JP5962470B2 - 車両挙動制御装置 - Google Patents

車両挙動制御装置 Download PDF

Info

Publication number
JP5962470B2
JP5962470B2 JP2012262611A JP2012262611A JP5962470B2 JP 5962470 B2 JP5962470 B2 JP 5962470B2 JP 2012262611 A JP2012262611 A JP 2012262611A JP 2012262611 A JP2012262611 A JP 2012262611A JP 5962470 B2 JP5962470 B2 JP 5962470B2
Authority
JP
Japan
Prior art keywords
vehicle
state
viscous coupling
propeller shaft
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012262611A
Other languages
English (en)
Other versions
JP2014108658A (ja
Inventor
山田 芳久
芳久 山田
岳史 狩野
岳史 狩野
龍司 高須
龍司 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012262611A priority Critical patent/JP5962470B2/ja
Publication of JP2014108658A publication Critical patent/JP2014108658A/ja
Application granted granted Critical
Publication of JP5962470B2 publication Critical patent/JP5962470B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Description

本発明は、車両挙動制御装置、特に、プロペラシャフト上にビスカスカップリングを備える車両で車両横滑りが発生した場合の制御を最適化する車両挙動制御装置に関する。
近年の車両は、様々な技術が導入されてより安定した走行ができるようになってきている。例えば、カーブを曲がる時に起こりやすい横滑りを抑え、走行状態を安定させる車両挙動制御装置を搭載する車両がある。この車両挙動制御装置は、車両の横滑りが検出されると、4輪個々の制動力とエンジンの出力を自動的に制御し、車両の安定性を確保するようにしている。
ところで、車両の駆動方式の1つとして、スタンバイ式4WDと呼ばれる方式を採用した車両がある。このスタンバイ式4WD車両は、通常は例えば前輪側の二輪駆動で走行し、駆動輪が空転した場合には残りの二輪にも駆動力を自動的に伝達する構造になっている。なお、このようなスタンバイ式4WD車両は、一般的にはセンターデフを持たない。そして、スタンバイ式4WD車両の中には、前輪側の車軸と後輪側の車軸との間に配置されるプロペラシャフト上にビスカスカップリングを備える車両がある(例えば、特許文献1参照)。
ビスカスカップリングは、ケースハウジング側に接続されたアウタブレードと内軸側に接続されたインナブレードを交互に複数配置し、その間にシリコンオイルを封入した構造である。このように構造のビスカスカップリングにおいて、駆動輪側に駆動スリップが発生した場合、前後輪に回転差が発生する。そして、ビスカスカップリング内のシリコンオイルが攪拌され、その攪拌熱によりシリコンオイルが膨張するとインナブレードとアウタブレードが圧着される。この状態をハンプ状態という。ハンプ状態になると、ビスカスカップリングの前後のプロペラシャフトが直結状態となり、駆動力が今まで非駆動輪であった車輪に伝達されるようになる。
特開平04−306159号公報
しかし、ビスカスカップリングをプロペラシャフト上に配置したスタンバイ式4WDの車両に上述した車両挙動制御装置を適用しようとする場合、考慮しなければならない点がある。例えば、スタンバイ式4WDの車両で旋回時にオーバステア傾向になり、車両の後輪側が横滑りを始めると前後輪に速度差が生じた状態で、車両挙動制御装置により制動力が例えば旋回外輪の前輪に与えられる。この状態で、ビスカスカップリングがハンプ状態になると前輪側と後輪側とが直結状態になる。この場合、最も車輪速の遅い車輪を基準として車輪のロック傾向を招く。したがって、ビスカスカップリングをプロペラシャフト上に配置したスタンバイ式4WDの車両に車両挙動制御装置を適用するためには、ビスカスカップリングの特性を考慮した対策が必要となる。
本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、プロペラシャフト上にビスカスカップリングを備える車両で車両横滑り挙動が生じた場合の制御を最適化する車両挙動制御装置を提供することにある。
上記課題を解決するために、本発明のある態様の車両挙動制御装置は、車両の前輪側の車軸と後輪側の車軸との間に配置されるプロペラシャフト上にビスカスカップリングを備える車両挙動制御装置であって、前記車両の車両横滑り挙動を検出する車両挙動検出手段と、前記車両横滑り挙動を検出した場合に制御対象輪に対して、前記車両の車速に応じて設定した目標スリップ率にもとづく制動力を付与して車両の安定化制御を実行する挙動制御手段と、を含む。前記挙動制御手段は、前記ビスカスカップリングを挟んで前輪側のプロペラシャフトの回転状態と前記後輪側のプロペラシャフトの回転状態とに基づいて前記ビスカスカップリングの動作状態が非ハンプ状態であるときに前記安定化制御を実行する。
この態様によると、ビスカスカップリングがハンプ状態でない場合に挙動制御手段は、制御対象輪の制御、例えば制動制御を行う。その結果、ビスカスカップリングのハンプ状態に起因する車輪のロック傾向を招くことなく安定化制御が実行できる。また、制御対象輪と他の車輪との回転速度差が大きくならないように制御可能になり、ビスカスカップリングの回転数差がハンプ状態に移行しにくい許容回転数差を超えないようにすることができる。
前記挙動制御手段は、前輪側のプロペラシャフトの回転数と前記後輪側のプロペラシャフトの回転数との回転数差とに基づき、前記ビスカスカップリングの動作状態が非ハンプ状態であるか否か推定してもよい。プロペラシャフトの回転数は、例えばプロペラシャフトの回転状態を直接検出してもよいし、車軸を介して接続された各車輪の車輪速度から算出してもよい。この態様によれば、ビスカスカップリングがハンプ状態に移行する回転数差を予め試験等で求めておき、その回転数差との比較によって非ハンプ状態か否かを推定できる。なお、この推定を行う場合、所定の安全率を考慮しておくことが望ましい。
前記挙動制御手段は、前記回転数差と、前記回転数差が所定値を越えてからの経過時間に基づき、前記ビスカスカップリングの動作状態が非ハンプ状態であるか否か推定してもよい。ビスカスカップリングのハンプ状態は、ビスカスカップリングのインナブレードとアウタブレードとの相対回転によって、このブレードの周囲に充填されたシリコンオイルが攪拌され熱膨張することで主に発生する。したがって、回転数差が所定値を越えてからの経過時間と、そのときの回転数差に基づいてシリコンオイルの熱膨張状態を推定してもよい。このようにシリコンオイルの状態推定を行うことで、ビスカスカップリングが非ハンプ状態か否かの推定の精度が向上できる。
前記挙動制御手段は、前記ビスカスカップリングの動作状態がハンプ状態に移行したときに前記安定化制御を終了してもよい。この態様によれば、ビスカスカップリングのハンプ状態に起因する車輪のロック傾向を防止できる。
本発明によれば、プロペラシャフト上にビスカスカップリングを備える車両で車両横滑り挙動が生じた場合の制御をより最適化できる。
実施の形態に係る車両挙動制御装置を備える車両の基本的な構成を説明する説明図である。 実施の形態に係る車両挙動制御装置を備える車両に搭載されるビスカスカップリングの構成を説明する概略図である。 ビスカスカップリングの回転数差と粘性トルクの関係を説明する説明図である。 ビスカスカップリングのインナブレードとアウタブレードとの間に発生する摩擦トルクと経過時間との関係を説明する説明図である。 制御対象輪へのスリップ率の最大許容値と車速との関係を説明する説明図である。 実施の形態に係る車両挙動制御装置の制御を説明するフローチャートである。
以下、図面を参照しながら、本発明を実施するための最良の形態(以下、実施形態という)について詳細に説明する。
図1は、実施形態に係る車両挙動制御装置を備える車両10の基本的な構成を説明する説明図である。なお、図1において、本実施形態を説明する上で必要とされない構成については図示を省略するとともに、その説明を省略している。
図1に示す車両10は、左前輪である車輪12FLと右前輪である車輪12FRとを接続する前輪側の車軸14Fと、左後輪である車輪12RLと右後輪である車輪12RRとを接続する後輪側の車軸14Rとの間に、プロペラシャフト16が配置されている。そして、このプロペラシャフト16上には、ビスカスカップリング18が配置され、プロペラシャフト16を前側プロペラシャフト16Fと後側プロペラシャフト16Rとに分割するような形態をとっている。ビスカスカップリング18の構造については後述するが、ビスカスカップリング18は、高粘度シリコンオイルの剪断抵抗を利用した流体クラッチの一種で、変速機を介したエンジン22の駆動力を後輪側に伝達する場合と非伝達とする場合とを自動的に切り替える機械部品である。したがって、車両10は、通常は例えば前輪側の二輪駆動で走行し、駆動輪が空転したときに、ビスカスカップリング18を挟む前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差が所定状態以上になった場合に、残りの二輪、つまり後輪側に駆動力を自動的に伝達する。
