JP6597696B2 - Steel plate shape measuring device and steel plate shape correcting device - Google Patents

Steel plate shape measuring device and steel plate shape correcting device Download PDF

Info

Publication number
JP6597696B2
JP6597696B2 JP2017064341A JP2017064341A JP6597696B2 JP 6597696 B2 JP6597696 B2 JP 6597696B2 JP 2017064341 A JP2017064341 A JP 2017064341A JP 2017064341 A JP2017064341 A JP 2017064341A JP 6597696 B2 JP6597696 B2 JP 6597696B2
Authority
JP
Japan
Prior art keywords
steel plate
plate shape
laser light
laser
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064341A
Other languages
Japanese (ja)
Other versions
JP2018169171A (en
Inventor
信一郎 青江
勝 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017064341A priority Critical patent/JP6597696B2/en
Publication of JP2018169171A publication Critical patent/JP2018169171A/en
Application granted granted Critical
Publication of JP6597696B2 publication Critical patent/JP6597696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、鋼板の歪み等の不具合を有する形状を、オフラインで計測するのに好適な鋼板形状計測装置、及び、前記鋼板形状計測装置で計測した鋼板の歪み等の不具合を有する形状を、前記オフラインで矯正するのに好適な鋼板形状矯正装置に関する。   The present invention is a steel plate shape measuring apparatus suitable for measuring off-line a shape having a defect such as a distortion of the steel sheet, and a shape having a defect such as a distortion of the steel sheet measured by the steel sheet shape measuring apparatus, The present invention relates to a steel plate shape correcting device suitable for offline correction.

鋼板の形状を自動計測する装置としては、例えば特許文献1に記載されるように、複数の光学系距離計からなる計測装置を鋼板の搬送ライン上に設置し、この計測装置を通過する鋼板からの光の反射状態から鋼板表面までの距離、即ち鋼板表面の高さを検出し、この高さを連続して鋼板表面の形状を計測するものがある。   As an apparatus for automatically measuring the shape of a steel plate, for example, as described in Patent Document 1, a measuring device composed of a plurality of optical distance meters is installed on a steel sheet conveyance line, and the steel plate passing through this measuring device is used. The distance from the light reflection state to the steel sheet surface, that is, the height of the steel sheet surface is detected, and the shape of the steel sheet surface is measured continuously with this height.

しかしながら、前記複数の光学系距離計からなる計測装置は、オフラインでの形状計測に適さないとして、本出願人は特許文献2に記載される鋼板形状計測装置を伴う鋼板形状矯正装置を提案した。この特許文献2に記載される形状計測装置は、一つのレーザ光源からのレーザ光をガルバノミラーで転向し、転向したレーザ光で被走査面を走査し測距するレーザ距離計を用いて、静止した鋼板上の所定の検出点群を測距し、得られた測距データから鋼板の形状を計測するものである。そのため、オフラインで鋼板が静止している状態でも鋼板の形状を計測することができる。なお、特許文献2で、「偏光」とあるのは、「転向」即ち、方向を切り換えることを意味していると解される。   However, the present applicant has proposed a steel plate shape correcting device with a steel plate shape measuring device described in Patent Document 2 because the measuring device including the plurality of optical distance meters is not suitable for off-line shape measurement. The shape measuring apparatus described in Patent Document 2 uses a laser rangefinder that turns laser light from one laser light source with a galvanometer mirror, scans the surface to be scanned with the turned laser light, and measures the distance. A predetermined detection point group on the steel plate is measured, and the shape of the steel plate is measured from the obtained distance measurement data. Therefore, the shape of the steel plate can be measured even when the steel plate is stationary offline. In Patent Document 2, “polarized light” is understood to mean “turning”, that is, switching the direction.

特開平5−237546号公報JP-A-5-237546 特開2010−155272号公報JP 2010-155272 A

前記特許文献1に記載の光学系距離計において、鋼板の板面端部(長手方向あるいは幅方向の端部)付近で、測定異常となる問題が発生する場合がある。この測定異常の例を模式図として図2に示す。図2(a)は、例えば鋼板Sの下方の床面などである設備上面ESの上方に位置した鋼板Sを測距対象とし、鋼板の長手方向端部付近を、鋼板上方に配置したレーザ距離計(図示せず)からの、入射レーザ光LS1で、例えば鋼板長手方向に平行な走査方向20または走査方向21の方向に走査し、測距データを採取している状態を示す側面図であり、図2(b)は、走査方向の基準位置(X)からの距離で表した位置Xと、該位置Xにおける前記測距データから換算した、高さ方向の基準位置(Z)からの高さZとを、X−Z座標系内の点としてプロットしており、同図には鋼板領域S’および設備上面領域ES’も併示した。ただし、鋼板領域S’は別途の寸法および位置測定実験により確定するものであり、当該別途の寸法および位置測定を行わない通常の実操業下のレーザ距離計による測距工程では不確定である。 In the optical distance meter described in Patent Document 1, there may be a problem that a measurement abnormality occurs in the vicinity of a plate surface end (longitudinal or width end) of a steel plate. An example of this measurement abnormality is shown in FIG. 2 as a schematic diagram. FIG. 2A illustrates a laser distance in which the steel plate S positioned above the equipment upper surface ES, such as a floor surface below the steel plate S, is a distance measurement target, and the vicinity of the longitudinal end of the steel plate is disposed above the steel plate. FIG. 7 is a side view showing a state in which distance measurement data is collected by scanning in the scanning direction 20 or the scanning direction 21 parallel to the longitudinal direction of the steel sheet with incident laser light LS1 from a meter (not shown), for example. FIG. 2B shows a position X expressed by a distance from a reference position (X 0 ) in the scanning direction and a reference position (Z 0 ) in the height direction converted from the distance measurement data at the position X. The height Z is plotted as a point in the XZ coordinate system, and the steel plate region S ′ and the equipment upper surface region ES ′ are also shown in FIG. However, the steel plate region S ′ is determined by a separate dimension and position measurement experiment, and is uncertain in a distance measuring process using a laser rangefinder under normal actual operation where the separate dimension and position measurement is not performed.

