JP2013194968A - Heat exchanger and air conditioner mounted with the same - Google Patents
Heat exchanger and air conditioner mounted with the same Download PDFInfo
- Publication number
- JP2013194968A JP2013194968A JP2012061351A JP2012061351A JP2013194968A JP 2013194968 A JP2013194968 A JP 2013194968A JP 2012061351 A JP2012061351 A JP 2012061351A JP 2012061351 A JP2012061351 A JP 2012061351A JP 2013194968 A JP2013194968 A JP 2013194968A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat exchanger
- refrigerant
- constituent material
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は熱交換器及びそれを搭載した空気調和機に関する。 The present invention relates to a heat exchanger and an air conditioner equipped with the heat exchanger.
空気調和機に用いられる熱交換器は、チューブの中に冷媒を流して周囲の空気と熱交換を行うものが殆どである。空気調和機に用いられる熱交換器には、フィンアンドチューブ型、サーペンタイン型、パラレルフロー型などがある。特許文献1に示されているのはパラレルフロー型熱交換器の例である。 Most heat exchangers used in air conditioners exchange heat with ambient air by flowing a refrigerant through the tube. Heat exchangers used in air conditioners include fin and tube type, serpentine type, and parallel flow type. Patent Document 1 shows an example of a parallel flow heat exchanger.
特許文献1に記載されたパラレルフロー型熱交換器では、冷媒温度を測定して制御に役立てている。冷媒温度検知用の感温素子は、冷媒配管接続側のヘッダパイプの中で、気液二相状態の冷媒が流れる箇所に、金具で取り付けられている。 In the parallel flow heat exchanger described in Patent Document 1, the refrigerant temperature is measured and used for control. The temperature sensing element for detecting the refrigerant temperature is attached with a metal fitting at a location where the gas-liquid two-phase refrigerant flows in the header pipe on the refrigerant pipe connection side.
パラレルフロー型以外の形式の熱交換器であっても、そこを流れる冷媒の温度を知ることが必要な場合がある。本発明はこの点に鑑みなされたものであり、感温素子の取り付けがチューブに悪影響を及ぼさないようにすることを目的とする。 Even in a heat exchanger other than the parallel flow type, it may be necessary to know the temperature of the refrigerant flowing therethrough. The present invention has been made in view of this point, and an object thereof is to prevent the attachment of the temperature sensitive element from adversely affecting the tube.
上記目的を達成するために本発明は、内部を冷媒が流れるチューブと、前記チューブに取り付けられたフィンを有する熱交換器において、前記チューブに冷媒温度検知用の感温素子が取り付けられるものであり、前記チューブと前記感温素子の間には、前記チューブに電蝕を発生させない構成材料が介在することを特徴としている。 In order to achieve the above object, the present invention provides a heat exchanger having a tube through which a refrigerant flows and fins attached to the tube, and a temperature sensing element for detecting the refrigerant temperature is attached to the tube. A constituent material that does not cause electric corrosion in the tube is interposed between the tube and the temperature sensitive element.
上記構成の熱交換器において、前記チューブはアルミニウム製であり、前記構成材料もアルミニウムであることが好ましい。 In the heat exchanger configured as described above, it is preferable that the tube is made of aluminum and the constituent material is also aluminum.
上記構成の熱交換器において、前記チューブはアルミニウム製であり、前記構成材料はアルミニウムのフィラーを含有する合成樹脂であることが好ましい。 In the heat exchanger configured as described above, the tube is preferably made of aluminum, and the constituent material is preferably a synthetic resin containing an aluminum filler.
上記構成の熱交換器において、前記アルミニウムのフィラーを含有する合成樹脂は熱伝導性合成樹脂であることが好ましい。 In the heat exchanger configured as described above, the synthetic resin containing the aluminum filler is preferably a heat conductive synthetic resin.
上記構成の熱交換器において、前記構成材料は合成樹脂であることが好ましい。 In the heat exchanger configured as described above, the constituent material is preferably a synthetic resin.
上記構成の熱交換器において、前記構成材料の合成樹脂は熱伝導性合成樹脂であることが好ましい。 In the heat exchanger having the above configuration, the synthetic resin of the constituent material is preferably a heat conductive synthetic resin.
上記構成の熱交換器において、前記構成材料は前記チューブに対し電位的に卑の金属材料であることが好ましい。 In the heat exchanger configured as described above, it is preferable that the constituent material is a metal material that is baseless with respect to the tube.
上記構成の熱交換器において、前記構成材料は前記感温素子の外装ケースの構成材料であることが好ましい。 In the heat exchanger having the above configuration, the constituent material is preferably a constituent material of an outer case of the temperature sensitive element.
上記構成の熱交換器において、前記構成材料は前記感温素子を前記チューブに取り付ける固定部材の構成材料であることが好ましい。 In the heat exchanger configured as described above, the constituent material is preferably a constituent material of a fixing member for attaching the temperature sensing element to the tube.