前輪側の車輪12FL、12FRを接続する車軸14Fには、前輪側のデファレンシャルギア20が配置されると共に図示を省略した操舵装置が配置され、転舵操作に応じて前輪側の車輪12FL、12FRが転舵される。各車輪12FL,12FR,12RL,12RR(以下、特に区別しない場合には単に車輪12という)には、それぞれ、ブレーキ装置24FL,24FR,24RL,24RR(以下、特に区別しない場合には単にブレーキ装置24という)を備える。
各ブレーキ装置24は、ブレーキ電子制御ユニット(ブレーキECU)26からの指令に基づき動作するブレーキアクチュエータ28による作動液(ブレーキ液)の供排動作で制動力の制御が個別に実行される。ブレーキアクチュエータ28は、複数の電磁弁を含み、各ブレーキ装置24ごとに作動液の供排及び保持を詳細に制御し制動力を調節する。なお、ブレーキアクチュエータ28は、運転者が操作するブレーキペダルにより動作するマスタシリンダ(不図示)による作動液の供排によっても動作し、各ブレーキ装置24に制動力を発生させることができる。
エンジン22は、エンジン電子制御ユニット(エンジンECU)30により出力状態が制御される。エンジンECU30は運転者の操作や車両状態に基づき、出力目標値を決定し、エンジン22の出力制御を実行する。図示を省略した変速機は、エンジン22からの動力の速度とトルクを調整し、車軸14Fに伝達して、車輪12FL、車輪12FRを駆動輪として動作させるとともに、前側プロペラシャフト16Fに動力を伝達する。したがって、前側プロペラシャフト16Fは、基本的には車軸14Fと連動して回転する。一方、後側プロペラシャフト16Rは、ビスカスカップリング18の非直結時には、基本的には従動輪である後輪が接続された車軸14Rによって回転させられる。なお、車軸14R上には、後輪側のデファレンシャルギア21が配置されている。そして、ビスカスカップリング18が直結状態になった場合に、前側プロペラシャフト16Fの回転力が伝達され、後輪側の車軸14Rにエンジン22で発生した動力を伝達する。
本実施形態の車両10には、走行中に車両が横滑りを起こした場合に、その横滑りを解消する方向に制御する車両挙動制御装置が搭載されている。具体的には、安定化電子制御ユニット(安定化ECU)32が、車両10の挙動に基づいてブレーキECU26及びエンジンECU30と協働して、各車輪12に対する制動力やエンジン22の出力を制御し、車両10の挙動を安定させる。例えば、オーバステア時には、旋回外輪側の前輪のブレーキ装置24で制動力を発生させることにより、車両10に旋回方向とは逆方向のモーメントが生じるようにしてオーバステア挙動を抑制する。
車両10の挙動、例えば横滑りが生じたか否かは、安定化ECU32に提供される各種センサからの情報に基づいて検出できる。安定化ECU32には、例えば、車輪速センサ34、ヨーレートセンサ36、ハンドル角センサ38、加速度センサ40等が接続されている。車輪速センサ34は、各車輪12の近傍に配置され、個々の車輪12の車輪速を検出する。ヨーレートセンサ36は、車両10の旋回方向への回転角の変化速度を検出する。ハンドル角センサ38は、ステアリングホイールの回転角度を検出する。加速度センサ40は、車両10の主に横加速度を検出する。安定化ECU32は、これらのセンサからの情報に基づき、例えば車両10がオーバステア傾向にあるか否かを検出する。具体的には、安定化ECU32は、ハンドル角センサ38から操舵角θ1と、車輪速センサ34から情報に基づく車速Vを受け取り、予め設定されているロジックにしたがって、車両10に発生すべき目標ヨーレートY0を設定する。目標ヨーレートY0は、予め準備された、操舵角θ0に対して目標ヨーレートが定まる三次元マップを参照して求めてもよいし、または所定の計算式に操舵角θ1を代入することによって求めてもよい。
そして、安定化ECU32は、ヨーレートセンサ36で検出された車両10に実際に発生している実ヨーレートY1と、先に設定した目標ヨーレートY0とを比較し、車両10の挙動状態を判定する。例えばオーバステア傾向は、転舵角通りに車両10が走行した場合に予想されるヨーレートよりも、実際に発生しているヨーレートが大きい状態、アンダステア傾向は、実際のヨーレートが目標ヨーレートより小さい状態をいう。したがって、目標ヨーレートと実ヨーレートを比較することで、車両の挙動状態を判定することができる。なお、本実施形態における安定化ECU32が、車両挙動検出手段及び挙動制御手段として機能する。