図2(a)のように、入射レーザ光LS1のビーム径領域が、鋼板Sの板面端部(ここでは長手方向端部である。)と干渉した状態、すなわち、ビーム径領域の一部が鋼板S上面に入射し、残部が設備上面ESに入射した状態、換言すると、被走査面内のビーム径領域である光点15が、鋼板Sの板面端部と設備上面ESとで形成された段差部の上下に分断されている状態において、図2(b)に示すような、鋼板領域S’の上面部および設備上面領域ES’とのZ方向位置ずれが大きくなる測定異常(該当する複数の点を実線で囲んで示す。)が発生することがある。なお、前記ビーム径は3〜50mmの範囲としている。   As shown in FIG. 2A, the beam diameter region of the incident laser beam LS1 interferes with the plate surface end portion (here, the longitudinal direction end portion) of the steel sheet S, that is, a part of the beam diameter region. Is incident on the upper surface of the steel sheet S and the remaining portion is incident on the equipment upper surface ES, in other words, the light spot 15 which is the beam diameter region in the scanned surface is formed by the plate surface end of the steel sheet S and the equipment upper surface ES. In the state where the stepped portion is divided above and below, the measurement abnormality (corresponding to the Z-direction positional deviation between the upper surface portion of the steel plate region S ′ and the equipment upper surface region ES ′ as shown in FIG. 2B) A plurality of points may be surrounded by solid lines). The beam diameter is in the range of 3 to 50 mm.

前述のとおり鋼板領域S’が不確定である通常の実操業下のレーザ距離計による測距工程においては、鋼板Sの板面端部が、Z値が低くて安定した状態から高くて安定した状態へ遷移するX方向区域(図2(b)に「輪郭幅」として示す。)内の、何処に位置するかは不確定である。   As described above, in the distance measuring process using the laser rangefinder under normal operation where the steel plate region S ′ is uncertain, the plate surface end of the steel plate S is stable from a low Z value to a stable state. It is uncertain where it is located in the X-direction zone (shown as “contour width” in FIG. 2B) that transitions to the state.

一方、測定異常が発生しなかった場合、Z値が高くて安定したX方向範囲と輪郭幅との境界になるX位置(X)を鋼板Sの板面端部位置として採用し、特に問題なく形状矯正ができている。しかし、前記測定異常が発生すると、前記輪郭幅が拡大して鋼板領域S’と重なる傾向があり、この重なる範囲は予測困難であるため、鋼板Sの輪郭を明確に捉えることができず、鋼板の位置決め精度が低下して、適正な矯正が困難となる。しかしながら、前記特許文献2には鋼板の水平方向端部付近での測定異常への対処方法について具体的に記載されていない。 On the other hand, when no measurement abnormality occurs, the X position (X C ) that becomes the boundary between the stable X direction range and the contour width with a high Z value is adopted as the plate surface end position of the steel sheet S. There is no shape correction. However, when the measurement abnormality occurs, the contour width tends to expand and overlap with the steel plate region S ′, and since this overlapping range is difficult to predict, the contour of the steel plate S cannot be clearly grasped. As a result, the positioning accuracy is reduced, and proper correction becomes difficult. However, Patent Document 2 does not specifically describe a method for dealing with measurement abnormality in the vicinity of the horizontal end of the steel plate.

そこで、本発明は、レーザ距離計で測距される鋼板の板面端部付近での測定異常の発生を防止することを目的とし、形状矯正前後の搬送装置上の鋼板形状及び形状矯正中の加圧ラム下の鋼板形状を確実に計測できる鋼板形状計測装置、及び、前記鋼板形状計測装置による計測結果を活用して、効率よく形状矯正することが可能な鋼板形状矯正装置を提供する。   Therefore, the present invention aims to prevent the occurrence of measurement abnormality in the vicinity of the edge of the plate surface of the steel plate measured by the laser rangefinder, and the shape of the steel plate on the conveying device before and after shape correction and during shape correction. A steel plate shape measuring device capable of reliably measuring the shape of a steel plate under a pressure ram, and a steel plate shape correcting device capable of efficiently correcting the shape by utilizing a measurement result by the steel plate shape measuring device.

本発明者は、前記課題を解決するために鋭意検討し、以下の知見を得た。
(A)図2に例示した測定異常の原因は、次のように考えられる。すなわち、入射レーザ光LS1が鋼板Sの板面端部(ここでは長手方向端部)と干渉している(光点15が、鋼板Sの板面端部と設備上面ESとで形成された段差部の上下に分断されている)状態では、付近の設備上面ESからの再帰反射光の光強度が、拡散反射光の光強度に比べて無視できない程度に大きくなり、あるいは、拡散反射光の光強度よりも大きくなり、このような再帰反射光が拡散反射光と共にレーザ距離計で検出されるため、測距データが異常値を示すと考えられる。
The present inventor has intensively studied to solve the above problems and has obtained the following knowledge.
(A) The cause of the measurement abnormality illustrated in FIG. 2 is considered as follows. That is, the incident laser beam LS1 interferes with the plate surface end (here, the longitudinal end) of the steel sheet S (the light spot 15 is a step formed by the plate surface end of the steel plate S and the equipment upper surface ES. In the state in which the light is divided up and down), the light intensity of retroreflected light from the upper surface ES of the nearby equipment is so large that it cannot be ignored compared to the light intensity of the diffusely reflected light, or the light of the diffusely reflected light Since the intensity is greater than the intensity and such retroreflected light is detected by the laser rangefinder together with the diffusely reflected light, the distance measurement data is considered to indicate an abnormal value.