上記構成の熱交換器において、前記固定部材の構成材料として、前記チューブにロウ付け可能な構成材料が用いられていることが好ましい。 In the heat exchanger having the above configuration, it is preferable that a constituent material that can be brazed to the tube is used as a constituent material of the fixing member.
また本発明は、上記構成の熱交換器を室内機または室外機に搭載した空気調和機であることを特徴としている。 Further, the present invention is an air conditioner in which the heat exchanger configured as described above is mounted on an indoor unit or an outdoor unit.
本発明によると、冷媒を流すチューブに悪影響を及ぼすことなく冷媒温度を測定できる熱交換器を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger which can measure a refrigerant | coolant temperature can be provided, without having a bad influence on the tube which flows a refrigerant | coolant.
本発明の実施形態の基礎をなすフィンアンドチューブ型の熱交換器の構造を、図1を参照しながら説明する。図1では紙面上側が熱交換器の上側、紙面下側が熱交換器の下側となる。また、紙面左側が熱交換器の左側、紙面右側が熱交換器の右側となる。 The structure of the fin-and-tube heat exchanger that forms the basis of the embodiment of the present invention will be described with reference to FIG. In FIG. 1, the upper side of the paper is the upper side of the heat exchanger, and the lower side of the paper is the lower side of the heat exchanger. Further, the left side of the paper is the left side of the heat exchanger, and the right side of the paper is the right side of the heat exchanger.
熱交換器1は、多数のフィン2と1本の蛇行するチューブ3を備える。個々のフィン2は垂直方向を長手方向とする短冊形状であり、それが多数、互いの間に所定の隙間を置いて水平方向に並んでいる。このフィン2の集団をチューブ3が、蛇行して縫うように貫通する。チューブ3の内部は冷媒を流通させる冷媒通路4となる。フィン2とチューブ3はアルミニウム等熱伝導の良い金属からなり、例えば、ロウ付け、溶着やチューブの拡管により固定される。 The heat exchanger 1 includes a large number of fins 2 and one meandering tube 3. The individual fins 2 have a strip shape with the vertical direction as the longitudinal direction, and many fins 2 are arranged in the horizontal direction with a predetermined gap between each other. The tube 3 penetrates through the group of fins 2 so as to meander and sew. The inside of the tube 3 serves as a refrigerant passage 4 through which the refrigerant flows. The fin 2 and the tube 3 are made of a metal having good heat conductivity such as aluminum, and are fixed by, for example, brazing, welding, or tube expansion.
チューブ3の両端は冷媒出入口5、6となり、ここに機器(例えば空気調和機)の冷媒配管が接続される。冷媒は、実線矢印のように冷媒出入口5から入って冷媒出入口6から出ることもあり、破線矢印のように冷媒出入口6から入って冷媒出入口5から出ることもある。熱交換器1を凝縮器として用いるときは冷媒出入口5から入り冷媒出入口6から出る冷媒流れとし、熱交換器1を蒸発器として用いるときは冷媒出入口6から入り冷媒出入口5から出る冷媒流れとすることが多い。 Both ends of the tube 3 serve as refrigerant inlets and outlets 5 and 6, and refrigerant pipes of devices (for example, air conditioners) are connected thereto. The refrigerant may enter from the refrigerant inlet / outlet 5 as indicated by a solid line arrow and exit from the refrigerant inlet / outlet 6, or may enter from the refrigerant inlet / outlet 6 and exit from the refrigerant inlet / outlet 5 as indicated by a broken line arrow. When the heat exchanger 1 is used as a condenser, the refrigerant flow enters from the refrigerant inlet / outlet 5 and exits from the refrigerant inlet / outlet 6. When the heat exchanger 1 is used as an evaporator, the refrigerant flow enters from the refrigerant inlet / outlet 6 and exits from the refrigerant inlet / outlet 5. There are many cases.
フィンアンドチューブ型である熱交換器1では、フィン2をアルミニウムで構成し、チューブ3を銅で構成するのが一般的である。しかしながら、チューブ3をアルミニウム製とする構成も可能である。 In the heat exchanger 1 of the fin-and-tube type, it is common that the fin 2 is made of aluminum and the tube 3 is made of copper. However, a configuration in which the tube 3 is made of aluminum is also possible.
チューブ3の内部を流れる冷媒の温度を測定するのには感温素子7を用いる。感温素子7は図示しないサーミスタを外装ケース8で包んだものである。 The temperature sensitive element 7 is used to measure the temperature of the refrigerant flowing inside the tube 3. The temperature sensitive element 7 is a thermistor (not shown) wrapped in an outer case 8.
感温素子7はチューブ3に取り付けられる。感温素子7の取り付けにあたっては、図2及び図3に示すように、感温素子7を直接チューブ3の外面に接触させる固定方法が可能である。あるいは図6に示すように、チューブ3と感温素子7の間に固定部材を介在させてチューブ3と感温素子7の直接接触を避ける固定方法も可能である。 The temperature sensitive element 7 is attached to the tube 3. When attaching the temperature sensing element 7, as shown in FIGS. 2 and 3, a fixing method in which the temperature sensing element 7 is brought into direct contact with the outer surface of the tube 3 is possible. Alternatively, as shown in FIG. 6, a fixing method is also possible in which a fixing member is interposed between the tube 3 and the temperature sensing element 7 to avoid direct contact between the tube 3 and the temperature sensing element 7.
図2に示す構成では、感温素子7は結束バンド9によりチューブ3に固定されている。 In the configuration shown in FIG. 2, the temperature sensitive element 7 is fixed to the tube 3 by a binding band 9.
図3に示す構成では、感温素子7は固定部材10によりチューブ3に固定されている。図4に示す通り、固定部材10の平面形状はL字形になっており、L字の長い方の辺はチューブ3にぴったりと押し当てられ、先端が湾曲した短い方の辺はチューブ3が蛇行する平面と直角に突き出す。短い方の辺の湾曲部とチューブ3の間に図4のように感温素子7を押し込むと、図5に示す通り、感温素子7は固定部材10の弾性でチューブ3に押し付けられる。 In the configuration shown in FIG. 3, the temperature sensitive element 7 is fixed to the tube 3 by a fixing member 10. As shown in FIG. 4, the planar shape of the fixing member 10 is L-shaped, the longer side of the L-shape is pressed tightly against the tube 3, and the shorter side with the curved tip is bent by the tube 3. Stick out at right angles to the plane you want. When the temperature sensing element 7 is pushed in between the curved portion on the shorter side and the tube 3 as shown in FIG. 4, the temperature sensing element 7 is pushed against the tube 3 by the elasticity of the fixing member 10 as shown in FIG. 5.
図6に示す構成では、感温素子7は固定部材11によりチューブ3に固定されている。固定部材11は、チューブ3を両側から挟む二股部11aと、感温素子7を両側から挟む二股部11bを備え、自身の弾性でチューブ3を抱え、感温素子7を保持している。チューブ3と感温素子7の間には固定部材11が介在し、チューブ3と感温素子7が直接接触することはない。 In the configuration shown in FIG. 6, the temperature sensitive element 7 is fixed to the tube 3 by a fixing member 11. The fixing member 11 includes a bifurcated portion 11 a that sandwiches the tube 3 from both sides, and a bifurcated portion 11 b that sandwiches the temperature sensing element 7 from both sides, holds the tube 3 by its own elasticity, and holds the temperature sensing element 7. A fixing member 11 is interposed between the tube 3 and the temperature sensing element 7 so that the tube 3 and the temperature sensing element 7 do not come into direct contact with each other.
本発明は、チューブ3と感温素子7の間に、チューブ3に電蝕を発生させない構成材料が介在することを特徴としている。図2の構成例と、図3から図5の構成例のように、感温素子7がチューブ3に直接接触する構造の場合は、外装ケース8がそのような構成材料で形成される。また図2の構成例の場合は結束バンド9、図3の構成例の場合は固定部材10が、そのような構成部材で形成される。 The present invention is characterized in that a constituent material that does not cause electric corrosion in the tube 3 is interposed between the tube 3 and the temperature sensing element 7. In the case of the structure in which the temperature sensing element 7 is in direct contact with the tube 3 as in the configuration example of FIG. 2 and the configuration examples of FIG. 3 to FIG. In the case of the configuration example of FIG. 2, the binding band 9 is formed, and in the case of the configuration example of FIG. 3, the fixing member 10 is formed of such a configuration member.
図6の構成例のように、チューブ3と感温素子7の間に固定部材11が介在する構造の場合は、固定部材11がチューブ3に電蝕を発生させない構成材料で形成される。なお図6の構成で、固定部材11だけでなく感温素子7の外装ケース8もチューブ3に電蝕を発生させない構成材料で形成されていたとすれば、電蝕の可能性は一層低減する。 In the case of a structure in which the fixing member 11 is interposed between the tube 3 and the temperature sensitive element 7 as in the configuration example of FIG. In the configuration of FIG. 6, if not only the fixing member 11 but also the outer case 8 of the temperature sensing element 7 is formed of a constituent material that does not cause electrolytic corrosion in the tube 3, the possibility of electrolytic corrosion is further reduced.
チューブ3に電蝕を発生させない構成材料としては、次のようなものを挙げることができる。 Examples of the constituent material that does not cause electrolytic corrosion in the tube 3 include the following.
チューブ3がアルミニウム製の場合、外装ケース8、または固定部材10、または固定部材11をアルミニウムで形成することができる。 When the tube 3 is made of aluminum, the outer case 8, the fixing member 10, or the fixing member 11 can be formed of aluminum.
チューブ3がアルミニウム製の場合、外装ケース8、または固定部材10、または固定部材11を、アルミニウムのフィラーを含有する合成樹脂で形成することができる。合成樹脂には熱伝導性合成樹脂を用いることができる。熱伝導性合成樹脂にアルミニウムのフィラーを容積比で50%含有させたものでは、熱伝導率が2.6W/(m・k)になる。 When the tube 3 is made of aluminum, the outer case 8, the fixing member 10, or the fixing member 11 can be formed of a synthetic resin containing an aluminum filler. As the synthetic resin, a heat conductive synthetic resin can be used. When a heat conductive synthetic resin contains 50% of an aluminum filler by volume, the heat conductivity is 2.6 W / (m · k).
チューブ3がアルミニウムであってもアルミニウム以外の金属であっても、外装ケース8、または固定部材10、または固定部材11を合成樹脂で形成することができる。合成樹脂には熱伝導性合成樹脂を用いることができる。 Whether the tube 3 is aluminum or a metal other than aluminum, the outer case 8, the fixing member 10, or the fixing member 11 can be formed of synthetic resin. As the synthetic resin, a heat conductive synthetic resin can be used.
チューブ3がアルミニウムであってもアルミニウム以外の金属であっても、外装ケース8、または固定部材10、または固定部材11をチューブ3に対し電位的に卑の金属材料で形成することができる。チューブ3が耐食合金の一種であるNE合金(組成:0.05%Si、0.18%Fe、0.4%Cu、0.02%Zn、0.04%Zr)で形成されている場合、卑の金属材料としてZn添加合金を用いることができる。 Whether the tube 3 is aluminum or a metal other than aluminum, the outer case 8, the fixing member 10, or the fixing member 11 can be formed of a metal material that is lower than the tube 3. When the tube 3 is formed of an NE alloy (composition: 0.05% Si, 0.18% Fe, 0.4% Cu, 0.02% Zn, 0.04% Zr) which is a kind of corrosion resistant alloy A Zn-added alloy can be used as the base metal material.
上記のように、チューブ3には電位的に「貴」の材料を採用し、外装ケース8、または固定部材10、または固定部材11には電位的に「卑」の材料を採用すれば、腐食環境下では「卑」の材料の腐食が優先するから、チューブ3の腐食進行が抑制される。これは「犠牲的防蝕法」と呼ばれる方法である。 As described above, if a “noble” material is used for the tube 3 and a “base” material is used for the outer case 8, the fixing member 10, or the fixing member 11, corrosion will occur. Under the environment, the corrosion of the “base” material has priority, so that the progress of the corrosion of the tube 3 is suppressed. This is a method called “sacrificial corrosion protection method”.
本発明によれば、チューブ3の電蝕を抑制し、チューブ3からの冷媒漏れを懸念することなく熱交換器1を使用することができる。 According to the present invention, it is possible to use the heat exchanger 1 without suppressing electric corrosion of the tube 3 and worrying about refrigerant leakage from the tube 3.
固定部材10または11の構成材料として、チューブ3にロウ付け可能な構成材料を用いることとすれば、感温素子7の取り付けを一層堅固なものとすることができる。例えば、チューブ3がアルミニウム製であった場合、固定部材10または11もアルミニウム製とすれば、ロウ付けが可能である。なお、チューブ3に対しロウ付け可能な構成材料は、アルミニウムに限定されるものではない。 If a constituent material that can be brazed to the tube 3 is used as a constituent material of the fixing member 10 or 11, the temperature sensitive element 7 can be attached more firmly. For example, when the tube 3 is made of aluminum, brazing is possible if the fixing member 10 or 11 is also made of aluminum. The constituent material that can be brazed to the tube 3 is not limited to aluminum.
熱交換器1をヒートポンプサイクルの構成要素として用いたセパレート型空気調和機ACの概略構成を図7及び図8に示す。空気調和機ACは室外機20と室内機40により構成される。 7 and 8 show a schematic configuration of a separate air conditioner AC using the heat exchanger 1 as a component of the heat pump cycle. The air conditioner AC includes an outdoor unit 20 and an indoor unit 40.
室外機20は、板金製部品と合成樹脂製部品により構成される筐体21の内部に、圧縮機22、切替弁23、室外側熱交換器24、膨張弁25、室外側送風機26などを収納している。切替弁23は四方弁である。室外側熱交換器24として本発明に係る熱交換器1を用いることができる。膨張弁25には開度制御の可能なものが用いられる。室外側送風機26はモータにプロペラファンを組み合わせたものである。 The outdoor unit 20 houses a compressor 22, a switching valve 23, an outdoor heat exchanger 24, an expansion valve 25, an outdoor blower 26, and the like in a housing 21 made of sheet metal parts and synthetic resin parts. doing. The switching valve 23 is a four-way valve. The heat exchanger 1 according to the present invention can be used as the outdoor heat exchanger 24. As the expansion valve 25, a valve whose opening degree can be controlled is used. The outdoor blower 26 is a combination of a propeller fan and a motor.
室外機20は2本の冷媒配管27、28で室内機40に接続される。冷媒配管27は液体の冷媒を流すことを目的としており、冷媒配管28に比較して細い管が用いられている。そのため冷媒配管27は「液管」「細管」などと称されることがある。冷媒配管28は気体の冷媒を流すことを目的としており、冷媒配管27に比較して太い管が用いられている。そのため冷媒配管28は「ガス管」「太管」などと称されることがある。冷媒には例えばHFC系のR410AやR32等が用いられる。 The outdoor unit 20 is connected to the indoor unit 40 through two refrigerant pipes 27 and 28. The refrigerant pipe 27 is intended to flow a liquid refrigerant, and a thin pipe is used as compared with the refrigerant pipe 28. Therefore, the refrigerant pipe 27 may be referred to as “liquid pipe”, “narrow pipe”, or the like. The refrigerant pipe 28 is intended to flow a gaseous refrigerant, and is thicker than the refrigerant pipe 27. Therefore, the refrigerant pipe 28 is sometimes referred to as “gas pipe”, “thick pipe”, or the like. For example, HFC R410A or R32 is used as the refrigerant.
室外機20の内部の冷媒配管で、冷媒配管27に接続される冷媒配管には二方弁29が設けられ、冷媒配管28に接続される冷媒配管には三方弁30が設けられる。二方弁29と三方弁30は、室外機20から冷媒配管27、28が取り外されるときに閉じられ、室外機20から外部に冷媒が漏れることを防ぐ。室外機20から、あるいは室内機40を含めた冷凍サイクル全体から、冷媒を放出する必要があるときは、三方弁30を通じて放出が行われる。 In the refrigerant pipe inside the outdoor unit 20, a two-way valve 29 is provided in the refrigerant pipe connected to the refrigerant pipe 27, and a three-way valve 30 is provided in the refrigerant pipe connected to the refrigerant pipe 28. The two-way valve 29 and the three-way valve 30 are closed when the refrigerant pipes 27 and 28 are removed from the outdoor unit 20 to prevent the refrigerant from leaking from the outdoor unit 20 to the outside. When it is necessary to release the refrigerant from the outdoor unit 20 or from the entire refrigeration cycle including the indoor unit 40, the refrigerant is discharged through the three-way valve 30.
室内機40は、合成樹脂製部品により構成される筐体41の内部に、室内側熱交換器42、室内側送風機43などを収納している。室内側熱交換器42は、3個の熱交換器42A、42B、42Cを、室内側送風機43を覆う屋根のように組み合わせたものである。熱交換器42A、42B、42Cのいずれかまたは全部を本発明に係る熱交換器1で構成することができる。室内側送風機43はモータにクロスフローファンを組み合わせたものである。 The indoor unit 40 houses an indoor side heat exchanger 42, an indoor side blower 43, and the like inside a housing 41 made of synthetic resin parts. The indoor heat exchanger 42 is a combination of three heat exchangers 42 </ b> A, 42 </ b> B, 42 </ b> C like a roof that covers the indoor blower 43. Any or all of the heat exchangers 42A, 42B, and 42C can be configured by the heat exchanger 1 according to the present invention. The indoor blower 43 is a combination of a motor and a cross flow fan.
空気調和機ACの運転制御を行う上で、各所の温度を知ることが不可欠である。この目的のため、室外機20と室内機40に温度検出器が配置される。室外機20においては、室外側熱交換器24に温度検出器31が配置され、圧縮機22の吐出部となる吐出管22aに温度検出器32が配置され、圧縮機22の吸入部となる吸入管22bに温度検出器33が配置され、膨張弁25と二方弁29の間の冷媒配管に温度検出器34が配置され、筐体21の内部の所定箇所に外気温測定用の温度検出器35が配置される。室外側熱交換器24が本発明に係る熱交換器1で構成されていれば、温度検出器31は感温素子7で構成されることになる。なお、感温素子7で構成される温度検出器31と同様に、温度検出器32、33、35、35もサーミスタにより構成される。 In order to control the operation of the air conditioner AC, it is indispensable to know the temperature of each place. For this purpose, temperature detectors are arranged in the outdoor unit 20 and the indoor unit 40. In the outdoor unit 20, a temperature detector 31 is disposed in the outdoor heat exchanger 24, and a temperature detector 32 is disposed in a discharge pipe 22 a serving as a discharge unit of the compressor 22, and suction serving as a suction unit of the compressor 22. A temperature detector 33 is disposed in the pipe 22 b, a temperature detector 34 is disposed in the refrigerant pipe between the expansion valve 25 and the two-way valve 29, and a temperature detector for measuring the outside air temperature at a predetermined location inside the housing 21. 35 is arranged. If the outdoor heat exchanger 24 is configured by the heat exchanger 1 according to the present invention, the temperature detector 31 is configured by the temperature sensitive element 7. Note that the temperature detectors 32, 33, 35, and 35 are also configured by thermistors, similarly to the temperature detector 31 configured by the temperature sensitive element 7.
室内機40においては、室内側熱交換器42に温度検出器44が配置される。室外側熱交換器42を構成する熱交換器42A、42B、42Cのうち熱交換器42Aが本発明に係る熱交換器1で構成されていれば、温度検出器44は感温素子7で構成されることになる。 In the indoor unit 40, a temperature detector 44 is disposed in the indoor heat exchanger 42. If the heat exchanger 42A is constituted by the heat exchanger 1 according to the present invention among the heat exchangers 42A, 42B, 42C constituting the outdoor heat exchanger 42, the temperature detector 44 is constituted by the temperature sensitive element 7. Will be.
図7は空気調和機ACが冷房運転あるいは除霜運転を行っている状態を示す。この時圧縮機22は冷房時循環、すなわち圧縮機22から吐出された冷媒が先に室外側熱交換器24に入る循環様式で冷媒を循環させる。 FIG. 7 shows a state where the air conditioner AC is performing a cooling operation or a defrosting operation. At this time, the compressor 22 circulates the refrigerant in a cooling mode, that is, in a circulation mode in which the refrigerant discharged from the compressor 22 first enters the outdoor heat exchanger 24.
圧縮機22から吐出された高温高圧の冷媒は室外側熱交換器24に入り、そこで室外空気との熱交換が行われる。冷媒は室外空気に対し放熱を行い、凝縮する。凝縮して液状となった冷媒は室外側熱交換器24から膨張弁25に入り、そこで減圧される。減圧後の冷媒は室内側熱交換器42に送られ、膨張して低温低圧となり、室内側熱交換器42の表面温度を下げる。表面温度の下がった室内側熱交換器42は室内空気から吸熱し、これにより室内空気は冷やされる。吸熱後、低温の気体状の冷媒は圧縮機22に戻る。室外側送風機26によって生成された気流が室外側熱交換器24からの放熱を促進し、室内側送風機43によって生成された気流が室内側熱交換器42の吸熱を促進する。 The high-temperature and high-pressure refrigerant discharged from the compressor 22 enters the outdoor heat exchanger 24 where heat exchange with outdoor air is performed. The refrigerant dissipates heat to the outdoor air and condenses. The refrigerant that has been condensed to become liquid enters the expansion valve 25 from the outdoor heat exchanger 24 and is decompressed there. The decompressed refrigerant is sent to the indoor heat exchanger 42, expands to a low temperature and low pressure, and lowers the surface temperature of the indoor heat exchanger 42. The indoor side heat exchanger 42 whose surface temperature has dropped absorbs heat from the room air, whereby the room air is cooled. After absorbing heat, the low-temperature gaseous refrigerant returns to the compressor 22. The air flow generated by the outdoor blower 26 promotes heat radiation from the outdoor heat exchanger 24, and the air flow generated by the indoor blower 43 promotes heat absorption of the indoor heat exchanger 42.
図8は空気調和機ACが暖房運転を行っている状態を示す。この時は切替弁23が切り替えられて冷房運転時と冷媒の流れが逆になる。圧縮機22は暖房時循環、すなわち圧縮機22から吐出された冷媒が先に室内側熱交換器42に入る循環様式で冷媒を循環させる。 FIG. 8 shows a state in which the air conditioner AC is performing a heating operation. At this time, the switching valve 23 is switched, and the refrigerant flow is reversed from that during the cooling operation. The compressor 22 circulates the refrigerant in a circulation mode during heating, that is, in a circulation mode in which the refrigerant discharged from the compressor 22 first enters the indoor heat exchanger 42.
圧縮機22から吐出された高温高圧の冷媒は室内側熱交換器42に入り、そこで室内空気との熱交換が行われる。冷媒は室内空気に対し放熱を行い、室内空気は暖められる。放熱し、凝縮して液状となった冷媒は室内側熱交換器42から膨張弁25に入り、そこで減圧される。減圧後の冷媒は室外側熱交換器24に送られ、膨張して低温低圧となり、室外側熱交換器24の表面温度を下げる。表面温度の下がった室外側熱交換器24は室外空気から吸熱する。吸熱後、低温の気体状の冷媒は圧縮機22に戻る。室内側送風機43によって生成された気流が室内側熱交換器42からの放熱を促進し、室外側送風機26によって生成された気流が室外側熱交換器24による吸熱を促進する。 The high-temperature and high-pressure refrigerant discharged from the compressor 22 enters the indoor heat exchanger 42 where heat exchange with the indoor air is performed. The refrigerant dissipates heat to the room air, and the room air is warmed. The refrigerant that has dissipated heat and is condensed to become liquid enters the expansion valve 25 from the indoor heat exchanger 42 and is decompressed there. The decompressed refrigerant is sent to the outdoor heat exchanger 24, expands to low temperature and low pressure, and lowers the surface temperature of the outdoor heat exchanger 24. The outdoor heat exchanger 24 whose surface temperature has dropped absorbs heat from the outdoor air. After absorbing heat, the low-temperature gaseous refrigerant returns to the compressor 22. The airflow generated by the indoor fan 43 promotes heat dissipation from the indoor heat exchanger 42, and the airflow generated by the outdoor fan 26 promotes heat absorption by the outdoor heat exchanger 24.
以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.
本発明は熱交換器に広く利用可能である。 The present invention is widely applicable to heat exchangers.
1 熱交換器
2 フィン
3 チューブ
4 冷媒通路
7 感温素子
8 外装ケース
10、11 固定部材
AC 空気調和機
20 室外機
40 室内機
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Fin 3 Tube 4 Refrigerant passage 7 Temperature sensing element 8 Exterior case 10, 11 Fixed member AC Air conditioner 20 Outdoor unit 40 Indoor unit
Claims (11)
前記チューブに冷媒温度検知用の感温素子が取り付けられるものであり、
前記チューブと前記感温素子の間には、前記チューブに電蝕を発生させない構成材料が介在することを特徴とする熱交換器。 In a heat exchanger having a tube through which refrigerant flows and fins attached to the tube,
A temperature sensing element for refrigerant temperature detection is attached to the tube,
A heat exchanger, wherein a constituent material that does not cause electric corrosion in the tube is interposed between the tube and the temperature sensing element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061351A JP2013194968A (en) | 2012-03-19 | 2012-03-19 | Heat exchanger and air conditioner mounted with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061351A JP2013194968A (en) | 2012-03-19 | 2012-03-19 | Heat exchanger and air conditioner mounted with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013194968A true JP2013194968A (en) | 2013-09-30 |
Family
ID=49394161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012061351A Pending JP2013194968A (en) | 2012-03-19 | 2012-03-19 | Heat exchanger and air conditioner mounted with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013194968A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105299855A (en) * | 2015-11-13 | 2016-02-03 | 珠海格力电器股份有限公司 | Temperature sensing bulb interface assembly, main control board, internal unit and air conditioning equipment |
JP2021017935A (en) * | 2019-07-22 | 2021-02-15 | リンナイ株式会社 | Connection joint, manufacturing method for heat exchanger, and heat exchanger |
JP2021092360A (en) * | 2019-12-11 | 2021-06-17 | ダイキン工業株式会社 | Heat exchanger, indoor unit of air conditioner, and refrigerating device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155446U (en) * | 1981-03-26 | 1982-09-30 | ||
JPS5932884U (en) * | 1982-08-26 | 1984-02-29 | 三洋電機株式会社 | Temperature sensing element mounting device |
JPH01158067U (en) * | 1988-04-23 | 1989-10-31 | ||
JPH04187958A (en) * | 1990-11-21 | 1992-07-06 | Hitachi Ltd | Refrigerant state detector |
JP2002350011A (en) * | 2001-05-24 | 2002-12-04 | Tgk Co Ltd | Expansion valve and fitting structure thereof |
JP2003240642A (en) * | 2002-02-15 | 2003-08-27 | Ishizuka Electronics Corp | Temperature sensor |
JP2004061066A (en) * | 2002-07-31 | 2004-02-26 | Mitsubishi Materials Corp | Sensor mounting apparatus and sensor |
JP2005273774A (en) * | 2004-03-24 | 2005-10-06 | Honda Motor Co Ltd | Gasket for water-cooled engine of outboard mount type |
JP2005315283A (en) * | 2004-04-27 | 2005-11-10 | Nissin Kogyo Co Ltd | Disc brake for vehicle |
JP2010223589A (en) * | 2009-03-19 | 2010-10-07 | Mitsubishi Materials Corp | Temperature sensor |
JP2011069543A (en) * | 2009-09-25 | 2011-04-07 | Sharp Corp | Heat exchanger and air conditioner mounted with the same |
-
2012
- 2012-03-19 JP JP2012061351A patent/JP2013194968A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155446U (en) * | 1981-03-26 | 1982-09-30 | ||
JPS5932884U (en) * | 1982-08-26 | 1984-02-29 | 三洋電機株式会社 | Temperature sensing element mounting device |
JPH01158067U (en) * | 1988-04-23 | 1989-10-31 | ||
JPH04187958A (en) * | 1990-11-21 | 1992-07-06 | Hitachi Ltd | Refrigerant state detector |
JP2002350011A (en) * | 2001-05-24 | 2002-12-04 | Tgk Co Ltd | Expansion valve and fitting structure thereof |
JP2003240642A (en) * | 2002-02-15 | 2003-08-27 | Ishizuka Electronics Corp | Temperature sensor |
JP2004061066A (en) * | 2002-07-31 | 2004-02-26 | Mitsubishi Materials Corp | Sensor mounting apparatus and sensor |
JP2005273774A (en) * | 2004-03-24 | 2005-10-06 | Honda Motor Co Ltd | Gasket for water-cooled engine of outboard mount type |
JP2005315283A (en) * | 2004-04-27 | 2005-11-10 | Nissin Kogyo Co Ltd | Disc brake for vehicle |
JP2010223589A (en) * | 2009-03-19 | 2010-10-07 | Mitsubishi Materials Corp | Temperature sensor |
JP2011069543A (en) * | 2009-09-25 | 2011-04-07 | Sharp Corp | Heat exchanger and air conditioner mounted with the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105299855A (en) * | 2015-11-13 | 2016-02-03 | 珠海格力电器股份有限公司 | Temperature sensing bulb interface assembly, main control board, internal unit and air conditioning equipment |
JP2021017935A (en) * | 2019-07-22 | 2021-02-15 | リンナイ株式会社 | Connection joint, manufacturing method for heat exchanger, and heat exchanger |
JP7370183B2 (en) | 2019-07-22 | 2023-10-27 | リンナイ株式会社 | Connection joint, heat exchanger manufacturing method, and heat exchanger |
JP2021092360A (en) * | 2019-12-11 | 2021-06-17 | ダイキン工業株式会社 | Heat exchanger, indoor unit of air conditioner, and refrigerating device |
WO2021117305A1 (en) | 2019-12-11 | 2021-06-17 | ダイキン工業株式会社 | Heat exchanger, indoor unit for air-conditioner, and refrigeration device |
CN114585860A (en) * | 2019-12-11 | 2022-06-03 | 大金工业株式会社 | Heat exchanger, indoor unit of air conditioner, and refrigeration device |
US20220299246A1 (en) * | 2019-12-11 | 2022-09-22 | Daikin Industries, Ltd. | Heat exchanger, indoor unit for air-conditioner, and refrigeration device |
AU2020400491B2 (en) * | 2019-12-11 | 2022-10-13 | Daikin Industries, Ltd. | Heat exchanger, indoor unit for air-conditioner, and refrigeration device |
EP4053473A4 (en) * | 2019-12-11 | 2022-12-21 | Daikin Industries, Ltd. | Heat exchanger, indoor unit for air-conditioner, and refrigeration device |
US11698213B2 (en) | 2019-12-11 | 2023-07-11 | Daikin Industries, Ltd. | Heat exchanger, indoor unit for air-conditioner, and refrigeration device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011085368A (en) | Heat exchanger and air conditioner equipped with the same | |
JP2010107102A (en) | Outdoor unit for air conditioner | |
JP2013194968A (en) | Heat exchanger and air conditioner mounted with the same | |
JP5961084B2 (en) | Radiant air conditioner | |
JP6318371B2 (en) | Outdoor unit and refrigeration cycle apparatus using the same | |
WO2010106776A1 (en) | Air conditioning device | |
US11698213B2 (en) | Heat exchanger, indoor unit for air-conditioner, and refrigeration device | |
JP6298992B2 (en) | Air conditioner | |
JP2014052087A (en) | Heat exchanger for hot water supply | |
JP5940895B2 (en) | Parallel flow type heat exchanger and air conditioner equipped with the same | |
CN213901535U (en) | Heat exchanger unit | |
JP2015090237A (en) | Heat exchanger | |
JP5864030B1 (en) | Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger | |
JP2017133814A (en) | Heat exchanger | |
JP6139093B2 (en) | Parallel flow heat exchanger | |
JP2018009742A (en) | Heat exchanger of refrigeration cycle device | |
JP2013139932A (en) | Refrigeration apparatus | |
WO2017130976A1 (en) | Heat exchanger and refrigeration device outdoor unit equipped with same | |
JP6873252B2 (en) | Heat exchanger, outdoor unit of air conditioner and air conditioner | |
JP2010236855A (en) | Additional condenser, and refrigerating cycle device with additional condensation system using this | |
JP2018071895A (en) | Heat exchanger | |
JP2012063076A (en) | Heat storage apparatus and air conditioning apparatus | |
JP2011089721A (en) | Heat exchanger and air conditioner mounted with the same | |
JP2013228134A (en) | Parallel flow type heat exchanger and air conditioner mounted with the same | |
JP2014059098A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160823 |