図2は、ビスカスカップリング18の構成を説明する概略図である。
ビスカスカップリング18は、ハウジング50と内軸52とで構成されている。そして、ハウジング50と内軸52の間に形成される空間に、複数のブレードが収納されるとともに、粘性流体としてシリコンオイルが充填されている。ハウジング50の内周壁には、一定間隔で複数枚のアウタブレード54が固定されている。また内軸52の外周面には、一定間隔で複数枚のインナブレード56が固定されている。アウタブレード54とインナブレード56とは僅かな隙間を保つように交互に配置され、その隙間にシリコンオイルが充填されている。ハウジング50と内軸52との間にシール58が配置され、シリコンオイルの密封状態が維持されるように構成されている。そして、アウタブレード54を有するハウジング50は、例えば、前側プロペラシャフト16Fに接続され、インナブレード56を有する内軸52は、後側プロペラシャフト16Rに接続されている。
ビスカスカップリング18は、アウタブレード54が接続されたハウジング50とインナブレード56が接続された内軸52との間で回転数差が生じた場合に、ブレード間に存在するシリコンオイルが攪拌され、シリコンオイルの温度が上昇する。図3は、ビスカスカップリング18の回転数差とブレード間に発生する粘性トルクの関係を説明する説明図である。このように、回転数差に起因してアウタブレード54とインナブレード56の間の粘性トルクが上昇するとシリコンオイルが熱膨張する。これにより、ビスカスカップリング18の内部圧力が上昇し、アウタブレード54とインナブレード56との間に摩擦トルクが発生する。このような現象を「ハンプ状態」という。図4は、ビスカスカップリング18のアウタブレード54とインナブレード56との間に発生する摩擦トルクと経過時間との関係を説明する説明図である。回転数差を伴ったまま時間が経過するとハンプ状態に移行して、摩擦トルクが急激に増加し、アウタブレード54とインナブレード56とが密着状態となり実質的に一体化する。つまり、ハウジング50により内軸52が回転させられることになる。
このような特性を持つビスカスカップリング18を車両10のプロペラシャフト16上に配置した場合の動作について説明する。
まず、車両10が直進走行している場合を考える。この場合、ハウジング50は前側プロペラシャフト16Fを介して変速機(不図示)から伝達される駆動力により回転している。一方、内軸52は、従動回転している後輪側の車軸14Rの回転によって回転させられている後側プロペラシャフト16Rによって回転させられている。車両10が直進走行している場合には、4輪ともほぼ等速で回転しているので、ハウジング50と内軸52もほぼ等速で回転する。したがって、ハウジング50及び内軸52と共に回転するアウタブレード54及びインナブレード56の相対位置はほぼ一定となり、アウタブレード54及びインナブレード56の周囲に存在するシリコンオイルは殆ど攪拌されることはない。つまり、シリコンオイルの温度が上昇してハンプ状態に至ることはない。
次に、車両10が旋回した場合を考える。車両10が標準的な旋回をする場合、前輪側が描く円弧の半径に比べて、後輪側が描く円弧の半径が短くなる。したがって、前側プロペラシャフト16Fが後側プロペラシャフト16Rより多く回転することになる。ビスカスカップリング18は流体クラッチの一種なので、前輪側の回転数と後輪側の回転数の回転数差を吸収することができる。この場合、ハウジング50と内軸52の回転数差、つまり、アウタブレード54とインナブレード56との回転数差に応じて、図3に示すように粘性トルクが上昇するが、ハンプ状態に至ることがないようにシリコンオイル等の選択が行われており、車両10のスムーズな旋回挙動を実現する。
次に、停車時に駆動輪(車両10の場合前輪)がスタックして空転した場合を考える。この場合、前輪側が回転し、後輪側は殆ど回転しない。したがって、前側プロペラシャフト16Fに接続されたハウジング50が回転し、後側プロペラシャフト16Rに接続された内軸52は殆ど回転しない。つまり、ほぼ静止状態のインナブレード56に対してアウタブレード54が高速回転して、ブレード間に存在するシリコンオイルを攪拌する。その結果、シリコンオイルの温度が上昇し熱膨張する。これにより、ビスカスカップリング18の内部圧力が上昇し、アウタブレード54とインナブレード56とが密着しハンプ状態に移行する。その結果、アウタブレード54とインナブレード56とが一体化しハウジング50により内軸52が回転させられる。つまり、前側プロペラシャフト16Fと後側プロペラシャフト16Rとが直結状態となり、後輪側に変速機(不図示)からの出力が伝達されて4輪駆動状態になる。この場合、後輪側の駆動力により車両10がスタック状態から脱出できる可能性を増大させる。
ところで、本実施形態の車両10は、前述したように、例えば急激なステアリング操作等により横滑り(スピン)し始め、例えばオーバステア傾向になった場合、そのスピン挙動を抑制するように安定化制御が実行される。例えば、旋回外輪側の前輪のブレーキ装置24で制動力を発生させて、車両10に旋回方向とは逆方向のモーメントを発生させようとする。しかし、このようなオーバステア傾向になった場合、車両安定化制御により車輪に制動力を付加すると車輪速差が生じてビスカスカップリングがハンプ状態になる。ハンプ状態に移行すると、4輪が同じように駆動回転しようとするため、安定化制御の制御対象になった車輪12、つまり制動力が発生している車輪12の回転に近づけようとし、車両10全体としては強い制動がかけられたときと同じ状態となり、横滑り抑制しようとしているにも拘わらず横滑りを増長するような結果を招く場合がある。
そこで、本実施形態の車両10に搭載された車両挙動制御装置は、ビスカスカップリング18の動作状態に基づいて、ビスカスカップリング18が非ハンプ状態であるときのみに安定化制御を実行するように制御する。
具体的には、安定化ECU32は、各車輪12の車輪速を車輪速センサ34介して取得し、前輪側の車軸14Fと後輪側の車軸14Rの回転数を取得する。つまり、前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数に基づき、その回転数差を取得する。安定化ECU32は、予め試験等により前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差とハンプ状態移行の有無を定めた非ハンプ状態回転数差情報を保持している。この非ハンプ状態回転数差情報と実際に取得した前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差とを比較することによりビスカスカップリング18が、非ハンプ状態か否か推定することができる。つまり、安定化ECU32は、ビスカスカップリング18が非ハンプ状態であると推定される期間に限って、安定化制御を実施する。この場合、安定化制御中にハンプ状態にならないので、前述したようなハンプ状態に起因する車輪のロック傾向を防止しつつ、元々発生していた車両の横滑りの抑制を行うことができる。つまり、安定化制御の効果を有効に使うことができる。
なお、前述したように、ビスカスカップリング18は、主としてシリコンオイルの熱膨張によって生じる。したがって、回転数差が小さい場合でも回転数差が生じている時間が長い場合、回転速度差が大きい場合と同様に熱膨張する。したがって、非ハンプ状態であるか否か推定する場合、安定化ECU32は、回転数差とともに回転数差が生じてからの経過時間とに基づいて推定処理を行うことにより、より推定精度を向上することができる。なお、ビスカスカップリング18は、回転数差が僅かな場合、つまり標準的な旋回動作を行う場合には、シリコンオイルの熱膨張は僅かであり、ハンプ状態にならないように設定されている。したがって、回転数差とともに回転数差が生じてからの経過時間とに基づいて推定する場合は、回転数差が所定値を越えてからの経過時間で、回転数差を積分することが望ましい。この積分によりアウタブレード54とインナブレード56のすべり長さ、つまり発熱量を算出することができる。そして、ビスカスカップリング18の特性から得られるハンプ状態に移行するとされる発熱量と比較することで、非ハンプ状態か否かの推定を行うようにすることが望ましい。
また、安定化ECU32は、安定化制御を行う場合、制御対象輪を含む前輪側の前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差(回転速度差)が大きくならないように制御対象輪で発生させる制動力を制御することが望ましい。つまり、ハンプ状態に移行することを抑制するような範囲で安定化制御を実行する。例えば、回転数差が100rpmならハンプ状態に移行しない、または移行するまでの時間が十分に長くなるという特性のビスカスカップリング18の場合、制御対象輪に制動力を付与した場合でも前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差が100rpmになるように制御対象輪の制動目標値(スリップ率)を設定すればよい。例えば、前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転速度差が4km/hの場合、回転数差が100rpmであるとする。車両10が80km/hで走行していた場合、4輪共に80km/hの速度で回転している。このとき、安定化制御の制御対象輪である前側外側の車輪12が10%速度が落ち込むように制動力の目標値(スリップ率)を設定すると、前輪側の平均速度は76km/hとなり、制動力が付与されない後輪側の平均速度の80km/hとの速度差が4km/hとなる。つまり、前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差は100rpmになる。同様に、各車速について、目標値(スリップ率)を算出すると、図5のようなマップが得られる。図5のマップにしたがって、車速に応じて制御対象輪の制動力の目標値(スリップ率)を設定すると、ビスカスカップリング18の回転数差が許容回転数差を超えないような範囲で安定化制御が実行できる。この場合、ビスカスカップリング18がハンプ状態に移行することを抑制または遅らせることができる。その結果、オーバステア傾向(車両横滑り状態)であっても安定化制御を継続して実行可能となり、車両10の姿勢を安定化方向に修正できる。なお、安定化ECU32は、図5に示すようなマップを保持してもよいし、各車輪速に基づいてリアルタイムで演算を行い、スリップ率を決定するようにしてもよい。また、スリップ率を決定する場合、路面μを考慮して設定してもよい。
図6は、本実施形態の車両挙動制御装置の動作を説明するフローチャートである。
安定化ECU32は、車両10の走行中に、各センサから提供される情報に基づいて、所定の制御周期で車両10が車両横滑り状態であるか否か判定するために用いる目標ヨーレートを車輪速センサ34、ハンドル角センサ38等からの情報に基づいて設定する(S100)。また、そのときの実ヨーレートをヨーレートセンサ36からの情報に基づき取得する(S102)。安定化ECU32は、目標ヨーレートと実ヨーレートとを比較することにより、車両10が現在車両横滑り状態であるか否か判定する(S104)。もし、目標ヨーレートと実ヨーレートとの差異が許容範囲以内の場合、車両横滑り状態ではないと判定し(S104のN)、S100の処理に戻る。
一方、S104で、目標ヨーレートと実ヨーレートとの差異が許容範囲を越え、車両横滑り状態であると判定した場合(S104のY)、安定化ECU32は、制御対象輪を決定する(S106)。例えば、車両10が左方向に旋回時にオーバステア傾向になった場合、制御対象輪は、右前側の車輪12FRになる。続いて、安定化ECU32は、現在の車両10の車速にしたがって、目標スリップ率を決定する(S108)。そいて、安定化ECU32は、車輪速センサ34からの情報に基づいて前側プロペラシャフト16Fと後側プロペラシャフト16Rの回転数差を算出し、ビスカスカップリング18がハンプ状態か否か推定する(S110)。なお、別の実施例では、前側プロペラシャフト16Fと後側プロペラシャフト16Rにそれぞれ回転数センサを設けて、回転数差を直接検出してもよい。同様に、ビスカスカップリング18のハウジング50と内軸52の回転数を直接検出してハンプ状態か否かを推定してもよい。
安定化ECU32は、ビスカスカップリング18が非ハンプ状態であるとの推定結果が得られた場合(S112のY)、S108で設定したスリップ率に基づき制御対象輪の制御を行い、車両10の安定化制御を実行するとともに(S114)、次の制御周期に再びS100からの処理を実行し、安定化制御を継続するか否かを決定する。S112において、非ハンプ状態ではない、つまり、ハンプ状態であるとの推定結果が得られた場合(S112のN)、今回の制御周期で安定化制御が実行中なら、安定化制御を終了させ(S116)、次の制御周期に再びS100からの処理を実行し、安定化制御を再開するか否かを決定する。
なお、図6に示すフローチャートは一例であり、ビスカスカップリング18が非ハンプ状態か否かを推定、または検出して、ハンプ状態である場合に安定化制御を実行しないようにできればよく、処理の順番等は適宜変更可能であり、同様な効果を得ることができる。
以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
10 車両、 12 車輪、 14 車軸、 16 プロペラシャフト、 18 ビスカスカップリング、 20,21 デファレンシャルギア、 22 エンジン、 24 ブレーキ装置、 26 ブレーキECU、 28 ブレーキアクチュエータ、 30 エンジンECU、 32 安定化ECU、 34 車輪速センサ、 36 ヨーレートセンサ、 38 ハンドル角センサ、 50 ハウジング、 52 内軸、 54 アウタブレード、 56 インナブレード。

Claims (4)

  1. 車両の前輪側の車軸と後輪側の車軸との間に配置されるプロペラシャフト上にビスカスカップリングを備える車両挙動制御装置であって、
    前記車両の車両横滑り挙動を検出する車両挙動検出手段と、
    前記車両横滑り挙動を検出した場合に制御対象輪に対して、前記車両の車速に応じて設定した目標スリップ率にもとづく制動力を付与して車両の安定化制御を実行する挙動制御手段と、
    を含み、
    前記挙動制御手段は、前記ビスカスカップリングを挟んで前輪側のプロペラシャフトの回転状態と前記後輪側のプロペラシャフトの回転状態とに基づいて前記ビスカスカップリングの動作状態が非ハンプ状態であるときに前記安定化制御を実行することを特徴とする車両挙動制御装置。
  2. 前記挙動制御手段は、前輪側のプロペラシャフトの回転数と前記後輪側のプロペラシャフトの回転数との回転数差とに基づき、前記ビスカスカップリングの動作状態が非ハンプ状態であるか否か推定することを特徴とする請求項1記載の車両挙動制御装置。
  3. 前記挙動制御手段は、前記回転数差と、前記回転数差が所定値を越えてからの経過時間に基づき、前記ビスカスカップリングの動作状態が非ハンプ状態であるか否か推定することを特徴とする請求項2記載の車両挙動制御装置。
  4. 前記挙動制御手段は、前記ビスカスカップリングの動作状態がハンプ状態に移行したときに前記安定化制御を終了することを特徴とする請求項1から請求項のいずれか1項に記載の車両挙動制御装置。
JP2012262611A 2012-11-30 2012-11-30 車両挙動制御装置 Expired - Fee Related JP5962470B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262611A JP5962470B2 (ja) 2012-11-30 2012-11-30 車両挙動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262611A JP5962470B2 (ja) 2012-11-30 2012-11-30 車両挙動制御装置

Publications (2)

Publication Number Publication Date
JP2014108658A JP2014108658A (ja) 2014-06-12
JP5962470B2 true JP5962470B2 (ja) 2016-08-03

Family

ID=51029556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262611A Expired - Fee Related JP5962470B2 (ja) 2012-11-30 2012-11-30 車両挙動制御装置

Country Status (1)

Country Link
JP (1) JP5962470B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825400B2 (ja) * 1986-12-15 1996-03-13 マツダ株式会社 車両のディファレンシャル装置
JPH01311939A (ja) * 1988-06-10 1989-12-15 Aisin Seiki Co Ltd 全輪駆動車両のアンチスキツドブレーキ装置
JP2000344077A (ja) * 1999-06-08 2000-12-12 Toyota Motor Corp 車両の挙動制御装置
JP4258265B2 (ja) * 2003-04-30 2009-04-30 日産自動車株式会社 車両挙動制御装置
JP4872386B2 (ja) * 2006-03-08 2012-02-08 株式会社アドヴィックス 車両の運動制御装置

Also Published As

Publication number Publication date
JP2014108658A (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
JP4704767B2 (ja) 車両駆動制御装置
JP6729441B2 (ja) 四輪駆動車両の制御装置
JP6662368B2 (ja) 四輪駆動車両の制御装置
JP5816286B2 (ja) 四輪駆動車両の駆動力制御装置
US20070112499A1 (en) Vehicle behavior control device
BRPI0706813A2 (pt) sistema de controle para um veìculo
US11285809B2 (en) Travel control apparatus for four-wheel drive vehicle
US9014938B2 (en) Travel control apparatus for four-wheel drive vehicle and travel control method for four-wheel drive vehicle
JP2004106649A (ja) 4輪駆動車の動力配分制御装置
JP2008184030A (ja) 車両用差動制限装置の制御装置
JP5195309B2 (ja) 車両用制御装置、車両用制御装置の制御方法、駆動力配分制御装置及び駆動力配分制御装置の制御方法
JP4600126B2 (ja) 車両姿勢制御装置
JP5962470B2 (ja) 車両挙動制御装置
JP4662060B2 (ja) 車両の駆動力分配制御装置
JP2008094214A (ja) 車両運動制御装置
JP6520890B2 (ja) 四輪駆動車の挙動制御装置
JP4730543B2 (ja) 車両の駆動力分配制御装置
JP6141751B2 (ja) 駆動力配分制御装置
JP4368271B2 (ja) 車両の走行制御装置
US11155162B2 (en) Travel control apparatus
JP2007302115A (ja) 4輪駆動車の駆動力制御方法
JP6521450B2 (ja) 車両の駆動力制御装置
KR101330692B1 (ko) 토크 벡터링 장치가 적용된 선회주행 제어시스템 및 그의 제어방법
JP5906048B2 (ja) 車両挙動制御装置
JP2009214684A (ja) 車両の挙動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R151 Written notification of patent or utility model registration

Ref document number: 5962470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees