In order to solve the above problems, a steel sheet shape correction method according to the present invention includes a press machine provided with a pressurizing ram, a transport apparatus that is provided on the input / output side of the press machine and transports the steel sheet, and is transported by the transport apparatus. A position detection device for detecting the position of the steel sheet to be polarized, and the laser light from one laser light source is polarized, the polarized laser light is scanned to measure a predetermined group of detection points on the steel sheet, and A steel plate shape correction method comprising a steel plate shape measuring device for measuring the shape of a steel plate from detection group data, wherein the steel plate under the pressure ram is based on position information of the steel plate detected by the position detection device. The shape is measured by the steel plate shape measuring device, the shape of the steel plate is evaluated from the measured shape measurement result of the steel plate, the shape correction position and the shape correction condition of the steel plate are obtained, and the obtained shape correction position is the pressurization. To be under the ram Conveying the steel plate feeding device, by the pressure ram in the calculated shape correction condition is characterized in carrying out the straightening of the steel sheet.

また、前記鋼板の形状評価を行うに当たり、鋼板の差金隙間を求め、当該差金隙間が予め設定された所定値より大きい位置を矯正位置として評価することを特徴とするものである。
また、鋼板に長辺と短辺とがある場合、短辺側の形状矯正を長辺側の形状矯正に先駆けて行うことを特徴とするものである。
Further, in performing the shape evaluation of the steel sheet, a difference gap of the steel sheet is obtained, and a position where the difference gap is larger than a predetermined value set in advance is evaluated as a correction position.
Further, when the steel sheet has a long side and a short side, the shape correction on the short side is performed prior to the shape correction on the long side.

而して、本発明の鋼板形状矯正方法によれば、位置検出装置で検出された鋼板の位置情報に基づいて加圧ラム下の鋼板の形状を鋼板形状計測装置で計測し、計測された鋼板の形状計測結果から当該鋼板の形状評価を行って当該鋼板の形状矯正位置及び形状矯正条件を求め、求めた形状矯正位置が加圧ラム下になるように搬送装置で鋼板を搬送し、求めた形状矯正条件で加圧ラムにより当該鋼板の形状矯正を行う。従って、形状矯正中の加圧ラム下の鋼板形状から鋼板を効率よく形状矯正することができる。   Thus, according to the steel plate shape correction method of the present invention, the steel plate shape measuring device measures the shape of the steel plate under the pressure ram based on the position information of the steel plate detected by the position detecting device, and the measured steel plate. The shape of the steel sheet was evaluated from the shape measurement results of the steel sheet to determine the shape correction position and the shape correction condition of the steel sheet, and the steel sheet was transported with a transport device so that the determined shape correction position was under the pressure ram. The shape of the steel sheet is corrected with a pressure ram under the shape correction conditions. Therefore, the shape of the steel plate can be efficiently corrected from the shape of the steel plate under the pressure ram during shape correction.

また、鋼板の形状評価を行うに当たり、鋼板の差金隙間を求め、当該差金隙間が予め設定された所定値より大きい位置を矯正位置として評価する。従って、差金方向の形状を効率よく形状矯正することができる。
また、鋼板に長辺と短辺とがある場合、短辺側の形状矯正を長辺側の形状矯正に先駆けて行うことにより、鋼板全体の形状矯正を効率よく行うことができる。
Further, in performing the shape evaluation of the steel sheet, a difference gap of the steel sheet is obtained, and a position where the difference gap is larger than a predetermined value set in advance is evaluated as a correction position. Therefore, it is possible to efficiently correct the shape in the difference direction.
Moreover, when a steel plate has a long side and a short side, the shape correction of the whole steel plate can be efficiently performed by performing the shape correction on the short side prior to the shape correction on the long side.

本発明の鋼板形状矯正方法を適用した鋼板形状矯正装置の概略構成の一実施形態を示す平面図である。It is a top view which shows one Embodiment of schematic structure of the steel plate shape correction apparatus to which the steel plate shape correction method of this invention is applied. 図1の形状計測装置中のレーザ距離計を構成するレーザ照射装置の概略構成図である。It is a schematic block diagram of the laser irradiation apparatus which comprises the laser distance meter in the shape measuring apparatus of FIG. 図1の制御装置内で行われる鋼板形状矯正のための演算処理を示すフローチャートである。It is a flowchart which shows the arithmetic processing for the steel plate shape correction performed within the control apparatus of FIG. 図3の演算処理で行われる演算処理のフローチャートである。It is a flowchart of the arithmetic processing performed by the arithmetic processing of FIG. 図4の演算処理で行われる幅矯正の説明図である。It is explanatory drawing of the width correction performed by the arithmetic processing of FIG. 図3の演算処理で行われる演算処理のフローチャートである。It is a flowchart of the arithmetic processing performed by the arithmetic processing of FIG. 図6の演算処理で行われる長手矯正の説明図である。It is explanatory drawing of the longitudinal correction performed by the arithmetic processing of FIG.

以下、本発明の実施形態に係る鋼板形状矯正方法を適用した鋼板形状矯正装置について図面を参照しながら説明する。図1は、本実施形態の鋼板形状矯正装置の概略構成を示す平面図である。この鋼板形状矯正装置は、鋼板Sをオフラインで形状矯正するものである。図中の符号1は、鋼板Sの形状を矯正するプレス機であり、プレス機1の入側には入側ベッド3、プレス機1の出側には出側ベッド4が配設されている。ベッド3,4は、何れも鋼板Sを搬送するための多数のローラが配設されており、このローラの回転状態を制御することで鋼板Sの搬送状態を制御することができる。即ち、これらのベッド3,4が鋼板Sの搬送装置を構成する。また、入側ベッド3及び出側ベッド4の側方には、鋼板Sの位置を検出する位置検出装置7が設けられている。位置検出装置7は、後述する形状計測装置と同様にレーザ光を鋼板Sの搬送方向に走査して鋼板Sの搬送方向への形状を計測し、その形状計測結果から鋼板Sがどの位置にあるかを検出する。   Hereinafter, a steel plate shape correcting apparatus to which a steel plate shape correcting method according to an embodiment of the present invention is applied will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of the steel sheet shape correcting device of the present embodiment. This steel plate shape correction apparatus corrects the shape of the steel plate S offline. Reference numeral 1 in the drawing denotes a press machine that corrects the shape of the steel sheet S. An entrance bed 3 is disposed on the entry side of the press machine 1, and an exit bed 4 is disposed on the exit side of the press machine 1. . Each of the beds 3 and 4 is provided with a large number of rollers for transporting the steel sheet S, and the transport state of the steel sheet S can be controlled by controlling the rotation state of the rollers. That is, these beds 3 and 4 constitute a conveying device for the steel sheet S. In addition, a position detection device 7 that detects the position of the steel sheet S is provided on the sides of the entrance bed 3 and the exit bed 4. The position detection device 7 scans the laser beam in the conveyance direction of the steel plate S to measure the shape in the conveyance direction of the steel plate S, as in the shape measurement device described later, and from which position the steel plate S is located based on the shape measurement result. To detect.

本実施形態のプレス機1の場合、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメントを付与して鋼板の形状を矯正する。鋼板Sの形状は、後述する鋼板形状計測装置によって計測する。鋼板形状矯正のパラメータとしては、例えば鋼板Sの形状から求めた差金隙間、加圧ラム2による加圧力、シムと呼ばれる敷棒の位置と間隔、鋼板Sの位置、即ちベッド3,4による鋼板Sの搬送状態などが挙げられる。本実施形態のプレス機1による鋼板形状矯正は、鋼板Sの下に2本のシムを敷き、そのシムの間の部分の鋼板Sを加圧ラム2で加圧する。加圧ラム2による曲げモーメントは、シムの間の部分の鋼板Sにのみ生じる。この曲げモーメントによる鋼板Sの変形量と加圧開放時の戻り量、所謂スプリングバック量を加味して、前述した種々のパラメータを調整する。形状矯正制御のための演算処理は、後段に詳述する。   In the case of the press machine 1 of the present embodiment, the steel plate S is pressurized from above with the pressurizing ram 2, and a bending moment is mainly applied to the steel plate S to correct the shape of the steel plate. The shape of the steel plate S is measured by a steel plate shape measuring device described later. The parameters for correcting the shape of the steel sheet include, for example, a differential gap obtained from the shape of the steel sheet S, a pressure applied by the pressure ram 2, a position and interval of a shim called a shim, a position of the steel sheet S, that is, the steel sheet S by the beds 3 and 4. The conveyance state of the is mentioned. In the steel plate shape correction by the press machine 1 of the present embodiment, two shims are laid under the steel plate S, and the steel plate S in the portion between the shims is pressed with the pressure ram 2. The bending moment due to the pressure ram 2 is generated only in the steel plate S in the portion between the shims. The above-described various parameters are adjusted in consideration of the deformation amount of the steel sheet S due to this bending moment and the return amount when pressure is released, the so-called springback amount. The arithmetic processing for shape correction control will be described in detail later.

入側ベッド3の入側及び出側ベッド4の出側には形状計測装置5を、出側ベッド4の側方には制御装置6を設置した。このうち、形状計測装置5は、レーザ光によって検出点までの距離を検出するレーザ距離計と、レーザ距離計で検出された距離データから鋼板Sの形状を計測するコンピュータシステムを備えて構成される。形状計測装置5の具体的な鋼板形状計測方法は、本願出願人が先に提案した前記特許文献2と同様である。そのため、本実施形態の形状計測装置5は、3次元にレーザ光を走査して距離を計測するレーザ距離計を備えている。   A shape measuring device 5 was installed on the entry side of the entry bed 3 and the exit side of the exit bed 4, and a control device 6 was installed on the side of the exit bed 4. Among these, the shape measuring device 5 includes a laser distance meter that detects the distance to the detection point with a laser beam, and a computer system that measures the shape of the steel sheet S from the distance data detected by the laser distance meter. . The concrete steel plate shape measuring method of the shape measuring device 5 is the same as that of the Patent Document 2 previously proposed by the applicant of the present application. Therefore, the shape measuring apparatus 5 of the present embodiment includes a laser rangefinder that measures the distance by scanning the laser beam three-dimensionally.

本実施形態のレーザ距離計は、図2に示すように、レーザ光源11を回転台12の上に搭載し、レーザ光源11のレーザ出射口に周知のガルバノミラー13を配設した。ガルバノミラー13の回転軸はレーザ光源11のレーザ出射口からのレーザ光に一致し、ガルバノミラー13の回転軸は回転台12の回転軸と直交する。本実施形態では、ガルバノミラー13を回転させることにより、レーザ光源11からのレーザ光を、例えば鋼板Sの長手方向、即ち図1の鋼板Sの搬送方向に偏光し、回転台12を回転させることにより、ガルバノミラー13から偏光されるレーザ光を、主として鋼板Sの幅方向、即ち図1の鋼板Sの搬送方向と直交方向に走査する。なお、本実施形態の形状計測装置5は、入側ベッド3上や出側ベッド4上だけでなく、プレス機1の加圧ラム2下でも鋼板Sの形状を計測することができる。   As shown in FIG. 2, the laser distance meter of the present embodiment has a laser light source 11 mounted on a turntable 12, and a known galvanometer mirror 13 is disposed at the laser emission port of the laser light source 11. The rotation axis of the galvanometer mirror 13 coincides with the laser beam from the laser emission port of the laser light source 11, and the rotation axis of the galvanometer mirror 13 is orthogonal to the rotation axis of the turntable 12. In this embodiment, by rotating the galvanometer mirror 13, the laser light from the laser light source 11 is polarized in the longitudinal direction of the steel sheet S, that is, in the conveying direction of the steel sheet S in FIG. 1, and the turntable 12 is rotated. Thus, the laser beam polarized from the galvanometer mirror 13 is scanned mainly in the width direction of the steel sheet S, that is, in the direction orthogonal to the conveying direction of the steel sheet S in FIG. In addition, the shape measuring apparatus 5 of this embodiment can measure the shape of the steel plate S not only on the entry bed 3 and the exit bed 4 but also under the pressurization ram 2 of the press 1.

制御装置6は、ホストコンピュータなどのコンピュータシステムを備えて構築され、前記形状計測装置5で計測された鋼板Sの形状に基づき、例えば後述する演算処理を行ってプレス機1及びベッド3,4の稼動状態を制御する。ここで、前記制御装置6内のコンピュータシステムで行われる鋼板Sの形状矯正のための演算処理について、図3のフローチャートを用いて説明する。この演算処理は、例えば鋼板形状矯正開始指令と同時に行われ、まずステップS1で、入側ベッド3や出側ベッド4により鋼板Sをプレス機1の加圧ラム2の下に搬入する。   The control device 6 is constructed with a computer system such as a host computer, and based on the shape of the steel sheet S measured by the shape measuring device 5, for example, performs arithmetic processing described later to perform the press machine 1 and the beds 3 and 4. Control the operating state. Here, calculation processing for correcting the shape of the steel sheet S performed by the computer system in the control device 6 will be described with reference to the flowchart of FIG. This arithmetic processing is performed simultaneously with, for example, a steel plate shape correction start command. First, in step S1, the steel plate S is carried under the pressurization ram 2 of the press 1 by the entry side bed 3 and the exit side bed 4.

次にステップS2に移行して、後述する図4の演算処理に従って、鋼板Sの幅矯正制御を行う。鋼板Sは、一般に搬送方向に長手で、搬送方向と直交方向に短い。つまり、鋼板Sには短辺と長辺があり、短辺方向を幅方向とし、長辺方向を長手方向と定義する。
次にステップS3に移行して、後述する図6の演算処理に従って、鋼板Sの長手矯正制御を行う。
次にステップS4に移行して、鋼板の形状矯正が完了したことを判定する。
次にステップS5に移行して、入側ベッド3や出側ベッド4により鋼板Sを加圧ラム2下から払い出し、制御を終了する。
次に、前記図3のステップS2で行われる幅矯正制御のための演算処理について図4のフローチャートを用いて説明する。この演算処理では、まずステップS21で、プレス機1の加圧ラム2下に搬入された鋼板Sの全体の形状を形状計測装置5で計測し、その形状から平坦度を計測する。
Next, the process proceeds to step S2, and the width correction control of the steel sheet S is performed according to the arithmetic processing of FIG. The steel sheet S is generally long in the transport direction and short in the direction orthogonal to the transport direction. That is, the steel sheet S has a short side and a long side, the short side direction is defined as the width direction, and the long side direction is defined as the long side direction.
Next, the process proceeds to step S3, and the longitudinal correction control of the steel sheet S is performed according to the arithmetic processing of FIG.
Next, it transfers to step S4 and it determines with the shape correction of the steel plate having been completed.
Next, the process proceeds to step S5, where the steel sheet S is discharged from below the pressurization ram 2 by the entry side bed 3 and the exit side bed 4, and the control is finished.
Next, calculation processing for width correction control performed in step S2 of FIG. 3 will be described using the flowchart of FIG. In this calculation process, first, in step S21, the entire shape of the steel sheet S carried under the pressurization ram 2 of the press machine 1 is measured by the shape measuring device 5, and the flatness is measured from the shape.

次にステップS22に移行して、ステップS21で計測した鋼板Sの平坦度から幅方向の差金隙間(幅差金隙間)評価を行い、幅差金隙間、矯正位置、矯正条件を求めて、例えばモニターなどの表示装置に表示する。幅差金隙間とは、例えば比較的長尺で真っ直ぐな金物、即ち差金を鋼板Sの幅方向に向けて当該鋼板Sの表面にあてがったとき、差金と鋼板Sの表面との間にできる隙間を意味する。これを鋼板Sの長手方向に予め設定された間隔毎に行い、幅差金隙間が予め設定された所定値より大きい部位を矯正位置とする。矯正位置には、原則的に幅差金隙間の大きい順に優先順位が付される。その際、ラムに近い、移動しやすさも優先順位に含まれる。矯正条件は、例えば記憶されている幅差金隙間データベースを比較して、シム(敷棒)、加圧ラムの加圧条件を決定する。シムは、鋼板と定盤の間に隙間を形成するものである。加圧ラムは、シム間の鋼板に曲げモーメントを付与して形状を矯正するものであるから、矯正位置の幅差金隙間が決まれば、シムを敷く位置、及び加圧ラムの加圧条件が決まる。加圧ラムの加圧条件は、鋼板の厚さ、幅、降伏応力などから、シムの厚さ及び加圧ラムによる圧下力(荷重)を決定する。前記特許文献2にも記載されるように、例えば幅差金隙間から得られる加圧矯正位置の曲率は加圧ラムによる曲げモーメントと等価であることから、その曲げモーメントと、断面2次モーメントと呼ばれる鋼板Sの幅、厚さの断面係数、及び縦弾性係数などの材料特性から、付与すべき荷重(圧下力)が得られる。また、鋼板に荷重を付加しても、鋼板にはスプリングバックと呼ばれる弾性回復があるので、このスプリングバック分をシムで付加する。従って、シムの厚さは、スプリングバック量に等しい。   Next, the process proceeds to step S22, where the difference gap in the width direction (width difference gap) is evaluated from the flatness of the steel sheet S measured in step S21, and the width difference gap, the correction position, and the correction condition are obtained. Displayed on the display device. The width difference gap is, for example, a relatively long and straight metal piece, that is, a gap formed between the difference sheet and the surface of the steel sheet S when the difference is applied to the surface of the steel sheet S in the width direction of the steel sheet S. means. This is performed at intervals set in advance in the longitudinal direction of the steel sheet S, and a portion where the width difference gap is larger than a predetermined value is set as a correction position. In principle, priorities are assigned to correction positions in descending order of the width difference gap. At that time, the ease of movement close to the ram is also included in the priority order. As the correction condition, for example, the stored pressure difference gap database is compared to determine the pressure condition of the shim (laying bar) and the pressure ram. The shim forms a gap between the steel plate and the surface plate. Since the pressure ram corrects the shape by applying a bending moment to the steel plate between the shims, if the width difference gap at the correction position is determined, the position where the shim is laid and the pressure condition of the pressure ram are determined. . The pressurization condition of the pressurization ram determines the thickness of the shim and the rolling force (load) by the pressurization ram from the thickness, width, yield stress, etc. of the steel plate. As described in Patent Document 2, for example, the curvature of the pressure correction position obtained from the width difference gap is equivalent to the bending moment caused by the pressure ram, and hence the bending moment and the sectional secondary moment are called. The load (rolling force) to be applied is obtained from the material properties such as the width, thickness section modulus, and longitudinal elastic modulus of the steel sheet S. Even if a load is applied to the steel plate, the steel plate has an elastic recovery called a spring back, and this spring back is added by a shim. Therefore, the thickness of the shim is equal to the amount of springback.

次にステップS23に移行して、全ての幅差金隙間が前記所定値以内であるか否かを判定し、全ての幅差金隙間が所定値以内である場合には幅矯正制御を完了し、そうでない場合にはステップS24に移行する。
ステップS24では、前記ステップS22で求めた優先順位の高い矯正位置を加圧ラム2下に移動する。
Next, the process proceeds to step S23, where it is determined whether or not all the width difference gaps are within the predetermined value. If all the width difference gaps are within the predetermined value, the width correction control is completed. If not, the process proceeds to step S24.
In step S24, the correction position with the high priority obtained in step S22 is moved below the pressure ram 2.

次にステップS25に移行して、前記ステップS22で求めた矯正条件で鋼板Sを加圧して幅方向の形状矯正を行う。鋼板Sの幅方向の矯正は、例えば図5に示すように鋼板Sの幅方向及び長手方向に複数の矯正位置が存在する場合、まず長手方向に並んでいる矯正位置で並び順に形状矯正を行い、それら長手方向に並んでいる矯正位置での形状矯正が完了したら幅方向に移動し、次に長手方向に並んでいる矯正位置で並び順に形状矯正を行い、これを繰り返して幅方向の矯正を推進する。この移動の順序が、前述したラムに近い、移動しやすさに相当する。   Next, the process proceeds to step S25, where the steel sheet S is pressed under the correction condition obtained in step S22 to perform shape correction in the width direction. For example, when there are a plurality of correction positions in the width direction and the longitudinal direction of the steel sheet S as shown in FIG. 5, first, shape correction is performed in the order of alignment at the correction positions aligned in the longitudinal direction. Once the shape correction at the correction positions aligned in the longitudinal direction is completed, the shape is moved in the width direction, and then the shape correction is performed in the alignment order at the correction positions aligned in the longitudinal direction. Promote. This order of movement corresponds to the ease of movement close to the ram described above.

次にステップS26に移行して、加圧ラム2下部分の鋼板Sの形状を形状計測装置5で計測し、その形状から平坦度を計測する。
次にステップS27に移行して、ステップS26で計測した加圧ラム2下部分の鋼板Sの平坦度から、前記ステップS22と同様にして、幅差金隙間評価を行い、幅差金隙間、矯正位置、矯正条件を求めて、例えばモニターなどの表示装置に表示する。
Next, it transfers to step S26, the shape of the steel plate S of the lower part of the pressurization ram 2 is measured with the shape measuring apparatus 5, and flatness is measured from the shape.
Next, the process proceeds to step S27, and the width difference clearance evaluation is performed in the same manner as in step S22 from the flatness of the steel plate S below the pressurization ram 2 measured in step S26. The correction condition is obtained and displayed on a display device such as a monitor.

次にステップS28に移行して、加圧ラム2下部分の鋼板Sの幅差金隙間が所定値以内であるか否かを判定し、幅差金隙間が所定値以内である場合にはステップS29に移行し、そうでない場合にはステップS25に移行する。
ステップS29では、前記ステップS22で求めた矯正位置が他にも存在するか否かを判定し、矯正位置が存在する場合にはステップS24に移行し、そうでない場合にはステップS21に移行する。
次に、前記図3のステップS3で行われる長手矯正制御のための演算処理について図6のフローチャートを用いて説明する。この演算処理では、まずステップS31で、プレス機1の加圧ラム2下に搬入された鋼板Sの全体の形状を形状計測装置5で計測し、その形状から平坦度を計測する。
Next, the process proceeds to step S28, where it is determined whether or not the width difference gap of the steel sheet S below the pressure ram 2 is within a predetermined value. If not, the process proceeds to step S25.
In step S29, it is determined whether or not there is another correction position obtained in step S22. If there is a correction position, the process proceeds to step S24. If not, the process proceeds to step S21.
Next, calculation processing for longitudinal correction control performed in step S3 of FIG. 3 will be described using the flowchart of FIG. In this calculation process, first, in step S31, the entire shape of the steel sheet S carried under the pressure ram 2 of the press machine 1 is measured by the shape measuring device 5, and the flatness is measured from the shape.

次にステップS32に移行して、ステップS31で計測した鋼板Sの平坦度から長手方向の差金隙間(長手差金隙間)評価を行い、幅差金隙間、矯正位置、矯正条件を求めて、例えばモニターなどの表示装置に表示する。長手差金隙間とは、前述と同様に差金を鋼板Sの長手方向に向けて当該鋼板Sの表面にあてがったとき、差金と鋼板Sの表面との間にできる隙間を意味する。これを鋼板Sの幅方向に予め設定された間隔毎に行い、長手差金隙間が予め設定された所定値より大きい部位を矯正位置とする。矯正位置には、原則的に長手差金隙間の大きい順に優先順位が付される。その際、ラムに近い、移動しやすさも優先順位に含まれる。矯正条件は、例えば記憶されている長手差金隙間データベースを比較して、シム、加圧ラムの加圧条件を決定する。シムを敷く位置、及び加圧ラムの加圧条件の決定方法は、前記図4の演算処理のステップS22と同様である。   Next, the process proceeds to step S32, where the longitudinal difference gap (longitudinal difference gap) is evaluated from the flatness of the steel sheet S measured in step S31, and the width difference gap, the correction position, and the correction condition are obtained. Displayed on the display device. The longitudinal difference gap means a gap formed between the difference and the surface of the steel sheet S when the difference is applied to the surface of the steel sheet S in the longitudinal direction of the steel sheet S as described above. This is performed for each preset interval in the width direction of the steel sheet S, and a portion where the longitudinal difference gap is larger than a preset predetermined value is set as a correction position. In principle, priorities are assigned to correction positions in descending order of the longitudinal difference gap. At that time, the ease of movement close to the ram is also included in the priority order. For the correction condition, for example, the stored pressure difference gap database is compared, and the pressure condition of the shim and pressure ram is determined. The position where the shim is laid and the method for determining the pressurization condition of the pressurization ram are the same as in step S22 of the calculation process of FIG.

次にステップS33に移行して、全ての長手差金隙間が前記所定値以内であるか否かを判定し、全ての長手差金隙間が所定値以内である場合には長手矯正制御を完了し、そうでない場合にはステップS34に移行する。
ステップS34では、前記ステップS32で求めた優先順位の高い矯正位置を加圧ラム2下に移動する。
Next, the process proceeds to step S33, where it is determined whether or not all the longitudinal differential gaps are within the predetermined value. If all the longitudinal differential gaps are within the predetermined value, the longitudinal correction control is completed. If not, the process proceeds to step S34.
In step S34, the correction position with the high priority obtained in step S32 is moved below the pressure ram 2.

次にステップS35に移行して、前記ステップS32で求めた矯正条件で鋼板Sを加圧して長手方向の形状矯正を行う。鋼板Sの長手方向の矯正は、例えば図7に示すように鋼板Sの幅方向及び長手方向に複数の矯正位置が存在する場合、まず幅方向に並んでいる矯正位置で並び順に形状矯正を行い、それら幅方向に並んでいる矯正位置での形状矯正が完了したら長手方向に移動し、次に幅方向に並んでいる矯正位置で並び順に形状矯正を行い、これを繰り返して長手方向の矯正を推進する。この移動の順序が、前述したラムに近い、移動しやすさに相当する。   Next, the process proceeds to step S35, in which the steel sheet S is pressed under the correction condition obtained in step S32 to correct the shape in the longitudinal direction. For example, when there are a plurality of correction positions in the width direction and the longitudinal direction of the steel sheet S as shown in FIG. 7, first, the shape correction is performed in the order of alignment at the correction positions aligned in the width direction. When the shape correction at the correction positions aligned in the width direction is completed, the shape is moved in the longitudinal direction, then the shape correction is performed in the alignment order at the correction positions aligned in the width direction, and this is repeated to correct the longitudinal direction. Promote. This order of movement corresponds to the ease of movement close to the ram described above.

次にステップS36に移行して、加圧ラム2下部分の鋼板Sの形状を形状計測装置5で計測し、その形状から平坦度を計測する。
次にステップS37に移行して、ステップ326で計測した加圧ラム2下部分の鋼板Sの平坦度から、前記ステップS32と同様にして、長手差金隙間評価を行い、長手差金隙間、矯正位置、矯正条件を求めて、例えばモニターなどの表示装置に表示する。
Next, it transfers to step S36, the shape of the steel plate S of the lower part of the pressurization ram 2 is measured with the shape measuring apparatus 5, and flatness is measured from the shape.
Next, the process proceeds to step S37, and from the flatness of the steel sheet S in the lower portion of the pressure ram 2 measured in step 326, the longitudinal difference gap evaluation is performed in the same manner as in step S32, the longitudinal difference gap, the correction position, The correction condition is obtained and displayed on a display device such as a monitor.

次にステップS38に移行して、加圧ラム2下部分の鋼板Sの長手差金隙間が所定値以内であるか否かを判定し、長手差金隙間が所定値以内である場合にはステップS39に移行し、そうでない場合にはステップS35に移行する。
ステップS39では、前記ステップS32で求めた矯正位置が他にも存在するか否かを判定し、矯正位置が存在する場合にはステップS34に移行し、そうでない場合にはステップS31に移行する。
Next, the process proceeds to step S38, where it is determined whether or not the longitudinal difference gap of the steel sheet S below the pressure ram 2 is within a predetermined value. If not, the process proceeds to step S35.
In step S39, it is determined whether or not there is another correction position obtained in step S32. If there is a correction position, the process proceeds to step S34. If not, the process proceeds to step S31.

この演算処理によれば、形状計測装置5で計測された鋼板Sの形状から矯正位置及び矯正条件を求め、加圧矯正する位置を次々と変えながら、鋼板全体の形状を加圧矯正することができる。なお、前述の演算処理では、全ての矯正作業をプログラムによって自動化しているが、例えば矯正位置の移動や強制条件の調整をオペレータが行うようにしてもよい。周知のように、加圧ラムによる加圧矯正条件は、凡そ鋼板の諸元や差金隙間によって決まるが、予測できない結果になることも少なくない。膨大な加圧矯正データベースがあれば、鋼板の諸元や差金隙間に加えて種々の条件を付加することもできるが、データベースの規模が小さいうちは加圧矯正条件が不安定であり、そのような場合にはオペレータの介在が必要である。そして、オペレータが行った加圧矯正をデータベースに加えることで加圧矯正条件をより一層正確なものとすることができる。   According to this calculation process, the correction position and the correction condition are obtained from the shape of the steel sheet S measured by the shape measuring device 5, and the shape of the entire steel sheet can be pressure corrected while changing the position for pressure correction one after another. it can. In the above-described arithmetic processing, all correction operations are automated by a program. However, for example, the operator may move the correction position or adjust the forcing condition. As is well known, the pressure correction condition by the pressure ram is determined by the specifications of the steel sheet and the difference gap, but there are many cases where the result is unpredictable. If there is an enormous pressure correction database, various conditions can be added in addition to steel sheet specifications and gaps, but pressure correction conditions are unstable while the database is small. In some cases, operator intervention is required. Then, by adding the pressure correction performed by the operator to the database, the pressure correction condition can be made more accurate.

このように本実施形態の鋼板の形状矯正方法によれば、位置検出装置7で検出された鋼板Sの位置情報に基づいて加圧ラム2下の鋼板Sの形状を鋼板形状計測装置6で計測し、計測された鋼板Sの形状計測結果から当該鋼板Sの形状評価を行って当該鋼板Sの形状矯正位置及び形状矯正条件を求め、求めた形状矯正位置が加圧ラム2下になるようにベッド3,4で鋼板Sを搬送し、求めた形状矯正条件で加圧ラム2により当該鋼板Sの形状矯正を行う。従って、形状矯正中の加圧ラム2下の鋼板Sの形状から鋼板Sを効率よく形状矯正することができる。   Thus, according to the steel sheet shape correction method of the present embodiment, the steel plate shape measuring device 6 measures the shape of the steel plate S under the pressure ram 2 based on the position information of the steel plate S detected by the position detecting device 7. Then, the shape of the steel plate S is evaluated from the measured shape measurement result of the steel plate S to obtain the shape correction position and the shape correction condition of the steel plate S so that the obtained shape correction position is below the pressure ram 2. The steel plates S are conveyed by the beds 3 and 4 and the shape of the steel plates S is corrected by the pressure ram 2 under the obtained shape correction conditions. Therefore, the shape of the steel sheet S can be efficiently corrected from the shape of the steel sheet S under the pressure ram 2 during shape correction.

また、鋼板Sの形状評価を行うに当たり、鋼板の差金隙間を求め、当該差金隙間が予め設定された所定値より大きい位置を矯正位置として評価する。従って、差金方向の形状を効率よく形状矯正することができる。
また、鋼板Sに長辺と短辺とがある場合、短辺側の形状矯正を長辺側の形状矯正に先駆けて行うことにより、鋼板Sの全体の形状矯正を効率よく行うことができる。
Further, when evaluating the shape of the steel sheet S, a difference gap of the steel sheet is obtained, and a position where the difference gap is larger than a predetermined value set in advance is evaluated as a correction position. Therefore, it is possible to efficiently correct the shape in the difference direction.
Moreover, when the steel plate S has a long side and a short side, the entire shape correction of the steel plate S can be performed efficiently by performing the shape correction on the short side prior to the shape correction on the long side.

1 プレス機
2 加圧ラム
3 入側ベッド
4 出側ベッド
5 形状計測装置
6 制御装置
7 位置検出装置
11 レーザ光源
12 回転台
13 ガルバノミラー
DESCRIPTION OF SYMBOLS 1 Press machine 2 Pressurization ram 3 Incoming bed 4 Outgoing bed 5 Shape measuring device 6 Control device 7 Position detection device 11 Laser light source 12 Turntable 13 Galvano mirror

Claims (3)

加圧ラムを備えたプレス機と、前記プレス機の入出側に設けられ且つ鋼板を搬送する搬送装置と、前記搬送装置で搬送される鋼板の位置を検出する位置検出装置と、一つのレーザ光源からのレーザ光を偏光し、偏光されたレーザ光を走査して、前記鋼板上の所定の検出点群を測定し、それらの検出群データからの鋼板の形状を計測する鋼板形状計測装置とを備えた鋼板形状矯正方法であって、前記位置検出装置で検出された鋼板の位置情報に基づいて前記加圧ラム下の鋼板の形状を前記鋼板形状計測装置で計測し、計測された鋼板の形状計測結果から当該鋼板の形状評価を行って当該鋼板の形状矯正位置及び形状矯正条件を求め、求めた形状矯正位置が前記加圧ラム下になるように搬送装置で鋼板を搬送し、前記求めた形状矯正条件で前記加圧ラムにより当該鋼板の形状矯正を行うことを特徴とする鋼板形状矯正方法。   A press machine provided with a pressurizing ram; a transport device provided on the input / output side of the press machine for transporting a steel plate; a position detection device for detecting the position of the steel plate transported by the transport device; and one laser light source A steel plate shape measuring device that polarizes the laser beam from the laser beam, scans the polarized laser beam, measures a predetermined group of detection points on the steel plate, and measures the shape of the steel plate from the detection group data A steel plate shape correction method provided, wherein the steel plate shape measuring device measures the shape of the steel plate under the pressure ram based on the position information of the steel plate detected by the position detecting device, and the shape of the measured steel plate The shape of the steel sheet is evaluated from the measurement result to determine the shape correction position and the shape correction condition of the steel sheet, the steel sheet is transferred by a transfer device so that the determined shape correction position is under the pressure ram, and the determination is performed. In the shape correction conditions, Steel straightening method and performing straightening of the steel sheet by the ram. 前記鋼板の形状評価を行うに当たり、鋼板の差金隙間を求め、当該差金隙間が予め設定された所定値より大きい位置を矯正位置として評価することを特徴とする請求項1に記載の鋼板形状矯正方法。   The steel plate shape correction method according to claim 1, wherein, in performing the shape evaluation of the steel plate, a difference gap of the steel plate is obtained, and a position where the difference gap is larger than a predetermined value set in advance is evaluated as a correction position. . 鋼板に長辺と短辺とがある場合、短辺側の形状矯正を長辺側の形状矯正に先駆けて行うことを特徴とする請求項2に記載の鋼板形状矯正方法。   The steel plate shape correcting method according to claim 2, wherein when the steel plate has a long side and a short side, the shape correction on the short side is performed prior to the shape correction on the long side.
JP2012238159A 2012-10-29 2012-10-29 Steel plate shape correction method Active JP5983311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238159A JP5983311B2 (en) 2012-10-29 2012-10-29 Steel plate shape correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238159A JP5983311B2 (en) 2012-10-29 2012-10-29 Steel plate shape correction method

Publications (2)

Publication Number Publication Date
JP2014087813A JP2014087813A (en) 2014-05-15
JP5983311B2 true JP5983311B2 (en) 2016-08-31

Family

ID=50790207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238159A Active JP5983311B2 (en) 2012-10-29 2012-10-29 Steel plate shape correction method

Country Status (1)

Country Link
JP (1) JP5983311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140403A (en) * 2017-02-27 2018-09-13 Jfeスチール株式会社 Steel plate shape corrector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003583B2 (en) * 2012-11-27 2016-10-05 Jfeスチール株式会社 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP6477541B2 (en) * 2016-02-26 2019-03-06 Jfeスチール株式会社 Steel plate shape correction method and steel plate manufacturing method
JP6531752B2 (en) * 2016-12-14 2019-06-19 Jfeスチール株式会社 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
KR102233196B1 (en) * 2017-01-31 2021-03-26 제이에프이 스틸 가부시키가이샤 Steel shape measurement device and steel shape correction device
JP6645526B2 (en) * 2017-02-24 2020-02-14 Jfeスチール株式会社 Steel plate shape measuring device and steel plate shape correcting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522714B2 (en) * 1973-04-16 1977-01-24
JP2544048B2 (en) * 1991-12-06 1996-10-16 吉川工業株式会社 Steel plate straightening device
JPH05317969A (en) * 1992-05-18 1993-12-03 Toshiba Corp Panel plate straightening device
JP2813528B2 (en) * 1993-08-16 1998-10-22 新日本製鐵株式会社 Steel plate straightening device
JP5245817B2 (en) * 2008-12-27 2013-07-24 Jfeスチール株式会社 Steel plate shape measuring method and shape measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140403A (en) * 2017-02-27 2018-09-13 Jfeスチール株式会社 Steel plate shape corrector

Also Published As

Publication number Publication date
JP2014087813A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5983311B2 (en) Steel plate shape correction method
JP5412829B2 (en) Steel plate shape straightening device
JP6003583B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
EP3093611B1 (en) Measuring method and device to measure the straightness error of bars and pipes
JP5967031B2 (en) Method and apparatus for correcting the perpendicularity of H-shaped steel flange
KR20150093802A (en) Flatness measuring and measuring of residual stresses for a metallic flat product
JP5245817B2 (en) Steel plate shape measuring method and shape measuring device
JP6624121B2 (en) Steel plate shape straightening device
CN110249201B (en) Steel material shape measuring device and steel material shape correcting device
CN113382812B (en) Method and device for straightening material by means of a straightening device
CN112513570B (en) Device for detecting relative posture information between rollers and method for measuring roller alignment state using the same
CN105229413A (en) The manufacture method of the flatness assay method of sheet material, the flatness determinator of sheet material and steel plate
KR102231141B1 (en) System for inspecting appearance of rolled plate and method of inspecting appearance of rolled plate using the same
JP6597679B2 (en) Method for evaluating strain of steel sheet
JP5626002B2 (en) Cropshire drive control method
JP6597696B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP6531752B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP6477541B2 (en) Steel plate shape correction method and steel plate manufacturing method
JP7207448B2 (en) Method for calculating corrected position of steel plate and method for manufacturing steel plate
CN104438501A (en) T-shaped steel bending device
KR101677385B1 (en) Apparatus and method for correcting plate
JP5867498B2 (en) Bending correction method for shape steel
JP6089798B2 (en) Steel plate continuous straightening method and apparatus
KR20130002405A (en) Apparatus for detecting shape of slab in hot rolling and method thereof
KR20180065774A (en) Device and method for grinding slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250