ここで、再帰反射とは、広い入射角にわたって、入射光の光路にほぼ沿う方向に、選択的に反射光が戻るような反射のことを指す。
(B)そこで、設備上面ESからの再帰反射光の光強度を低減するために、前記設備上面ES(例えば床面)内の、測定異常を誘発する区域(「測定異常誘発区域」という。)上に、入射レーザ光LS1を有効に吸収するレーザ光吸収体8を設置したところ、図3に示すように、測定異常が解消することが分かった。ただし、入射レーザ光LS1を有効に吸収するレーザ光吸収体8は、45°0°拡散反射率が10%以下の物体である必要がある。ここで、「45°0°拡散反射率」とは、面の入射光に対する拡散光の割合を、前記面の法線に対して前記入射光の入射角を0°、前記拡散光の受光角を45°としてはかった量を意味する。45°0°拡散反射率が10%超の物体では前記測定異常の発生を防止する効果に乏しい。
Here, retroreflection refers to reflection in which reflected light selectively returns in a direction substantially along the optical path of incident light over a wide incident angle.
(B) Therefore, in order to reduce the light intensity of the retroreflected light from the equipment upper surface ES, an area in the equipment upper surface ES (for example, a floor surface) that induces a measurement abnormality (referred to as a “measurement abnormality induction area”). When the laser beam absorber 8 that effectively absorbs the incident laser beam LS1 is installed on the top, as shown in FIG. 3, it has been found that the measurement abnormality is eliminated. However, the laser light absorber 8 that effectively absorbs the incident laser light LS1 needs to be an object having a 45 ° 0 ° diffuse reflectance of 10% or less. Here, “45 ° 0 ° diffuse reflectance” means the ratio of diffused light to incident light on a surface, the incident angle of the incident light with respect to the normal of the surface is 0 °, and the acceptance angle of the diffused light 45 ° means the measured amount. An object having a 45 ° 0 ° diffuse reflectance of more than 10% has a poor effect of preventing the occurrence of the measurement abnormality.

図3は以上の本発明の基礎となる本発明者の知見、すなわち、レーザ光吸収体8の設置により測定異常が解消した例を示す模式図である。図3において、図2と同一または相当部分には同じ符号を付し、説明を省略する。図3(a)は、図2(a)において、レーザ距離計による測距実験で把握した前記測定異常誘発区域上に、レーザ光吸収体8(例えば、後述の黒色塗料塗布材)を設置したことを示しており、図3(b)は、レーザ光吸収体8の設置により、図2(b)に現出していた測定異常が、図3(b)では解消しており、前記輪郭幅が低減し、Z値が高くて安定したX方向範囲と輪郭幅との境界になるX位置(X)が、鋼板領域S’の端にごく近い位置となることを示している。 FIG. 3 is a schematic diagram showing the inventor's knowledge as the basis of the present invention, that is, an example in which the measurement abnormality is eliminated by the installation of the laser light absorber 8. In FIG. 3, the same or corresponding parts as in FIG. In FIG. 3A, a laser light absorber 8 (for example, a black coating material to be described later) is installed on the measurement abnormality inducing area obtained by a distance measuring experiment using a laser distance meter in FIG. FIG. 3 (b) shows that the measurement abnormality that appears in FIG. 2 (b) is eliminated in FIG. 3 (b) due to the installation of the laser light absorber 8, and the contour width is reduced. This indicates that the X position (X C ) that becomes the boundary between the stable X direction range and the contour width with a high Z value is very close to the end of the steel plate region S ′.

上記の知見に基づいてなされた本発明は、以下の発明(1)〜(3)である。
(1) 一つのレーザ光源からのレーザ光をガルバノミラーで転向し、転向したレーザ光にて鋼板を走査し測距するレーザ距離計を用いて、前記鋼板上の所定の検出点群を測距し、得られた測距データから前記鋼板の形状を計測する鋼板形状計測装置において、
前記鋼板の板面端部から該板面端部と干渉したレーザ光の照射範囲までの領域内の前記鋼板の下方の少なくとも一箇所に、レーザ光吸収体として、45°0°拡散反射率が10%以下である物体を備えたことを特徴とする鋼板形状計測装置。
(2) 加圧ラムを備えたプレス機と、前記プレス機の入側及び出側に設けられ且つ鋼板を搬送する搬送装置とを有する鋼板形状矯正装置において、前記プレス機の入側及び出側に前記(1)に記載の鋼板形状計測装置を備えたことを特徴とする鋼板形状矯正装置。
(3) 前記(2)において、前記鋼板形状計測装置のレーザ光吸収体の設置箇所は、前記搬送装置内の、前記鋼板の下方の設備上面内の箇所としたことを特徴とする鋼板形状矯正装置。
This invention made | formed based on said knowledge is the following invention (1)-(3).
(1) Using a laser rangefinder that turns laser light from one laser light source with a galvano mirror, scans the steel plate with the turned laser light, and measures a distance, it measures a predetermined detection point group on the steel plate In the steel plate shape measuring device for measuring the shape of the steel plate from the obtained distance measurement data,
At least one position below the steel plate in the region from the plate surface end of the steel plate to the laser beam irradiation range that interferes with the plate surface end has a 45 ° 0 ° diffuse reflectance as a laser light absorber. A steel plate shape measuring apparatus comprising an object of 10% or less.
(2) In a steel plate shape correction apparatus having a press machine provided with a pressure ram, and a conveying device that is provided on the entry side and the exit side of the press machine and conveys the steel sheet, the entry side and the exit side of the press machine A steel plate shape correcting device comprising the steel plate shape measuring device according to (1) above.
(3) In the above (2), the installation location of the laser beam absorber of the steel plate shape measuring device is a location in the upper surface of the equipment below the steel plate in the transport device. apparatus.

本発明によれば、レーザ距離計による鋼板の板面端部付近での測定異常を防止できて、形状矯正前後の搬送装置上の鋼板形状及び形状矯正中の加圧ラム下の鋼板形状を確実に計測することができ、その計測結果を活用して、効率よく形状矯正することが可能になるという優れた効果を奏する。   According to the present invention, it is possible to prevent measurement abnormality in the vicinity of the plate surface end portion of the steel plate by the laser distance meter, and to ensure the steel plate shape on the conveying device before and after the shape correction and the steel plate shape under the pressure ram during the shape correction. It has an excellent effect that the shape can be measured and the shape can be efficiently corrected using the measurement result.

発明(1)の実施形態に係る鋼板形状計測装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the steel plate shape measuring apparatus which concerns on embodiment of invention (1). レーザ光吸収体を設置していない場合に発生した測定異常の例を示す模式図である。It is a schematic diagram which shows the example of the measurement abnormality which generate | occur | produced when the laser beam absorber is not installed. レーザ光吸収体の設置により測定異常が解消した例を示す模式図である。It is a schematic diagram which shows the example which measurement abnormality eliminated by installation of the laser beam absorber. 発明(2)に係る鋼板形状矯正装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the steel plate shape correction apparatus which concerns on invention (2).

以下、本発明の実施形態について図面を参照しながら説明する。
まず、発明(1)の実施形態について説明する。
図1は、発明(1)の実施形態に係る鋼板形状計測装置の概略構成を示す模式図であり、(a)はレーザ距離計の平面図、(b)は装置全体の平面図、(c)は同正面図、(d)は同側面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an embodiment of the invention (1) will be described.
FIG. 1 is a schematic diagram showing a schematic configuration of a steel sheet shape measuring apparatus according to an embodiment of the invention (1), (a) is a plan view of a laser rangefinder, (b) is a plan view of the entire apparatus, and (c) ) Is a front view thereof, and (d) is a side view thereof.

図1(a)に示すように、レーザ距離計5Aは、一つのレーザ光源11を回転台12に搭載し、レーザ光源11のレーザ出射口に周知のガルバノミラー13を配設してなる。その構成は、ガルバノミラー回転軸13Aが、ガルバノミラー13の反射面と45°の角度をなし、レーザ光源11のレーザ出射口からのレーザ光の光軸に一致し、且つ回転台回転軸12Aと直交する構成としてある。よって、レーザ光源11からのレーザ光はガルバノミラー13で反射して90°転向し、転向後のレーザ光は、鋼板の被走査面へ入射する入射レーザ光LS1となるが、その光路は、ガルバノミラー13への入射点を回転中心として、ガルバノミラー13と共にガルバノミラー回転軸13A周りに回転し、且つ、回転台12と共に回転台回転軸12A周りに回転する。即ち、入射レーザ光LS1はガルバノミラー回転軸13A周りの回転及び回転台回転軸12A周りの回転により全方位を3次元的に走行しうる。よって、レーザ距離計5Aはレーザ光で全方位を3次元的に走査し測距する手段として用いうる。   As shown in FIG. 1A, the laser distance meter 5 </ b> A includes a single laser light source 11 mounted on a turntable 12, and a known galvanometer mirror 13 is disposed at the laser emission port of the laser light source 11. The configuration is such that the galvanometer mirror rotating shaft 13A forms an angle of 45 ° with the reflecting surface of the galvanometer mirror 13, coincides with the optical axis of the laser beam from the laser emission port of the laser light source 11, and the rotating table rotating shaft 12A. The configuration is orthogonal. Therefore, the laser light from the laser light source 11 is reflected by the galvanometer mirror 13 and turned 90 °, and the turned laser light becomes the incident laser light LS1 incident on the surface to be scanned of the steel plate. With the incident point on the mirror 13 as the center of rotation, it rotates around the galvano mirror rotation axis 13A together with the galvano mirror 13 and rotates around the rotation base rotation axis 12A together with the turntable 12. In other words, the incident laser beam LS1 can travel three-dimensionally in all directions by rotation around the galvanometer mirror rotation axis 13A and rotation around the rotary table rotation axis 12A. Therefore, the laser distance meter 5A can be used as means for measuring the distance by three-dimensionally scanning all directions with laser light.

図1(b)、(c)及び(d)に示すように、レーザ距離計5Aは、鋼板形状計測装置5の一部として、鋼板Sの被走査面の斜め上方に位置し、ガルバノミラー回転軸13Aが鋼板Sの長手方向と直交し、回転台回転軸12Aが鋼板Sの幅方向と直交するように配置してある。よって、入射レーザ光LS1は、ガルバノミラー13のガルバノミラー回転軸13A周りの回転により、鋼板S上を長手方向に走行する光点を生じ、該光点は、回転台12の回転台回転軸12A周りの回転により、幅方向に移動する。   As shown in FIGS. 1B, 1C, and 1D, the laser distance meter 5A is positioned obliquely above the scanned surface of the steel sheet S as a part of the steel sheet shape measuring device 5, and rotates the galvanometer mirror. The shaft 13A is arranged so as to be orthogonal to the longitudinal direction of the steel plate S, and the rotary table rotating shaft 12A is arranged so as to be orthogonal to the width direction of the steel plate S. Therefore, the incident laser beam LS1 generates a light spot that travels in the longitudinal direction on the steel sheet S due to the rotation of the galvano mirror 13 around the galvano mirror rotation axis 13A, and the light spot is the rotation axis rotation axis 12A of the turntable 12. Moves in the width direction by rotating around.

鋼板形状計測装置5は、前記光点でもって鋼板Sの被走査面を長手方向及び幅方向に走査して鋼板S上の所定の検出点群を測距し、得られた測距データから、図示しないコンピュータシステムを用いて鋼板Sの形状を計測する。得られた測距データから鋼板Sの形状を計測する方法は、本願出願人が先に提案した前記特許文献2の段落0013〜段落0058に述べてあるような公知の方法を用いることができる。   The steel plate shape measuring device 5 scans the surface to be scanned of the steel plate S in the longitudinal direction and the width direction with the light spot to measure a predetermined detection point group on the steel plate S, and from the obtained distance measurement data, The shape of the steel sheet S is measured using a computer system (not shown). As a method of measuring the shape of the steel sheet S from the obtained distance measurement data, a known method as described in paragraphs 0013 to 0058 of the above-mentioned Patent Document 2 previously proposed by the applicant of the present application can be used.

前記測距データは、前記光点の存在部位からの拡散反射光の光強度を測定し、その測定値に基づいて算出する。
そして、発明(1)では、鋼板Sの板面端部から該板面端部と干渉した入射レーザ光LS1の照射範囲までの領域内の、例えば床面などの設備上面ES上の少なくとも一箇所に、レーザ光吸収体8を備えている。
The distance measurement data is calculated based on the measured value of the light intensity of diffusely reflected light from the site where the light spot exists.
In the invention (1), at least one place on the equipment upper surface ES such as a floor surface in the region from the plate surface end of the steel plate S to the irradiation range of the incident laser light LS1 that interferes with the plate surface end. In addition, a laser light absorber 8 is provided.

前記レーザ光吸収体8が存在しない場合、入射レーザ光LS1が鋼板Sの板面端部と干渉している(光点15が、鋼板Sの水平方向端部と設備上面ESとで形成された段差部の上下に分断されている)状態では、再帰反射光の影響が大きくて、前掲図2に例示した測定異常が発生することがある。これに対し、発明(1)では、図1の様に、前記レーザ光吸収体8を備えたことで、再帰反射光の光強度を低減し、前掲図3に例示したように、測定異常を解消させることができる。   When the laser beam absorber 8 is not present, the incident laser beam LS1 interferes with the plate surface end of the steel plate S (the light spot 15 is formed by the horizontal end of the steel plate S and the equipment upper surface ES. In the state of being divided above and below the step portion, the influence of retroreflected light is large, and the measurement abnormality illustrated in FIG. 2 may occur. On the other hand, in the invention (1), as shown in FIG. 1, by providing the laser light absorber 8, the light intensity of the retroreflected light is reduced, and as illustrated in FIG. It can be eliminated.

前記測定異常を解消させる効果を発揮するために、レーザ光吸収体8は、45°0°拡散反射率が10%以下である物体からなるものとする。なお、前記45°0°拡散反射率は、用いるレーザ光の波長に依存するから、前記45°0°拡散反射測定では、実操業での走査に用いるレーザ光の波長と同じ波長のレーザ光を用いるものとする。   In order to exhibit the effect of eliminating the measurement abnormality, the laser light absorber 8 is made of an object having a 45 ° 0 ° diffuse reflectance of 10% or less. Since the 45 ° 0 ° diffuse reflectance depends on the wavelength of the laser beam used, in the 45 ° 0 ° diffuse reflectance measurement, a laser beam having the same wavelength as that of the laser beam used for scanning in actual operation is used. Shall be used.

レーザ光吸収体8の設置箇所は、レーザ距離計による測距実験により測定異常誘発区域(図2参照)を検出し、この検出結果に基づいて決定するとよい。
これにより、レーザ光吸収体8を設置した箇所からの再帰反射光の光強度を十分に低減させることができ、鋼板Sの測距データ精度が向上し、それにより鋼板Sの形状計測精度が向上する効果が得られる。前記45°0°拡散反射率が10%超では、この効果に乏しいため、前記45°0°拡散反射率は10%以下とすべきであり、好ましくは5%以下である。
The installation location of the laser light absorber 8 may be determined based on a detection result by detecting a measurement abnormality inducing area (see FIG. 2) by a distance measurement experiment using a laser distance meter.
Thereby, the light intensity of the retroreflected light from the place where the laser light absorber 8 is installed can be sufficiently reduced, and the distance measurement data accuracy of the steel plate S is improved, thereby improving the shape measurement accuracy of the steel plate S. Effect is obtained. If the 45 ° 0 ° diffuse reflectance is more than 10%, this effect is poor. Therefore, the 45 ° 0 ° diffuse reflectance should be 10% or less, preferably 5% or less.

前記レーザ光吸収体として好ましく用いうる物体には、例えば、黒色ポリ塩化ビニル(45°0°拡散反射率=5%)、黒色ゴム(45°0°拡散反射率=8%)、黒色塗料塗布材(45°0°拡散反射率=1%)などが挙げられる。   For example, black polyvinyl chloride (45 ° 0 ° diffuse reflectance = 5%), black rubber (45 ° 0 ° diffuse reflectance = 8%), and black paint coating may be used as the laser light absorber. Materials (45 ° 0 ° diffuse reflectance = 1%) and the like can be mentioned.

次に、発明(2)の実施形態について説明する。
図4は、発明(2)に係る鋼板形状矯正装置の概略構成を示す平面図である。この鋼板形状矯正装置は、鋼板Sをオフラインで形状矯正するものであり、鋼板Sの形状を矯正するプレス機1を有する。プレス機1の入側にはベッド3(入側ベッド3)、プレス機1の出側にはベッド4(出側ベッド4)が配設されている。ベッド3、4は、何れも鋼板Sを搬送する複数のローラを備え、これらローラの回転状態を制御することで鋼板Sの搬送方向を制御することができる。また、相隣接するローラ同士の間には、設備上面ESに相当する設備保全用の床板(エプロン)が設置されている。すなわち、これらのベッド3、4が鋼板Sの搬送装置を構成する。また、入側ベッド3及び出側ベッド4の側方には、鋼板Sの位置を検出する位置検出装置7が設けられている。位置検出装置7は、レーザ光にて鋼板Sを搬送方向に走査して鋼板Sの搬送方向沿いの形状を計測し、その形状測定結果から鋼板Sがどの位置にあるかを検出する。なお、位置検出装置7では、板幅方向の1点を長手方向に走査するだけなので、板幅方向全域に亘る長手方向端部の輪郭情報は取得できない。
Next, an embodiment of the invention (2) will be described.
FIG. 4: is a top view which shows schematic structure of the steel plate shape correction apparatus which concerns on invention (2). This steel plate shape correcting device corrects the shape of the steel plate S offline, and includes a press machine 1 that corrects the shape of the steel plate S. A bed 3 (entrance bed 3) is disposed on the entry side of the press machine 1, and a bed 4 (exit bed 4) is disposed on the exit side of the press machine 1. Each of the beds 3 and 4 includes a plurality of rollers for conveying the steel sheet S, and the conveyance direction of the steel sheet S can be controlled by controlling the rotation state of these rollers. Further, a floor plate (apron) for equipment maintenance corresponding to the equipment upper surface ES is installed between adjacent rollers. That is, these beds 3 and 4 constitute a conveying device for the steel sheet S. In addition, a position detection device 7 that detects the position of the steel sheet S is provided on the sides of the entrance bed 3 and the exit bed 4. The position detection device 7 scans the steel sheet S in the transport direction with laser light, measures the shape along the transport direction of the steel sheet S, and detects the position of the steel sheet S from the shape measurement result. Since the position detection device 7 only scans one point in the plate width direction in the longitudinal direction, it cannot acquire the contour information of the end portion in the longitudinal direction over the entire plate width direction.

本実施形態のプレス機1の場合、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメントを付与して鋼板Sの形状を矯正する。鋼板Sの形状は、発明(1)に係る鋼板形状計測装置5によって計測する。鋼板形状矯正のパラメータとしては、例えば鋼板Sの形状から求めた差金隙間(予め設定された長さの差金[基準線分]を鋼板S表面にあてがった時の差金と鋼板との間の隙間)、加圧ラム2による加圧力、シムと呼ばれる敷板の位置と間隔、鋼板Sの位置が挙げられる。本実施形態のプレス機1による鋼板形状矯正は、鋼板Sの下に2本のシムを敷き、そのシム間の部分の鋼板Sを加圧ラム2で加圧する。加圧ラム2による曲げモーメントは、シム間の部分の鋼板Sに生じる。この曲げモーメントによる鋼板Sの変形量と加圧解除時の戻り量、所謂スプリングバック量を加味して、前述した種々のパラメータを調整する。   In the case of the press machine 1 of the present embodiment, the steel plate S is pressed from above with the pressurizing ram 2 to mainly apply a bending moment to the steel plate S to correct the shape of the steel plate S. The shape of the steel plate S is measured by the steel plate shape measuring device 5 according to the invention (1). The steel plate shape correction parameters include, for example, a difference gap obtained from the shape of the steel sheet S (a gap between the difference sheet and the steel sheet when a predetermined length difference [reference line segment] is applied to the surface of the steel sheet S). The pressure applied by the pressurizing ram 2, the position and interval of the floor plate called shim, and the position of the steel plate S are mentioned. In the steel plate shape correction by the press machine 1 of the present embodiment, two shims are laid under the steel plate S, and the steel plate S in the portion between the shims is pressurized with the pressure ram 2. A bending moment due to the pressure ram 2 is generated in the steel sheet S in the portion between the shims. The above-described various parameters are adjusted in consideration of the deformation amount of the steel sheet S due to this bending moment and the return amount upon release of pressure, the so-called springback amount.

入側ベッド3及び出側ベッド4のそれぞれの側方の斜め上方には発明(1)に係る鋼板形状計測装置5を備えた。レーザ距離計5Aのガルバノミラー回転軸13A(図4では図示省略。)及び回転台回転軸12A(図4では図示省略。)の、鋼板Sの長手方向及び幅方向に対する配向は、図1と同様とした。   A steel plate shape measuring device 5 according to the invention (1) is provided obliquely above each side of the entrance bed 3 and the exit bed 4. The orientation of the galvanometer mirror rotating shaft 13A (not shown in FIG. 4) and the rotating table rotating shaft 12A (not shown in FIG. 4) of the laser distance meter 5A with respect to the longitudinal direction and the width direction of the steel sheet S is the same as in FIG. It was.

図4に示した実施形態では、レーザ光吸収体8の設置箇所は、発明(3)に則り、搬送装置内の鋼板S下方の設備上面ES上の箇所として、前述のように実験で検出した測定異常誘発区域内のエプロン上面の箇所を採用した。なお、この実施形態では、入側ベッド3内に測定異常誘発区域が検出されたので、その検出箇所にレーザ光吸収体8を設置したが、これに限定されず、測定異常誘発区域が検出された設備上面ES上の箇所が何処であろうと、その検出箇所にレーザ光吸収体8を設置するのが好ましいことは、いうまでもない。   In the embodiment shown in FIG. 4, the installation location of the laser light absorber 8 is detected in the experiment as described above as a location on the equipment upper surface ES below the steel plate S in the transport device according to the invention (3). The location on the top surface of the apron in the measurement abnormality induction area was adopted. In this embodiment, since the measurement abnormality induction area is detected in the entrance bed 3, the laser light absorber 8 is installed at the detection location. However, the measurement abnormality induction area is not limited to this. Needless to say, it is preferable to install the laser light absorber 8 at the detected location wherever the location is on the equipment upper surface ES.

なお、出側ベッド4の側方にはプレス機1による鋼板Sの形状矯正のための演算処理を行うコンピュータシステムを内蔵する制御装置6を備えた。この演算処理の詳細については、特許文献2の段落0059〜段落0065に記載されるような公知の方法をもちいることができる。   A control device 6 having a built-in computer system that performs arithmetic processing for correcting the shape of the steel sheet S by the press 1 is provided on the side of the exit bed 4. For details of this arithmetic processing, a known method as described in paragraphs 0059 to 0065 of Patent Document 2 can be used.

実施例において、本発明例は、図4に示す実施形態の例である。ここで用いた鋼板Sの公称寸法は、板厚=50mm、板幅=2500mm、板長さ=8000mmである。鋼板S走査用のレーザ距離計5Aから射出させるレーザ光は、波長が1550nmの近赤外線レーザ光とし、該近赤外線レーザ光の出口ビーム径は3mm、拡がり角3mradとした。10m離れた位置では、ビーム径は33mmとなる。図4のレーザ光吸収体8として、前記45°0°拡散反射率が5%である黒色ポリ塩化ビニルを用いた。   In the examples, the present invention is an example of the embodiment shown in FIG. The nominal dimensions of the steel sheet S used here are: plate thickness = 50 mm, plate width = 2500 mm, plate length = 8000 mm. The laser beam emitted from the laser distance meter 5A for scanning the steel sheet S was a near-infrared laser beam having a wavelength of 1550 nm, the exit beam diameter of the near-infrared laser beam was 3 mm, and the divergence angle was 3 mrad. At a position 10 m away, the beam diameter is 33 mm. As the laser light absorber 8 in FIG. 4, black polyvinyl chloride having a 45 ° 0 ° diffuse reflectance of 5% was used.

一方、従来例は、本発明例からレーザ光吸収体8を除去した以外は本発明例と同様の実施形態の例である。
従来例と本発明例の各々で形状計測および形状矯正を行ったところ、従来例では、鋼板Sの先端部(プレス機1に近い側の端部)に、図2と同様、測定異常が発生し、前記輪郭幅は板幅方向分布内の最大で200mmと大きくて、当該先端部の形状矯正に不具合を生じた。
これに対し、本発明例では、図3と同様、測定異常は発生せず、前記輪郭幅は板幅方向分布内の最大で100mmと小さくて、鋼板Sに難なく適正な形状矯正を施すことができた。
On the other hand, the conventional example is an example of an embodiment similar to the example of the present invention except that the laser light absorber 8 is removed from the example of the present invention.
When shape measurement and shape correction were performed in each of the conventional example and the present invention example, in the conventional example, a measurement abnormality occurred at the front end portion of the steel sheet S (the end portion on the side close to the press 1) as in FIG. However, the contour width is as large as 200 mm at the maximum in the distribution in the plate width direction, which causes a problem in the shape correction of the tip portion.
On the other hand, in the example of the present invention, measurement abnormality does not occur as in FIG. 3, the contour width is as small as 100 mm in the distribution in the plate width direction, and appropriate shape correction can be applied to the steel sheet S without difficulty. did it.

1 プレス機
2 加圧ラム
3 ベッド(入側ベッド)
4 ベッド(出側ベッド)
5 鋼板形状計測装置
5A レーザ距離計
6 制御装置
7 位置検出装置
8 レーザ光吸収体
11 レーザ光源
12 回転台
12A 回転台回転軸
13 ガルバノミラー
13A ガルバノミラー回転軸
15 光点
20,21 走査方向
ES 設備上面
ES’ 設備上面領域
LS1 入射レーザ光
S 鋼板
S’ 鋼板領域
1 Press machine 2 Pressurized ram 3 Bed (entrance bed)
4 beds (outside bed)
DESCRIPTION OF SYMBOLS 5 Steel plate shape measuring apparatus 5A Laser distance meter 6 Control apparatus 7 Position detection apparatus 8 Laser light absorber 11 Laser light source 12 Rotary table 12A Rotary table rotating shaft 13 Galvano mirror 13A Galvano mirror rotating shaft 15 Light spot 20, 21 Scan direction ES Equipment Upper surface ES 'Equipment upper surface area LS1 Incident laser beam S Steel sheet S' Steel sheet area

Claims (3)

一つのレーザ光源からのレーザ光をガルバノミラーで転向し、転向したレーザ光にて鋼板を走査し測距するレーザ距離計を用いて、前記鋼板上の所定の検出点群を測距し、得られた測距データから前記鋼板の形状を計測する鋼板形状計測装置において、
前記鋼板の板面端部から該板面端部と干渉したレーザ光の照射範囲までの領域内の前記鋼板の下方の少なくとも一箇所に、レーザ光吸収体として、45°0°拡散反射率が10%以下である物体を備えたことを特徴とする鋼板形状計測装置。
Using a laser rangefinder that turns laser light from one laser light source with a galvanometer mirror, scans the steel plate with the turned laser light, and measures the distance, the predetermined detection point group on the steel plate is measured and obtained. In the steel plate shape measuring apparatus for measuring the shape of the steel plate from the measured distance data,
At least one position below the steel plate in the region from the plate surface end of the steel plate to the laser beam irradiation range that interferes with the plate surface end has a 45 ° 0 ° diffuse reflectance as a laser light absorber. A steel plate shape measuring apparatus comprising an object of 10% or less.
加圧ラムを備えたプレス機と、前記プレス機の入側及び出側に設けられ且つ鋼板を搬送する搬送装置とを有する鋼板形状矯正装置において、前記プレス機の入側及び出側に請求項1に記載の鋼板形状計測装置を備えたことを特徴とする鋼板形状矯正装置。   In a steel plate shape correction apparatus having a press machine provided with a pressure ram, and a conveying device that is provided on the entry side and the exit side of the press machine and conveys the steel sheet, the invention is claimed on the entry side and the exit side of the press machine. A steel plate shape correcting device comprising the steel plate shape measuring device according to claim 1. 請求項2において、前記鋼板形状計測装置のレーザ光吸収体の設置箇所は、前記搬送装置内の、前記鋼板の下方の設備上面内の箇所としたことを特徴とする鋼板形状矯正装置。   3. The steel plate shape correction device according to claim 2, wherein the laser beam absorber is installed in the steel plate shape measuring apparatus at a location in the upper surface of the equipment below the steel plate in the transfer device.
JP2017064341A 2017-03-29 2017-03-29 Steel plate shape measuring device and steel plate shape correcting device Active JP6597696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064341A JP6597696B2 (en) 2017-03-29 2017-03-29 Steel plate shape measuring device and steel plate shape correcting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064341A JP6597696B2 (en) 2017-03-29 2017-03-29 Steel plate shape measuring device and steel plate shape correcting device

Publications (2)

Publication Number Publication Date
JP2018169171A JP2018169171A (en) 2018-11-01
JP6597696B2 true JP6597696B2 (en) 2019-10-30

Family

ID=64020285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064341A Active JP6597696B2 (en) 2017-03-29 2017-03-29 Steel plate shape measuring device and steel plate shape correcting device

Country Status (1)

Country Link
JP (1) JP6597696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560614B2 (en) * 2009-04-27 2014-07-30 株式会社三洋物産 Game machine
JP7036093B2 (en) * 2019-07-22 2022-03-15 Jfeスチール株式会社 Shape measuring device, shape measuring method, steel plate shape straightening device, steel sheet shape straightening method, steel sheet manufacturing device, and steel sheet manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390277A (en) * 1980-07-31 1983-06-28 Mcdonnell Douglas Corporation Flat sheet scatterometer
JPH07208920A (en) * 1994-01-24 1995-08-11 Yamagata Casio Co Ltd Detector
JPH07270126A (en) * 1994-03-30 1995-10-20 Yanagihara Seisakusho:Kk Inspection apparatus for farm products
AUPM533094A0 (en) * 1994-04-27 1994-05-19 Commonwealth Scientific And Industrial Research Organisation Methods and apparatus for determining a first parameter(s) of an object
JP2004245672A (en) * 2003-02-13 2004-09-02 Secom Co Ltd Inspection apparatus and inspection system
JP2009180690A (en) * 2008-02-01 2009-08-13 Nikon Corp Three-dimensional shape measuring apparatus
JP5412829B2 (en) * 2008-12-27 2014-02-12 Jfeスチール株式会社 Steel plate shape straightening device
JP2010210762A (en) * 2009-03-09 2010-09-24 Ricoh Co Ltd Image forming apparatus, image forming method, program and recording medium
JP6003583B2 (en) * 2012-11-27 2016-10-05 Jfeスチール株式会社 Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP2016186472A (en) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 Spectrometric apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2018169171A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6687134B2 (en) Steel shape measuring device and steel shape correcting device
EP1039262B1 (en) Sheet thickness and swell measurement method and apparatus therefor
JP6003583B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP6624121B2 (en) Steel plate shape straightening device
JP6597696B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP5983311B2 (en) Steel plate shape correction method
US20230035237A1 (en) Method for oct weld seam monitoring and also associated laser processing machine and computer program product
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
JP2010185763A (en) Planarity inspection apparatus and planarity inspection method of film
JP5266033B2 (en) Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device
KR20110010513A (en) Apparatus for alignment measuring of rolling roll using laser
JP6645526B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP6951439B2 (en) Surface inspection method, surface inspection equipment and product manufacturing method
US20230001522A1 (en) Method and device for determining an actual state of supporting bars of a workpiece support, and machine tool having a device of this type
JP4859127B2 (en) Cylindrical automatic inspection method
JP4599728B2 (en) Non-contact film thickness measuring device
JP2020122709A (en) Forging press apparatus, forging press method and manufacturing method for metal material
JP2001276974A (en) Method for detecting groove width and dislocation quantity
JP2019518607A (en) Bending beam for pivoting bending machines
JP5589362B2 (en) Method and apparatus for detecting center position of butt gap of steel plate
JP2016148596A (en) Linear array camera calibration method for surface inspection device
KR102371806B1 (en) Surface detecting device with auto calibration and monitoring system of conveyor belt using thereof
JP7036093B2 (en) Shape measuring device, shape measuring method, steel plate shape straightening device, steel sheet shape straightening method, steel sheet manufacturing device, and steel sheet manufacturing method
WO2023286791A1 (en) Surface shape measurement device, surface shape measurement method, and conveyor belt management method
JP6393666B2 (en) Steel plate behavior detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6597696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250