JP5961084B2 - Radiant air conditioner - Google Patents

Radiant air conditioner Download PDF

Info

Publication number
JP5961084B2
JP5961084B2 JP2012208034A JP2012208034A JP5961084B2 JP 5961084 B2 JP5961084 B2 JP 5961084B2 JP 2012208034 A JP2012208034 A JP 2012208034A JP 2012208034 A JP2012208034 A JP 2012208034A JP 5961084 B2 JP5961084 B2 JP 5961084B2
Authority
JP
Japan
Prior art keywords
temperature detector
refrigerant pipe
refrigerant
room temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012208034A
Other languages
Japanese (ja)
Other versions
JP2014062681A (en
Inventor
安藤 之仁
之仁 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Inaba Denki Sangyo Co Ltd
Original Assignee
Sharp Corp
Inaba Denki Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Inaba Denki Sangyo Co Ltd filed Critical Sharp Corp
Priority to JP2012208034A priority Critical patent/JP5961084B2/en
Priority to CN201380038313.XA priority patent/CN104541110B/en
Priority to PCT/JP2013/075027 priority patent/WO2014046084A1/en
Priority to KR1020157004001A priority patent/KR101656631B1/en
Priority to SE1550060A priority patent/SE1550060A1/en
Publication of JP2014062681A publication Critical patent/JP2014062681A/en
Application granted granted Critical
Publication of JP5961084B2 publication Critical patent/JP5961084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Description

本発明は輻射式空気調和機に関する。   The present invention relates to a radiation type air conditioner.

家屋用のヒートポンプ式空気調和機で、室外機と室内機に分かれたいわゆるセパレート型の空気調和機では、室外機に熱交換器とファンが設けられるとともに、室内機にも熱交換器とファンが設けられるのが通常の構造である。これに対し、同じセパレート型の空気調和機であっても、室内機の熱交換器を輻射パネルとして構成し、ファンを用いることなく、熱の輻射により室内の冷房または暖房を行うタイプのものも存在する。その例を特許文献1〜3に見ることができる。   In a so-called separate type air conditioner, which is a heat pump type air conditioner for a house and divided into an outdoor unit and an indoor unit, the outdoor unit is provided with a heat exchanger and a fan, and the indoor unit also has a heat exchanger and a fan. It is a normal structure that is provided. On the other hand, even in the same separate type air conditioner, there is a type in which the indoor unit heat exchanger is configured as a radiant panel and the room is cooled or heated by heat radiation without using a fan. Exists. Examples thereof can be seen in Patent Documents 1 to 3.

特許文献1に記載された空気調和機は建屋の天井に配設される輻射パネルを備える。輻射パネルの内部には冷媒配管が蛇行状に配置されている。冷房運転時には輻射パネルで吸熱がなされて輻射式冷房が行われる。暖房運転時には輻射パネルで放熱がなされて輻射式暖房が行われる。輻射式冷暖房は室内ファンによる空気の攪拌や騒音と無縁であり、静粛で快適な冷暖房を行うことができる。   The air conditioner described in Patent Document 1 includes a radiation panel disposed on the ceiling of a building. Inside the radiation panel, refrigerant piping is arranged in a meandering manner. At the time of cooling operation, heat is absorbed by the radiant panel and radiant cooling is performed. During heating operation, heat is radiated from the radiant panel and radiant heating is performed. Radiant air conditioning is free from air agitation and noise from indoor fans, and can perform quiet and comfortable air conditioning.

特許文献2には、室内の複数面に輻射パネルを配置したり、一面でも複数枚の輻射パネルを設置したりするなど、複数枚の輻射パネルを用いて冷暖房を行う空気調和装置が記載されている。この空気調和装置では各輻射パネルの表面に表面温検出器が取り付けられ、各輻射パネルの負荷に応じて各輻射パネルへの熱媒体の流量が制御される。   Patent Document 2 describes an air conditioner that performs cooling and heating using a plurality of radiation panels, such as arranging a radiation panel on a plurality of surfaces in a room, or installing a plurality of radiation panels even on one surface. Yes. In this air conditioner, a surface temperature detector is attached to the surface of each radiation panel, and the flow rate of the heat medium to each radiation panel is controlled according to the load of each radiation panel.

特許文献3には、ファンコイルユニットと輻射パネルの両方で室温制御を行うと同時に輻射面温度を制御することのできる輻射空気調和装置が記載されている。   Patent Document 3 describes a radiant air conditioner that can control room temperature at the same time as performing room temperature control with both a fan coil unit and a radiant panel.

特開平10−205802号公報Japanese Patent Laid-Open No. 10-205802 特開平4−320752号公報JP-A-4-320752 特開2000−283535号公報JP 2000-283535 A

特許文献3に記載の空気調和装置のように送風機を備えたファンコイルユニットと輻射パネルを併用するものは別として、輻射パネルのみで冷暖房を行う空気調和機では、室内に風の流れを積極的に生成する動力源がないため、室温を適切に検出することができない。そのため、輻射パネル温度のみを参照して制御を行っており、快適な室温となるように制御を行うという点でやや難点がある。   Aside from using a fan coil unit equipped with a blower and a radiant panel, such as an air conditioner described in Patent Document 3, an air conditioner that cools and heats only with a radiant panel positively moves the wind flow indoors. Therefore, room temperature cannot be detected properly. For this reason, the control is performed with reference to only the radiation panel temperature, which is somewhat difficult in that the control is performed so that the room temperature becomes comfortable.

室温をも参照しつつ制御を行うことが輻射式空気調和機にも求められるが、室温を測定するための温度検出器を、通常のやり方で輻射パネルに配置したのでは、輻射パネルの放熱部が発する輻射熱や、冷媒配管が発する輻射熱などの影響を受け、測定結果が歪められてしまう。リモートコントローラ等、輻射パネルから離れた箇所で用いられる要素に室温検出器を配置すれば、輻射パネルの放熱部が発する輻射熱や、冷媒配管が発する輻射熱などの影響を懸念せずに済むが、今度は室温測定結果をどのように伝達するかが問題となる。仮に無線通信で行うこととすれば、サンプリングレートに合わせて無線通信を行わねばならないことになり、リモートコントローラの場合であれば電池の消耗を早めてしまう。   Although it is also required for a radiant air conditioner to perform control while referring to the room temperature, if a temperature detector for measuring the room temperature is arranged in the radiant panel in the usual way, the heat radiation part of the radiant panel The measurement results are distorted by the influence of radiant heat generated by the radiant heat and radiant heat generated by the refrigerant piping. If a room temperature detector is placed on an element that is used away from the radiant panel, such as a remote controller, there is no need to worry about the effects of radiant heat generated by the heat radiating part of the radiant panel or radiant heat generated by the refrigerant piping. The problem is how to transmit the room temperature measurement results. If wireless communication is performed, wireless communication must be performed in accordance with the sampling rate. In the case of a remote controller, battery consumption is accelerated.

本発明は上記問題に鑑みなされたものであり、送風機を備えない無風タイプの輻射式空気調和機であっても適切に室温を検出し、きめの細かい、快適な空調制御を行えるようにすることを目的とする。   The present invention has been made in view of the above-described problems, and is capable of appropriately detecting room temperature and performing fine and comfortable air conditioning control even in a windless type radiant air conditioner without a blower. With the goal.

本発明に係る輻射式空気調和機は、室内に配置される輻射パネルと、室外側熱交換器と、前記輻射パネル及び前記室外側熱交換器に冷媒配管を通じて冷媒を循環させる圧縮機とを備え、前記輻射パネルは筐体内に放熱部を配置したものであり、前記輻射パネルの上部には上部室温検出器が配置され、前記輻射パネルの下部には下部室温検出器が配置され、当該空気調和機の制御部は前記上部室温検出器、または前記下部室温検出器からの出力信号を参照して制御を行うことを特徴としている。   A radiant air conditioner according to the present invention includes a radiant panel disposed indoors, an outdoor heat exchanger, and a compressor that circulates refrigerant through refrigerant piping through the radiant panel and the outdoor heat exchanger. The radiant panel has a heat dissipating part disposed in a housing, an upper room temperature detector is disposed above the radiant panel, and a lower room temperature detector is disposed below the radiant panel. The control unit of the machine performs control with reference to an output signal from the upper room temperature detector or the lower room temperature detector.

輻射パネルが蒸発器となる空気調和運転時(例えば、冷房運転時)には輻射パネルの上部から下部に向かう気流が発生し、輻射パネルの上部で迎える空気が放熱部の輻射熱の影響を受けていない空気ということになる。輻射パネルが凝縮器となる空気調和運転時(例えば、暖房運転時)には輻射パネルの下部から上部に向かう気流が発生し、輻射パネルの下部で迎える空気が放熱部の輻射熱の影響を受けていない空気ということになる。輻射パネルの上部と下部のそれぞれに室温検出器を配置することにより、輻射パネルが蒸発器となる空気調和運転時にも輻射パネルが凝縮器となる空気調和運転時にも、放熱部の輻射熱の影響を受けていない室内空気の温度を測定することができるから、適切に室温を知り、きめの細かい、快適な空調制御を行うことができる。   During air-conditioning operation where the radiant panel is an evaporator (for example, during cooling operation), an air flow is generated from the upper part to the lower part of the radiant panel, and the air greeted by the upper part of the radiant panel is affected by the radiant heat of the heat dissipation part. There will be no air. During air-conditioning operation where the radiant panel is a condenser (for example, during heating operation), an airflow is generated from the lower part of the radiant panel to the upper part, and the air greeted by the lower part of the radiant panel is affected by the radiant heat of the heat dissipation part. There will be no air. By arranging room temperature detectors at the upper and lower parts of the radiant panel, the effects of the radiant heat of the heat radiating part can be reduced both in air conditioning operation where the radiant panel is an evaporator and in air conditioning operation where the radiant panel is a condenser. Since the temperature of indoor air that has not been received can be measured, it is possible to know the room temperature appropriately and perform fine and comfortable air conditioning control.

上記構成の輻射式空気調和機において、前記制御部は、冷房運転時には前記上部室温検出器からの出力信号を参照して制御を行い、暖房運転時には前記下部室温検出器からの出力信号を参照して制御を行うことが好ましい。   In the radiant air conditioner configured as described above, the control unit performs control with reference to an output signal from the upper room temperature detector during cooling operation, and refers to an output signal from the lower room temperature detector during heating operation. It is preferable to perform control.

この構成によると、冷房運転時には放熱部の輻射熱の影響を受けていない室内空気の温度を上部室温検出器で測定し、暖房運転時には放熱部の輻射熱の影響を受けていない室内空気の温度を下部室温検出器で測定するから、温度を変えるべき室内空気の温度を適切に把握して、きめの細かい、快適な空調制御を行うことができる。   According to this configuration, the temperature of the room air that is not affected by the radiant heat of the heat radiating unit is measured by the upper room temperature detector during the cooling operation, and the temperature of the room air that is not affected by the radiant heat of the heat radiating unit is lowered during the heating operation. Since it is measured by a room temperature detector, it is possible to appropriately grasp the temperature of the indoor air whose temperature is to be changed, and to perform fine and comfortable air conditioning control.

上記構成の輻射式空気調和機において、前記放熱部に接続される冷媒配管の前記筐体内部分に当該冷媒配管の温度を検出する冷媒配管温度検出器が取り付けられ、前記制御部は前記冷媒配管温度検出器からの出力信号も参照しつつ制御を行うことが好ましい。   In the radiant air conditioner having the above-described configuration, a refrigerant pipe temperature detector that detects a temperature of the refrigerant pipe is attached to an inner part of the refrigerant pipe connected to the heat radiating unit, and the control unit is configured to control the refrigerant pipe temperature. It is preferable to perform the control while also referring to the output signal from the detector.

この構成によると、制御部は、単に室温のみを参照して制御を行うのでなく、放熱部を流れる冷媒の温度も参照しながら制御を行うから、より速やかに室温を目標温度に近づけることができる。また、輻射パネルの冷媒経路が冷房運転時の冷媒経路であるか暖房運転時の冷媒経路であるかに関係なく、同じ位置で輻射パネルの表面温度を検出できるので、冷房運転時と暖房運転時とで制御の仕様を変える必要がない。さらに、冷媒配管温度検出器が輻射パネルの表面にではなく冷媒配管に取り付けられるから、結露水が冷媒配管温度検出器を濡らす可能性が少なく、冷媒配管温度検出器が誤検出する可能性を低くできる。   According to this configuration, the control unit performs the control while referring to only the temperature of the refrigerant flowing through the heat radiating unit instead of performing the control only with reference to the room temperature, so that the room temperature can be brought closer to the target temperature more quickly. . In addition, the surface temperature of the radiant panel can be detected at the same position regardless of whether the refrigerant path of the radiant panel is the refrigerant path during cooling operation or the refrigerant path during heating operation. There is no need to change the control specifications. Furthermore, since the refrigerant pipe temperature detector is attached to the refrigerant pipe instead of on the surface of the radiation panel, there is little possibility that condensed water will wet the refrigerant pipe temperature detector, and the refrigerant pipe temperature detector is less likely to be erroneously detected. it can.

上記構成の輻射式空気調和機において、前記冷媒配管温度検出器が取り付けられる前記冷媒配管は液体冷媒用の冷媒配管であるとともに、前記制御部は、冷房運転時は前記冷媒配管温度検出器が検出した温度を前記輻射パネルの表面温度として参照し、暖房運転時は前記冷媒配管温度検出器が検出した温度に補正温度を加えた温度を前記輻射パネルの表面温度として参照することが好ましい。   In the radiant air conditioner having the above-described configuration, the refrigerant pipe to which the refrigerant pipe temperature detector is attached is a refrigerant pipe for liquid refrigerant, and the control unit detects the refrigerant pipe temperature detector during cooling operation. It is preferable to refer to the surface temperature of the radiant panel as the surface temperature of the radiant panel, and to reference the temperature obtained by adding a correction temperature to the temperature detected by the refrigerant pipe temperature detector during heating operation.

この構成によると、暖房運転時、冷媒配管の温度から放熱部の過冷却度を予測して温度を補正することにより、輻射パネルの表面温度を正確に予測することができる。   According to this configuration, the surface temperature of the radiation panel can be accurately predicted by correcting the temperature by predicting the degree of supercooling of the heat radiating unit from the temperature of the refrigerant pipe during heating operation.

本発明によると、冷房運転時にも暖房運転時にも、放熱部の輻射熱の影響を受けていない室内空気の温度を測定することで適切に室温を知り、きめの細かい、快適な空調制御を行うことができる。   According to the present invention, it is possible to know the room temperature appropriately by measuring the temperature of the indoor air that is not affected by the radiant heat of the heat radiating part during the cooling operation or the heating operation, and perform fine and comfortable air conditioning control. Can do.

本発明に係る輻射式空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the radiation type air conditioner which concerns on this invention, and shows the state at the time of air_conditionaing | cooling operation. 本発明に係る輻射式空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the radiation type air conditioner which concerns on this invention, and shows the state at the time of heating operation. 輻射パネルの第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of a radiation panel. 輻射パネルの第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of a radiation panel. 輻射パネルの第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of a radiation panel. 放熱部の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of a thermal radiation part. 放熱部の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of a thermal radiation part. 輻射式空気調和機の制御ブロック図である。It is a control block diagram of a radiation type air conditioner. 輻射式空気調和機の冷房運転時の制御フローチャートである。It is a control flowchart at the time of air_conditionaing | cooling operation of a radiation type air conditioner. 輻射式空気調和機の暖房運転時の制御フローチャートである。It is a control flowchart at the time of heating operation of a radiation type air conditioner. 冷房運転時の室内気流を示す説明図である。It is explanatory drawing which shows the indoor airflow at the time of air_conditionaing | cooling operation. 暖房運転時の室内気流を示す説明図である。It is explanatory drawing which shows the indoor airflow at the time of heating operation.

図1に基づき輻射式空気調和機1の概略構成を説明する。輻射式空気調和機1は室外機10と輻射パネル30により構成される。輻射パネル30は室内に配置されるものであり、通常のセパレート型空気調和機の室内機に相当する。   A schematic configuration of the radiant air conditioner 1 will be described with reference to FIG. The radiant air conditioner 1 includes an outdoor unit 10 and a radiant panel 30. The radiation panel 30 is disposed indoors and corresponds to an indoor unit of a normal separate type air conditioner.

室外機10は、板金製部品と合成樹脂製部品により構成される筐体11の内部に、圧縮機12、四方弁13、室外側熱交換器14、膨張弁15、室外側送風機16などを収納している。   The outdoor unit 10 houses a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, and the like in a housing 11 composed of sheet metal parts and synthetic resin parts. doing.

室外機10は2本の冷媒配管17、18で輻射パネル30に接続される。冷媒配管17は液体の冷媒を流すことを目的としており、冷媒配管18に比較して細い管が用いられている。そのため冷媒配管17は「液管」「細管」などと称されることがある。冷媒配管18は気体の冷媒を流すことを目的としており、冷媒配管17に比較して太い管が用いられている。そのため冷媒配管18は「ガス管」「太管」などと称されることがある。冷媒には例えばHFC系のR410AやR32等が用いられる。   The outdoor unit 10 is connected to the radiation panel 30 through two refrigerant pipes 17 and 18. The refrigerant pipe 17 is intended to flow a liquid refrigerant, and a pipe that is thinner than the refrigerant pipe 18 is used. Therefore, the refrigerant pipe 17 may be referred to as “liquid pipe”, “narrow pipe”, or the like. The refrigerant pipe 18 is intended to flow a gaseous refrigerant, and is thicker than the refrigerant pipe 17. Therefore, the refrigerant pipe 18 may be referred to as “gas pipe”, “thick pipe”, or the like. For example, HFC R410A or R32 is used as the refrigerant.

室外機10の内部の冷媒配管で、冷媒配管17に接続される冷媒配管には二方弁19が設けられ、冷媒配管18に接続される冷媒配管には三方弁20が設けられる。二方弁19と三方弁20は、室外機10から冷媒配管17、18が取り外されるときに閉じられ、室外機10から外部に冷媒が漏れることを防ぐ。室外機10から、あるいは輻射パネル30を含めた冷凍サイクル全体から、冷媒を放出する必要があるときは、三方弁20を通じて放出が行われる。   In the refrigerant pipe inside the outdoor unit 10, a two-way valve 19 is provided in the refrigerant pipe connected to the refrigerant pipe 17, and a three-way valve 20 is provided in the refrigerant pipe connected to the refrigerant pipe 18. The two-way valve 19 and the three-way valve 20 are closed when the refrigerant pipes 17 and 18 are removed from the outdoor unit 10 to prevent the refrigerant from leaking from the outdoor unit 10 to the outside. When it is necessary to release the refrigerant from the outdoor unit 10 or from the entire refrigeration cycle including the radiation panel 30, the refrigerant is released through the three-way valve 20.

輻射パネル30は室内の壁際に立設されることが多く、板金製部品と合成樹脂製部品により構成される正面形状矩形の筐体31の内部に複数の放熱部32が配置されている。簡潔さを尊び「放熱部」と命名したが、この部品は暖房運転時に周囲の空気に対し放熱を行うだけでなく、冷房運転時に周囲の空気から吸熱を行うものでもある。   The radiation panel 30 is often erected on the wall of the room, and a plurality of heat dissipating portions 32 are disposed inside a front-shaped rectangular casing 31 made up of sheet metal parts and synthetic resin parts. Although it was named “heat radiating part” for simplicity, this part not only radiates heat to the surrounding air during heating operation, but also absorbs heat from the surrounding air during cooling operation.

放熱部32は筒状の部品であり、垂直に配置される。図6、7に示すように、中心の冷媒管33を放熱フィン34が取り囲む、というのが放熱部32の基本的な構成である。冷媒管33と放熱フィン34は銅やアルミニウムのような熱伝導の良い金属で形成され、互いに密着する。なお、ここで言う「垂直」とは厳密な垂直方向に限られない。多少の傾きを含む垂直方向であってもよい。   The heat radiating part 32 is a cylindrical part and is arranged vertically. As shown in FIGS. 6 and 7, the basic configuration of the heat radiating section 32 is that the heat radiating fins 34 surround the central refrigerant pipe 33. The refrigerant pipe 33 and the heat radiating fins 34 are formed of a metal having good heat conductivity such as copper or aluminum and are in close contact with each other. The “vertical” referred to here is not limited to a strict vertical direction. The vertical direction including some inclination may be used.

図6の放熱フィン34も図7の放熱フィン34も複数のフィンが放射状に展開する水平断面形状を有している。図6の放熱フィン34は軸線方向に沿って二つ割りにされた部品として形成され、冷媒管33を前後から挟み込んでいる。図7の放熱フィン34は単一の部品であり、中心の、車輪で言えばハブに相当する部分に冷媒管33が挿入されている。言うまでもないが、図6、7に示す放熱部32の構造は単なる例示であり、異なる断面形状の放熱フィン34を用いることもできるし、冷媒管33と放熱フィン34を異なる様式で組み合わせることも可能である。   Both the heat dissipating fins 34 in FIG. 6 and the heat dissipating fins 34 in FIG. 7 have a horizontal cross-sectional shape in which a plurality of fins expand radially. 6 is formed as a part divided into two along the axial direction, and sandwiches the refrigerant tube 33 from the front and rear. The radiating fin 34 in FIG. 7 is a single component, and a refrigerant pipe 33 is inserted in a central portion corresponding to a wheel in terms of wheels. Needless to say, the structure of the heat dissipating part 32 shown in FIGS. 6 and 7 is merely an example, and heat dissipating fins 34 having different cross-sectional shapes can be used, or the refrigerant pipe 33 and the heat dissipating fins 34 can be combined in different ways. It is.

筐体31の内部に複数(図においては7本)の放熱部32が互いに並行するように配置される。筐体31の前面には放熱部32を露出させる開口部35が設けられている。複数の放熱部32は全て冷媒配管17、18に接続される。図3に示す接続構成例では全ての放熱部32が冷媒配管17、18に並列接続される。図4に示す接続構成例では全ての放熱部32を直列接続したものが冷媒配管17、18に接続されている。   A plurality (seven in the figure) of heat radiating portions 32 are arranged in the housing 31 so as to be parallel to each other. An opening 35 for exposing the heat radiating portion 32 is provided on the front surface of the housing 31. The plurality of heat radiation portions 32 are all connected to the refrigerant pipes 17 and 18. In the connection configuration example shown in FIG. 3, all the heat radiating portions 32 are connected in parallel to the refrigerant pipes 17 and 18. In the connection configuration example shown in FIG. 4, all the heat radiating sections 32 are connected in series to the refrigerant pipes 17 and 18.

複数の放熱部32を接続するのに、図3、4に示した方式以外の方式を採用することもできる。例えば、複数の放熱部32を所定本数ずつグループ分けし、同一グループに属する放熱部32は互いに並列接続し、グループ同士を直列接続するといった方式も可能である。あるいは、複数の放熱部32を所定本数ずつグループ分けし、同一グループに属する放熱部32は直列接続し、グループ同士を並列接続するといった方式も可能である。   A system other than the system shown in FIGS. 3 and 4 may be employed to connect the plurality of heat radiation units 32. For example, it is possible to group a plurality of heat dissipating units 32 by a predetermined number, connect the heat dissipating units 32 belonging to the same group in parallel, and connect the groups in series. Alternatively, it is also possible to group a plurality of heat dissipating parts 32 by a predetermined number, connect the heat dissipating parts 32 belonging to the same group in series, and connect the groups in parallel.

輻射式空気調和機1の運転制御を行う上で、各所の温度を知ることが不可欠である。この目的のため、室外機10と輻射パネル30に温度検出器が配置される。室外機10においては、室外側熱交換器14に温度検出器21が配置され、圧縮機12の吐出部となる吐出管12aに温度検出器22が配置され、圧縮機12の吸入部となる吸入管12bに温度検出器23が配置され、膨張弁15と二方弁19の間の冷媒配管に温度検出器24が配置されている。輻射パネル30には温度検出器36が配置される。温度検出器21、22、23、24、36はいずれもサーミスタにより構成される。   In order to control the operation of the radiant air conditioner 1, it is indispensable to know the temperature of each place. For this purpose, temperature detectors are arranged in the outdoor unit 10 and the radiation panel 30. In the outdoor unit 10, a temperature detector 21 is disposed in the outdoor heat exchanger 14, and a temperature detector 22 is disposed in the discharge pipe 12 a serving as the discharge unit of the compressor 12, and the suction serving as the suction unit of the compressor 12. A temperature detector 23 is disposed in the pipe 12 b, and a temperature detector 24 is disposed in the refrigerant pipe between the expansion valve 15 and the two-way valve 19. A temperature detector 36 is disposed on the radiation panel 30. Each of the temperature detectors 21, 22, 23, 24, and 36 is formed of a thermistor.

温度検出器36は放熱部32の温度測定を目的とするが、放熱部32に直接取り付けられるのでなく、図3に示す通り、液体冷媒用の冷媒配管17に取り付けられる。温度検出器36を冷媒配管17に配置するのは次の理由による。すなわち放熱部32は位置(特に上下の位置)によって温度が異なるため、どの位置に温度検出器36を配置するかを決めるのが難しい。   The temperature detector 36 is intended to measure the temperature of the heat radiating section 32, but is not directly attached to the heat radiating section 32 but is attached to the refrigerant pipe 17 for liquid refrigerant as shown in FIG. The reason for arranging the temperature detector 36 in the refrigerant pipe 17 is as follows. That is, since the temperature of the heat radiating portion 32 varies depending on the position (particularly the upper and lower positions), it is difficult to determine at which position the temperature detector 36 is disposed.

複数の放熱部32を結ぶ冷媒経路がどのように設計されているかによっても放熱部32の表面温度は左右される。冷媒経路が単一経路の場合、圧力損失や冷媒の気液相変化によって温度差が生じやすい。冷媒経路が複数経路の場合、経路によって温度差が生じる可能性がある。また、温度検出器には感温性を良くするために金属で覆われているものがある。放熱部32を構成する金属と温度検出器に使われている金属の種類が異なる場合、それらの接触部において異種金属による電位差が生じ、電蝕を起こす可能性がある。いずれにしても、放熱部32のどの位置に温度検出器36を配置するかを決めるのは容易ではない。   The surface temperature of the heat radiating portion 32 also depends on how the refrigerant path connecting the plurality of heat radiating portions 32 is designed. When the refrigerant path is a single path, a temperature difference is likely to occur due to a pressure loss or a gas-liquid phase change of the refrigerant. When there are a plurality of refrigerant paths, a temperature difference may occur depending on the path. Some temperature detectors are covered with metal to improve temperature sensitivity. When the metal constituting the heat radiating portion 32 and the metal used in the temperature detector are different, a potential difference due to a different metal is generated at the contact portion, and there is a possibility of causing electric corrosion. In any case, it is not easy to determine at which position of the heat radiation part 32 the temperature detector 36 is arranged.

筐体31の内部の冷媒配管17を温度検出器36の取付箇所とすれば、上記の問題は解消される。冷媒配管17は、冷房運転時には膨張弁15で絞られた冷媒が流入する箇所であり、暖房運転時には凝縮した冷媒が放熱部32から流出する箇所である。以後、温度検出器36のみを特別に「冷媒配管温度検出器36」と呼称する。   If the refrigerant pipe 17 inside the casing 31 is used as the attachment location of the temperature detector 36, the above problem is solved. The refrigerant pipe 17 is a location where the refrigerant throttled by the expansion valve 15 flows in during the cooling operation, and a location where the condensed refrigerant flows out from the heat radiating unit 32 during the heating operation. Hereinafter, only the temperature detector 36 is specifically referred to as “refrigerant pipe temperature detector 36”.

冷房運転時には冷媒配管17に気液二相状態の冷媒(ただし、気化があまり進んでいない、液相冷媒が多い状態の冷媒)が流れるので、言い換えれば冷媒の気液相変化が少ないので、冷媒配管17の温度を放熱部32の温度として取り扱うことができる。一方、暖房運転時には冷媒配管17は冷凍サイクルの過冷却部(液相部)となり、液体の冷媒が溜まるため、冷媒配管17の温度を直ちに放熱部32の温度として取り扱うことはできない。しかしながら、後述する「補正温度」の考え方により、暖房運転時においても冷媒配管温度検出器36の測定温度から放熱部32の表面温度を求めることができる。   Since the refrigerant in the gas-liquid two-phase state (however, the vaporization has not progressed so much and the liquid-phase refrigerant is abundant) flows through the refrigerant pipe 17 during the cooling operation, in other words, since the gas-liquid phase change of the refrigerant is small, the refrigerant The temperature of the pipe 17 can be handled as the temperature of the heat radiation part 32. On the other hand, during the heating operation, the refrigerant pipe 17 becomes a supercooling part (liquid phase part) of the refrigeration cycle, and liquid refrigerant accumulates, so that the temperature of the refrigerant pipe 17 cannot be immediately handled as the temperature of the heat radiating part 32. However, the surface temperature of the heat radiating section 32 can be obtained from the measured temperature of the refrigerant pipe temperature detector 36 even during the heating operation based on the concept of “correction temperature” described later.

冷媒配管温度検出器36の取付位置は、冷媒配管17の筐体31内部分の中でも比較的上位にある部分とされる。このような場所を冷媒配管温度検出器36の取付位置として選択した理由は後で説明する。   The attachment position of the refrigerant pipe temperature detector 36 is a relatively higher part of the refrigerant pipe 17 in the casing 31. The reason why such a place is selected as the attachment position of the refrigerant pipe temperature detector 36 will be described later.

輻射パネル30には冷媒配管温度検出器36に加えて室温検出器が配置される。筐体31の上部には室温検出器38が配置され、筐体31の下部には室温検出器39が配置される。以後、室温検出器38を「上部室温検出器38」と呼称し、室温検出器39を「下部室温検出器39」と呼称する。温度検出器21、22、23、24及び冷媒配管温度検出器36と同じく、上部室温検出器38と下部室温検出器39もサーミスタにより構成される。上部室温検出器38と下部室温検出器39は、放熱部32の輻射熱や冷媒配管17、18の輻射熱の影響を受けにくい箇所に配置する。   In addition to the refrigerant pipe temperature detector 36, a room temperature detector is disposed on the radiation panel 30. A room temperature detector 38 is disposed at the top of the housing 31, and a room temperature detector 39 is disposed at the bottom of the housing 31. Hereinafter, the room temperature detector 38 is referred to as an “upper room temperature detector 38”, and the room temperature detector 39 is referred to as a “lower room temperature detector 39”. Similar to the temperature detectors 21, 22, 23, 24 and the refrigerant pipe temperature detector 36, the upper room temperature detector 38 and the lower room temperature detector 39 are also composed of thermistors. The upper room temperature detector 38 and the lower room temperature detector 39 are arranged in a place that is not easily affected by the radiant heat of the heat radiating unit 32 and the radiant heat of the refrigerant pipes 17 and 18.

輻射式空気調和機1の全体制御を司るのは図8に示す制御部40である。制御部40は
室内温度が使用者によって設定された目標値に達するように制御を行う。
The control unit 40 shown in FIG. 8 controls the overall control of the radiant air conditioner 1. The control unit 40 performs control so that the room temperature reaches a target value set by the user.

制御部40は、圧縮機12、四方弁13、膨張弁15、及び室外側送風機16に対して動作指令を発する。また制御部40は温度検出器21〜24、冷媒配管温度検出器36、上部室温検出器38、及び下部室温検出器39からそれぞれの検出温度の出力信号を受け取る。制御部40は、温度検出器21〜24、冷媒配管温度検出器36、上部室温検出器38、及び下部室温検出器39からの出力信号を参照しつつ、圧縮機12と室外側送風機16に対し運転指令を発し、四方弁13と膨張弁15に対しては状態切り替えの指令を発する。   The control unit 40 issues an operation command to the compressor 12, the four-way valve 13, the expansion valve 15, and the outdoor blower 16. The control unit 40 receives output signals of the detected temperatures from the temperature detectors 21 to 24, the refrigerant pipe temperature detector 36, the upper room temperature detector 38, and the lower room temperature detector 39. The control unit 40 refers to the output signals from the temperature detectors 21 to 24, the refrigerant pipe temperature detector 36, the upper room temperature detector 38, and the lower room temperature detector 39, with respect to the compressor 12 and the outdoor fan 16. An operation command is issued, and a state switching command is issued to the four-way valve 13 and the expansion valve 15.

図1は輻射式空気調和機1が冷房運転(除湿運転)あるいは除霜運転を行っている状態を示す。圧縮機12から吐出された高温高圧の冷媒は室外側熱交換器14に入り、そこで室外空気との熱交換が行われる。すなわち冷媒は室外空気に対し放熱を行う。放熱し、凝縮して液状となった冷媒は室外側熱交換器14から膨張弁15を通じて輻射パネル30の放熱部に送られ、減圧し膨張して低温低圧となり、放熱部32の表面温度を下げる。表面温度の下がった放熱部32は室内空気から吸熱し、これにより室内空気は冷やされる。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14からの放熱を促進する。   FIG. 1 shows a state in which the radiant air conditioner 1 is performing a cooling operation (dehumidifying operation) or a defrosting operation. The high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the outdoor heat exchanger 14 where heat exchange with outdoor air is performed. That is, the refrigerant dissipates heat to the outdoor air. The refrigerant that has dissipated heat and is condensed to be liquid is sent from the outdoor heat exchanger 14 to the heat dissipating part of the radiation panel 30 through the expansion valve 15, decompressed and expanded to a low temperature and low pressure, and the surface temperature of the heat dissipating part 32 is lowered. . The heat dissipating part 32 whose surface temperature has dropped absorbs heat from the room air, thereby cooling the room air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor fan 16 promotes heat dissipation from the outdoor heat exchanger 14.

図2は輻射式空気調和機1が暖房運転を行っている状態を示す。この時は四方弁13が切り替えられて冷房運転時と冷媒の流れが逆になる。すなわち、圧縮機12から吐出された高温高圧の冷媒は放熱部32に入り、そこで室内空気との熱交換が行われる。すなわち冷媒は室内空気に対し放熱を行い、室内空気は暖められる。放熱し、凝縮して液状となった冷媒は放熱部32から膨張弁15を通じて室外側熱交換器14に送られ、減圧し膨張して室外側熱交換器14の表面温度を下げる。表面温度の下がった室外側熱交換器14は室外空気から吸熱する。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14による吸熱を促進する。吸熱により室外側熱交換器14に付着した霜は、除霜運転を行うことにより取り除かれる。   FIG. 2 shows a state where the radiant air conditioner 1 is performing a heating operation. At this time, the four-way valve 13 is switched, and the refrigerant flow is reversed from that during the cooling operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the heat radiating section 32 where heat exchange with room air is performed. That is, the refrigerant dissipates heat to the room air, and the room air is warmed. The refrigerant that has dissipated heat and is condensed to become liquid is sent from the heat dissipating section 32 to the outdoor heat exchanger 14 through the expansion valve 15, and is decompressed and expanded to lower the surface temperature of the outdoor heat exchanger 14. The outdoor heat exchanger 14 whose surface temperature has dropped absorbs heat from outdoor air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor fan 16 promotes heat absorption by the outdoor heat exchanger 14. Frost adhering to the outdoor heat exchanger 14 due to heat absorption is removed by performing a defrosting operation.

輻射式空気調和機1の輻射パネル30が蒸発器となる空気調和運転の一例である冷房運転時の制御フローチャートを図9に示す。冷房運転開始後、ステップ#101で制御部40は、上部室温検出器38の出力信号を参照する。冷房運転時には室内の空気が図11のように循環し、上部室温検出器38を通過する空気が放熱部32の輻射熱の影響を受けていない空気ということになるからである。   FIG. 9 shows a control flowchart during cooling operation, which is an example of air conditioning operation in which the radiation panel 30 of the radiation type air conditioner 1 serves as an evaporator. After starting the cooling operation, the control unit 40 refers to the output signal of the upper room temperature detector 38 in step # 101. This is because the indoor air circulates as shown in FIG. 11 during the cooling operation, and the air passing through the upper room temperature detector 38 is not affected by the radiant heat of the heat radiating unit 32.

次のステップ#102で、制御部40は冷媒配管温度検出器36の出力信号を参照する。冷房運転(除湿運転)あるいは除霜運転の場合には、冷媒配管温度検出器36が検出した温度を放熱部32の表面温度として取り扱うことができるため、制御部40は冷媒配管温度検出器36の出力信号を、補正を加えることなく参照する。   In the next step # 102, the control unit 40 refers to the output signal of the refrigerant pipe temperature detector 36. In the case of the cooling operation (dehumidifying operation) or the defrosting operation, the temperature detected by the refrigerant pipe temperature detector 36 can be handled as the surface temperature of the heat radiating unit 32, so that the control unit 40 can control the refrigerant pipe temperature detector 36. Reference the output signal without any correction.

以後制御部40は、所定のサンプリングレートでステップ#101とステップ#102を遂行しつつ冷房運転を継続する。   Thereafter, the control unit 40 continues the cooling operation while performing Step # 101 and Step # 102 at a predetermined sampling rate.

このように制御部40は、単に室温のみを参照して制御を行うのでなく、放熱部32を流れる冷媒の温度も参照しながら制御を行うから、より速やかに室温を目標温度に近づけることができる。   In this way, the control unit 40 does not simply perform the control with reference to only the room temperature, but also performs the control with reference to the temperature of the refrigerant flowing through the heat radiating unit 32, so that the room temperature can be brought closer to the target temperature more quickly. .

前述の通り、温度検出器36は冷媒配管17の筐体31内部分に取り付けられているので、輻射パネル30の冷媒経路が冷房運転時の冷媒経路であるか暖房運転時の冷媒経路であるかに関係なく、同じ位置で輻射パネル30の表面温度を検出できる。このため、冷房運転時と暖房運転時とで制御の仕様を変える必要がない。   As described above, since the temperature detector 36 is attached to the inside of the casing 31 of the refrigerant pipe 17, whether the refrigerant path of the radiation panel 30 is the refrigerant path during the cooling operation or the refrigerant path during the heating operation. Regardless of, the surface temperature of the radiation panel 30 can be detected at the same position. For this reason, it is not necessary to change the control specifications between the cooling operation and the heating operation.

冷房運転(除湿運転)時、放熱部32には結露水が発生する。冷媒配管温度検出器36は筐体31内の冷媒配管17の中でも比較的上位の部分に取り付けられているので、放熱部32の結露水が放熱部32の下方にドレン水として溜まったとしても(ドレン水は放熱部32の下方に配置されたドレンパン32a《図11参照》に受けられる)、ドレン水に接触せずにいられる。このため、冷媒配管温度検出器36の検出温度に誤りが生じたり、冷媒配管温度検出器36が故障したりすることを懸念せずに済む。放熱部32ほどではないにせよ、冷媒配管17にも結露水が生じるが、その結露水による影響を小さくする上でも、冷媒配管17の上位部分に冷媒配管温度検出器36を配置することは有意義である。なお、図1においては、放熱部32よりも上方の筐体31の上枠内を通る冷媒配管17に冷媒配管温度検出器36を設けている。   During the cooling operation (dehumidifying operation), condensed water is generated in the heat radiating unit 32. Since the refrigerant pipe temperature detector 36 is attached to a relatively upper part of the refrigerant pipe 17 in the housing 31, even if the condensed water in the heat radiating section 32 is accumulated as drain water below the heat radiating section 32 ( The drain water is received by a drain pan 32a << refer to FIG. 11 >> disposed below the heat radiating portion 32) and is not in contact with the drain water. For this reason, there is no need to worry that an error occurs in the temperature detected by the refrigerant pipe temperature detector 36 or that the refrigerant pipe temperature detector 36 breaks down. Although not as much as the heat radiating section 32, condensed water is also generated in the refrigerant pipe 17. However, in order to reduce the influence of the condensed water, it is meaningful to arrange the refrigerant pipe temperature detector 36 in the upper part of the refrigerant pipe 17. It is. In FIG. 1, a refrigerant pipe temperature detector 36 is provided in the refrigerant pipe 17 that passes through the upper frame of the housing 31 above the heat radiating section 32.

図4のように複数の放熱部32を直列接続した場合においても、冷媒配管温度検出部36は冷媒配管17の上位部分に配置する。また複数の放熱部32を直列接続している場合、図5に示す通り、輻射パネル30の上部において放熱部32同士を接続する冷媒配管37に冷媒配管温度検出器36を取り付けることもできる。この構成であっても冷媒配管温度検出器36を結露水から保護できる。要は、結露水の発生しにくい箇所に冷媒配管温度検出器36を配置する、というのが守るべき事柄である。   Even when a plurality of heat radiation parts 32 are connected in series as shown in FIG. 4, the refrigerant pipe temperature detection part 36 is arranged in the upper part of the refrigerant pipe 17. When a plurality of heat radiation parts 32 are connected in series, as shown in FIG. 5, the refrigerant pipe temperature detector 36 can be attached to the refrigerant pipe 37 that connects the heat radiation parts 32 to each other in the upper part of the radiation panel 30. Even with this configuration, the refrigerant pipe temperature detector 36 can be protected from condensed water. In short, the fact that the refrigerant pipe temperature detector 36 is arranged at a place where the condensed water hardly occurs is a matter to be protected.

輻射式空気調和機1の輻射パネル30が凝縮器となる空気調和運転の一例である暖房運転時の制御フローチャートを図10に示す。暖房運転開始後、ステップ#111で制御部40は、下部室温検出器39の出力信号を参照する。暖房運転時には室内の空気が図12のように循環し、下部室温検出器39を通過する空気が放熱部32の輻射熱の影響を受けていない空気ということになるからである。   The control flowchart at the time of the heating operation which is an example of the air conditioning operation in which the radiation panel 30 of the radiation type air conditioner 1 serves as a condenser is shown in FIG. After starting the heating operation, the control unit 40 refers to the output signal of the lower room temperature detector 39 in step # 111. This is because the indoor air circulates as shown in FIG. 12 during the heating operation, and the air passing through the lower room temperature detector 39 is not affected by the radiant heat of the heat radiating unit 32.

次のステップ#112で、制御部40は冷媒配管温度検出器36が検出した温度に補正温度を加えた温度を参照する。   In the next step # 112, the control unit 40 refers to the temperature obtained by adding the correction temperature to the temperature detected by the refrigerant pipe temperature detector 36.

前述の通り冷媒配管温度検出器36は冷媒配管17に配置されており、輻射パネル30の表面温度(より正確に言うならば放熱部32の表面温度)を直接検出するものではない。また、過冷却度がどのような値になるかによっても冷媒配管17の温度と輻射パネル30の表面温度の差が変化する。そこで暖房運転時には、冷媒配管17の温度から放熱部32の過冷却度を予測して温度を補正することにより、輻射パネル30の表面温度を予測する。補正温度は実験を重ねて決定することが好ましい。   As described above, the refrigerant pipe temperature detector 36 is disposed in the refrigerant pipe 17 and does not directly detect the surface temperature of the radiation panel 30 (more precisely, the surface temperature of the heat radiating unit 32). Further, the difference between the temperature of the refrigerant pipe 17 and the surface temperature of the radiation panel 30 varies depending on what value the degree of supercooling is. Therefore, during the heating operation, the surface temperature of the radiation panel 30 is predicted by correcting the temperature by predicting the degree of supercooling of the heat radiating unit 32 from the temperature of the refrigerant pipe 17. It is preferable to determine the correction temperature through repeated experiments.

以後制御部40は、所定のサンプリングレートでステップ#111とステップ#112を遂行しつつ暖房運転を継続する。   Thereafter, the control unit 40 continues the heating operation while performing Step # 111 and Step # 112 at a predetermined sampling rate.

このように制御部40は、暖房運転時、単に室温のみを参照して制御を行うのでなく、
冷媒配管17の温度から放熱部32の過冷却度を予測して温度を補正した、正確性の高い
輻射パネル30の予測表面温度を参照しながら制御を行うから、より速やかに室温を目標温度に近づけることができる。
Thus, the control unit 40 does not perform the control with reference to only the room temperature during the heating operation,
Since the control is performed with reference to the predicted surface temperature of the radiation panel 30 with high accuracy, in which the temperature is corrected by predicting the degree of supercooling of the heat radiating section 32 from the temperature of the refrigerant pipe 17, the room temperature is made the target temperature more quickly. You can get closer.

室温を測定する手段として上部室温検出器38と下部室温検出器39を設けるというのは最低条件であり、発明を限定するものではない。上部室温検出器38と下部室温検出器39の中間の高さのところに第三の、あるいはそれ以上の室温検出器を配置し、それらの測定結果をも参照しつつ制御部40が制御を行うこととしてもよい。なお、上部室温検出器38と下部室温検出器39以外の室温検出器についても放熱部32の輻射熱や冷媒配管17、18の輻射熱の影響を受けにくい箇所に配置すべきであることは言うまでもない。   The provision of the upper room temperature detector 38 and the lower room temperature detector 39 as means for measuring the room temperature is the minimum condition and does not limit the invention. A third or higher room temperature detector is disposed at an intermediate height between the upper room temperature detector 38 and the lower room temperature detector 39, and the control unit 40 performs control while referring to the measurement results. It is good as well. Needless to say, the room temperature detectors other than the upper room temperature detector 38 and the lower room temperature detector 39 should also be arranged in a place that is not easily affected by the radiant heat of the heat radiating section 32 and the radiant heat of the refrigerant pipes 17 and 18.

これまで、放熱部32は垂直に配置するものとして話を進めてきたが、放熱部32を水平に配置する構成も可能である。その場合の放熱フィン34は、冷媒管33の軸線に直交する薄板を、互いの間に間隔を置いて多数配置する構成とするのがよい。   Up to now, the heat radiation part 32 has been described as being arranged vertically, but a structure in which the heat radiation part 32 is arranged horizontally is also possible. In this case, the heat dissipating fins 34 may be configured by arranging a large number of thin plates perpendicular to the axis of the refrigerant pipe 33 with a space therebetween.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は輻射式空気調和機に広く利用可能である。   The present invention is widely applicable to a radiant air conditioner.

1 輻射式空気調和機
10 室外機
11 筐体
12 圧縮機
13 四方弁
14 室外側熱交換器
15 膨張弁
16 室外側送風機
17、18 冷媒配管
30 輻射パネル
31 筐体
32 放熱部
36 冷媒配管温度検出器
38 上部室温検出器
39 下部室温検出器
40 制御部
DESCRIPTION OF SYMBOLS 1 Radiation type air conditioner 10 Outdoor unit 11 Case 12 Compressor 13 Four-way valve 14 Outdoor heat exchanger 15 Expansion valve 16 Outdoor blower 17, 18 Refrigerant piping 30 Radiation panel 31 Housing 32 Heat radiation part 36 Refrigerant piping temperature detection Room 38 Upper room temperature detector 39 Lower room temperature detector 40 Control unit

Claims (2)

室内に配置される輻射パネルと、室外側熱交換器と、前記輻射パネル及び前記室外側熱
交換器に冷媒配管を通じて冷媒を循環させる圧縮機とを備えた輻射式空気調和機において

前記輻射パネルは筐体内に放熱部を配置したものであり、
前記輻射パネルの上部には上部室温検出器が配置され、前記輻射パネルの下部には下部
室温検出器が配置され、
当該空気調和機の制御部は前記上部室温検出器、または前記下部室温検出器からの出力
信号を参照して制御を行い、
前記放熱部に接続される冷媒配管の前記筐体内部分に当該冷媒配管の温度を検出する冷
媒配管温度検出器が取り付けられ、
前記制御部は前記冷媒配管温度検出器からの出力信号も参照しつつ制御を行い、
前記冷媒配管温度検出器が取り付けられる前記冷媒配管は液体冷媒用の冷媒配管である
とともに、前記制御部は、冷房運転時は前記冷媒配管温度検出器が検出した温度を前記輻
射パネルの表面温度として参照し、暖房運転時は前記冷媒配管温度検出器が検出した温度
に補正温度を加えた温度を前記輻射パネルの表面温度として参照することを特徴とする輻
射式空気調和機。
In a radiant air conditioner comprising a radiant panel disposed indoors, an outdoor heat exchanger, and a compressor that circulates refrigerant through refrigerant piping through the radiant panel and the outdoor heat exchanger,
The radiation panel has a heat dissipating part disposed in a housing,
An upper room temperature detector is disposed at the upper part of the radiation panel, and a lower room temperature detector is disposed at the lower part of the radiation panel.
Control unit of the air conditioner have line control output signal with reference to the from the upper room detector, or the lower room temperature detector,
A cooling pipe that detects the temperature of the refrigerant pipe in the portion of the casing of the refrigerant pipe connected to the heat radiating portion.
A medium pipe temperature detector is attached,
The control unit performs control with reference to an output signal from the refrigerant pipe temperature detector,
The refrigerant pipe to which the refrigerant pipe temperature detector is attached is a refrigerant pipe for liquid refrigerant.
In addition, during the cooling operation, the control unit uses the temperature detected by the refrigerant pipe temperature detector as the radiation.
The temperature detected by the refrigerant pipe temperature detector during heating operation.
A radiation type air conditioner characterized by referring to a temperature obtained by adding a correction temperature to the surface temperature of the radiation panel .
前記制御部は、冷房運転時には前記上部室温検出器からの出力信号を参照して制御を行
い、暖房運転時には前記下部室温検出器からの出力信号を参照して制御を行うことを特徴
とする請求項1に記載の輻射式空気調和機。
The control unit performs control with reference to an output signal from the upper room temperature detector during cooling operation, and performs control with reference to an output signal from the lower room temperature detector during heating operation. Item 2. A radiant air conditioner according to Item 1.
JP2012208034A 2012-09-21 2012-09-21 Radiant air conditioner Expired - Fee Related JP5961084B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012208034A JP5961084B2 (en) 2012-09-21 2012-09-21 Radiant air conditioner
CN201380038313.XA CN104541110B (en) 2012-09-21 2013-09-17 Radiant type air conditioner
PCT/JP2013/075027 WO2014046084A1 (en) 2012-09-21 2013-09-17 Radiant air conditioner
KR1020157004001A KR101656631B1 (en) 2012-09-21 2013-09-17 Radiant air conditioner
SE1550060A SE1550060A1 (en) 2012-09-21 2013-09-17 Radiant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012208034A JP5961084B2 (en) 2012-09-21 2012-09-21 Radiant air conditioner

Publications (2)

Publication Number Publication Date
JP2014062681A JP2014062681A (en) 2014-04-10
JP5961084B2 true JP5961084B2 (en) 2016-08-02

Family

ID=50341394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208034A Expired - Fee Related JP5961084B2 (en) 2012-09-21 2012-09-21 Radiant air conditioner

Country Status (5)

Country Link
JP (1) JP5961084B2 (en)
KR (1) KR101656631B1 (en)
CN (1) CN104541110B (en)
SE (1) SE1550060A1 (en)
WO (1) WO2014046084A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180371B (en) * 2015-09-30 2018-11-13 青岛海尔空调器有限总公司 A kind of method and air conditioner of detection room temperature
CN105241029A (en) * 2015-11-03 2016-01-13 青岛海尔空调器有限总公司 Operation control method for radiation air conditioner
CN106196296A (en) * 2016-08-25 2016-12-07 可玛思(天津)金属制品有限公司 A kind of calm room conditioning being connected with heat pump outdoor unit and method of work thereof
JP6960347B2 (en) * 2018-02-06 2021-11-05 ダイキン工業株式会社 Radiation panel and air conditioner
CN114811855B (en) * 2022-04-26 2023-09-08 浙江中广电器集团股份有限公司 Air conditioner and control method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320752A (en) 1991-04-18 1992-11-11 Matsushita Electric Ind Co Ltd Air conditioner
JP3369337B2 (en) * 1994-12-12 2003-01-20 東芝キヤリア株式会社 Air conditioner
JPH0960900A (en) * 1995-08-18 1997-03-04 Philips Japan Ltd Oil heater with temperature sensor
JP3406442B2 (en) * 1995-12-27 2003-05-12 東芝キヤリア株式会社 Air conditioner
JPH09287800A (en) * 1996-04-18 1997-11-04 Sanyo Electric Co Ltd Air conditioner
JPH10205802A (en) 1997-01-27 1998-08-04 Sanyo Electric Co Ltd Radiation type air conditioner
JPH11132605A (en) * 1997-10-29 1999-05-21 Toshiba Corp Air conditioner
JP2000283535A (en) 1999-03-31 2000-10-13 Mitsubishi Electric Corp Radiation air conditioner
DE10223085B4 (en) * 2001-06-06 2006-04-13 Ltg Aktiengesellschaft Device for heating and / or cooling a room
EP1795825A1 (en) * 2005-12-12 2007-06-13 AERMEC S.p.A. Equipment for supplying chilled fluid for an air conditioning installation and air conditioning installation with said equipment
JP2008139007A (en) * 2006-11-06 2008-06-19 Sekisui Chem Co Ltd Radiation type air conditioner
CN101504179B (en) * 2009-02-27 2011-04-06 海信(山东)空调有限公司 Substitution control method for air conditioner fault sensor
JP5607998B2 (en) * 2010-07-05 2014-10-15 パナソニック株式会社 Circulation device and ventilation structure of circulation device
JP5704486B2 (en) * 2011-02-21 2015-04-22 因幡電機産業株式会社 Air conditioner
CN102506490B (en) * 2011-11-09 2013-12-04 宁波奥克斯电气有限公司 Control method for electronic expansion valve of indoor unit during refrigeration of inverter multi-split air conditioner

Also Published As

Publication number Publication date
SE1550060A1 (en) 2015-01-22
KR20150033728A (en) 2015-04-01
WO2014046084A1 (en) 2014-03-27
CN104541110B (en) 2017-04-05
CN104541110A (en) 2015-04-22
KR101656631B1 (en) 2016-09-09
JP2014062681A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5898569B2 (en) Radiant air conditioner
JP5869955B2 (en) Radiant air conditioner
JP6091506B2 (en) Refrigeration air conditioner, refrigerant leak detection device, and refrigerant leak detection method
JP5961084B2 (en) Radiant air conditioner
JP6095677B2 (en) Heat pump equipment
JP4318567B2 (en) Cooling system
JP6184503B2 (en) Oil level detection device and refrigeration air conditioner equipped with the oil level detection device
JP2014020594A (en) Air conditioner
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
JP5898568B2 (en) Radiant air conditioner
JP5447438B2 (en) refrigerator
JP5465193B2 (en) Air conditioner unit and air conditioner
JP5937421B2 (en) Radiant air conditioner
JP2015224799A (en) Air conditioner
JP2018146169A (en) air conditioner
JP6248393B2 (en) Temperature control system
JP2013194968A (en) Heat exchanger and air conditioner mounted with the same
JP2011247525A (en) Refrigerating device
JP6139093B2 (en) Parallel flow heat exchanger
JP2009204208A (en) Refrigeration device
JP2019168836A (en) Merchandise cooling/heating device and beverage vending machine
JP2013245829A (en) Radiant type air conditioner
JP2010236855A (en) Additional condenser, and refrigerating cycle device with additional condensation system using this
JP5267614B2 (en) refrigerator
KR20020056231A (en) Method for checking state of service valve in heat pump air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160624

R150 Certificate of patent or registration of utility model

Ref document number: 5961084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees